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Abstract

We study access to temporal data with TEL, a tem-
poral extension of the tractable description logic EL.
Our aim is to establish a clear computational com-
plexity landscape for the atomic query answering
problem, in terms of both data and combined com-
plexity. Atomic queries in full TEL turn out to be
undecidable even in data complexity. Motivated by
the negative result, we identify well-behaved yet ex-
pressive fragments of TEL. Our main contributions
are a semantic and sufficient syntactic conditions
for decidability and three orthogonal tractable frag-
ments, which are based on restricted use of rigid
roles, temporal operators, and novel acyclicity con-
ditions on the ontologies.

1 Introduction
In recent years, the use of ontologies to enrich plain data
with a semantic layer has become one of the outstanding
applications of description logic (DLs) technologies in the
Semantic Web. The ontology-based data access (OBDA) set-
ting provides information systems with various advantages,
e.g., a friendlier vocabulary for accessing heterogenous data
is given by the ontology, and means of querying potentially
incomplete data are provided by taking account of the im-
plicit knowledge derived from the data and the ontology.
Due to the increasing need to account for the temporal di-
mension of data available on the Web [Roth and Tan, 2013;
Dong and Tan, 2015], the DL community has recently inves-
tigated extensions of the OBDA paradigm for temporal data.
The initial efforts concentrated on temporal query languages
with atemporal ontologies [Gutiérrez-Basulto and Klarman,
2012; Klarman and Meyer, 2014; Baader, Borgwardt, and
Lippmann, 2015; Borgwardt, Lippmann, and Thost, 2015;
Borgwardt and Thost, 2015]. On the other hand, temporal
ontology languages can enhance conceptual modelling with
temporal aspects [Artale et al., 2015], which are required,
e.g., in applications managing data from sensor networks. In
this line, the research has focused on temporal extensions
of DL-Lite that support rewritability of temporal queries
into the monadic second-order logic with order or into two-
sorted first-order logic with < and + [Artale et al., 2013b;

2015]. Since standard relational database management sys-
tems have such built-in predicates, they can in principle
evaluate the FO(<,+)-rewritings. However, no temporal
extensions of other classical DLs have been investigated
yet in the context of OBDA, which is partly because of
the intractability and often even undecidability of the stan-
dard reasoning tasks (e.g., subsumption) [Artale et al., 2007;
Gutiérrez-Basulto, Jung, and Lutz, 2012; Gutiérrez-Basulto,
Jung, and Schneider, 2014]. On the other hand, temporal data
has also been studied in classical database theory [Chomicki
and Toman, 2005]. In their seminal paper, Chomicki and
Imielinski [1988] identified DATALOG1S as a decidable exten-
sion of DATALOG with one successor function. Here we make
the first (to the best of our knowledge) attempt to link temporal
OBDA with temporal deductive databases [Chomicki, 1990;
Baudinet, Chomicki, and Wolper, 1993].

In this paper, we study TEL, a temporal extension of
EL [Baader, Brandt, and Lutz, 2005]. The underlying DL
component, EL, underpins the OWL 2 EL profile of OWL 2
and the medical ontology SNOMED CT, which provides the
vocabulary for electronic health records (EHRs). Indeed, appli-
cations managing EHRs must be able to provide information,
e.g., on when and for how long some drug has been prescribed
to a patient, so that drugs that interact adversely are not pre-
scribed at the same time. Clinical trials [Shankar et al., 2008;
O’Connor et al., 2009] also require a unified conceptual model
for specifying temporal constraints of protocol entities such
as ‘a viable participant should have had a vaccination with
live virus 5 days ago’ or ‘blood tests of a patient should be
run every 3 days’. These statements can be encoded in TEL:

Patient u©5
P∃vaccinated.LiveVirus v ViableParticip, (1)

Patient u©3
PReqBloodTest v ReqBloodTest. (2)

Our main objective is to establish the limits of decidability
and tractability of the query answering problem over TEL
ontologies, in terms of both data and combined complexity.
In order to set the foundations, we focus on temporal atomic
queries. On the one hand, an atomic query ViableParticip(x, t)
with the temporal concept inclusion (1) effectively encodes a
tree-shaped temporal conjunctive query. On the other hand, us-
ing (1) to extend the vocabulary with a concept ViableParticip
is closer to the spirit of the OBDA paradigm than repeating the
same conjunction in all similar user queries. Moreover, a recur-
rent pattern ReqBloodTest is expressible as an atomic query



ReqBloodTest(x, t) with the temporal concept inclusion (2)
but not expressible as a query without temporal concept inclu-
sions like (2). As we shall see, even for atomic queries rather
surprising (and challenging) results are obtained.

Our main contributions are complexity bounds, algorithms
and rewritability into DATALOG1S for atomic query answering
in fragments of TEL. Since query answering over unrestricted
TEL turns out to be undecidable (in data complexity), we inves-
tigate its fragments to attain decidability and tractability. First,
for TEL◦, which allows only the ‘next-’ ©

F and ‘previous-
time’ ©

P operators, we identify ultimate periodicity as a natu-
ral semantic condition ensuring decidability, more precisely,
PSPACE data complexity (the question of decidability of the
full TEL◦ is left open for future work). Then, we identify a
number of fragments with better computational properties. (i)
For the fragment of TEL◦ without rigid (not changing over
time) roles on the right-hand side of concept inclusions, we
construct a polynomial rewriting into DATALOG1S , and so,
establish PSPACE-completeness for data complexity. This frag-
ment contains all EL ontologies as well as both (1) and (2).
(ii) Over temporally acyclic TEL◦-ontologies (with rigid roles
and concepts), query answering is PTIME-complete in both
data and combined complexity. This tractable fragment con-
tains (1) and fully captures all atemporal EL ontologies and
may prove particularly useful in applications; it, however, does
not contain (2). (iii) Query answering over DL-acyclic TEL◦
ontologies is NC1-complete for data complexity (in principle,
highly parallelizable). This fragment contains many acyclic
EL ontologies as well as both (1) and (2) (note that large
parts of SNOMED CT are in fact acyclic). We remark that our
two novel acyclicity conditions (each constraining only one
dimension) are inspired by the ‘traditional’ notion of acyclic-
ity in (temporal extensions of) DLs [Haase and Lutz, 2008;
Gutiérrez-Basulto, Jung, and Schneider, 2015]. Finally, (iv)
we show that the language with only 3P and 3F (sometime
in the past/future) on the left-hand side of concept inclusions
also enjoys PTIME query answering.

2 Preliminaries
We begin by introducing TEL, a temporal extension of the
classical DL EL. Let NC, NR, NI be countably infinite sets of
concept, role and individual names, respectively. We assume
that NR is partitioned into two infinite sets, Nrig

R and Nloc
R , of

rigid and local role names, respectively. TEL concepts are
defined by the following grammar:

C,D ::= A | C uD | ∃r.C | ©∗C | 3∗C,

where A ∈ NC, r ∈ NR, and ∗ ∈ {F, P}. A TEL-TBox
(ontology) T is a finite set of concept inclusions (CIs) C v D
and concept definitions (CDs) C ≡ D for TEL concepts C,D.
Data is given in terms of temporal ABoxes A, which are finite
sets of assertions of the form A(a, n) and r(a, b, n), where
A ∈ NC, r ∈ NR, a, b ∈ NI, and n ∈ Z. We denote by ind(A)
the sets of individual names occurring in A, and by tem(A)
the set {n ∈ Z | minA ≤ n ≤ maxA}, where minA and
maxA are, respectively, the minimal and maximal time points
in A. The size, |T | and |A|, of T and A is the number of
symbols required to write T and A, respectively, with time

points n ∈ Z encoded in unary. A temporal knowledge base
(KB) K is a pair (T ,A).

An interpretation I is a structure (∆I, (In)n∈Z), where
each In is a classical DL interpretation with domain ∆I: we
have AIn ⊆ ∆I and rIn ⊆ ∆I×∆I. Rigid roles r ∈ Nrig

R
do not change their interpretation in time: rIn = rI0 for all
n ∈ Z. We usually write AI,n and rI,n instead of AIn and
rIn , respectively, and the mapping ·I,n is extended to complex
TEL-concepts as follows:

(C uD)I,n = CI,n ∩DI,n,

(∃r.C)I,n =
{
d | there is e ∈ CI,n with (d, e) ∈ rI,n

}
,

(©∗C)I,n = CI,n op∗ 1,

(3∗C)I,n =
{
d | d ∈ CI,n op∗ k for some k > 0

}
,

where op∗ stands for − if ∗ = P and for + if ∗ = F . We use
strict 3∗ (k > 0) but our results do not depend on the choice.

An interpretation I is said to be a model of C v D, written
I |= C v D, if CI,n ⊆ DI,n, for all n ∈ Z; and a model of
C ≡ D if CI,n = DI,n, for all n ∈ Z. We call I a model
of a TBox T , written I |= T , if I |= α for all α ∈ T . Note
that TBoxes are interpreted globally in the sense that all CIs
and CDs must be satisfied at every time point. A concept D
subsumes a concept C with respect to T , written T |= C v D,
if I |= C v D for all models I of T .

For ABoxes A we adopt the standard name assumption:
aI,n = a for all a ∈ ind(A), n ∈ Z (and thus ind(A) ⊆ ∆I).
The relation |= is extended to ABoxes by taking I |= A(a, n)
iff a ∈ AI,n and I |= r(a, b, n) iff (a, b) ∈ rI,n; I is a model
of A iff I |= α for all α ∈ A. An interpretation I is a model
of a KB (T ,A), written I |= (T ,A), iff I |= T and I |= A.
Finally, K |= A(a, n) if I |= A(a, n) for every model I of K.

As the query language, we consider temporal atomic queries
(TAQs) of the form A(x, t) with A ∈ NC, x an individual
variable and t a temporal variable. Given K = (T ,A), a
certain answer to A(x, t) over K is a pair (a, n) ∈ ind(A)×
tem(A) with K |= A(a, n). We study the complexity of the
query answering problem over temporal knowledge bases:

TAQ answering
Input: TBox T , ABox A, TAQ A(x, t), a pair (a, n).
Question: Is (a, n) a certain answer to A(x, t) over (T ,A)?

Our results concern both the combined and data complexity of
the problem: for data complexity, the TBox is fixed. As usual,
for a complexity class C and a class X of TBoxes, we say that
TAQ answering over X is C-hard in data complexity if there
is some T ∈ X such that answering TAQs over T is C-hard.
Conversely, TAQ answering over X is in C in data complexity
if, for all T ∈ X , answering TAQs over T is in C.

As classes X , we will in particular look at full TEL and its
fragments TEL3 and TEL◦ in which, respectively, only the
temporal operators 3∗ and ©∗ are allowed. Note that 3∗ on
the left-hand side and 2∗ (with the usual semantics) on the
right-hand side of CIs can be expressed in TEL◦, e.g., instead
of 3PA v X or, equivalently, A v 2FX , take A v A′ and
©

PA
′ v A′ uX , for a fresh A′. Thus, rigid concepts, which

do not change their interpretation in time, can be expressed in
these two fragments using 3P3F on the left-hand side of CIs.



3 Query Answering in TEL: Undecidability
We first pinpoint different sources of complexity for the query
answering problem in TEL in order to identify computationally
well-behaved fragments in the sequel.

We begin by showing that TAQ answering over TEL3 is
undecidable. The known undecidability of subsumption in
TEL3 [Artale et al., 2007] translates only into the combined
complexity of TAQ answering. We strengthen the result to
obtain undecidability in data complexity by reducing the halt-
ing problem for the universal Turing machine. We exploit the
crucial observation that disjunction, although not in the syntax,
can be simulated with 3∗ [Artale et al., 2007].
Theorem 1 TAQ answering over TEL3 is undecidable in data
complexity.
The proof can also be adapted to the non-strict semantics of 3∗
using the chessboard technique [Gabbay et al., 2003].
TEL◦, unlike TEL3, is not capable of expressing disjunc-

tion. Still, its expressiveness makes answering TAQs hard:
Theorem 2 TAQ answering over TEL◦ is non-elementary in
combined complexity and PSPACE-hard in data complexity.
The proof of PSPACE-hardness is close in spirit to that for
DATALOG1S [Chomicki and Imielinski, 1988]; note that the
lower bound holds even in the restriction of TEL◦ without
∃r.C on the right-hand side of CIs. For the non-elementary
lower bound, we take inspiration in the construction for the
product modal logic LTL×K [Gabbay et al., 2003, Theorem
6.34]. Our proof requires a careful implementation of the yard-
stick technique [Stockmeyer, 1974] with only Horn formulas.

Decidability of TAQ answering in full TEL◦ is left open
as interesting and challenging future work; more insights on
the difficulty of the problem are given in Sec. 4. Nevertheless,
we show that extending TEL◦ with certain DL constructs that
are harmless for data complexity of atemporal query answer-
ing [Krisnadhi and Lutz, 2007] immediately leads to unde-
cidability. Let TELI◦ and TELF◦ be the extensions of TEL◦
with inverse roles r− and functionality axioms func(r), respec-
tively.1 For both languages, we reduce the halting problem for
the universal Turing machine to prove:
Theorem 3 TAQ answering over TELI◦ and TELF◦ is unde-
cidable in data complexity.
In the rest of the paper, we study decidability and complexity
of TAQ answering in various fragments of TEL◦ and TEL3.

