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Abstract. We study the complexity of predicate logics based on team semantics. We show
that the satisfiability problems of two-variable independence logic and inclusion logic are both
NEXPTIME-complete. Furthermore, we show that the validity problem of two-variable depen-
dence logic is undecidable, thereby solving an open problemfrom the team semantics literature.
We also briefly analyse the complexity of the Bernays-Schönfinkel-Ramsey prefix classes of de-
pendence logic.

1 Introduction

The satisfiability problem oftwo-variable logicFO2 was shown to beNEXPTIME-complete in
[9]. The extension of two-variable logic with counting quantifiers,FOC2, was proved decidable in
[10,21], and it was subsequently shown to beNEXPTIME-complete in [22]. Research on extensions
and variants of two-variable logic is currently very active. Recent research efforts have mainly con-
cerned decidability and complexity issues in restriction to particular classes of structures and also
questions related to different built-in features and operators that increase the expressivity of the base
language. Recent articles in the field include for example [1], [4], [13], [16], [23], and several others.

In this article we study two-variable fragments of logics based onteam semantics. Team seman-
tics was originally conceived in [15] in the context ofindependence friendly(IF) logic [14]. In [24],
Väänänen introduceddependence logic, which is a novel approach to IF logic based on new atomic
formulas=(x1, ...xk, y) stating that the interpretation of the variabley is functionally determined
by the interpretations of the variablesx1, ..., xk.

After the introduction of dependence logic, research on logics based on team semantics has
been active. Several different logics with different applications have been suggested. In particular,
team semantics has proved to be a powerful framework for studying different kinds ofdependency
notions. Independence logic[11] is a variant of dependence logic that extends first-order logic by
new atomic formulasx1, ..., xk ⊥ y1, ..., yl with the intuitive meaning that the interpretations of the
variablesx1, ..., xk are informationally independent of the interpretations ofthe variablesy1, ..., yl.
Inclusion logic[6] extends first-order logic by atomic formulasx1, ..., xk ⊆ y1, ..., yk, whose intu-
itive meaning is that tuples interpreting the variablesx1, ..., xk are also tuples interpretingy1, ..., yk.
Currently dependence, independence and inclusion logics are the three most important and most
widely studied systems based on team semantics.

Both dependence logic and independence logic are equiexpressive with existential second-order
logic (see [24], [11]), and thereby captureNP. Curiously, inclusion logic is equiexpressive with
greatest fixed point logic(see [7]), and thereby characterizesP on finite ordered models. While the
descriptive complexity of most known logics based on team semantics is understood reasonably
well, the complexity of related satisfiability problems hasreceived somewhat less attention. The sat-
isfiability problem of the two-variable fragment of dependence logic andIF-logic have been studied
in [18]. It is shown that while the two-variableIF-logic is undecidable, the corresponding fragment
of dependence logic isNEXPTIME-complete.
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the ERC grant 647289 “CODA” and the Jenny and Antti Wihuri Foundation. Jonni Virtema was supported
by grant 266260 of the Academy of Finland and a grant by the Finnish Academy of Science and Letters.
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In this article we establish that the satisfiablity problemsof the two-variable fragments of in-
dependence and inclusion logics are likewiseNEXPTIME-complete. This result is established via
proving a more general theorem that implies also a range of other decidability results for a variety of
team-semantics-based logics with generalized dependencynotions. Furthermore, we prove that the
validity problem of two-variable dependence logic is undecidable; this result is the main result of
the paper. The problem has been open for some time in the team semantics literature and has been
explicitly posed in, e.g., [5], [18], [25], and elsewhere.

In addition to studying two-variable logics, we study the Bernays-Schönfinkel-Ramsey prefix
class, i.e., sentences with the quantifier prefix∃∗∀∗. We show that—as in the case of ordinary
first-order logic—the prefix class∃∗∀∗ of FO(A) is decidable for any uniformly polynomial time
computable classA of generalized dependencies closed under substructures. We prove inclusion in
2NEXPTIME, and furthermore, for vocabularies of fixed arity, we showNEXPTIME-completeness.
We also prove a partial converse of the result concerning logicsFO(A) with a decidable prefix class
∃∗∀∗, see Theorem 22.

2 Preliminaries

The domain of a structureA is denoted byA. We assume that the reader is familiar with first-
order logicFO. The extension ofFO with counting quantifiers∃≥i is denoted byFOC. The two-
variable fragmentsFO2 andFOC2 are the fragments ofFO andFOC with formulas in which only
the variablesx andy appear. We letΣ1

1 denote the fragment of formulas of second-order logic of the
form ∃X1...∃Xk ϕ, whereX1, ..., Xk are relation symbols andϕ a first-order formula.Σ1

1(FOC
2)

is the extension ofFOC2 consisting of formulas of the form∃X1...∃Xk χ, whereX1, ..., Xk are
relation symbols andχ a formula ofFOC2.

2.1 Logics based on team semantics

Let Z+ denote the set of positive integers, and letVAR = { vi | i ∈ Z+ } be the set of exactly
all first-ordervariable symbols. We mainly use metavariablesx, y, z, x1, x2, etc., in order to refer
to variable symbols inVAR. We letx, y, z, x1, x2, etc., denote finite nonempty tuples of variable
symbols, i.e., tuples inVARn for somen ∈ Z+. When we study two-variable logics, we use the
metavariablesx andy, and assume they denote distinct variables inVAR.

LetD ⊆ VAR be afinite, possibly empty set. LetA be a model. We do not allow for models to
have an empty domain, soA 6= ∅. A function s : D → A is called anassignmentwith codomain
A. If x = (x1, . . . , xn), we denote(s(x1), . . . , s(xn)) by s(x). We lets[a/x] denote the variable
assignment with the domainD ∪ { x } and codomainA defined such thats[a/x](y) = a if y = x,
ands[a/x](y) = s(y) if y 6= x. Let T ∈ P(A), whereP denotes the power set operator. We define
s[T/x ] = { s[a/x] | a ∈ T }.

LetD ⊆ VAR be a finite, possibly empty set of first-order variable symbols. LetX be a set of
assignmentss : D → A. Such a setX is a teamwith thedomainD andcodomainA. Note that the
empty set is a team, as is the set{∅} containing only the empty assignment. The team∅ does not
have a unique domain; any finite subset ofVAR is a domain of∅. The domain of the team{∅} is ∅.

Let X be a team with the domainD and codomainA. Let T ⊆ A. We defineX [T/x] =
{ s[a/x] | a ∈ T, s ∈ X }. LetF : X → P(A) be a function. We defineX [F/x ] =

⋃

s∈X

s[F (s)/x ].

LetC ⊆ A. We defineX ↾ C = { s ∈ X | s(x) ∈ C for all x ∈ D }.
Let X be a team with domainD. Let k ∈ Z+, and lety1, ..., yk be variable symbols. Assume

that{y1, ..., yk} ⊆ D. We definerel
(

X, (y1, ..., yk)
)

= {
(

s(y1), ..., s(yk)
)

| s ∈ X }.
Let τ be a relational vocabulary, i.e., a vocabulary containing relation symbols only. (In this

article we consider only relational vocabularies.) The syntax of a logic based on team semantics is
usually given in negation normal form. We shall also follow this convention in the current article.
For this reason, we define the syntax of first-order logic as follows.

