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1. INTRODUCTION
Knowledge about our world is densely interwoven with spatial and temporal facts.
Nearly every knowledge-based system comprises means for representation of, and pos-
sibly reasoning about, spatial or temporal knowledge. Among the different options
available to a system designer, ranging from domain-level data structures to highly
abstract logics, qualitative approaches stand out for their ability to mediate between
the domain level and the conceptual level. Qualitative representations explicate rela-
tional knowledge between (spatial or temporal) domain entities, allowing individual
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statements to be evaluated by truth values. The aim of qualitative representations
is to focus on the aspects that are essential for a task at hand by abstracting away
from other, unimportant aspects. As a result, a wide range of representations has been
applied, using various kinds of knowledge representation languages. The most fun-
damental principles for representing knowledge qualitatively that are at the heart of
virtually every representation language are captured by a construct called qualitative
(spatial or temporal) calculus. In the past decades, a great variety of qualitative calculi
have been developed, each tailored to specific aspects of spatial or temporal knowledge.
They share common principles but differ in formal and computational properties.

This article presents an up-to-date comprehensive overview of qualitative spatial
and temporal reasoning (QSTR). We provide a general definition of QSTR (Section 2),
give a uniform account of a calculus that is more integrative than existing ones (Sec-
tion 3), identify and differentiate algebraic properties of calculi (Section 4), and discuss
their role within other knowledge representation paradigms (Section 5) as well as al-
ternative approaches (Section 6). Besides the survey character, the article provides a
taxonomy of the most prominent reasoning problems, a survey of all existing calculi
proposed so far (to the best of our knowledge), and the first comprehensive overview of
their computational properties.

This article is accompanied by an electronic appendix that contains additional exam-
ples, observations, proofs and detailed experimental results, marked “�” in the text.

Demarcation of Scope and Contribution
This article addresses researchers and engineers working with knowledge about space
or time and wishing to employ reasoning on a symbolic level. We supply a thorough
overview of the wealth of qualitative calculi available, many of which have emerged
from concrete application scenarios, for example, proposed for geographical informa-
tion systems (GIS) [Egenhofer 1991; Frank 1991] and now readily employed in current
systems; for applications in general see also the overview given in [Ligozat 2011]. Our
survey focuses on the calculi themselves (Tables I–II) and their computational and
algebraic properties, i.e., characteristics relevant for reasoning and symbolic manip-
ulation (Table IV, Figure 6). To this end, we also categorize reasoning tasks involving
qualitative representations (Figure 2).

We exclusively consider qualitative formalisms for reasoning on the basis of finite
sets of relations over an infinite spatial or temporal domain. As such, the mere use of
symbolic labels is not surveyed. We also disregard approaches augmenting qualitative
formalisms with an additional interpretation such as fuzzy sets or probability theory.

This article significantly advances from previous publications with a survey char-
acter in several regards. Ligozat [2011] describes in the course of the book “the main”
qualitative calculi, describes their relations, complexity issues and selected techniques.
Although an algebraic perspective is taken as well, we integrate this in a more gen-
eral context. Additionally to mentioning general axioms in context of relation algebras
we present a thorough investigation of calculi regarding these axioms. He also gives
references to applications that employ QSTR techniques in a broad sense. Our sur-
vey supplements precise definitions of the underlying formal aspects, which will then
be general enough to encompass all existing calculi that we are aware of. Chen et al.
[2013] summarize the progress in QSTR by presenting selected key calculi for impor-
tant spatial aspects. They give a brief introduction to basic properties of calculi, but
neither detail formal properties nor picture the entire variety of formalisms achieved
so far as provided by this article. Algebra-based methods for reasoning with qualitative
constraint calculi have been covered by Renz and Nebel [2007]. Their description ap-
plies to calculi that satisfy rather strong properties, which we relax. We present revised
definitions and an algebraic closure algorithm that generalizes to all existing calculi,
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and, to the best of our knowledge, we give the first comprehensive overview on compu-
tational properties. Cohn and Renz [2008] present an introduction to the field which
extends the earlier article of Cohn and Hazarika [2001] by a more detailed discussion
of logic theories for mereotopology and by presenting efficient reasoning algorithms.

2. WHAT IS QUALITATIVE SPATIAL AND TEMPORAL REASONING
We characterize QSTR by considering the reasoning problems it is concerned with.
Generally speaking, reasoning is a process to generate new knowledge from exist-
ing one. Knowledge primarily refers to facts given explicitly, possibly implicating im-
plicit ones. Sound reasoning is involved with explicating the implicit, allowing it to be
processed further. Thus, sound reasoning is crucial for many applications. In QSTR
it is a key characteristic and the applied reasoning methods are largely shaped by
the specifics of qualitative knowledge about spatial or temporal domains as provided
within the qualitative domain representation.

2.1. A General Definition of QSTR
Qualitative domain representations employ symbols to represent semantically mean-
ingful properties of a perceived domain, abstracting away any details not regarded
relevant to the context at hand. The perceived domain comprises the available raw
information about objects. By qualitative abstraction, the perceived domain is mapped
to the qualitative domain representation, called domain representation from now on.
Various aims motivate research on qualitative abstractions, most importantly the de-
sire to develop formal models of common sense relying on coarse concepts [Williams
and de Kleer 1991; Bredeweg and Struss 2004] and to capture the catalog of concepts
and inference patterns in human cognition [Kuipers 1978; Knauff et al. 2004], which
in combination enables intuitive approaches to designing intelligent systems [Davis
1990] or human-centered computing [Frank 1992]. Within QSTR it is required that
qualitative abstraction yields a finite set of elementary concepts. The following defini-
tion aims to encompass all contexts in which QSTR is studied in the literature.

Definition 2.1. Qualitative spatial and temporal representation and reasoning
(QSTR) is the study of techniques for representing and manipulating spatial and tem-
poral knowledge by means of relational languages that use a finite set of symbols.
These symbols stand for classes of semantically meaningful properties of the repre-
sented domain (positions, directions, etc.).

Spatial and temporal domains are typically infinite and exhibit complex structures.
Due to their richness and diversity, QSTR is confronted with unique theoretic and
computational challenges. Consequently, there is a high variety of domain representa-
tions, each focusing on specific aspects relevant to specific tasks. To achieve qualitative
abstraction, QSTR uses a relational language to formulate domain representations. It
turns out that binary relations can capture most relevant facets of space and time –
this class also received most attention by the research community. Expressive power is
purely based on these pre-defined relations, no conjuncts or quantifiers are considered.
Thus, the associated reasoning methods can be regarded as variants of constraint-
based reasoning. Additionally, constraint-based reasoning techniques can be used to
empower other methods, for example to assess the similarity of represented entities or
logic inference.

Finally, to map a domain representation to the perceived domain a realization pro-
cess is applied. This process instantiates entities in the perceived domain that are
based on entities provided in the domain representation.

Figure 1 depicts the overall view on knowledge representation and aligns with the
well-known view on intelligent agents considered in AI, which connects the environ-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:4 Frank Dylla et al.

Perceived domain Qualitative
domain representation

Qualitative abstraction
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Fig. 1: Relation between perceived domain and domain representation
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Fig. 2: Classification of fundamental reasoning tasks and representation formalisms

ment to the agent and its internal representation by means of perception (which is an
abstraction process as well) and, vice versa, by actions (see, e.g., [Russell and Norvig
2009, Chapter 2]).

2.2. Taxonomy of Constraint-Based Reasoning Tasks
Figure 2 depicts an overview of constraint-based reasoning tasks in the context of
QSTR. We now briefly describe these tasks and highlight some associated literature.
The description is deliberately provided at an abstract level: each task may come in
different flavors, depending on specific (application) contexts. Also, applicability of spe-
cific algorithms largely depends on the qualitative representation at hand. The follow-
ing taxonomy is loosely based on the overview by Wallgrün et al. [2013].

In the following, we refer to the set of objects received from the perceived domain by
applying qualitative abstraction as domain entities. These are for example geometric
entities such as points, lines, or polygons. In general domain entities can be of any type
regarding spatial or temporal aspects.

We further use the notion of a qualitative constraint network (QCN), a special form
of domain representation. Commonly, a QCN Q is depicted as a directed labeled graph,
whose nodes represent abstract domain entities, i.e., with no specific values from the
domain assigned, and whose edges are labeled with constraints, i.e., symbols repre-
senting relationships required to hold between these entities – see Figure 3 b. An as-
signment of concrete domain entities to the nodes in Q is called a solution of Q if the
assigned entities satisfy all constraints in Q. Section 3.2 has precise definitions.

Constraint network generation. This task determines relational statements that de-
scribe given domain entities regarding specific aspects, using a predetermined quali-
tative language fulfilling certain properties, i.e., in our case provided by a qualitative
spatial calculus. For example, Figure 3 b could be the QCN derived from the scene
shown in Figure 3 a. Techniques for solving this task are described, e.g., in [Cohn et al.
1997; Worboys and Duckham 2004; Forbus et al. 2004; Dylla and Wallgrün 2007].

Consistency checking. This decision problem is considered the fundamental QSTR
task [Renz and Nebel 2007]: given an input QCN Q, decide whether a solution ex-
ists. Applicable algorithms depend on the kind of constraints that occur in Q and are
addressed in Sections 3.2 and 3.4.
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Model generation. This task determines a solution for a QCN Q, i.e., a concrete as-
signment of a domain entity for each node in Q. This may be computationally harder
than merely deciding the existence of a solution. For instance, Fig. 3 a could be the re-
sult of the model generation for the QCN shown in Fig. 3 c. Typically, a single QCN has
infinitely many solutions, due to the abstract nature of qualitative representations. Im-
plementations of model generation may thus choose to introduce further parameters
for controlling the kind of solution determined. Techniques for solving this task are
described, e.g., in [Schultz and Bhatt 2012; Kreutzmann and Wolter 2014; Schockaert
and Li 2015].