4 Foundations of Query Answering in TEL◦
In this section, we lay the groundwork for the development
of algorithms for query answering in fragments of TEL◦ by
introducing canonical quasimodels, which are succinct ab-
stract representations of the universal model of the KB, see
also [Artale et al., 2013b; 2015]. They can also be viewed
as a generalization of the canonical structures used for query
answering in pure EL [Lutz, Toman, and Wolter, 2009].

In the sequel, we assume that TEL◦-TBoxes are in normal
form, that is, they consist of CIs of the form

A uA′ v B, A v ∃r.B, X v A,
1with the usual semantics: (r−)I,n = {(e, d) | (d, e) ∈ rI,n};

I |= func(r) iff e1 = e2, for all (d, e1), (d, e2) ∈ rI,n and n ∈ Z.

whereA,A′ andB are concept names andX is a basic concept
of the form A, ©∗A, or ∃r.A, for a concept name A. Observe
that, without loss of generality, ©∗ is restricted to the left-hand
side of CIs: for instance, A v ©

FB is equivalent to ©
PA v B.

It is routine to show that every TEL◦-TBox can be transformed
into the normal form by introducing fresh concept names; see,
e.g., [Baader, Brandt, and Lutz, 2005].

Fix now a KB (T ,A) with a TEL◦-TBox T in normal form
and let CN be the set of concept names in (T ,A). A map
π : Z→ 2CN is a trace for T if it satisfies the following:
(t1) if A uA′ v B ∈ T and A,A′ ∈ π(n), then B ∈ π(n);
(t2) if ©∗A v B ∈ T and A ∈ π(n), then B ∈ π(n op∗ 1).
Traces are the building blocks of quasimodels: they represent
the temporal evolution of individual domain elements. For
example, for T = {©PC v B,©PB v C}, the map π such
that π(i) is {B} for odd i and {C} for even i is a trace for T .

In order to describe interactions of domain elements, we
require more notation. Let π be a trace for T . For a rigid role
r ∈ Nrig

R , the r-projection of π is a map projr(π) : Z → 2CN

that sends each i ∈ Z to {A | ∃r.B v A ∈ T , B ∈ π(i)};
for a local role r ∈ Nloc

R , projr(π) is defined in the same way
on 0 but is ∅ for all other i ∈ Z. Given a map % : Z → 2CN

and n ∈ Z, we say that π contains the n-shift of % and write
% ⊆n π if %(i − n) ⊆ π(i), for all i ∈ Z. For example, let
T = {∃r.B v B′} with rigid role r. In the picture below, the
trace πa contains the 1-shift of the r-projection of πB :

0 1-1 2 3 4

πB

projr(πB)

πa

B C B C B

B′ B′ B′

B′

A

B′ B′

If r is local then πa has to contain B′ only at 1 (but not at 3,
etc.). We are now fully equipped to define quasimodels.

Let D = ind(A) ∪ CN henceforth. A quasimodel Q for
(T ,A) is a set of traces πd, d ∈ D, for T such that
(q1) A ∈ πa(n), for all A(a, n) ∈ A;
(q2) B ∈ πB(0), for all B ∈ CN;
(q3) projr(πb) ⊆0 πa, for all r(a, b, n) ∈ A;
(q4) if A ∈ πd(n) then projr(πB) ⊆n πd, for all d ∈ D,

n ∈ Z and A v ∃r.B in T .
Intuitively, quasimodels represent models of (T ,A): each πa
stands for the ABox individual a; each πB , on the other hand,
represents all individuals that witness B for CIs A v ∃r.B
in T . The latter is, in fact, the crucial abstraction underlying
quasimodels. Note that traces πB are normalized: B occurs
at time point 0, which is compensated by the shift operation
in (q4). For example, in the picture above, if A v ∃r.B ∈ T
then, in any model, a has an r-successor that belongs to B at
moment 1. Such a successor can be obtained as a ‘copy’ of
trace πB shifted by 1 so that its origin, 0, matches moment 1
for a. Then, by (q4), a belongs to B′ at all odd moments.

For the purposes of query answering we need to identify
canonical (minimal) quasimodels. We define the canonical
quasimodel as the limit of the following saturation (chase-like)
procedure. Start with initially empty maps πd, for d ∈ D, and
apply (t1)–(t2), (q1)–(q4) as rules: (q3), for example, says ‘if



r(a, b, n) ∈ A and A ∈ projr(πb)(i), then add A to πa(i).’
Then we have the following characterization:

Theorem 4 Let Q = {πd | d ∈ D} be the canonical quasi-
model of (T ,A) with T a TEL◦-TBox. Then, for anyA ∈ CN,
(T ,A) |= A(a, i) iff A ∈ πa(i), for a ∈ ind(A), i ∈ Z.

The procedure for constructing the canonical quasimodel deals
with infinite data structures (traces) and is generally not termi-
nating. So, although Theorem 4 provides a criterion for certain
answers, it does not immediately yield a decision algorithm
for full TEL◦. We remark that known techniques for dealing
with such infinite structures cannot be easily applied: for exam-
ple, MSO (over Z), a standard tool for decidability proofs in
temporal DLs [Gabbay et al., 2003], is not sufficient to encode
the canonical quasimodel directly because (q4) requires +. In
fact, the key to showing decidability for (fragments of) TEL◦
is finding a finite representation of traces.

The starting point of the rest of the paper is a semantic
condition on the canonical quasimodel, ultimate periodicity,
which ensures decidability in data complexity. Let T be a
TEL◦-TBox and Q the canonical quasimodel for (T , ∅). We
say that T is ultimately periodic, if there is p ∈ N such that
all πB , B ∈ CN, in Q are ultimately p-periodic, that is, for
each B ∈ CN, there are positive integers mP , pP ,mF , pF ≤ p
satisfying the following conditions:

πB(n− pP ) = πB(n), for all n ≤ −mP ,

πB(n+ pF ) = πB(n), for all n ≥ mF .

Intuitively, an ultimately p-periodic trace has repeating sec-
tions on the left and on the right:

0 mF−mP

mF +pF−mP−pP

mF +2pF−mP−2pP
The condition of ultimate periodicity is rather natural. On the
practical side, it is motivated by applications with recurrent
patterns such as health care support [Shankar et al., 2008],
see CIs (1) and (2) in Section 1. From the theoretical point of
view, any satisfiable LTL formula has an ultimately periodic
model [Manna and Wolper, 1984].

We next show that ultimate periodicity is indeed sufficient
for decidability in data complexity.

Theorem 5 TAQ answering over ultimately periodic TEL◦-
TBoxes is PSPACE-complete in data complexity.

PSPACE-hardness follows from (the proof of) Theorem 2.
We prove the matching upper bound by rewriting an ulti-
mately periodic TEL◦-TBox T into DATALOG1S [Chomicki
and Imielinski, 1988]. First, we take temporal rules

r(x, y, t± 1)← r(x, y, t), for r ∈ Nrig
R in T , (3)

B(x, t)← A(x, t), A′(x, t), for A uA′ v B in T , (4)
B(x, t)← r(x, y, t), A(y, t), for ∃r.A v B in T , (5)

which reflect rigidity of roles and standard EL concept in-
clusions on ABox individuals. Second, we observe that, for
any trace πd in the canonical quasimodel Q of any (T ,A), if
A ∈ πd(n) and A v ∃r.B ∈ T then, by (q4), πd contains

the n-shift not only of projr(πB) but also of πA. Since T is
ultimately periodic, for each trace πB , we fix integers mP , pP ,
mF , pF and take the following rules with a fresh predicate FB :

A(x, t+ i)← B(x, t), for 0 ≤ i < mF , A ∈ πB(i),

A(x, t+ i)← FB(x, t), for 0 ≤ i < pF , A ∈ πB(mF + i),

FB(x, t+mF )← B(x, t), FB(x, t+ pF )← FB(x, t),

and symmetric rules with mP , pP and fresh PB . Intuitively, the
rules in the first line replicate the (irregular) part of πB from 0
to mF . The two rules in the last line add recurring markers FB
at the start of each period while the rules in the second line
replicate the period of πB starting from each marker FB .

The required DATALOG1S-program ΠT contains all the
rules above (note that CIs of the form ©∗A v B are also
covered by the rules for traces πB). Using the canonical quasi-
model and Theorem 4, it is readily seen that ΠT is equivalent
to T : for every temporal ABox A, the answers to ΠT over A
coincide with the certain answers to (T ,A). Theorem 5 fol-
lows from PSPACE data complexity in DATALOG1S [Chomicki
and Imielinski, 1988] and independence of ΠT from A.

Observe that Theorem 5 does not imply decidability of full
TEL◦ since it is open whether every TEL◦-TBox is ultimately
periodic. We thus turn our attention to sufficient syntactic con-
ditions for ultimate periodicity and obtain tight complexity
bounds for both data and combined complexity for the result-
ing fragments. We consider two types of conditions: restricted
use of rigid roles and acyclicity of concept inclusions.

5 Restricted Use of Rigid Roles
We first consider TEL◦loc, the restriction of TEL◦ in which only
local roles are allowed. Due to the reduced interaction between
the temporal and DL component, we obtain data tractability.
Theorem 6 TAQ answering over TEL◦loc is PSPACE-complete
in combined and PTIME-complete in data complexity.
PSPACE-hardness follows from the proof of PSPACE-hardness
for entailment in Horn-LTL [Chen and Lin, 1993] and PTIME-
hardness from atomic query answering in EL. For the upper
bounds, let (T ,A) be a KB with T a TEL◦loc-TBox and Q
its canonical quasimodel. We take a propositional variable
PA,d for each A ∈ CN and d ∈ D and construct a Horn-
LTL formula ϕT ,A whose minimal model is isomorphic to Q:
variable PA,d is true in the model at moment n iff A ∈ πd(n).
We take the conjunction of the following formulas, for d ∈ D:

2(PA,d ∧ PA′,d → PB,d), for A uA′ v B ∈ T ,
2(©∗PA,d → PB,d), for ©∗A v B ∈ T ,
©nPA,a, for A(a, n) ∈ A,
PB,B , for B ∈ CN,
©nPB,b → ©nPA,a, for r(a, b, n)∈A,∃r.BvA∈T ,
PB′,B→2(PA,d→PA′,d), for A v ∃r.B, ∃r.B′ v A′∈T ,

where ©n is ©n
F if n ≥ 0 and ©−n

P if n < 0 and 2 is the
‘globally’ operator. It is readily verified that ϕT ,A is as re-
quired. Crucially, (q4) for local roles boils down to the last for-
mula above. Since entailment in LTL is in PSPACE [Sistla and
Clarke, 1985] and ϕT ,A is polynomial in the size of (T ,A),
we obtain membership in PSPACE for combined complexity.



To obtain the PTIME data complexity, observe that traces
πB , B ∈ CN, are ultimately 2|T |-periodic because they are
traces of the canonical quasimodel for (T , ∅); so, they can be
maintained in constant space. Next, traces πa, a ∈ ind(A), are
ultimately 2|T |+|A|-periodic, but a closer inspection reveals
that the middle irregular section, mP + mF , is bounded by
|A| + 2|T |, while both periods, pP and pF , by 2|T |; see, e.g.,
Lemma 3 [Artale et al., 2013a]. Thus, Q can be stored in space
bounded by a polynomial in |A|. Since each rule application
extends the traces, the saturation procedure for constructing
Q terminates in polynomial time in the size of A.

Since ontologies without rigid roles at all may be too re-
strictive for applications, we consider TEL◦l-rig-TBoxes where
rigid roles are allowed only in CIs of the form ∃r.B v A.
Theorem 7 TAQ answering over TEL◦l-rig is PSPACE-complete
in data complexity and in EXPTIME in combined complexity.
PSPACE-hardness in data complexity follows from the proof
of Theorem 2. For the upper bounds, we construct rewritings
into DATALOG1S , similarly to ΠT in Section 4 (Theorem 5).

6 Acyclicity Conditions
It is known that acyclicity conditions may lead to better com-
plexity. In particular, acyclic TBoxes are a way of obtaining
CTL-based temporal extensions of EL that have rigid roles
and enjoy PTIME subsumption [Gutiérrez-Basulto, Jung, and
Schneider, 2015]. In DATALOG1S , a restriction on recursion
has also been used to attain tractability [Chomicki, 1990].
From the application point of view, large parts of SNOMED CT
and GO [Gene Ontology Cons., 2000] are indeed acyclic. So,
we believe that the fragments we consider below are well-
suited for temporal extensions of such ontologies.

Acyclic TBoxes are finite sets of CDs A ≡ C, A ∈ NC, such
that no two CDs have the same left-hand side, and there are
no CDs A1 ≡ C1, . . . , Ak ≡ Ck in T such that Ai+1 occurs
in Ci, for all 1 ≤ i ≤ k (where Ak+1 := A1). We say A is
defined in T if A ≡ C ∈ T and primitive otherwise.
Theorem 8 TAQ answering over acyclic TEL◦ is in LOG-
TIME-uniform AC0 in data complexity and in PTIME in com-
bined complexity.
The LOGTIME-uniform AC0 upper bound is established by
rewriting into FO(+): for a given TAQ A(x, t) and TBox
T , we construct a two-sorted first-order formula ϕT ,A(x, t)
with functions +1 and −1 on temporal terms such that
(T ,A) |= A(a, i) iff A (viewed as an interpretation) is a
model of ϕT ,A(a, i), for all ABoxes A, a ∈ ind(A), i ∈ Z.
We adapt the technique developed for atemporal EL [Bienvenu,
Lutz, and Wolter, 2012]:

ϕT ,A(x, t) = SA(x, t), if A is primitive,
ϕT ,A(x, t) = SA(x, t) ∨ ϕT ,C(x, t), if A≡C ∈T ,

ϕT ,B1uB2(x, t) = ϕT ,B1(x, t) ∧ ϕT ,B2(x, t),

ϕT ,∃r.B(x, t) = ∃y
(
Rr(x, y, t) ∧ ϕT ,B(y, t)

)
,

ϕT ,©∗B(x, t) = ϕT ,B(x, t op∗ 1),

where SA(x, t) is a disjunction of all B(x, t) for concept
names B with T |= B v A, and Rr(x, y, t) is r(x, y, t) for
r ∈ Nloc

R and ∃t′ r(x, y, t′) for r ∈ Nrig
R .