ϕ ::= R(x) | ¬R(x) | x1 = x2 | ¬x1 = x2 | (ϕ1 ∨ ϕ2) | (ϕ1 ∧ ϕ2) | ∃xϕ | ∀xϕ ,

2



whereR ∈ τ . The first four formula formation rules above introducefirst-order literals to the
language. Below we shall consider logicsFO(A), where the above syntax is extended by clauses of
the typeAQ (y1, ..., yk). HereAQ is (a symbol corresponding to) ageneralized atomin A and each
yi is a tuple of variables. Before considering such novel atoms, let us definelax team semanticsfor
first-order logic.

Definition 1 ([15,24]).LetA be a model andX a team with codomainA. The satisfaction relation
A |=X ϕ is defined as follows.

1. If ϕ is a first-order literal, thenA |=X ϕ iff for all s ∈ X : A, s |=FO ϕ. Here|=FO refers to the
ordinary Tarskian satisfaction relation of first-order logic.

2. A |=X ψ ∧ ϕ iff A |=X ψ andA |=X ϕ.
3. A |=X ψ ∨ ϕ iff there exist teamsY andZ such thatX = Y ∪ Z, A |=Y ψ, andA |=Z ϕ.
4. A |=X ∃xψ iff A |=X[F/x] ψ for someF : X → (P(A) \ {∅}).
5. A |=X ∀xψ iff A |=X[A/x] ψ.

Finally, a sentenceϕ is true in a modelA (A |= ϕ) if A |={∅} ϕ.

Proposition 2 ([15,24]).Letψ be a formula of first-order logic. We haveA |=X ψ iff A, s |=FO ψ
for all s ∈ X .

In this paper we consider first-order logic extended with generalized dependency atoms. Before
formally introducing the notion of a generalized dependency atom, we recall some particular atoms
familiar from the literature related to team semantics.

Dependence atoms=(x1, . . . , xn, y), inspired by the slashed quantifiers of Hintikka and Sandu
[14], were introduced by Väänänen [24]. The intuitive meaning of the atom=(x1, . . . , xn, y) is that
the value of the variabley depends solely on the values of the variablesx1, . . . , xn. The semantics
for dependence atoms is defined as follows:

A |=X =(x1, . . . , xn, y) iff ∀s, s′ ∈ X : if s((x1, . . . , xn)) = s′((x1, . . . , xn)) thens(y) = s′(y).

Dependence logic(D) is the extension of first-order logic with dependence atoms.
While dependence atoms of dependence logic declare dependences between variables,indepen-

dence atoms, introduced by Grädel and Väänänen [11], do just the opposite; independence atoms are
used to declare independencies between variables. Independence atom is an atomic formula of the
form (x1, ..., xk)⊥(z1,...,zt) (y1, ..., yl) with the intuitive meaning that for any fixed interpretationof
the variablesz1, . . . , zt, the interpretations of the variablesx1, ..., xk are independent of the inter-
pretations of the variablesy1, ..., yl. The semantics for independence atoms is defined as follows:

A |=X (x1, ..., xk)⊥(z1,...,zt) (y1, ..., yl) iff ∀s, s′ ∈ X ∃s′′ ∈ X :
∧

i≤t

s(zi) = s′(zi)

implies that
∧

i≤k

s′′(xi) = s(xi) ∧
∧

i≤t

s′′(zi) = s(zi) ∧
∧

i≤l

s′′(yi) = s′(yi).

Independence logic(Ind) is the extension of first-order logic with independence atoms.
Galliani [6] introducedinclusionandexclusion atoms. The intuitive meaning of the inclusion

atom(x1, . . . , xn) ⊆ (y1, . . . , yn) is that tuples interpreting the variablesx1 . . . , xn are also tuples
interpretingy1, . . . , yn. The intuitive meaning of the exclusion atom(x1, . . . , xn) | (y1, . . . , yn)
on the other hand is that tuples interpreting the variablesx1 . . . , xn and the tuples interpreting
y1, . . . , yn are distinct. The semantics for inclusion atoms and exclusion atoms is defined as fol-
lows:

A |=X (x1, . . . , xn) ⊆ (y1, . . . , yn) iff ∀s ∈ X ∃s′ ∈ X : s((x1, . . . , xn)) = s′((y1, . . . , yn)),

A |=X (x1, . . . , xn) | (y1, . . . , yn) iff ∀s, s′ ∈ X : s((x1, . . . , xn)) 6= s′((y1, . . . , yn)).

The extension of first-order logic with inclusion atoms (exclusion atoms) is calledinclusion logic
(exclusion logic) and denoted byInc (Exc). The extension of first-order logic with both inclusion
atoms and exclusion atoms is calledinclusion/exclusion logicand denoted byInc/Exc.
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2.2 Generalized atoms

In this section we first give the well known definition of generalized quantifiers (Lindström quanti-
fiers [20]). We then show how each generalized quantifier naturally gives rise to a generalized atom.
Finally, we discuss on some fundamental properties of first-order logic extended with generalized
atoms. Generalized atoms were first defined in [19].

Let (i1, ..., in) be a nonempty sequence of positive integers. A generalized quantifier of the type
(i1, ..., in) is a classC of structures(A,B1, ..., Bn) such that the following conditions hold.

1. A 6= ∅, and for eachj ∈ {1, ..., n}, we haveBj ⊆ Aij .
2. If (A′, B′

1, ..., B
′
n) ∈ C and if there is an isomorphismf : A′ → A′′ from (A′, B′

1, ..., B
′
n) to

another structure(A′′, B′′
1 , ..., B

′′
n), then(A′′, B′′

1 , ..., B
′′
n) ∈ C.

LetQ be a generalized quantifier of the type(i1, ..., in). LetA be a model with the domainA.
We defineQA to be the set{ (B1, ..., Bn) | (A,B1, ..., Bn) ∈ Q }.

Let n be a positive integer. LetQ be a generalized quantifier of the type(i1, ..., in). Extend
the syntax of first-order logic with atomic expressions of the typeAQ(y1, ..., yn), where eachyj
is a tuple of variables of lengthij . Let X be a team whose domain contains all variables occur-
ring in the tuplesy1, ..., yn. Extend team semantics such thatA |=X AQ(y1, ..., yn) if and only if
(

rel(X, y1), ..., rel(X, yn)
)

∈ QA. The generalized quantifierQ defines ageneralized atomAQ of
the type(i1, ..., in).

A generalized atomAQ is downwards closedif for all A,X andy1, ..., yk, it holds that ifA |=X

AQ(y1, ..., yk) andY ⊆ X , thenA |=Y AQ(y1, ..., yk). Similarly, a generalized atomAQ is closed
under substructuresif for all A, X andy1, ..., yk, it holds that ifA |=X AQ(y1, ..., yk), A

′ :=
A ↾ B andX ′ := X ↾ B for someB ⊆ A, then we haveA′ |=X′ AQ(y1, ..., yk). Finally, a
generalized atomAQ is universe independentif for all A, B,X andy1, ..., yk, where bothA andB
are codomains forX , it holds thatA |=X AQ(y1, ..., yk) if and only if B |=X AQ(y1, ..., yk).