Equivalence transformation. Taking a QCN Q as input, equivalence transformation
methods determine a QCN Q′ that has exactly the same solutions but meets additional
criteria. Two variants are commonly considered.

Smallest equivalent network representation determines the strongest refinement
of the input Q by modifying its constraints in order to remove redundant information.
Figure 3 b depicts a refinement of Figure 3 c since in 3 c the relation between A and C is
not constrained at all (i.e., being “<,=, >”), whereas 3 b involves the tighter constraint
“<”. Thus, the QCN Q in 3 c contains 5 base relations, whereas the QCN Q′ in 3 b
contains only 3. Methods for this task are addressed, e.g., by van Beek [1991], and
Amaneddine and Condotta [2013].

Most compact equivalent network representation determines a QCN Q′ with a min-
imal number of constraints: it removes whole constraints that are redundant. In that
sense, Figure 3 c shows a more compact network than Figure 3 b. This task is ad-
dressed, e.g., by Wallgrün [2012], and Duckham et al. [2014].

With this taxonomy in mind, the next section studies properties of qualitative repre-
sentations and their reasoning operations.

3. QUALITATIVE SPATIAL AND TEMPORAL CALCULI FOR DOMAIN REPRESENTATIONS
The notion of a qualitative (spatial or temporal) calculus is a formal construct which, in
one form or another, underlies virtually every language for qualitative domain repre-
sentations. In this section, we survey this fundamental construct, formulate minimal
requirements to a qualitative calculus, discuss their relevance to spatial and temporal
representation and reasoning, and list calculi described in the literature. As men-
tioned in Section 2.2, domain entities can be of any type representing spatial or tem-
poral aspects. The notion of a qualitative calculus has been devised to deal with any
entities; thus we omit an exhaustive list. Instead we refer to Table I listing entities
covered by known calculi.

Existing calculi are entirely based on binary or ternary relations between entities,
which comprise, for example, points, lines, intervals, or regions. Binary relations are
used to represent the location or moving direction of two entities relative to one an-
other without referring to a third entity as a reference object. Examples of relations are

0 1 2 3

A

A: point(0.48)

B

B: point(1.23)

C

C: point(2.86) (a)
A B

C

<

<<

(b)
A B

C

<

<

(c)

Fig. 3: One geometric (a) and two qualitative domain representations of a spatial scene,
obtained via complete (b) or incomplete (c) abstraction. Furthermore, (b) can be ob-
tained from (c) via constraint-based reasoning.
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“overlaps with” (for intervals or regions) or “move towards each other” (for dynamic ob-
jects). Additionally, a binary calculus is equipped with a converse operation acting on
single relation symbols and a binary composition operation acting on pairs of relation
symbols, representing the natural converse and composition operations on the domain
relations, respectively. Converse and composition play a crucial role for symbolic rea-
soning: from the knowledge that the pair (x, y) of entities is in relation r, a symbolic
reasoner can conclude that (y, x) is in the converse of r; and if it is additionally known
that the pair (y, z) is in s, then the reasoner can conclude that (x, z) is in the relation
resulting in composing r and s. In addition, most calculi provide an identity relation
which allows to represent the (explicit or derived) knowledge that, for example, x and
y represent the same entity. � Ex. A.1,A.2,A.3

Depending on the properties postulated for converse and composition, notions of a
calculus of varying strengths exist [Nebel and Scivos 2002; Ligozat and Renz 2004].
The algebraic properties of binary calculi are well-understood, see Section 4.

The main motivation for using ternary relations is the requirement of directly cap-
turing relative frames of reference which occur in natural language semantics [Levin-
son 2003]. In these frames of reference, the location of a target object is described from
the perspective of an observer with respect to a reference object. For example, a hiker
may describe a mountain peak to be to the left of a lake with respect to her own point
of view. Another important motivation is the ability to express that an object is lo-
cated between two others. Thus, ternary calculi typically contain projective relations
for describing relative orientation and/or betweenness. The commitment to ternary (or
n-ary) relations complicates matters significantly: instead of a single converse oper-
ation, there are now five (or n! − 1) nontrivial permutation operations, and there is
no longer a unique choice for a natural composition operation. For capturing the alge-
braic structure of n-ary relations, Condotta et al. [2006] proposed an algebra but there
are other arguably natural choices, and they lead to different algebraic properties, as
shown in Section 4. These difficulties may be the main reason why algebraic properties
of ternary calculi are not as deeply studied as for binary calculi. Fortunately, this will
not prevent us from establishing our general notion of a qualitative spatial (or tem-
poral) calculus with relation symbols of arbitrary arity. However, we will then restrict
our algebraic study to binary calculi; a unifying algebraic framework for n-ary calculi
has yet to be established.

3.1. Requirements to Qualitative Spatial and Temporal Calculi
We start with minimal requirements used in the literature. We use the following stan-
dard notation. A universe is a non-empty set U . With Xn we denote the set of all n-
tuples with elements from X. An n-ary domain relation is a subset r ⊆ Un. We use the
prefix notation r(x1, . . . , xn) to express (x1, . . . , xn) ∈ r; in the binary case we will often
use the infix notation x r y instead of r(x, y).

Abstract partition schemes. Ligozat and Renz [2004] note that most spatial and tem-
poral calculi are based on a set of JEPD (jointly exhaustive and pairwise disjoint)
domain relations. The following definition is predominant in the QSTR literature
[Ligozat and Renz 2004; Cohn and Renz 2008].

Definition 3.1. Let U be a universe and R a set of non-empty domain relations of
the same arity n. R is called a set of JEPD relations over U if the relations in R are
jointly exhaustive, i.e., Un =

⋃
r∈R r, and pairwise disjoint.

An n-ary abstract partition scheme is a pair (U ,R) whereR is a set of JEPD relations
over the universe U . The relations in R are called base relations.
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� Ex. A.4
In Definition 3.1, the universe U represents the set of all (spatial or temporal) entities.
The main ingredients of a calculus will be relation symbols representing the base
relations in the underlying partition scheme. A constraint linking an n-tuple t of
entities via a relation symbol will thus represent complete information (modulo
the qualitative abstraction underlying the partition scheme) about t. Incomplete
information is modeled by t being in a composite relation, which is a set of relation
symbols representing the union of the corresponding base relations. The set of all
relation symbols represents the universal relation (the union of all base relations) and
indicates that no information is available. � Ex. A.5
The requirement that all base relations are JEPD ensures that every n-tuple of
entities belongs to exactly one base relation. Thanks to PD (pairwise disjointness),
there is a unique way to represent any composite relation using relation symbols and,
due to JE (joint exhaustiveness), the empty relation can never occur in a consistent
set of constraints, which is relevant for reasoning, see Section 3.2. � Ex. A.6

Partition schemes, identity, and converse. Ligozat and Renz [2004] base their def-
inition of a (binary) qualitative calculus on the notion of a partition scheme, which
imposes additional requirements on an abstract partition scheme. In particular, it re-
quires that the set of base relations contains the identity relation and is closed under
the converse operation. The analogous definition by Condotta et al. [2006] captures re-
lations of arbitrary arity. Before we define the notion of a partition scheme, we discuss
the generalization of identity and converse to the n-ary case.

The binary identity relation is given as usual by

id2 = {(u, u) | u ∈ U}. (1)

� Ex. A.7
The most inclusive way to generalize (1) to the n-ary case is to fix a setM of numbers of
all positions where tuples in idn are required to agree. Thus, an n-ary identity relation
is a domain relation idnM with M ⊆ {1, . . . , n} and |M | > 2, which is defined by

idnM = {(u1, . . . , un) ∈ Un | ui = uj for all i, j ∈M}.

This definition subsumes the “diagonal elements” ∆ij of Condotta et al. [2006] for the
case |M | = 2. However, it is not enough to restrict attention to |M | = 2 because there
are ternary calculi which contain all identities id3

1,2, id3
1,3, id3

2,3, and id3
1,2,3, an example

being the LR calculus, which was described as “the finest of its class” [Scivos and Nebel
2005]. Since the relations in an n-ary abstract partition scheme are JEPD, all identities
idnM are either base relations or subsumed by those. The stronger notion of a partition
scheme should thus require that all identities be made explicit.

For binary relations, id2 from (1) is the unique identity relation id2
{1,2}.

The standard definition for the converse operation ˘ on binary relations is

r̆ = {(v, u) | (u, v) ∈ r}. (2)

� Ex. A.8
In order to generalize the reversal of the pairs (u, v) in (2) to n-ary tuples, we consider
arbitrary permutations of n-tuples. An n-ary permutation is a bijection π : {1, . . . , n} →
{1, . . . , n}. We use the notation π : (1, . . . , n) 7→ (i1, . . . , in) as an abbreviation for “π(1) =
i1, . . . , π(n) = in”. The identity permutation ι : (1, . . . , n) 7→ (1, . . . , n) is called trivial;
all other permutations are nontrivial.
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A finite set P of n-ary permutations is called generating if each n-ary permutation
is a composition of permutations from P . For example, the following two permutations
form a (minimal) generating set:

sc : (1, . . . , n) 7→ (2, . . . , n, 1) (shortcut)
hm : (1, . . . , n) 7→ (1, . . . , n− 2, n, n− 1) (homing)

The names have been introduced in Freksa and Zimmermann [1992] for ternary per-
mutations, together with a name for a third distinguished permutation:

inv : (1, . . . , n) 7→ (2, 1, 3 . . . , n) (inversion)

Condotta et al. [2006] call shortcut “rotation” (ry) and homing “permutation” (r#).
� Ex. A.9

For n = 2, sc, hm and inv coincide; indeed, there is a unique minimal generating set,
which consists of the single permutation ˘ : (1, 2) 7→ (2, 1). For n > 3, there are several
generating sets, e.g., {sc,hm} and {sc, inv}.