Note that ϕT ,A is an FOZ-rewriting in the terminology of Ar-
tale et al. [2013b; 2015] because the temporal terms range
over Z. However, the infinite interpretation ofA is empty after
at most |T | steps from the ABox and so, ϕT ,A can be con-
verted into an FO-rewriting whose temporal terms range over
tem(A) only; see [Artale et al., 2015].

We next introduce novel notions of acyclicity that restrict
only one dimension, DL or temporal.

DL Acyclicity
First, we introduce DL-acyclic TEL◦-TBoxes, which are well-
suited as temporal extensions of, say, biomedical ontologies
that may require recurrent patterns but have an acyclic DL
component. A TEL◦-TBox T with concept names CN is called
DL-acyclic if there is a mapping `DL : CN→ N such that:

(i) Av∃r.B or ∃r.Bv A∈ T implies `DL(A) > `DL(B);
(ii) ©∗A v B implies `DL(A) = `DL(B);

(iii) A uA′ v B ∈ T implies `DL(A) = `DL(A
′) = `DL(B).

A DL-acyclic TBox is of depth k if k is minimal such that a
witnessing mapping `DL satisfies `DL(B) ≤ k for all B ∈ CN.

Theorem 9 TAQ answering over DL-acyclic TEL◦-TBoxes of
depth k ≥ 1 is k-EXPSPACE-complete in combined complexity
and NC1-complete in data complexity.

A closer inspection of the non-elementary lower bound proof
in Theorem 2 reveals that the TBox used is DL-acyclic and
TAQ answering over TBoxes of depth k is k-EXPSPACE-hard.
NC1-hardness in data complexity follows [Artale et al., 2015]
by reduction of the word problem of NFAs to TAQ answering,
even without the DL dimension.

For the matching upper bounds, fix (T ,A) with T of
depth k. We devise a completion procedure, which is based
on special LTL-formulas and implies ultimate periodicity of
all traces in the canonical quasimodel of (T ,A); cf. Section 5.
Given any A, let the slice Ai consist of all A(a, i) ∈ A, all
r(a, b, i) ∈ A and all r(a, b, i) with r(a, b, j) ∈ A, for some j,
and r ∈ Nrig

R . The algorithm separates consequences of the
role structure of A and local temporal consequences of T . In
particular, it exhaustively extends A by all A(a, i) with either

(T ,Ai) |=A(a, i) or B(a, i op∗ 1)∈A,©∗B v A∈T . (6)

It turns out thatAi in (6) can be replaced by its suitably defined
quotient Bi. Intuitively, the logic can only distinguish distinct
trees of depth k, whose number depends on |T | only; so, the
size of Bi is independent of |A|. By induction on depth k, we
define LTL-formulas ϕa,i of k-fold-exponential size charac-
terizing all A ∈ CN with (T ,Bi) |= A(a, i): we begin from
formulas as in Theorem 6; the induction step takes account of
the structure of Bi and incurs an exponential blowup.

Now, for combined complexity, observe that each of the
polynomially many ϕa,i can be analyzed in k-EXPSPACE. For
data complexity, observe that checking (T ,Bi) |= A(a, i) can
be done in constant time. The second option in (6), however,
cannot be implemented directly as the number of steps depends
on |A|. Instead, we construct a Büchi automaton that accepts
precisely the traces for T and cast the second option in (6)
as the question of whether all traces extending A have A at
position i, which is a regular property and so, is in NC1.



Temporal Acyclicity
We next relax acyclicity by admitting recursion in the DL
dimension (but not in temporal); thus, temporally acyclic
TBoxes include general EL-TBoxes. A TEL◦-TBox T
with concept names CN is temporally acyclic if there is
`◦ : CN→ N such that:

(i) ©
PAvB or ©

FBvA∈T implies `◦(B)=`◦(A)+1;
(ii) ∃r.B v A or A v ∃r.B ∈ T implies `◦(A) = `◦(B);

(iii) A uA′ v B ∈ T implies `◦(A) = `◦(A′) = `◦(B).
Temporally acyclic TBoxes cannot, unlike DL acyclic ones,
express rigid concepts. Still, we can partition concept names
NC into local Nloc

C and rigid Nrig
C and obtain the following:

Theorem 10 TAQ answering over temporally acyclic TEL◦
(with rigid concepts) is PTIME-complete in data and combined
complexity.
The lower bounds are from EL. For the upper bounds, we
show a small quasimodel property: traces of the canonical
quasimodel of any (T ,A) with such a TBox T satisfy

πa(j) = πa(j′), if j, j′ > u+ |T | or j, j′ < l − |T |,
πB(j) = πB(j′), if j, j′ > |T | or j, j′ < −|T |,

where u = maxA and l = minA. Intuitively, the canonical
quasimodel has a restricted temporal extension that stretches
only |T | time points beyondA. By the small quasimodel prop-
erty, the procedure for constructing the canonical quasimodel
can be implemented in polynomial time: traces πd require only
polynomial space, and rules (q1)–(q4) extend the traces.

Inflationary TEL3
Next, we follow an approach suggested by Artale et al. [2013b]
(in the context of temporal DL-Lite) and restrict TEL3 by
allowing 3∗ only on the left-hand side of CIs. This fragment
is denoted by TEL3

infl, for inflationary TEL (which is related to
inflationary DATALOG1S [Chomicki, 1990]). Note that TEL3

infl
extends general EL-TBoxes. Yet, the complexity is the same:
Theorem 11 TAQ answering over TEL3

infl is PTIME-complete
in both data and combined complexity.
We need to show only the upper bounds. Observe that TEL3

infl

can still be viewed as a fragment of TEL◦; see Section 2.
In fact, one can show an analogue of Theorem 4 with the
following replacement of (t2):

(t2′) if 3∗A v B ∈ T and A ∈ πd(n), then B ∈ πd(n′) for
all n′ > n if ∗ = P and for all n′ < n if ∗ = F .

We establish a special shape of the traces in the canonical
model of any (T ,A). Let % : Z → 2CN be a map and let
l, u ∈ Z with l ≤ u. We say that % is an [l, u]-bow tie if

– for all i > u, we have %(i+ 1) ⊇ %(i), and if %(i+ 1) =
%(i) then all %(i′), for n′ ≥ i, coincide;

– symmetrically, for all i < l, we have %(i − 1) ⊇ %(i),
and if %(i− 1) = %(i) then all %(i′), for i′ ≤ i, coincide.

These properties mean that % grows monotonically to the right
of u and to the left of l; in other words, % has inflationary
behaviour. We prove that the traces πd in the canonical quasi-
model Q of (T ,A), for any A, enjoy the following properties:

– πa is a [minA,maxA]-bow tie, for each a ∈ ind(A);
– πB is a [0, 0]-bow tie, for each B ∈ CN.

Thus, the traces in Q can be represented in polynomial space
because only the middle section and at most |CN| steps at both
ends need to be stored. Since the traces are extended with every
rule application, the procedure terminates after polynomially
many steps; Theorem 11 follows.

7 Discussion and Future Work
We summarize the fragments of TEL, their relationships and
the obtained complexity results in the following diagram:

AC0

PSPACE

≥ PSPACE

NC1

PTIME

undecidableTEL◦
≥ non-elem

TEL3
undecidableultim. period. TEL◦

≥ non-elem

TEL3
infl

PTIME

DL-acyclic TEL◦
non-elem

temp. acyclic TEL◦
PTIME

TEL◦l-rig
in EXPTIME

TEL◦loc
PSPACEacyclic TEL◦

in PTIME EL
PTIME

acyclic EL
in PTIME

where the solid lines are inclusions between DLs, the dashed
line is a reduction that preserves answers to all queries (model
conservative extension). The data complexity is indicated by
shading and the combined complexity is below the language.

Our data-tractability results show theoretical adequacy of
the identified fragments of TEL for data-intensive applications.
Our two novel forms of acyclicity, DL- and temporal, are some-
what close in spirit to multi-separability [Chomicki, 1990]:
the latter, however, puts a weaker restriction on recursion but
a stricter one on the interaction between the temporal and data
component. DL-acyclic TEL◦ is the first (to the best of our
knowledge) DL shown to have NC1-complete query answer-
ing (the large gap between data and combined complexity is
also remarkable). On the practical side, there is evidence that
such data-tractable fragments should be sufficient for many
biomedical applications. Following the principles of OBDA,
our framework provides a means of defining temporal concepts
in the ontology for these applications: temporal concepts cap-
ture both (restricted) tree-shaped temporal conjunctive queries
(CQs) and recurring temporal patterns.

As our immediate future work, we will address decidability
of (full) TEL◦ and then consider CQs with the + operation
on temporal terms. We expect that our positive results can
be lifted to CQs using the combined approach [Lutz, Toman,
and Wolter, 2009], which utilizes a structure similar to our
canonical quasimodel. We will also study succinct and expres-
sive representations of temporal data. For example, the only
known algorithm for DATALOG1S with binary encoding of
timestamps in the data runs in EXPTIME in the size of the
data [Chomicki and Imielinski, 1988]. We, however, presume
that careful materialization should be sufficient to deal with
the issue. We will also consider interval encoding of temporal
ABoxes, e.g., A(a, [n1, n2]), and settings capturing infinite
temporal periodic data as introduced by Kabanza, Stévenne,
and Wolper [1990] and Chomicki and Imielinski [1993].
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A Additional Preliminaries
DATALOG1S . We introduce DATALOG1S along the lines
of [Chomicki, 1990; Chomicki and Imielinski, 1988]. Tem-
poral terms are expressions of the form i, t ± i where t is a
temporal variable and i is a non-negative integer encoded in
unary. A non-temporal term is a constant or variable name. A
temporal rule is a formula of the form

B(~x, t)← A1(~x1, t1), . . . , Ak(~xk, tk),

where B,A1, . . . , Ak are predicate symbols, ~xi are (tuples
of) non-temporal terms and t, t1, . . . , tk are temporal terms.
A DATALOG1S program is a finite set of temporal rules. A
temporal database is a finite set of ground atomsB(~a, i). Note
that temporal databases restricted to predicates of arity two or
three are, syntactically, nothing else than temporal ABoxes;
thus, we will make no difference between them unless it could
cause confusion. Given a set of temporal rules Π, a tempo-
ral database D, and a query A(x, t), we say that a pair (a, i)
of a constant name a and a time point i is an answer and
write (Π,A) |= A(a, i) if A(a, i) is true in the least Herbrand
model Π(A) of Π and D, see [Chomicki, 1990]. (The least
Herbrand model Π(A) can alternatively be defined as the re-
sult of exhaustive application of rules in Π to A). It is known
that query answering in DATALOG1S is PSPACE-complete in
data complexity and EXPTIME-complete in combined com-
plexity [Chomicki and Imielinski, 1988].

Horn-LTL. We introduce syntax and semantics of (a suf-
ficiently expressive version of) propositional Horn-LTL, see
also [Chen and Lin, 1993]. Let P be a countably infinite set of
propositional variables. Propositional Horn-LTL formulas ϕ
are built according to the following grammar:

ψ,ψ′ ::= p | ©∗ψ | ψ ∧ ψ′,
ϕ, ϕ′ ::= ψ | ψ → ψ′ | ϕ ∧ ϕ′ | 2ϕ′,

where p ∈ P. We often write ©n for ©n
F if n ≥ 0 and ©−n

P for
n < 0.

A temporal interpretation for a Horn-LTL formulas is a
structure M = (Wp)p∈P, where Wp ⊆ Z. The relation |= is
defined by taking for all i ∈ Z:

(M, i) |= p, if i ∈Wp;

(M, i) |= ©∗ψ if (M, i op∗ 1) |= ψ;

(M, i) |= ϕ1 ∧ ϕ2, if (M, i) |= ϕ1 and (M, i) |= ϕ2;

(M, i) |= ϕ1 → ϕ2, if (M, i) |= ϕ1 implies (M, i) |= ϕ2;

(M, i) |= 2ϕ, if (M, j) |= ϕ for all j ∈ Z.

We say that M is a model for ϕ if (M, 0) |= ϕ. If ϕ is a
propositional Horn-LTL formula and p ∈ P then we write
ϕ |= ©np to say that (M, n) |= p, for all M with (M, 0) |= ϕ.

It is folklore that Horn-LTL formulas enjoy a uniquely de-
fined minimal model, which, intuitively, makes true only the
necessary propositions, that is, the Wp are minimal. It follows
that ϕ |= ©np iff M, n |= p in the minimal model M of ϕ.

B Proofs
3 Query Answering in TEL: Undecidability

Theorem 1 TAQ answering over TEL3 is undecidable in data
complexity.
Proof. The proof is based on the observation that disjunction
can be re-introduced in TEL3. For example, to express A v
B1 tB2, we take fresh concept names X,Y and use the four
concept inclusions A v 3FX u 3FY , 3F (X u Y ) v B1,
3F (X u 3FY ) v B2, and 3F (Y u 3FX) v B2 [Artale et
al., 2007]. Together, they imply that each instance of A is an
instance of either B1 or B2. This observation enables us to
use t in the proof below.