Letϕ be a formula of first-order logic, possibly extended with generalized atoms. The setFr(ϕ)
of free variablesof ϕ is defined in the same way as in first-order logic. The setFr(AQ(y1, ..., yk))
of course contains exactly all variable that occur in the tuples yi. The satisfiability problem of a
(possibly team-semantics-based) logicL takes as an input a sentence ofL and asks whetherA |= ϕ
for some modelA. The validity problem asks, given a sentenceϕ, whetherA |= ϕ for all modelsA.

Letk ∈ Z+ and letAQ be a generalized atom of the type(i1, ..., in), whereij ≤ k for eachj. Let
ϕ(R1, ..., Rn) be a sentence ofΣ1

1(FOC
k) with unquantified relation symbolsR1, ..., Rn of arities

i1, ..., in, respectively. Assume that for all modelsA and teamsX with codomainA and domain
containing the variables inAQ(x1, ..., xn), we haveA |=X AQ(x1, ..., xn) iff

(

A, R1 := rel(X, x1), ..., Rn := rel(X, xn)
)

|=FO ϕ(R1, ..., Rn).

Then we say that the atomAQ is definable inΣ1
1(FOC

k).
We now show that,for any generalized atomAQ, the logicFO(AQ) has the so-called locality

property. We also show that, for a downwards closed atomAQ, all formulas ofFO(AQ) satisfy the
downwards closure property. These two properties have previously turned out to be very useful in
the study of dependence logic.

LetX be a team with domain{x1, . . . , xk}, and letV ⊆ {x1, . . . , xk}. We denote byX(V ) the
team{s ↾ V | s ∈ X} with the domainV . The following proposition shows that the truth of an
FO(AQ)-formula depends only on the interpretations of the variables occurring free in the formula.
The proof uses the fact that generalized atoms satisfy the claim by definition. Otherwise the proof is
identical to the corresponding proof given in [6].

Proposition 3 (Locality). Let AQ be a generalized atom andϕ ∈ FO(AQ) a formula. If V ⊇
Fr(ϕ), thenA |=X ϕ if and only ifA |=X(V ) ϕ.

The next proposition is also very useful. The proof is almostidentical to the corresponding proof
for dependence logic, see [24]. The additional case for generalized atoms follows by the assumption
of downwards closure.

Proposition 4 (Downward closure).LetAQ be a downwards closed generalized atom. Supposeϕ
is anFO(AQ)-formula,A a model, andY ⊆ X teams. ThenA |=X ϕ impliesA |=Y ϕ.
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3 Satisfiability problems of logicsFO2(A)

In this section we show that for any finite collectionA of Σ1
1(FOC

2)-definable atomsAQ, both
SAT(FO2(A)) and FINSAT(FO2(A)) areNEXPTIME-complete. Our proof relies on a translation
from FO

2(A) into Σ1
1(FOC

2) and the fact that SAT(FOC2) and FINSAT(FOC2) areNEXPTIME-
complete [22].

We start by establishing a more general translation. We showthat for everyk ≥ 1 and ev-
eryΣ1

1(FOC
k) definable atomAQ, we haveFOk(AQ) ≤ Σ1

1(FOC
k). Note that strictly speaking

FO
k(AQ) uses only one atomAQ instead of a finite collectionA of atoms, but our proof below

generalizesdirectly to the case with a finite collection of atoms. The reason for considering a single
atom is simply to keep the notation light.

When consideringk-variable logic, we let{x1, ..., xk} denote thek distinct variables used in the
syntax of the logic, and we letrel(X) denoterel

(

X, (x1, ..., xk)
)

. The following lemma is possibly
the technically most involved part of our argument in this section for establishing decidability of
two-variable inclusion and independence logics. The proofsignificantly modifies and extends the
argument establishing Lemma 3.3.14 of [25]. See also [18] and Theorem 6.2 in [24].

Lemma 5. Assume thatk, t ≥ 1. Let τ be a relational vocabulary, letR 6∈ τ be ak-ary relation
symbol and letAQ be aΣ1

1(FOC
k)-definable atom of type(i1, . . . , it), whereij ≤ k for eachj. For

every formulaϕ ∈ FO
k(AQ) there exists a sentenceϕ∗ ∈ Σ1

1(FOC
k)(τ ∪ {R}) such that for every

modelA and teamX with codomainA anddom(X) = {x1, . . . , xk}, we have

A |=X ϕ iff
(

A, rel(X)
)

|= ϕ∗, (1)

where(A, rel(X)) is the expansionA′ of A into the vocabularyτ ∪ {R} such thatRA
′

:= rel(X).
Moreoverϕ∗ is computable fromϕ in polynomial time.

Proof. Fix k ≥ 1 and theΣ1
1(FOC

k)-definable atomAQ. Let (i1, . . . , it), whereij ≤ k for each
j, be the type ofAQ. Let ϕAQ

(R1, . . . , Rt) be theΣ1
1(FOC

k)-sentence that definesAQ. We will
define a translation

trk : FOk(AQ)(τ) → Σ1
1(FOC

k)(τ ∪ {R})

inductively. Below we always assume that the quantified relationsS andT are fresh, i.e., they are
assumed not to appear intrk(ψ) or trk(ϑ). Notice that for everyFOk(AQ)-formulaϕ, we have
trk(ϕ) = ∃S1 . . . ∃Snϕ

′ for somek-ary relation variablesS1 . . . Sn (n ∈ N) and someFOCk-
formulaϕ′. The translationtrk is defined as follows.

1. If ϕ is a first-order literal (and thus not a generalized atom), then

trk(ϕ) := ∀x1 . . . ∀xk
(

R(x1, . . . , xk) → ϕ
)

.

2. Assume thatϕ is a generalized atomAQ(y1, . . . , yt), whereyj ∈ {x1, . . . , xk}ij for each

j ≤ t. Let Y andψ ∈ FOC
k(R1, ..., Rt) be such thatϕAQ

= ∃Y ψ. For technical reasons, we
will simulateij-ary relations byk-ary relations. Define that, for eachj ≤ t,

Idj := {(l,m) ∈ N
2 | yjl andyjm denote the same variable symbol},

whereyjl (yjm) denotes thel-th (m-th) element ofyj . Now trk(ϕ) is defined to be the formula

∃Y ∃T1 . . . ∃Tt
(

∧

j≤t

(

ϕj-padding ∧ ϕj-identities

)

∧ ψ′
)

,

where the relation variablesTj and formulasϕj-padding , ϕj-identities andψ′ are defined as fol-
lows. Each variableTj is a freshk-ary relation variable. The formulaψ′ is the conjunction

5



ψ′′ ∧
∧

j≤t χj , whereψ′′ andχj are as follows. The conjunctψ′′ is obtained fromψ by replac-
ing each atomic formulaRj(z1, . . . , zij ) by Tj(z1, . . . , zij , z1, . . . , z1). For eachj ≤ t, χj is
the formula

∀x1 . . .∀xk
(

∃xij+1
Tj(x1, ..., xij , xij+1

, ..., xij+1
)

→ ∀xij+1
Tj(x1, ..., xij , xij+1

, ..., xij+1
)
)

,

where in the caseij = k the formulas∃xij+1
Tj(x1, ..., xij , xij+1

, ..., xij+1
) and

∀xij+1
Tj(x1, ..., xij , xij+1

, ..., xij+1
)

are replaced byTj(x1, ..., xk). The formulaϕj-identities is

∀x1 . . . ∀xk
(

Tj(x1, . . . , xk) →
(

∧

(l,m)∈Idj

(xl = xm) ∧
∧

l,m>ij

xl = xm
)

)

.