Now an n-ary permutation operation is a map ·π that assigns to each n-ary domain
relation r an n-ary domain relation denoted by rπ, where π is an n-ary permutation
and the following holds: rπ = {(uπ(1), . . . , uπ(n)) | (u1, . . . , un) ∈ r}

We are now ready to give our definition of a partition scheme, lifting Ligozat and Renz’s
binary version to the n-ary case, and generalizing Condotta et al.’s n-ary version to
arbitrary generating sets.

Definition 3.2. An n-ary partition scheme (U ,R) is an n-ary abstract partition
scheme with the following two additional properties.

(1) R contains all identity relations idnM , M ⊆ {1, . . . , n}, |M | > 2.
(2) There is a generating set P of permutations such that, for every r ∈ R and every

π ∈ P , there is some s ∈ R with rπ = s.

� Ob. B.1 � Ex. A.10, A.11
It is important to note that violations of Definition 3.2 (e.g., depicted in Example A.11)
are not necessarily bugs in the design of the respective calculi – in fact they are often
a feature of the corresponding representation language, which is deliberately designed
to be just as granular as necessary, and may thus omit some identity relations or con-
verses/compositions of base relations. � Ex. A.12
Thus violations of Definition 3.2 are unavoidable, and we adopt the more general no-
tion of an abstract partition scheme.

Calculi. Intuitively, a qualitative (spatial or temporal) calculus is a symbolic repre-
sentation of an abstract partition scheme and additionally represents the composition
operation on the relations involved. As before, we need to discuss the generalization of
binary composition to the n-ary case before we can define it precisely.

For binary domain relations, the standard definition of composition is:

r ◦ s = {(u,w) | ∃v ∈ U : (u, v) ∈ r and (v, w) ∈ s} (3)

� Ex. A.13
We are aware of three ways to generalize (3) to higher arities. The first is a binary
operation on the ternary relations of the calculus double-cross (2-cross) [Freksa 1992b;
Freksa and Zimmermann 1992] (see also Fig. 8 in the appendix):

r ◦3FZ s = {(u, v, w) | ∃x : (u, v, x) ∈ r and (v, x, w) ∈ s}
� Ex. A.14
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A second alternative results in n(n − 1) binary operations i◦nj [Isli and Cohn 2000;
Scivos and Nebel 2005]: the composition of r and s consists of those n-tuples that be-
long to r (respectively, s) if the i-th (respectively, j-th) component is replaced by some
uniform element v.

r i◦nj s = {(u1, . . . , un) | ∃v : (u1, . . . , ui−1, v, ui+1, . . . , un) ∈ r and
(u1, . . . , uj−1, v, uj+1, . . . , un) ∈ s }

In the ternary case, this yields, for example:

r 3◦32 s = {(u, v, w) | ∃x : (u, v, x) ∈ r and (u, x, w) ∈ s} (4)

If we assume, for example, that the underlying partition scheme speaks about the
relative position of points, we can consider (4) to say: if the position of x relative to u
and v is determined by the relation r (as given by (u, v, x) ∈ r) and the position of w
relative to u and x is determined by the relation s (as given by (u, x, w) ∈ s), then the
position of w relative to u and v can be inferred to be determined by r 3◦32 s.

The third is perhaps the most general, resulting in an n-ary operation [Condotta
et al. 2006]: ◦(r1, . . . , rn) consists of those n-tuples which, for every i = 1, . . . , n, belong
to the relation ri whenever their i-th component is replaced by some uniform v.

◦(r1, . . . , rn) = {(u1, . . . , un) | ∃v ∈ U : (u1, . . . , un−1, v) ∈ r1 and
(u1, . . . , un−2, v, un) ∈ r2 and . . . and (v, u2, . . . , un) ∈ rn} (5)

� Ex. A.15
For binary domain relations, all these alternative approaches collapse to (3).
In the light of the diverse views on composition, we define a composition operation

on n-ary domain relations to be an operation of arity 2 6 m 6 n on n-ary domain
relations, without imposing additional requirements. Those are not necessary for the
following definitions, which are independent of the particular choice of composition.

We now define our minimal notion of a calculus, which provides a set of symbols for
the relations in an abstract partition scheme (Rel), and for some choice of nontrivial
permutation operations (̆ 1, . . . ,˘k) and some composition operation (�).

Definition 3.3. An n-ary qualitative calculus is a tuple (Rel, Int,˘1, . . . ,˘k, �) with
k > 1 and the following properties.

— Rel is a finite, non-empty set of n-ary relation symbols (denoted r, s, t, . . . ). The sub-
sets of Rel, including singletons, are called composite relations (denoted R,S, T, . . . ).

— Int = (U , ϕ, ·π1 , . . . , ·πk , ◦) is an interpretation with the following properties.
— U is a universe.
— ϕ : Rel → 2U

n

is an injective map assigning an n-ary relation over U to each re-
lation symbol, such that (U , {ϕ(r) | r ∈ Rel}) is an abstract partition scheme. The
map ϕ is extended to composite relations R ⊆ Rel by setting ϕ(R) =

⋃
r∈R ϕ(r).

— {·π1 , . . . , ·πk} is a set of n-ary nontrivial permutation operations.
— ◦ is a composition operation on n-ary domain relations that has arity 2 6 m 6 n.

— Every permutation operation ˘i is a map ˘i : Rel→ 2Rel that satisfies

ϕ(r̆ i) ⊇ ϕ(r)πi (6)

for every r ∈ Rel. The operation ˘i is extended to composite relations R ⊆ Rel by
setting R˘i =

⋃
r∈R r̆

i.
— The composition operation � is a map � : Relm → 2Rel that satisfies

ϕ(�(r1, . . . , rm)) ⊇ ◦(ϕ(r1), . . . , ϕ(rm)) (7)
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for all r1, . . . , rm ∈ Rel. The operation � is extended to composite relations
R1, . . . , Rm ⊆ Rel by setting �(R1, . . . , Rm) =

⋃
r1∈R1

· · ·
⋃
rm∈Rm

�(r1, . . . , rm).

In the special case of binary relations, the natural converse is the only non-trivial
permutation operation, i.e., k = 1. � Ob. B.2
Due to the last sentence of Definition 3.3, the composition operation of a calculus
is uniquely determined by the composition of each pair of relation symbols. This
information is usually stored in an m-dimensional table, the composition table.

� Ex. A.16, A.17, A.18

Abstract versus weak and strong operations. We call permutation and composition
operations with Properties (6) and (7) abstract permutation and abstract composition,
following Ligozat’s naming in the binary case [Ligozat 2005]. For reasons explained
further below, our notion of a qualitative calculus imposes weaker requirements on
the permutation operation than Ligozat and Renz’s notions of a weak (binary) repre-
sentation [Ligozat 2005; Ligozat and Renz 2004] or the notion of a (binary) constraint
algebra [Nebel and Scivos 2002]. The following definition specifies those stronger vari-
ants, see, e.g., Ligozat and Renz [2004].

Definition 3.4. Let (Rel, Int,˘1, . . . ,˘k, �) be a qualitative calculus based on the inter-
pretation Int = (U , ϕ, ·π1 , . . . , ·πk , ◦).
The permutation operation ˘i is a weak permutation if, for all r ∈ Rel:

r̆ i =
⋂
{S ⊆ Rel | ϕ(S) ⊇ ϕ(r)πi} (8)

The permutation operation ˘i is a strong permutation if, for all r ∈ Rel:

ϕ(r̆ i) = ϕ(r)πi (9)
The composition operation � is a weak composition if, for all r1, . . . , rm ∈ Rel:

� (r1, . . . , rm) =
⋂
{S ⊆ Rel | ϕ(S) ⊇ ◦(ϕ(r1), . . . , ϕ(rm))} (10)

The composition � is a strong composition if, for all r1, . . . , rm ∈ Rel:
ϕ(�(r1, . . . , rm)) = ◦(ϕ(r1), . . . , ϕ(rm)) (11)

In the literature, the equivalent variant r̆ i = {s ∈ Rel | ϕ(s) ∩ ϕ(r)πi 6= ∅} of Equation
(8) is sometimes found; analogously for Equation (10). � Ex. A.19, A.20
In terms of composition tables, abstract composition requires that each cell correspond-
ing to �(r1, . . . , rm) contains at least those relation symbols t whose interpretation in-
tersects with ◦(ϕ(r1), . . . , ϕ(rm)). Weak composition additionally requires that each cell
contains exactly those t. Strong composition, in contrast, imposes a requirement on the
underlying partition scheme: whenever ϕ(t) intersects with ◦(ϕ(r1), . . . , ϕ(rm)), it has
to be contained in ◦(ϕ(r1), . . . , ϕ(rm)). Analogously for permutation.

The above “at least” is a crucial requirement: if some cell did not contain any relation
symbol t as above, then the composition table would give rise to unsound inferences,
(e.g., described in Example A.20). Abstractness as in Properties (6) and (7) thus cap-
tures minimal requirements to the operations in a qualitative calculus that ensure
soundness of reasoning, as described in Section 3.2.

Along the same lines, adding unnecessary relations to a cell in the table leads to
weaker inferences and thus amounts to a loss of knowledge. Weakness (Properties (8)
and (10)) ensures that this loss is kept to the unavoidable minimum. This last obser-
vation is presumably the reason why existing calculi (see Section 3.4) typically have at
least weak operations – we are not aware of any calculus with only abstract operations.
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In Section 3.2, we will see that abstract composition is a minimal requirement for
ensuring soundness of the most common reasoning algorithm, a-closure, and review
the impact of the various strengths of the operations on reasoning algorithms.