We reduce the (non-)halting problem of the universal Turing
machine A = (Q, q0,Σ,Γ, δ, F ), which we assume without
loss of generality to be deterministic. Moreover, we assume
that (a) A works on a one-end infinite tape, (b) the left-most
cell is labeled with a special symbol 6 c (which is never over-
written), and (c) the right end and everything beyond is labelled
with another special symbol, 6 b. It is important to notice that
changes between consecutive configurations are local: at most
three cells around the active cell (under the head of the Turing
machine) can change. It will be convenient to say that the
current state is contained in the active cell. We introduce the
following concept names:

– Aa, for a ∈ Γ, to represent the contents of the tape;

– Qi, for qi ∈ Q, to represent the current state;

– Q for marking the non-active cells (the contents of which
must be preserved in a transition);

– D` and Dr for marking the cells immediately left and
right of the active cell, respectively;

– I for ensuring that in the tape is blank beyond the input
word in the initial configuration;

– F for marking defects;

– A for creating an infinite chain.

A configuration of A is represented along the temporal dimen-
sion, i.e., by the temporal evolution of a certain individual over
time. The (unique) computation of A is encoded in the DL di-
mension along an infinite r-chain, for a rigid role r. The TBox
consists of several groups of concept inclusions for different
properties of the intended models. Note that we deliberately
use disjunction in CIs, even though it is not allowed in the
syntax—it is well-known that disjunction can be expressed
using 3F [Artale et al., 2007]. The TBox TA contains the
following concept inclusions:

– A v ∃r.A to create an infinite chain of r-successors;

– A v A 6c to make sure that the cell at the start of the tape
is labelled with 6 c in every configuration;

– A vti3FQi to choose some state qi in every configu-
ration;

– 3PA vta∈ΓAa and 3PA v Qttqi∈QQi to enforce
every cell to contain a symbol and either the current state,
Qi, or the no-head marker, Q;



– Qi v 3PD
` u 3FD

r to make sure that every state has
the two markers around it;

– concept inclusions to identify defects in the encoding of
each configuration (by marking them with concept F ):

Aa uAa′ v F, for all a 6= a′,

Qi uQj v F, for all i 6= j,

Q uQi v F, for all i,
Qi u3F3FD

r v F, for all i,

Qi u3P3PD
` v F, for all i

(the last two CIs ensure that the Dr and D` markers can
only occur immediately next to a Qi marker);

– concept inclusions to identify defects of transitions be-
tween successive configurations (again by marking them
with F ):

– non-active cells do not change:

Q uAa u ∃r.Aa′ v F, for all a 6= a′;

– if δ(qi, a) = (qk, b, `) then

Qi uAa u ∃r.Ac v F, for c 6= b,

D` u3F (Qi uAa) u ∃r.Qj v F, for j 6= k,

D` u3F (Qi uAa) u ∃r.Q v F ;

it follows that the only possible state label in the
successor configuration isQk and the only successor
possible symbol is b;

– similarly, if δ(qi, a) = (qk, b, r) then

Qi uAa u ∃r.Ac v F, for c 6= b,

Dr u3P (Qi uAa) u ∃r.Qj v F, for j 6= k,

Dr u3P (Qi uAa) u ∃r.Q v F ;

– concept inclusions detecting that a non-blank symbol
appears to the right of the input word in the initial config-
uration:

I u3FAa v F, for all a ∈ Γ \ {6 b};

– concept inclusions to propagate the defects:

∃r.F v F and 3FF v F.

An input word w = a1 · · · an is encoded in the ABoxAw with
the following assertions:

A(a, 0), Q0(a, 1), Aa1(a, 1), . . . , Aan(a, n), I(a, n).

Intuitively, any “defect-free” model of (TA,Aw) describes an
infinite computation of A on input w; more precisely, we can
show that

(TA,Aw) |= F (a, 0) iff A halts on input w.

This completes the proof of Theorem 1. o

We defer the proof of Theorem 2 until the end of the section
and present first proofs that are more similar in the structure
to the proof of Theorem 1.

Lemma 12 There is a TEL◦-TBox T using only a single role
name r ∈ Nrig

R and no ∃r.B on the right-hand side of CIs
such that TAQ answering over T is PSPACE-hard in data
complexity.

Proof. We reduce the word problem for deterministic
linear space-bounded Turing machines (LBAs), similarly
to [Chomicki, 1990]. Let A = (Q,Σ,Γ, δ, q0, F ) be an LBA
with a PSPACE-hard word problem. The TBox, TA, uses the
following concept names (cf. the proof of Theorem 1):

– Aa, for each a ∈ Γ, to encode the content of a tape cell;
– Qi, for qi ∈ Q, to represent the current state;

– Q for marking the no-head cells; in addition, we use Q
`

and Q
r

for the non-head cells on the left and right of the
active cell, respectively;

– G to propagate an accepting state.
We also use a single rigid role name r ∈ Nrig

R . For the sake
of readability, we introduce two auxiliary concept names, P
and S, and abbreviate the complex concepts ∃r.(P u ∃r.C)
and ∃r.(S u ∃r.C) by ∃pred.C and ∃succ.C, respectively. A
configuration of A is encoded in the DL dimension: neigh-
bouring cells are connected back-and-forth via succ and pred,
respectively, as shown in the following picture:

c1 c2 c3

s1
S

p1

P

s2
S

p2

P

succ succ

predpred

The TBox TA consists now of the following set of concept
inclusions. For a transition δ(qi, a) = (qk, b, r), we take

∃pred.(Qi uAa) v ©
FQk,

Qi uAa v ©
FAb.

For a transition δ(qi, a) = (qk, b, l), we take

∃succ.(Qi uAa) v ©
FQk,

Qi uAa v ©
FAb.

The content of non-active cells is preserved by concept inclu-
sions, for a ∈ Γ,

Q uAa v ©
FAa

and the following concept inclusions that propagate the no-
head markers along the tape:

∃pred.Qi v Q
r
, ∃succ.Qi v Q

`
, for qi ∈ Q,

∃pred.Qr v Qr, ∃succ.Q` v Q`,

Q
r v Q, Q

` v Q.
The auxiliary concept names S and P are simply propagated
into the future:

S v ©
FS P v ©

FP.



When an accepting state is reached, we activate the marker G
and propagate it back to the left-most cell at moment 0:

Qi v G, for qi ∈ F,
©

FG v G,
∃succ.G v G.

An input word w = a1 · · · an is encoded as an ABox Aw
with ind(Aw) = {ci | 1 ≤ i ≤ n} ∪ {pi, si | 1 ≤ i < n} and
the following assertions that initialize the tape and fix the succ
and pred relations:

Q0(c1, 0), Aai(ci, 0), for 1 ≤ i ≤ n,
r(ci, si, 0), S(si, 0), r(si, ci+1, 0), for 1 ≤ i < n,

r(ci+1, pi, 0), P (pi, 0), r(pi, ci, 0), for 1 ≤ i < n.

It is routine to verify that A accepts input w just in case
(TA,Aw) |= G(c1, 0). o

Theorem 3 TAQ answering over TELI◦ and TELF is unde-
cidable in data complexity.
Proof. We give a proof only for TELI◦, a proof for TELF is a
straightforward adaptation, which is indicated below.

We reduce the halting problem of the universal Turing ma-
chine A = (Q, q0,Σ,Γ, δ, F ), which, similarly to the proof of
Theorem 1, is assumed to be deterministic. Again, we assume
that A works on a one-end infinite tape and that the left-most
cell is labelled with a special marker 6 c (which is never over-
written) and the right end and everything beyond is labelled
with another special symbol, 6 b. We use the following concept
names, with the intuition similar to the proof of Lemma 12:

– Aa, for a ∈ Γ, to represent contents of the tape;
– Qi, for qi ∈ Q, to represent the current state;

– Q for marking the no-head cells; Q
`

and Q
r

are used for
the non-head cells on the left and right of the active cell,
respectively;

– G for propagating an accepting states.
(Note, however, that unlike in the proof of Lemma 12, we use
the temporal dimension to represent configurations and the
DL dimension for transitions between the configurations.)

As in the proof of Theorem 1, a configuration of A is repre-
sented along the temporal dimension, that is, by the temporal
evolution of a certain individual over time. The computation
of A is done in the DL dimension along an infinite r-chain,
for a rigid role name r.

We start by enforcing that everything right of 6 b is labeled
with 6 b using concept inclusion

A 6b v ©
FA 6b.

We next introduce the constraints needed to synchronise two
successive configurations. To this end, we enforce every cell
left and right of the state to be labelled by Q by adding

©
PQi v Q

r
, ©

FQi v Q
`
, for all qi ∈ Q,

©
PQ

r v Qr, ©
FQ

` v Q`,

Q
r v Q, Q

` v Q.

For transitions between successive configuration, we include
the following concept inclusions:

Qi uAa v ∃r.(Ab u©
FQk), if δ(qi, a) = (qk, b, r),

Qi uAa v ∃r.(Ab u©
PQk), if δ(qi, a) = (qk, b, `).

Non-active cells (those labelled by Q) are not changed, so we
add, for all a ∈ Γ:

∃r−.(Q uAa) v Aa.

(Note that this is the only concept inclusion that uses inverse
roles. If r is functional, we can use Q uAa v ∃r.Aa instead.)
Finally, for identifying an accepting configuration, we include

Qi v G, for qi ∈ F,
∃r.G v G,
©

FG v G.

The ABox Aw encodes an input word w = a1 · · · an as the
following assertions:

A(a, 0), Q0(a, 1), Aa1(a, 1), . . . , Aan(a, n),

A 6b(a, n+ 1).

It is now routine to verify that (TA,Aw) |= G(a, 0) iff A
accepts input w. o

Theorem 2 TAQ answering over TEL◦ is non-elementary in
combined complexity and PSPACE-hard in data complexity.
Proof. PSPACE-hardness is by Lemma 12. For the non-
elementary lower bound we take inspiration in the construction
for the product modal logic LTL×K [Gabbay et al., 2003, The-
orem 6.34]. Our proof requires a careful implementation of
the yardstick technique [Stockmeyer, 1974] using only Horn
formulas. The proof consists of two steps: first, we show how
to encode arbitrarily large elementary numbers; second, we
prove k-EXPSPACE-hardness for every k ≥ 1. We concentrate
on the first step, because, given the encoding of the numbers,
it is straightforward to establish the respective lower bounds.
We define function expk by taking

exp0(n) = n, expk+1(n) = expk(n) · 2expk(n).

Lemma 13 For each k, n ≥ 1, there is a DL-acyclic TEL◦-
TBox Tk,n, and concept names Initk,Zerok,Zerok such that

Tk,n |= Initk v ©m
F Zerok iff m = 0 mod expk(n), (7)

Tk,n |= Initk v ©m
F Zerok iff m 6= 0 mod expk(n). (8)

Proof. Fix n ≥ 1. We use single rigid role r and throughout
the proof, concepts of the form A will be intended as the
complements of respective A.

The proof is by induction on k. For the basis of induction,
k = 1, we describe a TEL◦-TBox T1,n that models a binary
counter with n bits along the temporal dimension (these will
be counters at level 1). The TBox is based on the following
concept names:

– S1 and S1 to indicate the start of the encoding of the
counter,



– B1 and B1 to represent the bits of the binary counter;
– C1 and C1 for the value of the carry bit;

– Init1,Zero1 and Zero1 for the claim of the lemma.
First, T1,n sets out delimiters each n moments of time:

Init1 v S1, (9)
S1 v ©n

F S1, (10)

S1 v ©i
FS1, for 1 ≤ i < n. (11)

Then, we write the representation of 0 as the first value of the
counter:

Init1 v B1 u©1
FB1 u . . . u©n

F B1. (12)

The following CIs increment the value of the n-bit counter
(with the least significant bit at the smallest time point):

S1 u©n
P B1 v B1 u©

FC1, (13)

S1 u©n
P B1 v B1 u©

FC1, (14)

S1 u C1 u©n
P B1 v B1 u©

FC1, (15)

S1 u C1 u©n
P B1 v B1 u©

FC1, (16)

S1 u C1 u©n
P B1 v B1 u©

FC1, (17)

S1 u C1 u©n
P B1 v B1 u©

FC1. (18)

Intuitively, S1 marks the positions for the least significant bit
in the binary counter. Then, (13)–(16) flip all the bits until 0
is reached. After that, (18) and (17) copy the remaining bits
(until the delimiter, S1, is reached). Concept names Zero1

and Zero1 are then related to the binary representation of the
counter by means of

S1 uB1 u . . . u©n
F B1 v Zero1, (19)

S1 u©i
FB1 v Zero1, for 0 ≤ i < n. (20)

It should be clear that T1,n satisfies (7) and (8). We only remark
that, that due to the structure of the CIs above, if d ∈ InitJ ,t1 ,
for a model J of T1,n, then at each moment m ≥ t, the ele-
ment d belongs either toA orA, for all conceptsA of the form
B1, C1 and S1. On the other hand, there is always a model of
T1,n in which, for all concepts names A as above, none of the
domain elements belongs to both A and A.