The formulaϕj-padding is the formula

∀x1 . . . ∀xk
(

(

R(x1, . . . , xk) → ∀xmj
Tj(yj , xmj

, . . . , xmj
)
)

∧
(

∃xmj
Tj(yj , xmj

, . . . , xmj
) → ∃zjR(x1, . . . , xk)

)

)

,

wherezj is the tuple of variables in(x1, . . . , xk) but not inyj , andmj ≤ k is the smallest integer
such that the variablexmj

does not occur in the tupleyj ; in the case that such variable does not
exist the formulas∀xmj

Tj(yj , xmj
, . . . , xmj

) and∃xmj
Tj(yj , xmj

, . . . , xmj
) are replaced by

Tj(yj).

3. Assume thattrk(ψ) = ∃S1 . . . ∃Snψ
′ andtrk(ϑ) = ∃T1 . . . ∃Tmϑ′, whereψ′ andϑ′ areFOCk-

formulas. Furthermore, assume that the relation variablesS1, . . . Sn, T1, . . . , Tm are all distinct.
(a) If ϕ is of the form(ψ ∨ ϑ), thentrk(ϕ) is defined to be the formula

∃S∃T∃S1 . . . ∃Sn∃T1 . . .∃Tm
(

∀x1 . . . ∀xk
(

R(x1, . . . , xk)

↔
(

S(x1, . . . , xk) ∨ T (x1, . . . , xk)
)

)

∧ ψ′(S/R) ∧ ϑ′(T/R)
)

,

whereψ′(S/R) denotes the formula obtained fromψ′ by replacing occurrences ofR by S,
and analogously forϑ′(T/R).

(b) If ϕ = (ψ ∧ ϑ), thentrk(ϕ) is the formula∃S1 . . . ∃Sn∃T1 . . . ∃Tm
(

ψ′ ∧ ϑ′
)

.

4. If ϕ is of the form∃xiψ and trk(ψ) = ∃S1 . . . ∃Snψ
′, whereψ′ is anFOC

k-formula, then
trk(ϕ) is the formula

∃S∃S1 . . . ∃Sn

(

∀x1 . . . ∀xk
(

∃xiR(x1, . . . , xk) ↔ ∃xiS(x1, . . . , xk)
)

∧ ψ′(S/R)
)

.

5. If ϕ is of the form∀xiψ and trk(ψ) = ∃S1 . . . ∃Snψ
′, whereψ′ is anFOC

k-formula, then
trk(ϕ) is defined to be the formula

∃S∃S1 . . .∃Sn

(

∀x1 . . . ∀xk
(

(

R(x1, . . . , xk) → ∀xiS(x1, . . . , xk)
)

∧
(

S(x1, . . . , xk) → ∃xiR(x1, . . . , xk)
)

)

∧ ψ′(S/R)
)

.

A straightforward induction onϕ shows that for every modelA and every team with codomainA
such thatdom(X) = {x1, . . . , xk}, A |=X ϕ iff

(

A, rel(X)
)

|= trk(ϕ).

Theorem 6. For everyk ≥ 1 and for everyΣ1
1(FOC

k)-definable atomAQ it holds thatFOk(AQ) ≤

Σ1
1(FOC

k), i.e., for every sentence ofFOk(AQ), there exists an equivalent sentence ofΣ1
1(FOC

k).
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Proof. Let τ be a relational vocabulary,k ≥ 1, andAQ aΣ1
1(FOC

k)-definable atom. Letϕ be an
FO

k(AQ)(τ)-sentence andϕ∗ = ∃R1 . . . ∃Rnψ the relatedΣ1
1(FOC

k)(τ ∪{R})-sentence given by
Lemma 5. The following conditions are equivalent.

1. A |= ϕ.
2. A |=X ϕ for some nonempty teamX such thatdom(X) = {x1, . . . , xk}.
3.

(

A, rel(X)
)

|= ϕ∗ for some nonempty teamX such thatdom(X) = {x1, . . . , xk}.
4. (A, R) |= ∃R1 . . .∃Rn

(

∃x1 . . .∃xkR(x1, . . . , xk) ∧ ψ
)

for someR ⊆ Ak.
5. A |= ∃R∃R1 . . . ∃Rn

(

∃x1 . . . ∃xkR(x1, . . . , xk) ∧ ψ
)

.

The equivalence of 1 and 2 follows from Proposition 3 and the fact thatFr(ϕ) = ∅. By Lemma
5, conditions 2 and 3 are equivalent. The equivalence of 3 and4 follows from the fact thatϕ∗ =
∃R1 . . . ∃Rnψ. The conditions 4 are 5 clearly equivalent.

Theorem 7. LetAQ be aΣ1
1(FOC

2)-definable generalized atom. Then the problemsSAT(FO2(AQ))
andFINSAT(FO2(AQ)) are NEXPTIME-complete.

Proof. Since the translationϕ 7→ ϕ∗ is computable in polynomial time and (finite) satisfiability
of Σ1

1(FOC
2) can be checked inNEXPTIME [22], we conclude that both SAT(FO2(AQ)) and

FINSAT(FO2(AQ)) are in NEXPTIME. On the other hand, sinceFO2 ≤ FO
2(AQ) by Proposi-

tion 2, and since both SAT(FO2) and FINSAT(FO2) areNEXPTIME-hard [9], it follows that both
SAT(FO2(AQ)) and also FINSAT(FO2(AQ)) are as well.

The result of Theorem 7 can be directly generalized to concern finite collectionsA of generalized
atoms. The proof of the following theorem is practically thesame as that of Theorem 7.

Theorem 8. LetA be a finite collection ofΣ1
1(FOC

2)-definable generalized atoms. The satisfiabil-
ity and the finite satisfiability problems ofFO2(A) areNEXPTIME-complete.

We shall next make use of Theorem 8 in order to show that the satisfiability and the finite sat-
isfiability problems of two-variable fragments of dependence logic, inclusion logic, exclusion logic
and independence logic areNEXPTIME-complete. The result for two-variable dependence logic
was already established in [18]. Note that when regarded as generalized atoms, each of the de-
pendency notions above correspond to a collection of generalized atoms; for example the atomic
formulas=(x, y) and=(x, y, z) refer to two different atoms, one of type(2) and the other of type
(3). However, in order to capture the two-variable fragments ofof these logics, we only need a finite
number of generalized atoms for each logic, as we shall see. We defineϕconst := ∃≤1xR(x),
ϕdep := ∀x∃≤1yR(x, y), ϕinc := ∀x∀y

(

R(x, y) → S(x, y)
)

, ϕexc := ∀x∀y
(

R(x, y) →

¬S(x, y)
)

, ϕind := ∀x∀y
(

(∃yR(x, y) ∧ ∃xR(x, y)) → R(x, y)
)

.
The formulasϕconst, ϕdep,ϕinc,ϕexc andϕind define the generalized atomsAconst of type(1),

Adep of type(2),Ainc of type(2, 2),Aexc of type(2, 2), andAind of type(2), respectively.

Theorem 9. The satisfiability and finite satisfiability problems of the two-variable fragments of de-
pendence logic, inclusion logic, exclusion logic, inclusion/exclusion logic, and independence logic
are all NEXPTIME-complete.