The three notions form a hierarchy:

FACT 3.5. Every strong permutation (composition) is weak, and every weak permu-
tation (composition) is abstract. � C.1

It suffices to postulate the properties weakness and strongness with respect to relation
symbols only: they carry over to composite relations as shown in Fact 3.6.

FACT 3.6. Given a qualitative calculus (Rel, Int,˘1, . . . ,˘k, �) the following holds.
For all composite relations R ⊆ Rel and i = 1, . . . , k:

ϕ(R˘i) ⊇ ϕ(R)πi (12)

For all composite relations R1, . . . , Rm ⊆ Rel:

ϕ(�(R1, . . . , Rm)) ⊇ ◦(ϕ(R1), . . . , ϕ(Rm)) (13)

If ˘i is a weak permutation, then, for all R ⊆ Rel:

R˘i =
⋂
{S ⊆ Rel | ϕ(S) ⊇ ϕ(R)πi}

If ˘i is a strong permutation, then, for all R ⊆ Rel:

ϕ(R˘i) = ϕ(R)πi

If � is a weak composition, then, for all R1, . . . , Rm ⊆ Rel:

� (R1, . . . , Rm) =
⋂
{S ⊆ Rel | ϕ(S) ⊇ ◦(ϕ(R1), . . . , ϕ(Rm)}

If � is a strong composition, then, for all R1, . . . , Rm ⊆ Rel:

ϕ(�(R1, . . . , Rm)) = ◦(ϕ(R1), . . . , ϕ(Rm)) � C.2

Suppose that we want to achieve that the symbolic permutation operations provided
by a calculus C capture all permutations at the domain level. Then C needs to be
permutation-complete in the sense that at least weak permutation operations for all
n!− 1 nontrivial permutations can be derived uniquely by composing the ones defined.

In the binary case, where the converse is the unique nontrivial (and generating)
permutation, every calculus is permutation-complete. However, as noted above, the
converse is not strong for the binary CDR [Skiadopoulos and Koubarakis 2005] and
RCD [Navarrete et al. 2013] calculi (cf. Definition 3.2 ff.). There are also ternary cal-
culi whose permutations are not strong: e.g., the shortcut, homing, and inversion op-
erations in the single-cross and double-cross calculi [Freksa 1992b; Freksa and Zim-
mermann 1992] are only weak. Since these calculi provide no further permutation
operations, they are not permutation-complete. However, it is easy to compute the two
missing permutations and thus make both calculi permutation-complete.

Ligozat and Renz’ [2004] basic notion of a binary qualitative calculus is based on a
weak representation which requires an identity relation, abstract composition, and the
converse being strong, thus excluding, for example, CDR and RCD. A representation is
a weak representation with a strong composition and an injective map ϕ. Our basic
notion of a qualitative calculus is more general than a weak representation by not re-
quiring an identity relation, and by only requiring abstract permutations and composi-
tion, thus including CDR and RCD. On the other hand, it is slightly more restrictive by
requiring the map ϕ to be injective. However, since base relations are JEPD, the only
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way for ϕ to violate injectivity is to give multiple names to the same relation, which is
not really intuitive. It is even problematic because it leads to unintended behavior of
the notion of weak composition (or permutation): if there are two relation symbols for
every domain relation, then the intersections in Equations (8) and (10) will range over
disjoint composite relations S and thus become empty.

Recently, Westphal et al. [2014] gave a new definition of a qualitative calculus
that does not explicitly use a map – in our case the interpretation Int – that con-
nects the symbols with their semantics. Instead, they employ the “notion of consis-
tency” [Westphal et al. 2014, p. 211] for generating a weak algebra from the Boolean
algebra of relation symbols. As with [Ligozat and Renz 2004] their definition of a qual-
itative calculus is confined to binary relations only.

3.2. Spatial and Temporal Reasoning
As in the area of classical constraint satisfaction problems (CSPs), we are given a set
of variables and constraints: a constraint network or a qualitative CSP.1 The task of
constraint satisfaction is to decide whether there exists a valuation of all variables that
satisfies the constraints. In calculi for spatial and temporal reasoning, all variables
range over the entities of the specific domain of a qualitative calculus. The relation
symbols defined by the calculus serve to express constraints between the entities. More
formally, we have:

Definition 3.7 (QCSP). Let C = (Rel, Int,˘1, . . . ,˘k, �) be an n-ary qualitative calcu-
lus with Int = (U , ϕ, ·π1 , . . . , ·πk , ◦), and let X be a set of variables ranging over U . An n-
ary qualitative constraint in C is a formula R(x1, . . . , xn) with variables x1, . . . , xn ∈ X
and a relation R ⊆ Rel. We say that a valuation ψ : X → U satisfies R(x1, . . . , xn) if
(ψ(x1), . . . , ψ(xn)) ∈ ϕ(R) holds.

A qualitative constraint satisfaction problem (QCSP) is the task to decide whether
there is a valuation ψ for a set of variables satisfying a set of constraints.

� Ex. A.21
For simplicity and without loss of generality, we assume that every set of constraints
contains exactly one constraint per set of n variables. Thus, of binary constraints either
rx1,x2

or r′x2,x1
is assumed to be given – the other can be derived using converse; mul-

tiple constraints regarding variables x1, x2 can be integrated via intersection. In the
following, rx1,...,xn stands for the unique constraint between the variables x1, . . . , xn.

Several techniques originally developed for finite-domain CSPs can be adapted to
spatial and temporal QCSPs. Since deciding CSP instances is already NP-complete for
search problems with finite domains, heuristics are important. One particularly valu-
able technique is constraint propagation which aims at making implicit constraints
explicit in order to identify variable assignments that would violate some constraint.
By pruning away these variable assignments, a consistent valuation can be searched
more efficiently. A common approach is to enforce k-consistency; the following defini-
tion is standard in the CSP literature [Dechter 2003].

Definition 3.8. A QCSP with variables X is k-consistent if, for all subsets X ′ ( X of
size k−1, we can extend any valuation ofX ′ that satisfies the constraints to a valuation
of X ′ ∪ {z} also satisfying the constraints, for any additional variable z ∈ X \X ′.

QCSPs are naturally 1-consistent as universes are nonempty and there are no
unary constraints. An n-ary QCSP is n-consistent if r̆ ix1,...,xk

= rπi(x1,...,xk) for all i and

1In the CSP domain, “CSP” usually refers to a single instance, not the decision or computation problem.
This the same as a qualitative constraint network (QCN) as introduced in Sec 2.2.
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rx1,...,xk
6= ∅: domain relations are typically serial, that is, for any r and x1, . . . , xk−1,

there is some xk with r(x1, . . . , xk). In the case of binary relations, this means that 2-
consistency is guaranteed in calculi with a strong converse by r̆x,y = ry,x and rx,y 6= ∅,
and seriality of r means that, for every x, there is a y with r(x, y).

Already examining (n + 1)-consistency may provide very useful information. The
following is best explained for binary relations and then generalized to higher arities. A
3-consistent binary QCSP is called path-consistent, and Definition 3.8 can be rewritten
using binary composition as

∀x, y ∈ X rx,y ⊆
⋂
z∈X

rx,z ◦ rz,y. (14)

We can enforce 3-consistency by computing the fixpoint of the refinement operation

rx,y ← rx,y ∩ (rx,z ◦ rz,y) , (15)

applied to all variables x, y, z ∈ X. In finite CSPs with variables ranging over finite
domains, composition is also finite and the procedure always terminates since the re-
finement operation is monotone and there can thus only be finitely many steps until
reaching the fixpoint. Such procedures are called path-consistency algorithms and re-
quire O(|X|3) time [Dechter 2003]. � Ex. A.22
Enforcing path-consistency with QCSPs may not be possible using a symbolic algo-
rithm since Equation (15) may lead to relations not expressible in 2Rel. This problem
occurs when composition in a qualitative calculus is not strong. It is however straight-
forward to weaken Equation (15) using weak composition:

rx,y ← rx,y ∩ (rx,z � rz,y) (16)

The resulting procedure is called enforcing algebraic closure or a-closure for short. The
QCSP obtained as a fixpoint of the iteration is called algebraically closed. � Ex. A.23
If composition in a qualitative calculus is strong, a-closure and path-consistency coin-
cide. Since there are finitely many relations in a qualitative calculus, a-closure shares
all computational properties with the finite CSP case.

A natural generalization from binary to n-ary relations can be achieved by consid-
ering (n + 1)-consistency (recall that path-consistency is 3-consistency). In context of
symbolic computation with qualitative calculi we thus need to lift Equations (14) and
(15) to the particular composition operation available. For composition as defined by
(5) one obtains

∀x1, . . . , xn ∈ X rx1,...,xn ⊆
⋂
y∈X
◦(rx1,...,xn−1,y, rx1,...,xn−2,y,xn , . . . , ry,x2,...,xn),

and the symbolic refinement operation (16) becomes

rx1,...,xn
← rx1,...,xn

∩ �(rx1,...,xn−1,y, rx1,...,xn−2,y,xn
, . . . , ry,x2,...,xn

). (17)

The reason why, in Definition 3.3, we require composition to be at least abstract
is that Inclusion (7) guarantees that reasoning via a-closure is sound: enforcing k-
consistency or a-closure does not change the solutions of a CSP, as only impossible
valuations are locally removed. If application of a-closure results in the empty rela-
tion, then the QCSP is known to be inconsistent. By contrast, an algebraically closed
QCSP may not be consistent. However, for several qualitative calculi (or at least sub-
algebras thereof) a-closure and consistency coincide, see also Section 3.4. � Ex. A.24
Since domain relations are JEPD, deciding QCSPs with arbitrary composite relations
can be reduced to deciding QCSPs with only atomic relations (i.e., relation symbols)
by means of search (cf. [Renz and Nebel 2007]). The approach to reason in a full al-
gebra is thus to refine a composite relation R ∪ S to either R or S in a backtracking
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search fashion, until a dedicated decision procedure becomes applicable. Computation-
ally, reasoning with the complete algebra is typically NP-hard due to the exponential
number of possible refinements to atomic relations. For investigating reasoning algo-
rithms, one is thus interested in the complexity of reasoning with atomic relations.
If they can be handled in polynomial time, maximal tractable sub-algebras that ex-
tend the set of atomic relations are of interest too. Efficient reasoning algorithms for
atomic relations and the existence of large tractable sub-algebras suggest efficiency
in handling practical problems. The search for maximal tractable sub-algebras can
be significantly eased by applying the automated methods proposed by Renz [2007].
These exploit algebraic operations to derive tractable composite relations and, comple-
mentary, search for embeddings of NP-hard problems. Using a-closure plus refinement
search has been regarded as the prevailing reasoning method. Certainly, a-closure pro-
vides an efficient cubic time method for constraint propagation, but Table IV clearly
shows that the majority of calculi require further methods as decision procedures.