For the inductive step, let k > 1. By the induction hypoth-
esis, there is a TBox Tk−1,n satisfying (7) and (8) for k − 1.
So, Tk−1,n is the first ingredient of Tk,n: let Tk,n contain all
concept inclusions of Tk−1,n. As before, a counter value is rep-
resented by a sequence of expk−1(n) consecutive time points
but the main difficulty is now to relate two consecutive counter
values. For that purpose, we use the following symbols (in
addition to the signature of Tk−1,n):

– Sk and Sk to indicate the start of the encoding of the
counter value at level k,

– Zk to write down the initial counter value of 0,
– Bk and Bk to represent the bits of the binary counter,
– Ck and Ck and for the value of the carry bit,

– Yk and Y k to record the value of the bit and communicate
it between two consecutive numbers,

– Ik and Ik to detect sequences of set bits of length
expk−1(n),

– Delimk,Keepk,Readk to distinguish different uses of the
counters.

– Initk, Zerok and Zerok as required in claim of the lemma.
Intuitively, the level k counter is realized by first enforcing a
sequence of expk−1(n) zeros, that is, Bk, along the temporal
dimension, and then enforcing that, if there is a sequence of
length expk−1(n) encoding some number, say M , then the
subsequent sequence of the same length encodes M + 1. We
mark the beginnings of a number using concepts Sk and Sk
and a special counter of type Delimk of level k− 1 as follows:

Initk v ∃r.(Delimk u Initk−1), (21)
©

PDelimk v Delimk, (22)
∃r.(Delimk u Zerok−1) v Sk, (23)

∃r.(Delimk u Zerok−1) v Sk; (24)

cf. (9)–(11). Next, we write down 0 as the first value of the
counter, that is, we enforce the first expk−1(n) time points
belong to Bk:

Initk v Zk, (25)

Sk u©
PZk v Zk, (26)

Zk v Bk; (27)

cf. (12). In order to correctly increment the level k counter,
we have to communicate between time point elements having
a distance of expk−1(n). The following concept inclusions
create a individual and store the value of the current bit there:

Bk v ∃r.(Keepk u Initk−1 u Yk), (28)

Bk v ∃r.(Keepk u Initk−1 u Y k), (29)
©

PYk v Yk, (30)
©

PY k v Y k. (31)

In order to transfer the stored value, Yk or Y k, precisely
expk−1(n) time points, the relevant time point is marked with
Readk:

Zerok−1 u©
PKeepk v Keepk, (32)

Zerok−1 u©
PKeepk v Readk. (33)

Intuitively, when an r-successor is created, the first
expk−1(n) − 1 moments (from the current one) are marked
by Keepk and the expk−1(n) moment is marked by Readk.
Finally, the next group of CIs realizes the increment of a level
k counter:

Sk u ∃r.(Readk u Yk) v Bk u©
FCk, (34)

Sk u ∃r.(Readk u Y k) v Bk u©
FCk, (35)

Sk u Ck u ∃r.(Readk u Yk) v Bk u©
FCk, (36)

Sk u Ck u ∃r.(Readk u Y k) v Bk u©
FCk, (37)

Sk u Ck u ∃r.(Readk u Yk) v Bk u©
FCk, (38)



Sk u Ck u ∃r.(Readk u Y k) v Bk u©
FCk. (39)

These CIs work in precisely the same way as (13)–(18) for the
case of k = 1 except that now we use ∃r.(Readk u Yk) and
∃r.(Readk u Y k) in place of ©n

P B1 and ©n
P B1.

To obtain correct valuations for concepts Zerok and Zerok,
we require an auxiliary concept Ik defined by the following
set of CIs:

Sk uBk v Ik, (40)

Bk v Ik, (41)

Sk u©
P Ik uBk v Ik, (42)

Sk u©
P Ik v Ik. (43)

Informally, Ik identifies long runs of set bits that begin at one
of the delimiters. With Ik and Ik at hand, we add the following
CIs to define Zerok and Zerok:

Initk v Zerok, (44)
Sk u©

P Ik v Zerok, (45)

Sk u©
P Ik v Zerok, (46)

Sk v Zerok. (47)

This completes the construction of Tk,n and it remains to
show (7) and (8).

Let I be a model of Tk,n and d ∈ InitI,tk . Since the argu-
ments are independent of t, we will assume t = 0 from now
on. Let N = expk−1(n). By (21), there is some e ∈ ∆I such
that2 (d, e) ∈ rI and e ∈ InitI,0k−1,Delim

I,0
k . By (22), we have

e ∈ DelimI,i
k for all i ≥ 0; by (7) and (8) of the induction

hypothesis, we have, for all i ≥ 0,

e ∈ ZeroI,ik−1 if i = 0 mod N,

e ∈ Zero
I,i

k−1 if i 6= 0 mod N.

By (23) and (24), we obtain

d ∈ SI,i
k if i = 0 mod N, (48)

d ∈ SI,i

k if i 6= 0 mod N. (49)

For each i ≥ 0, define bit(i) as follows:

bit(i) =


{0} if d ∈ BI,i

k \B
I,i
k ;

{1} if d ∈ BI,i
k \B

I,i

k ;

{0, 1} otherwise.

Starting from that, we define for eachm ≥ 0 a function val(m)
reading off the m-th counter value:

val(m) =
{N−1∑
i=0

2ibi | bi ∈ bit(mN + i)
}
.

Clearly, val(m) ⊆ {0, . . . , 2N − 1}.

Claim 1. m mod 2N ∈ val(m), for all m ≥ 0.

2Since r is rigid, we will not specify the moment of time.

Proof of Claim 1. The proof is by induction on m. For the
induction base, let m = 0. Clearly, it suffices to show 0 ∈
bit(i), for every 0 ≤ i < N . By (25)–(27) and (49), d ∈ BI,i

k
for all 0 ≤ i < N .

For the induction step, take m > 0. By induction, we know
that m − 1 mod 2N ∈ val(m − 1). We show the following
characterization of a single incrementation operation via an
inductive argument for all mN ≤ i < (m+ 1)N :

(P1) If 1 ∈ bit(j) for all mN ≤ j < i, then d ∈ CI,i
k ;

otherwise, d ∈ CI,i

k ;

(P2) If d ∈ CI,i
k , then {1− v | v ∈ bit(i−N)} ⊆ bit(i);

(P3) If d ∈ CI,i

k , then bit(i−N) ⊆ bit(i).

By (34) and (48), d ∈ CI,mN
k . If 1 ∈ bit((m− 1)N), then

d ∈ BI,(m−1)N
k . By (28), there is some e with (d, e) ∈ rI and

e ∈ (Initk−1 u Keepk u Yk)I,(m−1)N . By (30), e ∈ Y I,mN
k .

Then, (32)–(33) together with (7) and (8) of the induction
hypothesis imply e ∈ ReadI,mNk , whence d ∈ ∃r.(Readk u
Yk)I,mN . By (36), d ∈ BI,mN

, and hence 0 ∈ bit(mN). The
carry bit is also propagated to mN + 1. The transfer of Y k
in case 0 ∈ bit((m− 1)N) is analogous, that is, (37) implies
0 ∈ bit(mN) and d ∈ CI,mN+1

k .
The remaining cases are treated in a similar way. Then,

Properties (P2) and (P3) imply that{
v + 1 mod 2N | v ∈ val(m− 1)

}
⊆ val(m),

which finishes the proof of Claim 1.

We next show that the maximal value, 2N − 1, is recognized
correctly.

Claim 2. For all m ≥ 0,

– if 2N − 1 ∈ val(m), then d ∈ II,(m+1)N−1
k ;

– if k ∈ val(m) for k 6= 2N − 1, then d ∈ II,(m+1)N−1

k .

Proof of Claim 2. Suppose first that 2N − 1 ∈ val(m), that
is, for each 0 ≤ i < N , we have 1 ∈ bit(mN + i) and
thus d ∈ BI,mN+i

k . By (40) and (48), we obtain d ∈ II,mNk .
CI (42) with (49) yield d ∈ II,mN+i

k for all 0 ≤ i < N .
Suppose now that k ∈ val(m) with k 6= 2N − 1, that is,

there is some 0 ≤ i < N with 0 ∈ bit(mN + i) and thus
d ∈ B

I,mN+i

k . By (41), d ∈ I
I,mN+i

k . By (43) and (49),
d ∈ II,mN+j

k , for all i ≤ j < N . This finishes the proof of
Claim 2.

We are now in a position to show (7) and (8) for k. We con-
centrate on the “if”-directions; the “only if”-directions are
consequences of the observation that there is a minimal model
of Tk,n and Initk such that, for all concept names A, none of
the domain elements belongs to both A and A (at any time
point).

If m 6= 0 mod N , then d ∈ S
I,m

k by (49). By (47), d ∈
Zero

I,m

k . If m = 0 mod N , then m = m0N for some m0. If
m0 = 0, then m = 0 and d ∈ Zero

I,m

k by (44). If m0 > 0,
we distinguish the following two cases.



– If m0 = 0 mod 2N , then, by Claim 1, 2N − 1 ∈
val(m0−1). Claim 2 then yields d ∈ II,m0N−1

k . By (45),
d ∈ ZeroI,m0N

k (recall m0N = m).

– Ifm0 6= 0 mod 2N , we denote with p0 = (m0−1) mod
2N . By Claim 1, there is p0 ∈ val(m0 − 1). Since p0 6=
2N−1, Claim 2 yields d ∈ II,m0N+1

k . By (46), we obtain
d ∈ Zero

I,m0N

k (recall m0N = m).

This finishes the proof of Lemma 13. o

For the second step, take a deterministic Turing machine
A = (Q,Σ,Γ, q0, δ, F ) with a k-EXPSPACE-hard word prob-
lem, that is, there is a polynomial p(n) such that A needs on
any input of length n at most expk(p(n)) tape cells. A con-
figuration of A is represented along the temporal dimension,
the computation of A is a sequence of configurations; note the
similarity to the above. The main difficulty is to communicate
corresponding tape cells in two consecutive configurations; it
is routine to do so using the TBox Tk,p(n) for inputs of length
n (note that the size of Tk,p(n) is polynomial in k, n). We rep-
resent an input word w = σ1 · · ·σn by means of the ABox
Aw defined as
{Initk(a, 0), Aσ1

(a, 0), . . . , Aσn
(a, n− 1), A6b(a, n)},

where Aσ, for σ ∈ Γ, are concept names that represent the
tape alphabet. The signature further includes concept names
Zq, q ∈ Q for representing the states of A. Acceptance is
detected by an additional concept name Acc together with the
concept inclusions

Qq v Acc, for each q ∈ F ,
©

FAcc v Acc,

Initk u Acc v B.
It is then not hard to show that the sketched TBox T satisfies
the following:

(T ,Aw) |= B(a, 0) iff A accepts w.
This completes the proof of Theorem 2. o

4 Foundations of Query Answering in TEL◦
In the following lemma we show how to establish the normal
form.
Lemma 14 For every TEL◦-TBox T with concept names CN,
we can construct in polynomial time a TEL◦-TBox T ′ with
concept names CN′ ⊇ CN such that T ′ is a model conserva-
tive extension of T :

– every model of T ′ is a model of T and
– every model of T can be extended to a model of T ′ by

giving a suitable interpretation to fresh concept names
CN′ \ CN.

Proof. Let sub(T ) be the set of sub-concepts appearing in T .
For every C ∈ sub(T ), take a fresh concept name XC and
define concept C as follows:

C =


A, if C = A ∈ CN,

∃r.XD, if C = ∃r.D,
©∗XD, if C = ©∗D,

XD1
uXD2

, if C = D1 uD2.

Now, let T ′ consist of the following concept inclusions:

C v XD, for all C v D ∈ T ;

C v XC , XC v C, for all C ∈ sub(T ).

Observe that T ′ is almost of the required shape: conjunctions
on the right-hand side are just abbreviations, and, for instance,
©

P on the right-hand side can be expressed via ©
F on the

left-hand side. Finally, it is routine to prove the two properties
mentioned above. o

Theorem 4 Let Q = {πd | d ∈ D} be the canonical quasi-
model of (T ,A) with a TEL◦-TBox T and D = ind(A)∪CN.
Then, for every A ∈ CN, a ∈ ind(A), i ∈ Z, we have

(T ,A) |= A(a, i) iff A ∈ πa(i).

Proof. (⇐) Suppose that (T ,A) 6|= A(a, i), that is, there is
a model I = (∆I, (In)n∈Z) of (T ,A) such that a /∈ AI,i.
We can read off a collection of traces from I as follows. First
assign a trace πa to every a ∈ ∆I by taking:

πa(i) = {C ∈ CN | a ∈ CI,i}, for every i ∈ Z.

The definition of πB , B ∈ CN is slightly more complicated.
Intuitively, πB(i) contains a concept nameC iff every instance
of B, say at time point n, in I evolves to an instance of C at
time point n+ i. Formally, we put for i ∈ Z, A ∈ CN:

πB(i) = {C ∈ CN | I |= B v ©iC},

where ©i is ©i
F if i ≥ 0 and ©−i

P if i < 0. It remains to verify
that the collection {πd | d ∈ D} satisfies properties (t1)–(t2),
and (q1)–(q4). Properties (t1), (t2), and (q3) are satisfied since
I |= T . Properties (q1) and (q2) are satisfied since I |= A.
For verifying (q4), letC ∈ πd(n), for some d ∈ D, n ∈ Z and
C v ∃r.B ∈ T for some rigid role r ∈ Nrig

R ; the case r ∈ Nloc
R

is similar. Moreover, suppose that E ∈ projr(πB)(i− n) for
some i ∈ Z, E ∈ CN. We need to show that E ∈ πd(i).