Proof. We establish polynomial time translationsD2 → FO
2({Aconst, Adep}), Inc

2 → FO
2(Ainc),

Exc
2 → FO

2(Aexc), Inc/Exc
2 → FO

2(Ainc, Aexc), andInd2 → FO
2({Aconst, Adep, Aind}) that

preserve equivalence. The result then follows from Theorem8 and the fact that the generalised atoms
Aconst, Adep, Aexc, Ainc, Aind are allΣ1

1(FOC
2)-definable.

Notice first that in dependence atoms, repetition of variables can always be avoided. The atom
=(x, y) is equivalent to the atom=(x ′, y), wherex ′ is obtained fromx by simply removing
the repetition of variables. Furthermore, ify occurs in the tuplex, then=(x, y) is equivalent to
y = y. Thus we may assume that in formulas of two-variable dependence logic, only depen-
dence atoms=(x), =(y), =(x, y), and=(y, x) may occur. Clearly=(x) is equivalent to the gen-
eralized atomAconst(x), while =(x, y) is equivalent to the generalized atomAdep(x, y). Since
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Aconst andAdep areΣ1
1(FOC

2)-definable atoms, by Theorem 8, SAT(FO2({Aconst, Adep})) and
FINSAT(FO2({Aconst, Adep})) areNEXPTIME-complete. Thus both SAT(D2) and FINSAT(D2)
are as well.

It is straightforward to show that in two-variable inclusion logic, only inclusion atoms of type
(y1, y2) ⊆ (z1, z2), wherey1, y2, z1, z2 ∈ {x, y}, are needed. For example, the inclusion atom
x ⊆ y can be replaced by the equivalent inclusion atom(x, x) ⊆ (y, y), and the inclusion atoms
(x, y, x) ⊆ (x, y, y) and (x, y, y) ⊆ (y, x, x) can be replaced by the equivalent atomic formulas
x = y and (x, y) ⊆ (y, x), respectively. Thus we may assume that in formulas of two-variable
inclusion logic, only inclusion atoms of type(y1, y2) ⊆ (z1, z2) may occur; inclusion atoms of
other kinds can easily be eliminated in polynomial time. Clearly (y1, y2) ⊆ (z1, z2) is equivalent to
the generalized atomAinc

(

(y1, y2), (z1, z2)
)

. SinceAinc is aΣ1
1(FOC

2)-definable atom, it follows
from Theorem 7 that SAT(FO2(Ainc)) and FINSAT(FO2(Ainc)) areNEXPTIME-complete. Thus
SAT(Inc2) and FINSAT(Inc2) are as well.

Using analogous argumentation, it is straightforward to show that in two-variable exclusion
logic, only exclusion atoms of type(y1, y2) | (z1, z2), wherey1, y2, z1, z2 ∈ {x, y}, are needed.
Clearly (y1, y2) | (z1, z2) is equivalent to the generalized atomAexc

(

(y1, y2), (z1, z2)
)

. Since
Aexc is aΣ1

1(FOC
2)-definable atom, it follows from Theorem 7 that both SAT(FO2(Aexc)) and

FINSAT(FO2(Aexc)) areNEXPTIME-complete. Thus SAT(Exc2) and FINSAT(Exc2) are as well.
Similarly it follows that SAT(Inc/Exc2) and FINSAT(Inc/Exc2) areNEXPTIME-complete.

Likewise, it is easy to show that in the formulas of two-variable independence logic, only re-
stricted versions of independence atoms are needed. First notice that we may always assume that in
independence atomsx⊥yz, repetition of variables does not occur in any of the tuplesx, y andz. By
the semantics of independence atoms, it is also easy to checkthat the atomsx⊥yz andz⊥yx are
always equivalent. Furthermore, it is clear that the order of variables in the tuplesx, y, andz makes
no difference. Notice then that each of the following atoms in the variablesx, y is equivalent to the
formula∃xx = x:

∅⊥xy, x⊥(x,y)y, x⊥xx, x⊥xy, x⊥x(x, y), y⊥yy, x⊥yy, y⊥y(x, y).

Notice also the following equivalences:

(x, y)⊥x(x, y) ≡ y⊥xy, y⊥x(x, y) ≡ y⊥xy, (x, y)⊥y(x, y) ≡ x⊥yx,

x⊥y(x, y) ≡ x⊥yx, x⊥(x, y) ≡ x⊥x, y⊥(x, y) ≡ y⊥y.

Thus we may assume that only the independence atomsx⊥x, y⊥y, x⊥y, (x, y)⊥(x, y), x⊥yx, and
y⊥xy occur in the formulas of two-variable independence logic. It is straightforward to check that
the following equivalences between independence atoms andgeneralized atoms hold:

x⊥x ≡ Aconst(x), y⊥y ≡ Aconst(y), x⊥y ≡ Aind

(

(x, y)
)

,

(x, y)⊥(x, y) ≡ Aconst(x) ∧ Aconst(y), x⊥yx ≡ Adep(y, x), y⊥xy ≡ Adep(x, y).

SinceAconst, Adep, andAind are allΣ1
1(FOC

2)-definable atoms, it follows from Theorem 8 that
SAT(FO2({Aconst, Adep, Aind})) and FINSAT(FO2({Aconst, Adep, Aind})) areNEXPTIME-complete.
Thus SAT(Ind2) and FINSAT(Ind2) are as well.

4 Undecidability via non-tiling

In this section we introduce structures and methods that we will later employ to prove undecidability
of the validity problem of two-variable dependence logic. Curiously, all attempts (by us or known
to us) to use the standard (Π0

1 -complete) tiling problem for the undecidability proof have failed; we
will instead use the (Σ0

1 -complete) non-tiling problem in our arguments below.
The gridis the structureG = (N2, V,H), whereV = {

(

(i, j), (i, j+1)
)

∈ N
2 ×N

2 | i, j ∈ N}

andH = {
(

(i, j), (i + 1, j)
)

∈ N
2 × N

2 | i, j ∈ N}. A function t : 4 −→ N is called atile
type. Define the setTILES := {Pt | t is a tile type} of unary relation symbols. The unary relation
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symbols in the setTILES are calledtiles. The numbert(0) is thetop colour, t(1) theright colour,
t(2) thebottom colour, andt(3) the left colourof Pt.

Let T be a finite nonempty set of tiles andV andH binary relation symbols. We say that a
structureA = (A, V,H) is T -tilable, if there exists an expansion ofA to the vocabulary{H,V } ∪
{ Pt | Pt ∈ T } such that the following conditions hold for allu, v ∈ A.

1. The pointu belongs to the extension of exactly one symbolPt in T .
2. If uHv, Pt(u) andPs(v), then the right colour ofPt is the same as the left colour ofPs.
3. If uV v, Pt(u) andPs(v), then the top colour ofPt is the same as the bottom colour ofPs.

We will next define thetiling problemand thenon-tiling problem. LetF denote the set of finite,
nonempty subsets ofTILES. We defineT := {T ∈ F | G is T -tilable} and T̄ ′ := {T ∈ F |
G is notT -tilable}. Thetiling problem (non-tiling problem,resp.) is the membership problem of the
setT (T̄ ′, resp.) with the input setF .

Theorem 10 ([2]).The tiling problem isΠ0
1 -complete.