3.3. Tools to Facilitate Qualitative Reasoning
There are several tools that facilitate one or more of the reasoning tasks. The most
prominent plain-QSTR tools are GQR [Westphal et al. 2009], a constraint-based rea-
soning system for checking consistency using a-closure and refinement search, and the
SparQ reasoning toolbox [Wolter and Wallgrün 2012],2 which addresses various tasks
from constraint- and similarity-based reasoning. Besides general tools, there are im-
plementations addressing specific aspects (e.g., reasoning with CDR [Liu et al. 2010])
or tailored to specific problems (e.g., Phalanx for sparse RCC-8 QCSPs [Sioutis and
Condotta 2014]). In the contact area of qualitative and logical reasoning, the DL rea-
soners Racer [Haarslev et al. 2012] and PelletSpatial [Stocker and Sirin 2009] offer
support for handling a selection of qualitative formalisms. For logical reasoning about
qualitative domain representations, the tools Hets [Mossakowski et al. 2007], SPASS
[Weidenbach et al. 2002], and Isabelle [Nipkow et al. 2002] have been applied, support-
ing the first-order Common Algebraic Specification Language CASL [Astesiano et al.
2002] as well as its higher-order variant HasCASL (see [Wölfl et al. 2007]).

3.4. Existing Qualitative Spatial and Temporal Calculi
In the following, we present an overview of existing calculi obtained from a systematic
literature survey, covering publications in the relevant conferences and journals in the
past 25 years, and following their citation graphs. To be included in our overview, a
qualitative calculus has to be based on a spatial and/or temporal domain, fall under
our general definition of a qualitative calculus (Def. 3.3: provide symbolic relations, the
required symbolic operations, and semantics based on an abstract partition scheme),
and be described in the literature either with explicit composition/converse tables, or
with instructions for computing them. These selection critera exclude sets of qualita-
tive relations that have been axiomatized in the context of logical theories, see Sec-
tion 5.2, or qualitative calculi designed for other domains, such as ontology alignment
[Inants and Euzenat 2015]).

Tables I–II list, to the best of our knowledge, all calculi satisfying these criteria.
Table I lists the names of families of calculi and their domains. Table II lists all vari-
ants of these families with original references, arity and number of their base relations
(which is an indicator for the level of granularity offered and for the average branch-
ing factor to expect in standard reasoning procedures). Additionally we indicate which
calculi are implemented in SparQ and can be obtained from there.

2available at https://github.com/dwolter/sparq
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Abbrev. Name Domain Aspect
1-,2-cross Single/Double Cross Calculus points in 2-d relative location
9-int Nine-Intersection Model simple n-d regions topology
9(+)-int 9- and 9+-Intersection Calculi 9-int & bodies, lines, points in 2-d/3-d
ABA8

23 Alg. of Bipartite Arrangements 1-d intervals in 2-d rel. loc./orientation
BA Block algebra (aka Rectangle Algebra or Rectangle Calculus)

n-d blocks order
CBM Calculus Based Method 2-d regions, lines, and points topology
CDA Closed Disk Algebra 2-d closed disks topology
CDC Cardinal Direction Calculus points in 2-d cardinal directions
CDR Cardinal Direction Relations 2-d regions cardinal directions
CI Algebra of Cyclic Intervals intvls. on closed curves cyclic order
CYC Cyclic Ordering (CYCb aka Geometric Orientation)

oriented lines in 2-d relative orientation
DepCalc Dependency Calculus partially ordered points partial order
DIA Directed Intervals Algebra directed 1-d intvls. in 1-d order/orientation
DRA Dipole Calculus oriented line segms. in R2 rel. loc./orientation
DRA-conn Dipole connectivity connectivity of the above connectivity
EIA Extended Interval Algebra 1-d intervals in 1-d order
EOPRA Elevated Oriented Point Rel. Alg. OPRA & local distance
EPRA Elevated Point Relation Algebra CDC & local distance
GenInt Generalized Intervals unions of 1-d intvls. order
IA (Allen’s) Interval Algebra 1-d intervals in 1-d order
INDU Intvl. and Duration Network IA & relative duration
LOS Lines of Sight 2-d regions in 3-d obscuration
LR LR Calculus (aka Flip-Flop) points in 2-d relative location
MC-4 MC-4 regions in 2-d congruence
OCC Occlusion Calculus 2-d regions in 3-d obscuration
OM-3D 3-D Orientation Model points in 3-d relative location
OPRA Oriented Point Rel. Algebra oriented points in 2-d rel. loc./orientation
PC Point Calculus (aka Point Algebra) points in n-d total order
QRPC Qualitative Rectilinear Projection Calculus

oriented points in 2-d relative motion
QTC Qualitative Trajectory Calculus moving points in 1-d/2-d relative motion
RCC Region Connection Calculus general regions topology
RCD Rectang. Card. Dir. Calculus bounding boxes in 2-d cardinal directions
RfDL-3-12 Region-in-the-frame-of-Directed-Line

regions & paths in 2-d relative motion
ROC Region Occlusion Calculus 2-d regions in 3-d obscuration
SIC Semi-Interval Calculus 1-d intervals in 1-d order
STAR Star Calculi points in 2-d direction
SV StarVars oriented points in 2-d relative direction
TPCC Ternary Point Config. Calc. points in 2-d relative location
TPR Ternary Projective Relations points or regions in 2-d relative location
VR Visibility Relations convex regions obscuration

Table I: Existing families of spatial and temporal calculi
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Variant Specifics Reference(s) Params St
1-, 2-cross [Freksa and Zimmermann 1992] t 8, 15  S©

9-int [Egenhofer 1991] b 8  S©

9(+)-int 10 variantsa [Kurata 2010] b 6233 #c

ABA8
23

b [Gottfried 2004] b 125 #c

BAn n dimensions [Balbiani et al. 1998; 1999] b 13n  S©1,2

CBM [Clementini et al. 1993] b 7 #
CDA [Egenhofer and Sharma 1993] b 8 G#
CDC [Frank 1991; Ligozat 1998] b 9  S©

CDR original version [Skiadopoulos and Koubarakis 2004] b 511 H#c

cCDR connected variant [Skiadopoulos and Koubarakis 2005] b 289  S©

CI [Balbiani and Osmani 2000] b 16  
CYCb binary [Isli and Cohn 2000] b 4 G# S©

CYCt ternary ibid. t 24  S©

DepCalc [Ragni and Scivos 2005] b 5  S©

DIA [Renz 2001] b 26 #c

DRAc coarse-grainedb [Moratz et al. 2000] b 24 G# S©

DRAf fine-grained ibid. b 72  S©

DRAfp f+parallelism [Moratz et al. 2011] b 80  S©

DRA-conn [Wallgrün et al. 2010] b 7  S©

EIA [Zhang and Renz 2014] b 27 H#c

EOPRAn granularity n [Moratz and Wallgrün 2012] b O(n3) #c

EPRAn granularity n [Moratz and Wallgrün 2012] b O(n3) #c

IA×EIA coarser variant [Zhang and Renz 2014] b 351 #c

EIA×EIA finer variant ibid. b 729 #c

GenInt [Condotta 2000] b 13 H#c

IA [Allen 1983] b 13  S©

INDU [Pujari et al. 1999] b 25  S©

LOS-14 convex regions [Galton 1994] b 14 #c

LR [Scivos and Nebel 2005; Ligozat 1993] t 9  S©

MC-4 [Cristani 1999] b 4  S©

OCC convex regions [Köhler 2002] b 8 G#
OM-3D [Pacheco et al. 2001] t 75 H#c

OPRAn granularity n [Moratz 2006; Mossakowski & M. 2012] b O(n2)  S©

OPRA∗n plus alignment [Dylla and Lee 2010] b O(n2)  
PCn n dimensions [Vilain and Kautz 1986] b 3n  S©1

[Balbiani and Condotta 2002]
QRPC [Glez-Cabrera et al. 2013] b 48 #
QTC-B1x, x= 1, 2 1-d variants [Van de Weghe et al. 2005] b 9, 27 G# S©

QTC-B2x, -C2x 2-d variants ibid. b 9–305 G# S©

QTC-N network variant [Delafontaine et al. 2011] b 17 #c

RCC-5 without tangentiality [Randell et al. 1992] b 5  S©

RCC-8 with tangentiality ibid. b 8  S©

RCC-15, -23 concave regions [Cohn et al. 1997] b 15, 23 #
RCC-62 ” [OuYang et al. 2007] b 62 #
RCC*-7, -9 + lower-dim. features [Clementini and Cohn 2014] b 7, 9 G#
(V)RCC-3D(+) with occlusion [Sabharwal and Leopold 2014] b 13–37 #c