By the definition of projr, there is E′ ∈ πB(i − n) such
that ∃r.E′ v E ∈ T . We distinguish cases on d.

– If d ∈ ind(A), then C ∈ πd(n) implies d ∈ CI,n. Since
I |= T and C v ∃r.B ∈ T , there is some d′ ∈ BI,n

such that (d, d′) ∈ rI,n. As E′ ∈ πB(i − n), we know
that I |= B v ©i−nE′, and thus d′ ∈ E′I,i. As ∃r.E′ v
E ∈ T , we obtain d ∈ EI,i, whence E ∈ πd(i).

– If d ∈ CN, then C ∈ πd(n) implies I |= d v ©nC.
Since I |= T and C v ∃r.B ∈ T , we have I |= d v
©n∃r.B. From E′ ∈ πB(i − n), we obtain I |= B v
©i−nE′, and thus, I |= d v ©n∃r.©i−nE′. As ∃r.E′ v
E ∈ T , we obtain I |= x v ©iE, whence E ∈ πd(i).

By the initial assumption a /∈ AI,i and the definition of πa, we
haveA /∈ πa(i). Thus,A /∈ πa(i) in the canonical quasimodel,
which finishes the proof of the “⇐”-direction.

(⇒) Let Q = {πd | d ∈ D} be the canonical quasimodel
for (T ,A). We define the unravelling of Q inductively as
follows. We start with an interpretation I0 = (∆0, (I0n)n∈Z)
defined by taking:

∆0 = ind(A),



AI0,n = {a ∈ ind(A) | A ∈ πa(n)},
rI0,n = {(a, b) | r(a, b, n) ∈ A, r ∈ Nloc

R } ∪
{(a, b) | r(a, b,m) ∈ A, r ∈ Nrig

R }.

The interpretation Ii+1 is obtained from Ii by applying the
following rule where applicable:
• if a ∈ AIi,n and A v ∃r.B ∈ T , then extend ∆i with a

fresh element b and
– if r ∈ Nloc

R , then put (a, b) ∈ rIi+1,n;

– if r ∈ Nrig
R , then put (a, b) ∈ rIi+1,m for all m ∈ Z;

– for all E ∈ CN, m ∈ Z, put

b ∈ EIi+1,n+m iff E ∈ πB(m).

Obtain I from (Ii)i≥0 by taking for all n ∈ Z, concept names
A, and role names r:

∆ =
⋃
i≥0

∆i, AI,n =
⋃
i≥0

AIi,n, rI,n =
⋃
i≥0

rIi,n.

Let us verify that I |= (T ,A). The definition of I0 to-
gether with properties (q1) and (q2) yields I |= A. From
properties (t1) and (t2) together with the definition of AI,n,
we obtain that I |= α for all α ∈ T of the form A1 uA2 v A,
and ©∗A1 v A. For the remaining concept inclusions from
T , we provide more detail. Let A v ∃r.B ∈ T and a ∈ AI,n

for some a ∈ ∆. By the above rule, we have that the freshly
introduced element b satisfies (a, b) ∈ rI,n and b ∈ BI,n.

Consider finally a concept inclusion ∃r.B v A ∈ T ,
domain elements a, b ∈ ∆I satisfying (a, b) ∈ rI,n and
b ∈ BI,n. We need to show that a ∈ AI,n. If (a, b) ∈ rI,n
because (a, b) ∈ rI0,n, then a ∈ AI,n due to the definition of
interpretation of concept names and (q3). If (a, b) was added
to rIi,n+1 in some rule application, we obtain a ∈ AI,n due
to the definition of interpretation of concept names and (q4).

We conclude the proof by noting that if A /∈ πa(i), for
some A ∈ CN, a ∈ ind(A), i ∈ Z, then, by definition of I,
a /∈ AI,i and hence (T ,A) 6|= A(a, i). o

Theorem 5 TAQ answering over ultimately periodic TEL◦-
TBoxes is decidable and PSPACE-complete in data complexity.
Proof. The lower bound is by Lemma 12. The matching upper
bound is established in Lemma 15 below for the rewriting ΠT
constructed in Section 4. o

Lemma 15 For all ABoxes A, A ∈ CN, a ∈ ind(A), i ∈ Z,
we have (ΠT ,A) |= A(a, i) iff (T ,A) |= A(a, i).

Proof. (⇐) Suppose that (ΠT ,A) 6|= A(a, i), that is,
A(a, i) /∈ ΠT (A), where ΠT (A) is the minimal Her-
brand model of (ΠT ,A). We read off a collection of traces
Q = {πd | d ∈ D} precisely as in the “⇐”-direction in the
proof of Theorem 4, that is, for every i ∈ Z, a ∈ ind(A),
B ∈ CN:

πa(i) = {C ∈ CN | C(a, i) ∈ ΠT (A)},
πB(i) = {C ∈ CN | ∀a, n : B(a, n) ∈ ΠT (A)

⇒ C(a, n+ i) ∈ ΠT (A)}.

It is routine to verify that Q satisfies (t1), (t2), and (q1)–(q4).
It remains to show that Q satisfies the quasimodel con-

ditions. (t1) is satisfied by formulas (4). For (t2), assume
A ∈ πd(n) and ©

PA v B ∈ T . The latter and (t2) im-
plies that B ∈ π̂A(1), where {π̂d | d ∈ D} are the traces in
the canonical quasimodel. By construction of ΠT , we have a
rule B(x, t+ 1)← A(x, t). We distinguish cases on d.

– if d ∈ ind(A), we get A(d, i) ∈ ΠT (A). By the men-
tioned rule, also B(d, i + 1) ∈ ΠT (A) and hence
B ∈ πd(i+ 1);

– if d = X ∈ CN, then for all b, n, if X(b, n) ∈ ΠT (A),
thenA(b, i+n) ∈ ΠT (A). By the above rule,X(b, n) ∈
ΠT (A) also implies B(b, i + n + 1) ∈ ΠT (A) for all
b, n. Hence, B ∈ πd(i+ 1).

Properties (q1) and (q2) are clear as A ∈ ΠT (A) and (q3)
follows directly from formulas (3) and (5) included in ΠT .
For (q4), assume that A ∈ πd(n), A v ∃r.B ∈ T , and
E ∈ projr(πB)(i− n) for some i ∈ Z. We need to show that
E ∈ πd(i). By definition of projr, there is some E′ ∈ πB(i−
n) such that ∃r.E′ v E ∈ T . Since A v ∃r.B ∈ T and (q4)
applied to the canonical quasimodel, we get projr(πB) ⊆0 πA.
In particular, E ∈ πA(j) whenever E′ ∈ πB and thus E ∈
πA(i − n). The construction of ΠT , in particular, the rules
included for πA, implies the rule E(x, t+ i− n)← A(x, t).
We distinguish cases on d.

– If d ∈ ind(A), then A(d, n) ∈ ΠT (A). As a conse-
quence of the aforementioned rule, we have E(d, i) ∈
ΠT (A); whence E ∈ πd(i).

– If d = X ∈ CN, then for all b,m, if X(b,m) ∈
ΠT (A), then A(b, n+m) ∈ ΠT (A). By the above rule,
X(b,m) ∈ ΠT (A) also implies E(b,m+ i) ∈ ΠT (A),
for all b,m. Hence, B ∈ πd(i).

Since A(a, i) /∈ ΠT (A), we have A /∈ πa(i); thus, A /∈
π̂a(i) in the canonical quasimodel. Theorem 4 then yields
(T ,A) 6|= A(a, i).

(⇒) Assume that (T ,A) 6|= A(a, i) and thus A /∈ πa(i)
in the canonical quasimodel {πd | d ∈ D}. We show that
A(a, i) /∈ ΠT (A) by noting that the set M , defined as

M = {B(b, n) | B ∈ πb(n), b ∈ Ind(A)} ∪
{r(a, b, n) | r(a, b,m) ∈ A, r ∈ Nrig

R } ∪
{r(a, b, n) | r(a, b, n) ∈ A, r ∈ Nloc

R },

clearly is a model for ΠT and A, thus M ⊇ ΠT (A), but
A(a, i) /∈M . o

5 Restricted Use of Rigid Roles
Theorem 6 TAQ answering over TEL◦loc is PSPACE-complete
in combined and PTIME-complete in data complexity.
Proof. PTIME-hardness in data complexity follows from
PTIME-hardness for atomic query answering in EL. PSPACE-
hardness in combined complexity follows from the (proof of)
PSPACE-hardness for entailment in Horn-LTL [Chen and Lin,
1993], which, in fact, shows PSPACE-hardness of checking
whether 2ϕ |= p → q, where ϕ is a conjunction of implica-
tions involving only ©∗ and ∧, and p and q are propositional



variables. Now, 2ϕ can be translated in a straightforward way
into a TBox Tϕ (using only concept and no role names).

For the upper bounds, let ϕT ,A be the Horn-LTL formula
constructed in the main part of the paper, and let M be its
minimal model. We prove correctness ofϕT ,A in the following
sense:
Claim. For all a ∈ ind(A), i ∈ tem(A), A ∈ CN, we have
(M, i) |= PA,a iff (T ,A) |= A(a, i).
Proof of Claim. (⇒) Suppose (T ,A) 6|= A(a, i). By Theo-
rem 4, we have A /∈ πa(i). Define a temporal LTL interpreta-
tion M′ by taking, for all i ∈ Z, d ∈ D, B ∈ CN,

(M′, i) |= PB,d iff B ∈ πd(i).
It is routine to prove that M′ is a model of ϕT ,A; note that the
formulas in that order correspond almost literally to (t1)–(t2)
and (q1)–(q4). By construction, we have (M′, i) 6|= PA,a and
thus, by the minimality of M, we obtain (M, i) 6|= PA,a.

(⇐) Suppose (M, i) 6|= PA,a. We define a quasimodel Q =
{πd | d ∈ D} with A /∈ πa(i). Theorem 4 will then yield
(T ,A) 6|= A(a, i). Define Q by taking

πd(i) = {B ∈ CN | (M, i) |= PB,d} for all i ∈ Z, d ∈ D.
It is routine to verify that Q is indeed a quasimodel. This
finishes the proof of Claim.

Theorem 6 follows from Claim by the runtime arguments
given in the paper. o

Theorem 7 TAQ answering over TEL◦l-rig is PSPACE-
complete in data complexity and in EXPTIME in combined
complexity.
Proof. PSPACE-hardness in data complexity is by Theorem 2.
For the upper bound, let Π′T be the DATALOG1S-program
constructed as in the proof of Theorem 5 in Section 4 but
where the rules for traces πB in ΠT are replaced by the set of
rules

A(x, t)← B(x, t), for all A ∈ πB(0).

It is routine to verify that Π′T can be used for TAQ answering
in the sense of Lemma 15. For showing the complexity upper
bounds, denote with T ′ ⊆ T the subset of T not mentioning
rigid roles, and let {π′d | d ∈ D} be the canonical quasimodel
for (T ′, ∅). It should be clear that, by the restriction posed
on the occurrence of rigid roles, we have A ∈ πB(0) iff
A ∈ π′B(0). The latter can be decided in PTIME data and
PSPACE combined complexity, see Theorem 6. This yields
the result since query answering in DATALOG1S is in PSPACE
data and EXPTIME combined complexity. o

6 Acyclicity Conditions
Theorem 8 TAQ answering over acyclic TEL◦ is in LOG-
TIME-uniform AC0 in data complexity and in PTIME in com-
bined complexity.
Proof. We start with data complexity. It suffices to show that
ϕT ,A(x, t) is indeed an FO(+)-rewriting of T , A(x, t). De-
note with IA the ABox A viewed as an interpretation.

Claim. For all temporal ABoxes A, A ∈ CN, a ∈ ind(A), and
i ∈ tem(A), (T ,A) |= A(a, i) iff IA |= ϕT ,A(a, i).

Proof of the Claim. The proof is by induction on the ‘depth’
of the expansion of A relative to the acyclic TBox T . If A
is primitive, that is, has depth 0, the statement is direct. If
A ≡ B1 u B2 ∈ T , the statement follows directly from
the induction hypothesis. For the other cases, the proof uses
the universal model IT ,A of (T ,A), which is the result of
unravelling the canonical quasimodel, and which satisfies the
following property for all a ∈ ind(A) and i ∈ Z:

(T ,A) |= A(a, i) iff IT ,A |= A(a, i). (50)

Assume first A ≡ ∃r.B ∈ T , r ∈ Nrig
R a rigid role, and

(T ,A) 6|= A(a, i), and, by (50), also IT ,A 6|= A(a, i). More-
over, also by (50), we obtain IT ,A 6|= D(a, i) for all concept
names D with T |= D v A. Assume, for the sake of contra-
diction, that IT ,A |= ∃yt′ (r(a, y, t′) ∧ ϕT ,B(y, i)). By the
induction hypothesis, IT ,A |= ∃yt′ (r(a, y, t′)∧B(y, i)), and
hence IT ,A |= (∃r.B)(a, i), a contradiction. Thus, IT ,A 6|=
ϕT ,A(a, i), whence IA 6|= ϕT ,A(a, i).