Thenon-tiling problemis the complement of the tiling problem. Thus the following corollary fol-
lows.

Corollary 11. The non-tiling problem isΣ0
1-complete.

The proof of the following lemma is straightforward.

Lemma 12. There is a computable function associating each inputT to the non-tiling problem
with anFO2-sentenceϕT of the vocabularyτ := {H,V } ∪ T such that for every structureA of the
vocabulary{H,V }, the structureA is notT -tilable iff for every expansionA∗ of A to the vocabulary
τ , it holds thatA∗ |= ϕT .

Definition 13. Let τ = {V,H} be a vocabulary whereV andH are binary relation symbols. Let
A = (A, V,H) be aτ -structure. We say thatA is gridlike if the below conditions hold.

1. The extension ofV in A is serial (i.e.,∀x ∈ A ∃y ∈ A s.t.V (x, y)).
2. The extension ofH in A is serial (i.e.,∀x ∈ A ∃y ∈ A s.t.H(x, y)).
3. If a, b, c, b′, c′ ∈ A are such thatV (a, b),H(b, c),H(a, b′), andV (b′, c′), thenc = c’.

Note that it follows from the above definition that in gridlike structures, for every pointa, there
exist pointsb, c andd such thatH(a, b), V (a, c), V (b, d), andH(c, d).

Let τ be the vocabulary of gridlike structures andU ,P ,Q,C unary relation symbols. We say that
aτ ∪ {U, P,Q,C}-structureA is striped and gridlikeif the τ -reduct ofA is gridlike, the extensions
of P andQ in A aredistinctsingleton sets, the extension ofU in A is the union of the extensions of
P andQ, andA has the following property (intuitivelyC creates stripes inA):

(

H(a, b) ⇒ (C(a) ⇔ C(b))
)

and
(

V (a, b) ⇒ (C(a) ⇔ ¬C(b))
)

. (2)

The following lemma can be now proven by a simple inductive argument.

Lemma 14. If A is striped and gridlike, then there exists a homomorphism from the grid intoA.

Lemma 15. Let T be an input to the non-tiling problem. The grid is non-T -tilable iff (the{H,V}-
reduct of) every striped gridlike structure is non-T -tilable.

Proof. The direction from left to right follows from Lemma 14 in a straightforward way. The con-
verse holds since the grid is an{H,V}-reduct of a striped gridlike structure.
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5 The validity problem of D2 is undecidable

In this section we give a reduction from the non-tiling problem to the validity problem ofD2.
Let τ = {V,H,C, U, P,Q} be the vocabulary of striped gridlike structures. We will first define

a formulaϕnon−grid of D2 such thatA is not striped and gridlike iffA |= ϕnon−grid . We first
notice that the first two conditions of Definition 13 are easy to deal with. Defineϕnon−serial :=
∃x∀y¬V (x, y) ∨ ∃x∀y¬H(x, y). The third condition of Definition 13 is nontrivial. In the below
construction, we will use the predicatesP ,Q,U for counting (only). We will first show how to force
the extensions ofP andQ to be distinct singletons and the extension ofU to be the union ofP and
Q. The next formulae will be used for dealing with the cases where thisdoes nothold.

ϕnon−singleton (X) := ∀x¬X(x) ∨ ∃x∃y
(

X(x) ∧X(y) ∧ ¬x = y
)

ϕnon−distinct (X,Y ) := ∃x
(

X(x) ∧ Y (x)
)

ϕnon−union (X,Y, Z) := ∃x
(

X(x) ∧
(

¬Y (x) ∨ ¬Z(x)
)

)

∨ ∃x
(

¬X(x) ∧
(

Y (x) ∨ Z(x)
)

)

ϕ|U |6=2 := ϕnon−singleton (P ) ∨ ϕnon−singleton (Q) ∨ ϕnon−distinct (P,Q)

∨ ϕnon−union (U, P,Q).

It is easy to check that theτ -modelsA such thatA 6|= ϕ|U |6=2 are exactly those models where the
extensions ofP andQ are distinct singletons and the extension ofU is the union of the extensions
of P andQ (and thus the cardinality of the extension ofU is 2).

We will now show how to enforce Equation (2). The formulaϕnon−stripes below takes care of
the cases where (2) doesnot hold. Define

ϕnon−stripes := ∃x∃y
((

H(x, y) ∧
(

C(x) ↔ ¬C(y)
)

)

∨
(

V (x, y) ∧
(

C(x) ↔ C(y)
)

))

.

We are now ready to show how to deal with models that violate the last condition of Definition 13.
To understand the intended meaning of the following formula, assume that the extension ofU is of
size two and that the condition given by Equation (2) holds. Note also that from (2) it follows that if
such pointsc andc′ exist that violate the last condition of Definition 13, thenc andc′ agree aboutC,
i.e., we haveC(c) iff C(c′). We first deal with the case whereC(c) andC(c′) both hold. We denote
by ϕnon−C+−join the following formula (whose meaning is fully explained in the proof of Lemma
16):

∀x
(

¬U(x) ∨ ∃y
(

C(y) ∧=(y, x) ∧ ∃x
(

=(x, y) ∧
((

=(x) ∧H(x, y)
)

∨
(

=(x) ∧ V (x, y)
))

∧ ∃y
(

=(y) ∧
(

V (y, x) ∨H(y, x)
)

∧ ¬C(y))
)

)))

.

To deal with the case where¬C(c) and¬C(c′), we define the formulaϕnon−C−−join which is
obtained fromϕnon−C+−join by simultaneously replacing eachC(x) andC(y) by ¬C(x) and
¬C(y), respectively. Finally, we define thatϕnon−join := ϕnon−C+−join ∨ ϕnon−C−−join and
ϕnon−grid := ϕnon−serial ∨ ϕ|U |6=2 ∨ ϕnon−stripes ∨ ϕnon−join .

Lemma 16. Let τ = {V,H,C, U, P,Q} be the vocabulary of striped gridlike structures. LetA be
a τ -structure such that the extension ofU is of cardinality2. Assume the condition(2) holds. Then
A |= ϕnon−join iff the last condition of Definition 13 fails inA.

Proof. From (2) it follows that if suchc andc′ exist inA that violate the last condition of Definition
13, thenc andc′ agree onC. We will show that

A |= ϕnon−C+−join iff the last condition of Def. 13 fails inA for somec, c′ s.t.C(c) & C(c′). (3)

The analogous argument forϕnon−C−−join and the case where¬C(c) and¬C(c′) hold is similar.
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Below we denote by{(x1, v1), ..., (xk, vk)} the variable assignment that mapsxi to vi for each
i. Letu, u′ be the elements that are in the extension ofU in A. We thus haveA |= ϕnon−C+−join iff

A |=X1
∃y

(

C(y) ∧=(y, x) ∧ ∃x
(

=(x, y) ∧
((

=(x) ∧H(x, y)
)

∨
(

=(x) ∧ V (x, y)
))

∧ ∃y
(

=(y) ∧
(

V (y, x) ∨H(y, x)
)

∧ ¬C(y))
)

))

,

whereX1 = {{(x, u)}, {(x, u′)}}. Now, recalling that dependence logic has the downwards clo-
sure property (cf. proposition 4), we observe that the aboveholds if and only if there existdistinct
(distinctness being due to the atom=(y, x)) pointsc, c′ in the extension ofC such that