RCD [Navarrete et al. 2013] b 36  S©

RfDL-3-12 [Kurata and Shi 2008] b 1772 #
ROC-20 [Randell et al. 2001] b 20 #
SIC [Freksa 1992a] b 13 #c

STARn granularity n [Renz and Mitra 2004] b O(n) H#c

STARr
n revised variants ibid. b O(n)  S©4

SVn granularity n [Lee et al. 2013] b O(n) H#
TPCC [Moratz and Ragni 2008] t 25  S©

TPR-p for points [Clementini et al. 2006; 2010] t 7 G#
TPR-r for regions ibid. t 34 #c

VR [Tarquini et al. 2007] t 7 G#

Table II: Overview of existing spatial and temporal calculi, legend in Table III
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Params Arity – (b)inary, (t)ernary – and number of relation symbols
St Status of availability: # base relations, G# composition table, H# complexity results

 table and complexity, S© SparQ implementation, https://github.com/dwolter/sparq
a 2 variants over 5 domains each
b Not based on abstract partition scheme (violates JEPD over U × U )
c Original work describes how to compute the composition table
1 For n = 1
2 For n = 2
4 For n = 4, regular version only

Table III: Legend for Table II

Representational aspects of calculi are shown in Figure 4, grouping calculi by the
type of their basic entities and the key aspects captured. For all temporal and selected
spatial calculi we iconographically show one exemplary base relation to illustrate the
kind of statements it permits. For a complete understanding of the respective calculus,
the interested reader is referred to the original research papers cited in Table II. We
sometimes use a more descriptive relation name than the original work.

Figure 5 shows the known relations between the expressivity of existing calculi.
There are several ways to measure these, via the existence of faithful translations not
only between base relations over the same domain, but also between representations
of related domains or between representations concerned with a different domain. For
example, the dependency calculus DepCalc representing dependency between points
is isomorphic to RCC-5 representing topology of regions. Both calculi feature the same
algebraic structure representing partial-order relationships in the domain.

Since expressivity of qualitative representations solely relies on how relations are
defined, there are distinct calculi which exhibit the same expressivity when Boolean
combinations of constraints are considered [Wolter and Lee 2016]. These connections
are particularly interesting, not only from the perspective of selecting an appropriate
representation, but also in view of computational properties. For example, deciding
consistency of atomic constraint networks over the point calculus PC is polynomial.
Using Boolean combinations of PC relations one can simulate Allen interval relations.
Nebel and Bürckert [1995] have exploited this relationship to lift a tractable subset to
Allen. In Figure 5 we give an overview of these expressivity relations. An arrow A→ B
indicates that sets of constraints over relations from calculus A can be expressed by
Boolean formulas of constraints over relations from calculus B. For clarity we only
show direct relations, not their transitive closure. Calculi in a joint box are of equiva-
lent expressivity. For those expressivity relations that do not follow directly from the
original papers defining the respective calculi, proof sketches are provided by Wolter
and Lee [2016] and in Appendix D.

Computational aspects of calculi are shown in Table IV, as far as they have already
been identified. Some fairly straightforward supplements have been made while com-
piling this table; their proofs are in Appendix E. According to the discussion in the
previous section, we give the computational complexity for deciding consistency with
atomic QCSPs and the best known complete decision procedure, which is different from
a-closure in those cases where a-closure is incomplete. We only indicate the type of al-
gorithm applicable (e.g., linear programming), but not its most efficient realization. We
furthermore list tractable subalgebras that cover at least all atomic relations – these
subalgebras allow for reasoning in the full algebra via combining the named decision
procedure with a search for a refinement. The complexity is given as “P” (in polynomial
time), “NPc” (NP-complete), and “NPh” (NP-hard, NP-membership unknown).
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Fig. 4: Classification of qualitative calculi by representable statements with selected
example relations
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Abbrev. Complexity1 Decision procedure2 Largest known and its
(atomic QCSP) (atomic QCSP) tractable subalgebra3 coverage4

1,2-cross NPh [WL10] PS – –
9-int NPc [SSD03] recognizing – –

string graphs [SSD03]
BAn O(n3) [BCC02] AC Strongly preconvex

relations [BCF99]
CDC O(n3) [Lig98] AC pre-convex relations ≥ 25%
CDR O(n3) [LZLY10] dedicated [LZLY10]
cCDR NPc [LL11] dedicated [LZLY10] – –
CI O(n3) [BO00] AC nice relations 0.75‰
CYCt O(n4) [IC00] strong 4-consistency CT t 0.01‰
DepCalc O(n3) [RS05] AC τ28 [RS05] 87.5% [RS05]
DIA O(n3) [Ren01] AC H± (M) (ORD-Horn)
DRAc/f/fp NPh [WL10] PS – –
DRA-conn O(n3) � E.1 AC DRA-conn 100%
EIA P � E.2 translation to INDU

GenInt P [Con00] AC strongly pre-convex � 1‰ for 3-intvls
general relations � E.3

IA O(n3) [VKvB89] AC ORD-Horn 10.6%
[NB95, KJJ03]

INDU P [BCL06] translation to strongly pre-convex 13.6%
Horn-ORD SAT relations

LR NPh [WL10] PS – –
MC-4 P dedicated [Cri99] M-99 75.0%
OM-3D NPh � E.4 PS – –
OPRA(∗)

1 NPh [WL10] PS – –
PCm O(n2) [vB92] dedicated PCm 100% [VK86]
RCC-5a O(n3) [Ren02] AC [JD97] R28

5 [JD97] 87.5% [JD97]
RCC-8a O(n3) [Ren02] AC [Ren02] Ĥ8 [Ren99] 62.6% [Ren99]
RCD O(n3) [NMSC13] translat. to IA; AC convex relations ≪ 0.01‰
STARm P [LRW13] LP convex relations � E.5 m = 4 : <1%
STARr

m
b O(n3) [RM04] AC convex relations m = 3 : 28%

STARr
m

c O(n4) [RM04] 4-consistency convex relations m = 4 : 12.5%
m = 8 : <1%

SVm NPc [LRW13] LP with search – –
TPCC NPh [WL10] PS – –
1 Complexity of deciding consistency (atomic relations plus universal relation)
2 Best known algorithm
3 Name of largest known tractable subalgebra that includes all base relations (LKTS)
4 Percentage of LKTS compared to the complete algebra
a For unconstrained regions; connectedness constraints can increase complexity up to PSpace [KPWZ10]
b for m < 3
c for m > 3

Table IV: Overview of the known complexity landscape of deciding consistency for ex-
isting spatial and temporal calculi. Legend: see Table V
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AC Algebraic closure
ACS Algebraic closure plus search
PS (Multivariate) polynomial systems solving [Basu et al. 2006]
LP Reducible to linear programming and thus polynomial
NPc; NPh NP-complete; NP-hard (NP-membership unknown)
P; PSpace In polynomial time; in polynomial space

[BCC02] [Balbiani et al. 2002] [LZLY10] [Liu et al. 2010]
[BCF99] [Balbiani et al. 1999] [NB95] [Nebel and Bürckert 1995]
[BCL06] [Balbiani et al. 2006] [NMSC13] [Navarrete et al. 2013]
[BO00] [Balbiani and Osmani 2000] [Ren99] [Renz 1999]
[Con00] [Condotta 2000] [Ren01] [Renz 2001]
[Cri99] [Cristani 1999] [Ren02] [Renz 2002]
[GPP95] [Grigni et al. 1995] [RM04] [Renz and Mitra 2004]
[IC00] [Isli and Cohn 2000] [RS05] [Ragni and Scivos 2005]
[JD97] [Jonsson and Drakengren 1997] [SSD03] [Schaefer et al. 2003]
[KJJ03] [Krokhin et al. 2003] [vB92] [van Beek 1992]
[KPWZ10] [Kontchakov et al. 2010] [VK86] [Vilain and Kautz 1986]
[Lig98] [Ligozat 1998] [VKvB89] [Vilain et al. 1990]
[LL11] [Liu and Li 2011] [WL10] [Wolter and Lee 2010]
[LRW13] [Lee et al. 2013]

Table V: Legend for Table IV
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Fig. 5: Expressivity relations between calculi

4. ALGEBRAIC PROPERTIES OF SPATIAL AND TEMPORAL CALCULI
Algebraic properties have been recognized as a formal tool for measuring the informa-
tion preservation properties of a calculus and for providing the theoretical underpin-
nings for vital optimizations to reasoning procedures [Isli and Cohn 2000; Ligozat and
Renz 2004; Düntsch 2005; Dylla et al. 2013].

To start with information preservation, it is important to distinguish two sources for
a loss of information: one is qualitative abstraction, which maps the perceived, con-
tinuous domain to a symbolic, discrete representation using n-ary domain relations
and operations on them (such as composition and permutation operations). The loss
of information associated with this mapping is mostly intended. To understand the
other, we recall that a qualitative calculus consists of symbolic relations and opera-
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tions, representing the domain relations and operations. While the domain operations
are known to satisfy strong algebraic properties, those do not necessarily carry over
to the symbolic operations – for example, if the operation ·hm representing homing
(Section 3.1) is only abstract or weak, then there will be symbolic relations r with
(rhm)hm 6= r although, at the domain level, (Rhm)hm = R holds for any n-ary relation R,
including the interpretation ϕ(r) of r. This loss of information indicates an unintended
structural misalignment between the domain level and the symbolic level. Having its
roots in the abstraction step, where the set of domain relations and operations is deter-
mined, the information loss becomes noticeable only with the symbolic representation.

If we want to measure how well the symbolic operations in a calculus preserve in-
formation, we can compare their algebraic properties with those of their domain-level
counterparts. If they share all algebraic properties, this indicates that they maximally
preserve information. In addition, algebraic properties seem to supply a finer-grained
measure than the mere distinction between abstract, weak, and strong operations:
there are 14 axioms for binary relation algebras and variants, each containing two
inclusions or implications that may or may not hold independently.