For the converse direction, assume that (T ,A) |= A(a, i)
and thus IT ,A |= A(a, i). It is straightforward to show that
this is the case iff there is some D(a, i) ∈ A such that
T |= D v A or there are b ∈ ind(A), j ∈ tem(A) such that
r(a, b, j) ∈ A and IA |= B(b, i), that is, (T ,A) |= B(b, i),
which, by the induction hypothesis, implies IA |= ϕT ,B(b, i).
In the former case, we obtain IA |= ϕT ,A(a, i) as there
is a disjunct for D. In the latter case, we have IA |=
∃yt′ (r(a, y, t′) ∧ ϕT ,B(y, i)) and hence IA |= ϕT ,A(a, i).

The case when r ∈ Nloc
R is a local role is almost identical

(with the quantifier ∃t′ omitted and t replaces t′). The case
A ≡ ©∗B ∈ T can be dealt with in the same way. This
finishes the proof of the claim and thus shows that ϕT ,A is
indeed an FO(+)-rewriting over the infinite models of the
form JA.

For PTIME combined complexity it suffices to note that,
by acyclicity of T , the traces in the canonical quasimodel
Q = {πd | d ∈ D} have very restricted temporal extension.
In particular, it is not hard to verify, see Lemma 17 in the proof
of Theorem 10, that for all a ∈ ind(A), B ∈ CN and j ∈ Z:

πa(j) = ∅, if j < minA− |T | or j > maxA+ |T |;
πB(j) = ∅, if j < −|T | or j > |T |.

Thus, the algorithm for constructing the canonical quasimodel
terminates in polynomial time. o

DL-acyclicity

Theorem 9 TAQ answering over DL-acyclic TEL◦-TBoxes of
depth k ≥ 1 is k-EXPSPACE-complete in combined complexity
and NC1-complete in data complexity.

The following Lemma shows how to characterize traces in
the canonical quasimodel by Horn-LTL formulas. The applied
technique will be useful in the proof of Theorem 9. We define
function expk(n) by taking

exp0(n) = n, expk+1(n) = 2expk(n)

(with the superscript k rather than subscript in Theorem 2).



Lemma 16 For all k ≥ 0 and B ∈ CN with `DL(B) =
k, there is a propositional Horn-LTL formula ϕB of size
expk(|T |) over variables PA, A ∈ CN, such that, for all
n ∈ Z,

A ∈ πB(n) iff ϕB |= ©nPA. (51)
Proof. We prove it by induction on k. Let ϕ0 be a conjunc-
tion of 2(PA1

∧ PA2
→ PA), for A1 u A2 v A ∈ T , and

2(©∗PB → PA), for ©∗B v A ∈ T .
For the basis of induction, `DL(B) = 0, observe that, by def-

inition of `DL and (q4), only CIs without existential restrictions
are relevant for the construction of πB . Taking ϕB = B ∧ ϕ0

clearly satisfies (51).
For the induction step, take B with `DL(B) > 0 and let

B1, . . . , Bk be the set of all concept names such that

Ai v ∃r.Bi ∈ T and Ai ∈ πB(n), for some n ∈ Z.
Since `DL(Bi) < `DL(B), by the induction hypothesis, there
are formulas ϕBi

satisfying (51). Starting from ϕBi
, it is not

hard to construct formulas ψBi that describe projr(πBi) (in the
sense of (51)). Note that projr(πBi) is ultimately p-periodic
for some p ≤ exp`DL(B)(|T |) and let mF ,mP , pF , pP be the
respective constants. From ψBi

, we obtain a conjunction χBi

in the “loop-normal form”: ©j
FPC for all 0 ≤ j < mF with

ψBi |= ©j
FPC ; ©mF

F Fi; 2(Fi → ©pF
F Fi); 2(Fi → ©j

FC)

for all 0 ≤ j < pF with ψBi |= ©mF +j
F PC ; and symmetric

formulas for mP , pP ; cf. the DATALOG1S program in the proof
of Theorem 5. Note that this incurs an exponential blow-up.
It is routine to show that ϕB = B ∧ ϕ0 ∧ 2

∧
i(Ai → χBi)

satisfies (51). o

We continue now with the proof of Theorem 9.

Proof. A closer inspection of the non-elementary lower bound
for TEL◦ in Theorem 2 reveals that the TBoxes used are
DL-acyclic. In fact, it is shown that subsumption, and so TAQ
answering, over TBoxes of depth k is k-EXPSPACE-hard. NC1-
hardness in data complexity follows from the fact that the word
problem of NFAs can be reduced to TAQ answering, even with-
out the DL dimension, see [Artale et al., 2015, Theorem 9].

In order to show the matching upper bounds, consider a
temporal knowledge base (T ,A) with T of depth k. We de-
vise a completion procedure for TAQ answering. For this pur-
pose, we define setsAi consisting of all assertions A(a, i) and
r(a, b, i) in A and, for r ∈ Nrig

R , assertions r(a, b, i) such that
r(a, b, j) ∈ A for some j ∈ Z. The algorithm exhaustively
adds assertions A(a, i) to A if one of the following holds:
(a) (T ,Ai) |= A(a, i);
(b) B(a, i op∗ 1) ∈ A and ©∗B v A ∈ T .
Intuitively, Condition (b) captures the immediate temporal im-
plications of the TBox, while Condition (a) takes into account
the role structure of the individuals in A. Soundness of the
algorithm should be clear. For completeness, it is routine to
construct the canonical quasimodel of (T ,A) given the result
of the algorithm. The crucial observation is that AminA (re-
spectively, AmaxA) determines the traces πa, a ∈ ind(A), in
the quasimodel on all i < minA (respectively, i > maxA).

It turns out that, in Condition (a), Ai can be replaced with a
suitably defined quotient Bi of Ai. Intuitively, the considered

query language can only distinguish all possible distinct trees
of depth k, whose number depends on |T | only; thus, the
size of Bi is independent of the size of A. For making the
notion of “quotient” precise, assume we want to check whether
(T ,Ai) |= A(a, i), for a concept A with `DL(A) = k. Let Aua
be the unravelling of Ai from point a up to depth k such
that for all 0 ≤ j ≤ k, and all b in distance j of a, we have
B(b, j) ∈ Aua only if `DL(B) = k − j.
Claim 1. (T ,Ai) |= A(a, i) iff (T ,Aua) |= A(a, i).

Next, let ∼ be the smallest equivalence relation on ind(Aua)
such that b ∼ b′ implies

– B(b, i) ∈ Aua iff B(b′, i) ∈ Aua , for all B and i ∈
tem(A), and

– for each c ∈ ind(A) and i ∈ tem(A) with r(b, c, i) ∈
Aua , there is c′ ∈ ind(A) with r(b′, c′, i) ∈ Aua and c ∼
c′, and vice versa.

Denote by [b] the equivalence class of b with respect to ∼ and
let Bi consist of the following assertions:

A([b], i), for A(b, i) ∈ Aua ,
r([b], [b′], i), for r(b, b′, i) ∈ Aua .

Clearly, ind(Bi) = {[b] | b ∈ ind(Aua)}.
Claim 2. (T ,Aua) |= A(a, i) iff (T ,Bi) |= A(a, i).

Following the steps in the proof of Lemma 16, but taking
account of the structure of Bi, we can construct a formula ϕa,i
of size expk(|T |) such that ϕa,i |= PA iff (T ,Bi) |= A(a, i)
for all A ∈ CN with `DL(A) = k. The former can be checked
in space polynomial in the size of ϕa,i, which together with a
polynomial-time algorithm for checking Condition (b), yields
the k-EXPSPACE upper combined complexity bound.

Note that the implementation sketched for the k-EXPSPACE
upper combined complexity bound does not yield an NC1

upper data complexity bound. We explain now how Condi-
tions (a) and (b) can be implemented in NC1. We begin with
Condition (a) and give an algorithm that determines Bi “on-the
fly”, which requires some notation. For 0 ≤ j ≤ k, let

CNj = {A ∈ CN | `DL(A) = k − j}.

Define equivalence relations ∼ij , for all 0 ≤ j ≤ k and i ∈
tem(A), similarly to ∼ above:

– b ∼i0 b′ iff
– B(b, i) ∈ A ⇔ B(b′, i) ∈ A, for all B ∈ CN0;

– for j > 0, we take b ∼ij b′ iff

– B(b, i) ∈ A ⇔ B(b′, i) ∈ A, for all B ∈ CNj ,
– for each c ∈ ind(A) with r(b, c, i) ∈ A, there is
c′ ∈ ind(A) with r(b′, c′, i) ∈ A and c ∼ij−1 c′,
and vice versa.

Denote by [a]ij the equivalence class of a with respect to ∼ij .
Note that the maximum number of equivalence classes of ∼ij
depends only on T and is independent of A. Moreover, each
b, i, j give rise to a unique tree-shaped ABox Bib,j defined by
induction on j as follows:



– for j=0, let

Bib,0 = {A([b]i0, i) | A(b, i) ∈ A, A ∈ CN0};

– for j > 0, let Bib,j be the union of

{A([b]ij , i) | A(b, i) ∈ A, A ∈ CNj} ∪
{r([b]ij , [b′]ij−1, i) | r(b, b′, i) ∈ A}

and all Bib′,j−1 such that r(b, b′, i) ∈ A.

We say that an equivalence class [b]ij implies B ∈ CNj if
(T ,Bib,j) |= B(b, i). This condition will replace Condition (a);
note that it does not depend on the size of A.

Condition (b) cannot be directly implemented as we noted
above because the number of steps it has to be applied on
depends at least linearly on A, not yielding an NC1 algorithm.
Instead, we implement it using Büchi automata on ω-words
over alphabet Σ = 2CN. We say that an ω-word σ0σ1 · · · is an
l-trace (r-trace, respectively) for T if there is a trace π for T
such that σi = π(−i) (σi = π(i), respectively) for all i ≥ 0.
Based on the formulas constructed in the proof of Lemma 16,
one can construct Büchi automata Al and Ar (whose size does
not depend on A) that accept precisely the l- and r-traces for
T [Vardi, 2006]. Moreover, we can construct automata AB ,
B ∈ CN with L(AB) = {σ0σ1 . . . ∈ Σω | B ∈ σ0}.

For a ∈ ind(A) and i ∈ tem(A), define a finite word
wrai = σ0 · · ·σn by taking, for 0 ≤ j ≤ maxA− i,

B ∈ σj iff B(a, i+ j) ∈ A, for all B ∈ CN,

and, analogously but mirrored, a finite word wlai. We say that
a finite word σ1 · · ·σn is a possible prefix for L ⊆ Σω if there
is a word τ1τ2 · · · ∈ L with τi ⊇ σi, for all 1 ≤ i ≤ n.

The algorithm proceeds in k+1 rounds, 0 ≤ j ≤ k (starting
in round j = 0) and maintains (polynomially many) processor
units Pabi for (a, b, i) ∈ ind(A)2 × tem(A). In each round j,
the following steps are performed:

(i) label each (a, i) ∈ ind(A)× tem(A) by its equivalence
class with respect to ∼ij ;

(ii) for each B ∈ CNj , add B(a, i) to A if [a]ij implies B;

(iii) for each B ∈ CNj , add B(a, i) to A if either wrai is not
a possible prefix for L(Ar \AB) or wlai is not a possible
prefix for L(Al \ AB).

Intuitively, Step (ii) corresponds to Condition (a) while
Step (iii) corresponds to Condition (b); Step (i) is a neces-
sary preprocessing for (ii). Note that Steps (ii) and (iii) are
meant to be exhaustive in the sense that they add B ∈ CNj
until nothing changes; this is fine because the number of tests
depends only on CN and thus, is constant (independent of the
size of A). Completeness of Step (iii) essentially relies on the
following:

Claim 3. If A(a, i) is added to A via a sequence of appli-
cations of (b) then A(a, i) is added to A via a sequence of
steps (iii).

It remains to argue that this algorithm can be implemented
in NC1. Recall that Step (ii) does not depend on the size of A

and can thus be implemented in constant time (provided that
Step (i) has been performed). Step (i) can be implemented in
constant time as well, as the number of equivalence classes
depends only on T , and thus, constant: (polynomially many)
processor units Pabi, for (a, b, i) ∈ ind(A)2 × tem(A). For
Step (iii), it suffices to prove that deciding whether a finite
word is a possible prefix for L(A) (with a fixed Büchi automa-
ton A) is in NC1. As every regular language is in NC1 [Straub-
ing, 1994], it suffices to show that the set of all possible pre-
fixes for L(A) is regular.

Let A = (Q,Σ, q0,∆, F ) be a Büchi automaton, where all
states are terminating in the sense that, for each q ∈ Q, there is
a word σ0σ1 · · · ∈ L(A) and an accepting run q0q1 · · · involv-
ing q (this assumption can be made without loss of generality).
Construct an NFA B = (Q,Σ, q0,∆

′, Q) by taking

∆′ = {(q, τ ′, q′) | (q, τ, q′) ∈ ∆, τ ′ ⊆ τ}.

Claim 4. L(B) is the set of all possible prefixes for L(A).

This finishes the description of the algorithm and the analy-
sis of its complexity. o

Temporal Acyclicity
Theorem 10 TAQ answering over temporally acyclic TEL◦
(with rigid concepts) is PTIME-complete in data and combined
complexity.
Proof. The lower bounds are inherited from EL. To prove the
upper bounds, we establish a small quasimodel property.