A |=X2
∃x

(

=(x, y) ∧
((

=(x) ∧H(x, y)
)

∨
(

=(x) ∧ V (x, y)
))

∧ ∃y
(

=(y) ∧
(

V (y, x) ∨H(y, x)
)

∧ ¬C(y))
)

)

,

whereX2 = {{(x, u), (y, c)}, {(x, u′), (y, c′)}}. The above holds if and only if there exist distinct
pointsb, b′ of A such thatH(b, c) andV (b′, c′) (orV (b, c) andH(b′, c′) in which case the argument
is analogous) and

A |=X3
∃y

(

=(y) ∧
(

V (y, x) ∨H(y, x)
)

∧ ¬C(y))
)

,

whereX3 = {{(x, b), (y, c)}, {(x, b′), (y, c′)}}. The above holds if and only if there exists a point
a in A such that¬C(a), (V (a, b) orH(a, b)) and (V (a, b′) orH(a, b′)). SinceC(c) andC(c′) hold,
it follows from the assumption that (2) holds thatC(b) and¬C(b′). Now since also¬C(a) holds,
it follows again from (2) thatV (a, b) andH(a, b′). When all of the above is combined, we obtain
(3). The analogous condition where¬C(c) and¬C(c′) is proved similarly. Since (2) holds forA,
any pointsc andc′ of A that violate the last condition of Definition 13, must agree on C. Thus the
lemma holds.

The next lemma follows from Lemma 16 together with the observations made earlier in this
section.

Lemma 17. Let τ = {V,H,C, U, P,Q} be the vocabulary of striped gridlike structures and letA

be aτ -model. ThenA is striped and gridlike iffA 6|= ϕnon−grid .

Theorem 18. The validity problem forD2 is undecidable (more precisely,Σ0
1 -hard).

Proof. We give a computable reduction from the non-tiling problem to the validity problem ofD2.
Since the former isΣ0

1 -complete (Corollary 11), we obtainΣ0
1 -hardness for the latter.

If T is an input to the non-tiling problem, thenϕT denotes theFO2-sentence given by Lemma
12 andϕnon−T−tiling := (ϕnon−grid ∨ ϕT ). Let τ be as defined in Lemma 17. LetCτ,T denote
the class of allτ ∪ T -structures and letCτ,T

s−gridlike be the class of exactly all expansions of striped
gridlike structures to the vocabularyτ ∪ T .

Let T be an input to the non-tiling problem. We will show that the grid is non-T-tilable iff the
D2-sentenceϕnon−T−tiling is valid. By definition,ϕnon−T−tiling is valid iff A |= ϕnon−grid ∨
ϕT holds for everyA ∈ Cτ,T . Sinceϕnon−grid andϕT are sentences, the right-hand side of this
equivalence is equivalent to the claim that

∀A ∈ Cτ,T : A |= ϕnon−grid orA |= ϕT . (4)

By Lemma 17,B∗ |= ϕnon−grid holds for everyτ -reductB∗ of B ∈ Cτ,T that is not striped and
gridlike. Hence for everyB ∈ Cτ,T such that theτ -reductB∗ of B is not striped and gridlike, it
holds thatB |= ϕnon−grid . Thus (4) is equivalent to the claim that

∀A ∈ Cτ,T
s−gridlike : A |= ϕnon−grid orA |= ϕT . (5)
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Now letB be an arbitrary striped and gridlikeτ -structure. By Lemma 17,B 6|= ϕnon−grid . Thus
B∗ 6|= ϕnon−grid for every expansionB∗ of B to the vocabularyτ ∪T . From this it follows that (5)
is equivalent to the claim that

∀A ∈ Cτ,T
s−gridlike : A |= ϕT . (6)

Thus, by Lemma 12, (6) holds if and only if every striped gridlike structure is non-T -tilable. Finally,
from Lemma 15 it follows that this is equivalent to the claim that the grid is non-T -tilable.

6 Satisfiability of ∃∗∀∗-formulas

In this section we consider the complexity of satisfiabilityfor sentences of dependence logic and
its variants in the prefix class∃∗∀∗. For first-order logic, the satisfiability and finite satisfiability
problems of the prefix class∃∗∀∗ are known to beNEXPTIME-complete. The results hold for both
the case with equality and the case without equality, see [3].

Let A be a collection of generalized atoms. We denote by∃∗∀∗[A] the class of sentences of
FO(A) of the form∃x0 · · · ∃xn∀y0 · · · ∀ymθ, whereθ is a quantifier-free formula whose general-
ized atoms are inA. It is worth noting that, depending on the setA, the expressive power and
complexity of sentences in∃∗∀∗[A] can vary considerably even whenA is finite and contains only
computationally non-complex atoms. For example, there areuniversal sentences of dependence logic
that define NP-complete problems [17]. Furthermore, every sentence of inclusion logic is equivalent
to a sentence with a prefix of the form∃∗∀1 [12] implying that the satisfiability problem of the
∃∗∀∗-fragment of inclusion logic is undecidable.

Recall that we say that a formulaϕ is closed under substructuresif for all A andX it holds that
if A |=X ϕ, A′ := A ↾ B andX ′ := X ↾ B for someB ⊆ A, then we haveA′ |=X′ ϕ.

Lemma 19. LetA be a collection of generalized atoms that are closed under substructures. Then
the following conditions hold.

1. Supposeϕ ∈ FO[A] is of the form∀y0 · · · ∀ymθ, whereθ is quantifier-free. Thenϕ is closed
under substructures.

2. Letϕ ∈ ∃∗∀∗[A] be a sentence. Then, ifϕ is satisfiable,ϕ has a model with at mostmax{1, k}
elements, wherek refers to the number of existentially quantified variables inϕ.

Proof. We will first prove claim (1). Suppose thatϕ := ∀y0 · · · ∀ymθ. We will first show the claim
for quantifier-free formulasθ, i.e., we will show that for allA,X ,A′, andX ′ such thatA′ := A ↾ B
andX ′ := X ↾ B for someB ⊆ A, the following implication holds.

A |=X θ ⇒ A
′ |=X′ θ. (7)

The claim obviously holds ifθ is a first-order literal. Ifθ is a generalized atom fromA, then the claim
holds by assumption. The caseθ := ψ1 ∧ ψ2 follows immediately from the induction hypothesis.
Let us then assume thatθ := ψ1 ∨ψ2. SinceA |=X θ, there are setsY andZ such thatY ∪Z = X ,
A |=Y ψ1 andA |=Z ψ2. By the induction hypothesis, we haveA′ |=Y ′ ψ1 andA′ |=Z′ ψ2, where
Y ′ := Y ↾ B andZ ′ := Z ↾ B. SinceY ′ ∪ Z ′ = X ′, it follows thatA′ |=X′ θ.

We will now show that the claim also holds forϕ. Suppose thatA |=X ϕ. Then, by the truth
definition,A |=X[A/y0]···[A/ym] θ. Using (7), we haveA′ |=(X[A/y0]···[A/ym])↾B θ. It is easy to check
that(X [A/y0] · · · [A/ym]) ↾ B = (X ↾ B)[B/y0] · · · [B/ym]. Hence we haveA′ |=X′ ϕ.