Several algebraic properties can be exploited to justify and implement optimizations
in constraint reasoners. For example, associativity of the composition operation � for
binary symbolic relations ensures that, if the reasoner encounters a path ArBsCtD of
length 3, then the relationship between A and D can be computed “from left to right”.
Without associativity, it may be necessary to compute (r � s) � t as well as r � (s � t).

In order to study the algebraic properties of spatial and temporal calculi, the classi-
cal notion of a relation algebra (RA) [Maddux 2006] plays a central role [Isli and Cohn
2000; Ligozat and Renz 2004; Düntsch 2005; Mossakowski 2007]. The axioms in the
definition of an RA reflect the algebraic properties of the relevant operations on binary
domain relations – the operations are union, intersection, complement, converse, and
binary compositions; the properties include commutativity, several variants of asso-
ciativity and distributivity. These properties have been postulated for binary calculi
[Ligozat and Renz 2004; Düntsch 2005], but it has been shown that not all existing
calculi satisfy these strong properties [Mossakowski 2007]. It is the main aim of this
subsection to study the algebraic properties of existing binary calculi and derive from
the results a taxonomy of calculus algebras.

Unfortunately, it is far from straightforward to extend this study to arity 3 or higher:
while algebraic properties of ternary and n-ary calculi have been studied [Isli and
Cohn 2000; Scivos and Nebel 2005; Condotta et al. 2006], we are aware of only one
axiomatization for a ternary RA [Isli and Cohn 2000], based on one particular choice
of permutation (homing and shortcut) and composition (the binary variant (4)). How-
ever, existing calculi are based on different choices of these operations, and each choice
comes with different algebraic properties at the domain level, for example:

— Not all permutations are involutive: e.g., in the ternary case, we do not have
(Rsc)sc = R for all domain relations R, but rather ((Rsc)sc)sc = R.

— Each variant of the composition operation has its own neutral element, that is, a
relation E such that R ◦ E = E ◦ R = R for all relations R: e.g., in the ternary case,
3◦32 (Section 3.1) has id3

{2,3} as the neutral element while ◦3FZ has id3
{1,2}.

— Some variants of the composition operation have stronger properties than others:
e.g., 3◦32 is associative while ◦3FZ is not.

Establishing a unifying algebraic framework for n-ary qualitative calculi and deter-
mining the algebraic properties of existing calculi would require a whole new research
program. In the remainder of this section, we will therefore restrict our attention to
the binary case.
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4.1. The Notion of a Relation Algebra
The notion of an (abstract) RA is defined in [Maddux 2006] and makes use of the
axioms listed in Table VI.

Definition 4.1. Let Rel be a set of relation symbols containing id and 1 (the symbols
for the identity and universal relation), and let ∪, � be binary and ,̄ ˘ unary operations
on Rel. The tuple (Rel,∪, ,̄ 1, �, ,̆ id) is a

— non-associative relation algebra (NA) if it satisfies Axioms R1–R3, R5–R10;
— semi-associative relation algebra (SA) if it is an NA and satisfies Axiom S,
— weakly associative relation algebra (WA) if it is an NA and satisfies W,
— relation algebra (RA) if it satisfies R1–R10,

for all r, s, t ∈ Rel.

Clearly, every RA is a WA; every WA is an SA; every SA is an NA.
In the literature, a different axiomatization is sometimes used, for example in

[Ligozat and Renz 2004]. The most prominent difference is that R10 is replaced by
PL, “a more intuitive and useful form, known as the Peircean law or De Morgan’s The-
orem K” [Hirsch and Hodkinson 2002]. It is shown in [Hirsch and Hodkinson 2002,
Section 3.3.2] that, given R1–R3, R5, R7–R9, the axioms R10 and PL are equivalent.
The implication PL ⇒ R10 does not need R5 and R8.

All axioms except PL can be weakened to only one of two inclusions, which we denote
by a superscript ⊇ or ⊆. For example, R⊇7 denotes (r̆ )̆ ⊇ r. Likewise, we use PL⇒
and PL⇐. Furthermore, Table VI contains the redundant axiom R6l because it may be
satisfied when some of the other axioms are violated. It is straightforward to establish
that R6 and R6l are equivalent given R7 and R9. � F.1

Thanks to Def. 3.3, certain axioms are satisfied by every calculus:

FACT 4.2. Every qualitative calculus (Def. 3.3) satisfies R1–R3, R5, R⊇7 , R8, W⊇,
S⊇ for all (atomic and composite) relations. This axiom set is maximal: each of the
remaining axioms in Table VI is not satisfied by some qualitative calculus. � F.2

R1 r ∪ s = s ∪ r ∪-commutativity
R2 r ∪ (s ∪ t) = (r ∪ s) ∪ t ∪-associativity
R3 r̄ ∪ s̄ ∪ r̄ ∪ s = r Huntington’s axiom
R4 r � (s � t) = (r � s) � t �-associativity
R5 (r ∪ s) � t = (r � t) ∪ (s � t) �-distributivity
R6 r � id = r identity law
R7 (r̆ )̆ = r -̆involution
R8 (r ∪ s)̆ = r̆ ∪ s̆ -̆distributivity
R9 (r � s)̆ = s̆ � r̆ -̆involutive distributivity
R10 r̆ � r � s ∪ s̄ = s̄ Tarski/de Morgan axiom
W ((r ∩ id) � 1) � 1 = (r ∩ id) � 1 weak �-associativity
S (r � 1) � 1 = r � 1 � semi-associativity
R6l id � r = r left-identity law
PL (r � s) ∩ t̆ = ∅ ⇔ (s � t) ∩ r̆ = ∅ Peircean law

Table VI: Axioms for relation algebras and weaker variants [Maddux 2006].
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4.2. Discussion of the Axioms
We will now discuss the relevance of the above axioms for spatial and temporal repre-
sentation and reasoning. Due to Fact 4.2, we only need to consider axioms R4, R6, R7,
R9, R10 (or PL) and their weakenings R6l, S, W.

R4 (and S, W). Axiom R4 is helpful for modeling since it allows parentheses in chains
of compositions to be omitted. For example, consider the following statement in natural
language about the relative length and location of two intervals A and D. Interval A
is before some equally long interval that is contained in some longer interval that meets
the shorter interval D. This statement is just a conjunction of relations between A, the
unnamed intermediary intervals B,C, and D. Although it intuitively does not matter
whether we give priority to the composition of the relations betweenA,B andB,C or to
the composition of the relations between B,C and C,D, there are calculi such as INDU
which do not satisfy Axiom R4 – then the example statement needs to be interpreted
as a Boolean formula consisting of a conjunction over both alternatives.

We note that violation of R4 is independent of composition not being strong, as shown
in Section 4.4. Presence of strong composition however implies R4 since composition of
binary domain relations over U is associative:

FACT 4.3. Every qualitative calculus where composition is strong satisfies R4.

Furthermore, already a weakening R⊇4 or R⊆4 is useful for optimizing reasoning algo-
rithms, allowing the “finer” composition – say, r � (s � t) in case of R⊆4 – to be computed
when a chain of compositions needs to be evaluated.

R6 and R6l. Presence of an id relation allows the standard reduction from the corre-
spondence problem to satisfiability: to test whether a constraint system admits the
equality of two variables x, y, one can add an id-constraint between x, y and test the
extended system for satisfiability.

R7 and R9. These axioms allow for certain optimizations in symbolic reasoning, in
particular algebraic closure. If a relation r satisfies R7, then reasoning systems do not
need to store both constraints ArB and B r′A, since r′ can be reconstructed as r̆ if
needed. Similarly, R9 grants that, when enforcing algebraic closure by using Equation
(16) to refine constraints between variable A and B, it is sufficient to compute composi-
tion once and, after applying the converse, reuse it to refine the constraint between B
and A too. Current reasoning algorithms and their implementations use the described
optimizations; they produce incorrect results for calculi violating R7 or R9.

R10 and PL. These axioms reflect that the relation symbols of a calculus indeed repre-
sent binary domain relations, i.e., pairs of elements of a universe. This can be explained
from two different points of view.

(1) If binary domain relations are considered as sets, R10 is equivalent to r̆ � r � s ⊆ s̄.
If we further assume the usual set-theoretic interpretation of the composition of
two domain relations, the above inclusion reads as: For any X,Y , if Z rX for some
Z and, Z r U implies not U sY for any U , then not X sY . This is certainly true
because X is one such U .

(2) Under the same assumptions, each side of PL says (in a different order) that there
can be no triangle X r Y, Y sZ,Z tX. The equality then means that the “reading
direction” does not matter, see also [Düntsch 2005]. This allows for reducing non-
determinism in the a-closure procedure, as well as for efficient refinement and
enumeration of consistent scenarios.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.



A:24 Frank Dylla et al.

4.3. Prerequisites for Being a Relation Algebra
The following correspondence between properties of a calculus and notions of a relation
algebra is due to Ligozat and Renz [2004]: every calculus C based on a partition scheme
is an NA. If, in addition, the interpretations of the relation symbols are serial base
relations, then C is an SA. Furthermore, R7 is equivalent to the requirement that the
converse operation is strong. This is captured by the following lemma.

LEMMA 4.4. Let C = (Rel, Int,̆ , �) be a qualitative calculus. Then the following prop-
erties are equivalent.

(1) C has a strong converse.
(2) Axiom R7 is satisfied for all relation symbols r ∈ Rel.
(3) Axiom R7 is satisfied for all composite relations R ⊆ Rel.

PROOF. Items (2) and (3) are equivalent due to distributivity of ˘ over ∪, which is
introduced with the cases for composite relations in Definition 3.3.