LetK = (T ,A) be a temporal KB with a temporally acyclic
TBox T and Q = {πd | d ∈ D} its canonical quasimodel.
By definition, there is a map `◦ : CN→ N satisfying condi-
tions (i)–(iii) for temporally acyclic TBoxes. Without loss
of generality, we assume that `◦ is minimal in the sense
that for all maps `′◦ witnessing temporal acyclicity of T ,
we have maxA∈CN `◦(A) ≤ maxA∈CN `

′◦(A). It follows that
minA∈CN `◦(A) = 0. Let nT = maxA∈CN `◦(A). By our
assumption, nT ≤ |T |. Denote by l and u the numbers minA
and maxA, respectively. We prove that the traces feature a
small quasimodel property in the sense that, for every d ∈ D,
there is some σd ⊆ CN such that

(P1) πa(j) = σa for all j with j > u+nT or j < l−nT and
all a ∈ ind(A);

(P2) πB(j) = σB for all j > nT or j < −nT and B ∈ CN.
Intuitively, σd is the set of concepts which contain d at all
time instants, that is, the set of concepts which are ‘rigid’ for
d. This property means that the canonical quasimodel has a
restricted temporal extension that can change only |T | time
points beyond the ABox.

We prove Properties (P1) and (P2) by giving an algorithm
that constructs a small representation of the canonical quasi-
model. The property will then follow from Lemma 17 below,
which is part of the completeness proof of the algorithm.

The algorithm is an extension of the quasimodel construc-
tion procedure. Besides the finite parts π̂d of the πd, it main-
tains additional maps σd, which are initially empty, and for
which we have the following completion rules for all d ∈ D
and all j with l − nT ≤ j ≤ u+ nT :



1. if A ∈ π̂d(j) and A is a rigid concept, then A ∈ σd;
2. σd ⊆ π̂d(j);
3. if A,A′ ∈ σd and A uA′ v B ∈ T , then B ∈ σd;
4. if A ∈ σd and ©∗A v B ∈ T , then B ∈ σd;

5. if r(a, b, n) ∈ A and r ∈ Nrig
R , then projr(σb) ⊆ σa;3

6. if A ∈ σd, A v ∃r.B, r ∈ Nloc
R , then projr(πB(0))⊆σd;

7. ifA ∈ σd,A v ∃r.B, r ∈ Nrig
R , then projr(πB(j)) ⊆ σd;

8. if A ∈ πd(j), A v ∃r.B, r ∈ Nrig
R , then projr(σB) ⊆ σd.

Note further that also rules (t1), (t2), (q1)–(q4) are applied
to π̂d in the range of l − nT ≤ j ≤ u + nT . The algorithm
returns “yes” on query A(a, i) iff A ∈ π̂a(i).

It is routine to verify that the algorithm is sound. For com-
pleteness, assume that A /∈ π̂a(i). We define a collection of
traces πd, d ∈ D, by taking

πd(i) =


π̂d(i), if d ∈ ind(A) and l − nT ≤ i ≤ u+ nT ,

π̂d(i) if d ∈ CN and 0 ≤ `◦(d) + i ≤ nT ,
σd(i), otherwise,

and verify that Q = {πd | d ∈ D} is a quasimodel. This suf-
fices sinceA /∈ πa(i) and Theorem 4 yields (T ,A) 6|= A(a, i).
Although Theorem 4 does not mention rigid concepts, they
can be expressed in full TEL◦. It thus suffices to note that Q
respects rigid concepts: assume A ∈ πd(j) and A is a rigid
concept name; if A ∈ σd, then A ∈ π(i) for all i ∈ Z by
rule 2; if A /∈ σd, then A ∈ π̂d(i) for some i. But then, by
rule 1, A ∈ σd, a contradiction.

For showing that Q is a quasimodel, we need to establish
the following invariants of the maps π̂d and σd.

Lemma 17 Let CNk = {A ∈ CN | `◦(A) = k}. Then, for
every a ∈ ind(A), we have
(a) π̂a(j) ⊆

⋃
k≥j−u

CNk ∪ σa, for all j with u ≤ j ≤ u+ nT ;

(b) π̂a(j) ⊆
⋃

k≤l−j
CNk ∪ σa, for all j with l − nT ≤ j ≤ l.

For every B ∈ CN with `◦(B) = m, we have
(c) π̂B(j) ⊆ CNm+j ∪ σB , for all j with 0 ≤ m+ j ≤ nT .

l− nT

CN0

l− (nT − 1)

CN0 ∪ CN1

l

⋃
k≤nT

CNk

u

⋃
k≥0

CNk

u+ nT

CNnT

−m

CN0

−m+ 1

CN1

0

CNm

1

CNm+1

nT −m

CNnT

Proof. We prove these properties by induction on the num-
ber of rule applications in the construction of the canonical
quasimodel. On empty maps, the three properties are trivially
satisfied. Further note that rules 1–8 preserve the invariants
since they only extend σd (except for rule 2, where the claim
is also clear). Moreover, it is immediate that any application
of (q1) or (q2) trivially preserves (a)–(c).

3proj applied to a set of concepts (rather than a trace) is defined
in the obvious way.

For (q3), we need to verify only (a) and (b). Assume that
r(a, b, n) ∈ A and some B ∈ CN is added to π̂a(j) for some
j with l − nT ≤ j ≤ u + nT , that is, there is a B′ ∈ π̂b(j)
and ∃r.B′ v B ∈ T . If r ∈ Nloc

R is a local role, then j = n ∈
tem(A), and so (a) and (b) are trivially satisfied. Otherwise,
r is a rigid role. We show (a). By the induction hypothesis,
either B′ ∈

⋃
k≤l−j CNk or B′ ∈ σb. In the former case,

B ∈
⋃
k≤l−j CNk, by the definition of `◦. In the latter case,

we obtain B ∈ σa by rule 5; thus, B ∈ π̂a(k) for all k
with l − nT ≤ k ≤ u + nT . Hence, (a) is preserved; (b) is
considered similarly.

For (q4), assume that A ∈ π̂d(n), A v ∃r.B ∈ T ,
B′ ∈ π̂B(i) and ∃r.B′ v A′ ∈ T . If r is a local role, then
we need to consider i = 0 only, but then it suffices to note
that `◦(A) = `◦(B) = `◦(B′) = `◦(A′). If r is rigid, we
distinguish cases:

– If A ∈ σd, then, by rule 7, we have A′ ∈ σd;

– If B′ ∈ σB , then, by rule 8, we have A′ ∈ σd;

– If neither of the first two cases applies, d ∈ ind(A), and
j ≥ u (j < l and l ≤ j ≤ u are similar), then, by
the induction hypothesis, we have `◦(A) ≥ j − u and
`◦(B′) = `◦(B) + i = `◦(A) + i. Thus, `◦(A′) =
`◦(B′) ≥ j + i− u.

– If neither of the first two cases applies and d ∈ CN,
then, by the induction hypothesis, `◦(A) = `◦(d) + j
and `◦(B′) = `◦(B) + i = `◦(A) + i. Thus, we have
`◦(A′) = `◦(B′) = `◦(d) + i+ j.

It remains to verify that (t1) and (t2) preserve (a)–(c). We
show (a); the other properties are analogous. Let B ∈ π̂a(j)
and ©

FB v A ∈ T . By the induction hypothesis, either
B ∈

⋃
k≥j−u CNk or B ∈ σa. In the former case, we

have `◦(B) ≥ j − u, whence, by the definition of `◦,
we get `◦(A) = `◦(B) − 1 ≥ (j − 1) − u, and thus
A ∈

⋃
k≥(j−1)−u CNk. In the latter case, we obtain A ∈ σa

by rule 4. In either case, (a) is preserved. This finishes the
proof of Lemma 17. o

We are now ready to show that Q is a quasimodel. By
construction, the πd satisfy (q1), (q2), and (t1). For (t2), let
d ∈ ind(A); the case d ∈ CN is analogous. Assume that
A ∈ πd(j) and ©∗A v B ∈ T . If l − nT < j < u + nT ,
then (t2) is satisfied because π̂d is closed under (t2) on this
interval. If j > u + nT or j < l − nT , then (t2) is due to
rule 4. If j = u + nT , then, by Lemma 17, `◦(A) = nT ,
whence `◦(B) < nT , and so (t2) holds because π̂d is closed
under (t2).

For (q3), observe first that it is trivially satisfied in case r
is a local role or l − nT ≤ j ≤ u+ nT . So assume that r is
rigid, take j > u + nT (the case j < l − nT is symmetric),
B ∈ πb(j), and ∃r.B v B′ ∈ T . By the definition of πb, we
have B ∈ σb. By rule 5, B′ ∈ σa, and so B′ ∈ πa(j), by the
definition of πa.

For (q4), assume that A ∈ πd(j), A v ∃r.B ∈ T ,
B′ ∈ πB(i) for some i ∈ Z, and ∃r.B′ v A′ ∈ T . If r
is a local role, then we need to consider i = 0 only. If
l − nT ≤ j ≤ u + nT , then πd is closed under (q4) be-
cauae π̂d is closed under (q4) on that interval. If j > u+ nT



(j < l − nT ), then we obtain A ∈ σd and, by rule 6, A′ ∈ σd,
and hence A′ ∈ πd(j). Finally, consider the following cases
where r is rigid.

– If A ∈ σd, then A′ ∈ σd by rules 7 and 2.

– If B′ ∈ σB , then, by rule 8, A′ ∈ σd, and so, we obtain
A′ ∈ πd(j + i) by rule 2 and the definition of πd;

– If neither of the two cases above applies, then, by
Lemma 17, 0 ≤ `◦(B′) ≤ nT and `◦(B′) = `◦(B) + i,
and either d ∈ Ind(A) and l − nT ≤ j ≤ u + nT or
d ∈ CN and 0 ≤ `◦(A) + i ≤ nT . However, in both
cases, (q4) is applied to π̂d and π̂B , so we are done.

Hence, Q is indeed a quasimodel. It remains to note that
the algorithm terminates after polynomially many steps: the
bounds on the size of the π̂d and σd imply that they can be
represented in polynomial space, and the completion rules
extend these data structures at each step. o

Inflationary TEL3

Theorem 11 TAQ answering over TEL3
infl is PTIME-complete

in both data and combined complexity.
Proof. The lower bounds are inherited from EL. To prove the
upper bounds, we establish some key properties of traces in
the canonical quasimodel over TEL3

infl-TBoxes.
Let (T ,A) be a KB with a TEL3

infl-TBox T and let
Q = {πd | d ∈ D} be its canonical quasimodel. We remind
the reader that, by definition, traces for T are closed under
(t1) for u and (t2′) for 3P and 3F . We are going to show in
Lemma 18 below that the traces πd in the canonical quasi-
model are in fact all bow ties.

Lemma 18 If T is a TEL3
infl-TBox, then traces in the canon-

ical quasimodel Q = {πd | d ∈ D} enjoy the following
properties:

(a) πa is a [minA,maxA]-bow tie, for each a ∈ ind(A);

(b) πB is a [0, 0]-bow tie, for each B ∈ CN.

Proof. We show by induction on the number of rule appli-
cations that the traces in the quasimodel construction proce-
dure satisfy (a) and (b). The basis of induction is immediate
from (q1) and (q2). For the inductive step, we make a case
distinction on which rule is applied. For (t1) and (t2′), we
assume that they are always applied exhaustively. Since 3∗
are the only temporal operators allowed in T , it can be readily
verified, that
Claim. For any [l, u]-bow tie %, the closure of % under (t1)
and (t2′) is an [l, u]-bow tie as well.

For (q3), let r(a, b, n) ∈ A. Property (b) is trivial and (a) is
preserved because projr(πb) is an [l, u]-bow tie for any [l, u]-
bow tie πb and the component-wise union of two [l, u]-bow
ties is also an [l, u]-bow tie.

For (q4), let A ∈ πd(n) and A v ∃r.B ∈ T . By the induc-
tion hypothesis, πd is an [l, u]-bow tie for some l, u. Also
observe that, by the induction hypothesis, πB is a [0, 0]-
bow tie and therefore, for any m ∈ Z, the map %m : i →
projr(πB)(i−m) is an [m,m]-bow tie. We consider the fol-
lowing three cases.

1. If l ≤ n ≤ u, then the application of (q4) extends πd
with %n, which results in an [l, u]-bow tie, as required
for (a) and (b).

2. If n > u, let m0 > u be minimal with A ∈ πd(m0). Ob-
serve that (q4) is applicable to all m ≥ m0 and all such
applications of (q4) can be captured by taking the union
of πd and all %m, for m ≥ m0. Observe that

⋃
m≥m0

%m
is in fact projr(π) for π defined by taking

π(n) =

{
X, if n < m0,

X ∪ πB(0) ∪ πB(n−m0) if n ≥ m0,

where X be the maximum set at ‘the left end’ of πB:
X =

⋃
n<0 πB(n). Since πB is a [0, 0]-bow tie, the map

π is monotone, that is, π(n) ⊆ π(n + 1) for all n ∈ Z,
and π(n) = π(n− 1) for all n < m0. It follows that also
projr(π) is monotone and projr(π)(n) = proj(π)(n− 1)
for all n < m0. It is then easy to see that the component-
wise union of πd and projr(π) is an [l, u]-bow tie.

3. If n < l, then the construction is the mirror image of 2.
This completes the proof of Lemma 18. o

We are now in a position to complete the proof of Theo-
rem 11. First, observe that the traces maintained by the proce-
dure for constructing the canonical quasimodel of a KBs with
a TEL3

infl-TBox can be represented using a polynomial amount
of space because, by Lemma 18, they are [l, u]-bow ties with
both l, u ∈ tem(A): one needs to store only the middle section
and at most |CN| steps at both ends. Second, the traces are
extended with every rule application, and so, the procedure
must terminate after polynomially many steps, which gives
PTIME upper complexity bound for both data and combined
complexity. o
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