Let us then prove 2. Assumeϕ is a sentence of the form∃x0 · · · ∃xn∀y0 · · · ∀ymθ, whereθ is
quantifier-free, and that there is a structureA such thatA |= ϕ. Hence there exists functionsFi such
thatA |=X ∀y0 · · · ∀ymθ, whereX = {∅}[F0/x0] · · · [Fn/xn]. Let s be some assignment inX . Let
range(s) denote the set of elementsb such thats(x) = b for some variablex in the domain ofs. If
range(s) 6= ∅ defineB := range(s), and if range(s) = ∅ (i.e.,s = ∅), defineB = {b}, whereb
is an arbitrary element inA. By claim (1), the formula∀y0 · · · ∀ymθ is closed under substructures.
ThusA ↾ B |=X↾B ∀y0 · · · ∀ymθ. Thus it follows thatA ↾ B |= ϕ.
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A generalized atomAQ is said to bepolynomial time computableif the question whetherA |=X

AQ(y1, ..., yn) holds can be decided in time polynomial in the size ofA andX . A class of atomsA
is said to beuniformly polynomial time computableif there exists a polynomial functionf : N → N

such that for every atomAQ ∈ A it holds that the question whetherA |=X AQ(y1, ..., yn) holds can
be decided in timef

(

|A|+ |X |+ |AQ(y1, ..., yn)|
)

. Note that every finite class of polynomial time
computable atoms is also uniformly polynomial time computable.

The following theorem now follows from Lemma 19. We will makeuse of the recent result of
Grädel showing that for a uniformly polynomial time computable collectionA of atoms, the model
checking problem forFO(A)-formulas is inNEXPTIME [8].

Theorem 20. Let AQ be a generalized atom that is closed under substructures andpolynomial
time computable. ThenSAT(∃∗∀∗[AQ]) andFINSAT(∃∗∀∗[AQ]) are in 2NEXPTIME. If τ is a vo-
cabulary consisting of relation symbols of arity at mostk, k ∈ Z+, thenSAT(∃∗∀∗[AQ](τ)) and
FINSAT(∃∗∀∗[AQ](τ)) areNEXPTIME-complete.

Proof. Note first that the lower bounds follow from the fact that bothSAT(∃∗∀∗) and FINSAT(∃∗∀∗)
are alreadyNEXPTIME-complete. It hence suffices to show containments in2NEXPTIME and
NEXPTIME, respectively.

Let ϕ ∈ ∃∗∀∗[AQ]. By Lemma 19,ϕ is satisfiable if and only if it has a model of cardinality at
most|ϕ|. We can decide satisfiability ofϕ as follows: non-deterministically guess a structureA of
cardinality at most|ϕ| and accept iffA |= ϕ. By the result of Grädel in [8], the question whether
A |= ϕ can be checked non-deterministically in exponential time with inputA andϕ. Assume first
that the maximum arity of relation symbols that may occur inϕ is not a fixed constant. Relation
symbols of arity at most|ϕ| may occur inϕ. Thus the size of thebinary encoding of a modelA of ϕ
such thatA ≤ |ϕ| is worst case exponential with respect to|ϕ|. If, on the other hand, the maximum
arity of relation symbols that can occur inϕ is a fixed constant, then the size of the encoding ofA is
just worst case polynomial with respect to|ϕ|. Therefore it follows that our algorithm for checking
satisfiability ofϕ is in NEXPTIME in the case of fixed arity vocabularies and in2NEXPTIME in the
general case. The corresponding results for the finite satisfiability problem follow by the observation
that∃∗∀∗[AQ] has the finite model property, Lemma 19.

Corollary 21. Let A be a uniformly polynomial time computable class of generalized atoms that
are closed under substructures. ThenSAT(∃∗∀∗[A]) andFINSAT(∃∗∀∗[A]) are in2NEXPTIME. If
τ is a vocabulary consisting of relation symbols of arity at mostk, k ∈ Z+, thenSAT(∃∗∀∗[A](τ))
andFINSAT(∃∗∀∗[A](τ)) areNEXPTIME-complete.

In the following sense Theorem 20 is optimal: there exists a polynomial time computable general-
ized atomAQ such that SAT(∃3∀[AQ]) and FINSAT(∃3∀[AQ]) are undecidable. This already holds
for vocabularies with at least one binary relation symbol and a countably infinite set of unary rela-
tion symbols. Letϕ5−inc := ∀x1 . . . ∀x5

(

R(x1, . . . , x5) → S(x1, . . . x5)
)

, and letA5−inc be the
related generalized atom of the type(5, 5), i.e.,A5−inc is the5-ary inclusion atom interpreted as a
generalized atom. ClearlyA5−inc is computable in polynomial time.

Theorem 22. Let τ be a vocabulary consisting of one binary relation symbol anda countably infi-
nite set of unary relation symbols. Then bothSAT(∃3∀[A5−inc ](τ)) andFINSAT(∃3∀[A5−inc ](τ))
are undecidable.

Proof. It well known that for the Kahr class (i.e., the prefix class∀∃∀ of FO with vocabularyτ ) the
satisfiability and the finite satisfiability problems are undecidable (see, e.g., [3]). From the proof of
[12, Theorem 5] it follows that there exists a polynomial time translationϕ 7→ ϕ∗ from the Kahr
class into∃3∀[A5−inc ](τ) such thatA |=X ϕ ⇔ A |=X ϕ∗ holds for every modelA and teamX
with codomainA. Thus SAT(∃3∀[A5−inc ](τ)) and FINSAT(∃3∀[A5−inc ](τ)) are undecidable.

It is easy to see that dependence atoms viewed as generalizedatoms are closed under substruc-
tures because they are both downwards closed and universe independent. Likewise, it is straightfor-
ward to check that the class of dependence atoms is uniformlypolynomial time computable. Hence
we obtain the following corollary.
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Corollary 23. Both the satisfiability and the finite satisfiability problems for the∃∗∀∗-sentences
of dependence logic are in2NEXPTIME. If τ is a vocabulary consisting of relation symbols of
arity at mostk, then the satisfiability and the finite satisfiability problems for the∃∗∀∗-sentences of
dependence logic over the vocabularyτ areNEXPTIME-complete.

7 Conclusion

We have tied some loose ends concerning the complexity of predicate logics based on team seman-
tics. Using a general approach, we have shown that the satisfiability and the finite satisfiability prob-
lems of the two-variable fragments of inclusion logic, exclusion logic, inclusion/exclusion logic, and
independence logic are allNEXPTIME-complete. Additionally, we have shown that the satisfiability
and the finite satisfiability problems of the prefix class∃∗∀∗ of dependence logic areNEXPTIME-
complete for any vocabulary of bounded arity, and in2NEXPTIME in the general case. The general
approach we have employed of course also implies a range of other results on team-semantics-based
logics. Finally, we have proved that the validity problem oftwo-variable dependence logic is unde-
cidable, thereby answering an open problem from the literature on team semantics.

This article clears path to a more comprehensive classification of the decidability and complexity
of different fragments of logics with generalized atoms andteam semantics. In the future, we aim to
identify further interesting related systems with a decidable satisfiability problem.
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10. Erich Grädel, Martin Otto, and Eric Rosen. Undecidability results on two-variable logics. InProceedings
of STACS ’97, pages 249–260, London, UK, 1997. Springer-Verlag.
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