For “(1) ⇒ (2)”, the following chain of equalities, for any r ∈ Rel, is due to C having
a strong converse: ϕ(r̆ )̆ = ϕ(r̆ )̆ = ϕ(r)̆ ˘ = ϕ(r). Since Rel is based on JEPD relations
and ϕ is injective, this implies that r̆ ˘ = r.

For “(2) ⇒ (1)”, we show the contrapositive. Assume that C does not have a strong
converse. Then ϕ(r̆ ) ) ϕ(r)̆ , for some r ∈ Rel; hence ϕ(r̆ )̆ ) ϕ(r)̆ .̆ We can now modify
the above chain of equalities replacing the first two equalities with inequalities, the
first of which is due to Requirement (6) in the definition of the converse (Def. 3.3):
ϕ(r̆ )̆ ⊇ ϕ(r̆ )̆ ) ϕ(r)̆ ˘ = ϕ(r). Since ϕ(r̆ )̆ 6= ϕ(r), we have that r̆ ˘ 6= r.

4.4. Algebraic Properties of Existing Spatial and Temporal Calculi
We study the algebraic properties of individual calculi, aiming to find those which are
abstract relation algebras, and identifying relevant weaker algebraic properties. We
have analyzed the calculi listed in Table II, restricting our selection to the 31 calculi3

with (a) binary relations – because the notion of a relation algebra is best understood
for binary relations – and (b) available SparQ implementations (marked S©).

We have written a CASL specification of the axioms listed in Table VI along with
weakenings thereof. These have been used with Hets to determine congruence of cal-
culus and axioms. Additionally, SparQ and its built-in analysis tools have been em-
ployed to double-check results. Due to Fact 4.2, it suffices to test Axioms R4, R6, R7,
R9, R10 (or PL) and, if necessary, the weakenings S, W, and R6l.

Figure 6 shows the results of our tests; for further details see Appendix G. Figure 6
arranges the analyzed calculi as a hierarchy, with the strongest notion (relation alge-
bra) at the top and the weakest (weakly associative Boolean algebra) at the bottom.
Arrows represent the is-a relation; i.e., every relation algebra (RA) is an “RA minus id
law” as well as a semi-associative RA and a weakly associative Boolean algebra.

With the exceptions of RCD, cCDR and all QTC variants, all tested calculi are at least
semi-associative relation algebras; most of them are even relation algebras. Hence,
only these calculi enjoy all advantages for representation and reasoning optimizations
discussed in Section 4.2. For other groups of calculi, special care in implementations of
reasoning procedures need to be taken. In Section 4.5 we present a revised algorithm
to compute algebraic closure that respects all eventualities.

The three groups of calculi that are SAs but not RAs are the Dipole Calculus variant
DRAf (refined DRAfp and coarsened DRA-conn are even RAs!), as well as INDU and
OPRAm for at least m = 1, . . . , 8. These calculi do not even satisfy one of the inclusions
R⊇4 and R⊆4 , which implies that the reasoning optimizations described in Section 4.2 for

3For the parametrized calculi DRA, OPRA, QTC, we count every variant separately.
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Axiom R4 cannot be applied. As a side note, our observations suggest that the meaning
of the letter combination “RA” in the abbreviations “DRA” and “OPRA” should stand
for “Reasoning Algebra”, not for “Relation Algebra”.

In principle, one cannot completely rule out that the violations of associativity are
due to errors in the published operation tables or in the experimental setup. This ap-
plies to non-violations too, but systematic non-violations are less likely to be caused by
errors than sporadic violations. In the case of DRAf , INDU and OPRAm, m = 1, . . . , 8,
the relatively high percentage of violations seems to rule out implementation errors.
However, to be certain that these calculi indeed violate R4, one has to find counterex-
amples and verify them using the original definition of the calculus. For DRAf and
INDU, this was done by Moratz et al. [2011] and Balbiani et al. [2006]. Interestingly,
the violation of associativity was attributed to the converse or composition not being
strong. We remark, however, that composition cannot be the culprit as, for example,
DRAfp has an associative, but only weak, composition operation. While DRAfp is asso-
ciative due to strong composition [Moratz et al. 2011], none of the OPRAm calculi are
associative [Mossakowski and Moratz 2015].

The B-variants of QTC violate only the identity laws R6, R6l. As observed in
[Mossakowski 2007], it is possible to add a new id relation symbol, modify the inter-
pretation of the remaining relation symbols such that they become JEPD, and adapt
the converse and composition tables accordingly, thus obtaining relation algebras.

The C-variants of QTC additionally violate R4, R9, R10, and PL. Consequently, most
of the reasoning optimizations described in Section 4.2 cannot be applied to the C-
variants of QTC. The remarkably few violations of R9, R10, and PL might be due to
errors in the composition table, but the non-trivial verification is part of future work.

cCDR and RCD are the only calculi with a weak converse in our tests. cCDR satisfies
only W in addition to the axioms that are always satisfied by a Boolean algebra with
distributivity. Hence, cCDR enjoys none of the advantages for representation and rea-
soning discussed before. Similarly to the C-variants of QTC, the relatively small num-
ber of violations of PL may be due to errors in the tables published. RCD additionally
satisfies R4. Since both calculi satisfy neither R7 nor R9, current reasoning algorithms
and their implementations yield incorrect results for them, as seen in Section 4.2.

4.5. Universal Procedure for Algebraic Closure
We noted in Section 4.2 that existing descriptions and implementations of a-closure
(e.g., in GQR and SparQ ) use optimizations based on certain relation algebra axioms.
Our analysis in Section 4.4 reveals that there are calculi which violate some of these
axioms, e.g., R9; hence those optimizations lead to incorrect results. In Algorithm 1 we
present a universal algorithm that computes a-closure correctly for all calculi and uses
optimizations only when they are justified. Its input is a graph (V, C) representing a
constraint network, and Ci,j denotes the relation between the i-th and j-th node (rx,y in
Eq. (15)). Its main control structure is that of the popular path-consistency algorithm
PC-2 [Mackworth 1977]. Algorithm 1 enforces 2- and 3-consistency and relies on its
input being 1-consistent by implicitly assuming all Ci,i to cover identity.

Algorithm 1’s main function is A-CLOSURE, which employs a queue to store constraint
relations that may give rise to an application of the refinement operation according
to Eq. (15). The function REVISE implements Eq. (15). If R9 is violated (the converse
is not distributive over composition) the refinement from Cj,ĭ needs to be computed
in addition to Ci,j . In addition, both A-CLOSURE and REVISE exploit conformance of a
calculus with R7 (strong converse) to halve the space for storing the constraints. Flag
s indicates whether full storage is required. If R7 is satisfied (s is false), then Ci,j can
be obtained by computing Cj,ĭ ; this is done in the auxiliary function LOOKUP.
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ALGORITHM 1: Universal algebraic closure algorithm A-CLOSURE

1 Function LOOKUP (C, i, j, s) : ––––– RETRIEVE RELATION FROM CONSTRAINT MATRIX –––––
2 if s ∨ (i < j) then
3 return Ci,j complete matrix stored?
4 else
5 return (Cj,i)̆

6 Function REVISE (C, i, j, k, s) : ––––– REVISE RELATION ri,j ACCORDING TO EQ. (15) –––––
7 u← false update flag to signal whether relation was updated
8 r ← Ci,j ∩ LOOKUP(C, i, k, s) � LOOKUP(C, k, j, s)
9 if R9 does not hold ∨ s then

10 r′ ← LOOKUP(C, j, i, s) ∩ (LOOKUP(C, j, k, s) � LOOKUP(C, k, i, s))
11 r ← r ∩ r′̆
12 r′ ← r′ ∩ r̆
13 if r′ 6= Cj,i then
14 assert r′ 6= ∅ stop if inconsistency is detected
15 u← true
16 Cj,i ← r′

17 if r 6= Ci,j then
18 assert r 6= ∅ stop if inconsistency is detected
19 u← true
20 Ci,j ← r

21 return (C, u)

22 Function A-CLOSURE (V, C = {Ci,j |i, j ∈ V}) : ––––– MAIN ALGORITHM –––––
23 for i, j ∈ V do Enforce strong 2-consistency
24 Ci,j ← Ci,j ∩ C^

j,i

25 if R7 does not hold then full |V| × |V| matrix must be stored
26 s← True
27 Q← queue with elements {(i, j)|i, j ∈ V})
28 else only triangular matrix is stored
29 s← False
30 Q← queue with elements {(i, j)|i, j ∈ V, i < j})
31 while Q not empty do
32 dequeue (i, j) from Q
33 for k ∈ V, k 6= i, k 6= j do
34 (C, u)← REVISE(C, i, k, j, s)
35 if u then
36 if s then
37 enqueue (i, k) in Q unless already in queue
38 else R7 ⇒ only one of (i, k) and (k, i) is required
39 enqueue (min{i, k},max{i, k})) in Q unless already in queue

40 (C, u)← REVISE(C, k, j, i, s)
41 if u then
42 if s then
43 enqueue (k, j) in Q unless already in queue
44 else R7 ⇒ only one of (i, k) and (k, i) is required
45 enqueue (min{k, j},max{k, j})) in Q unless already in queue

46 return C
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Relation algebra (RA) R4 S W R6 R6l R7 R9 PL R10
3 3 3 3 3 3 3 3 3

9-int, BA1, BA2, CDC, CYCb, DepCalc, DRAfp, DRA-conn, IA, PC1, RCC-5, RCC-8, STARr
4

“RA minus id law”
R4 S W R6 R6l R7 R9 PL R10
3 3 3 — — 3 3 3 3

QTC-B11, -B12, -B21, -B22

Semi-associative relation algebra (SA)
R4 S W R6 R6l R7 R9 PL R10
— 3 3 3 3 3 3 3 3

DRAf , INDU, OPRA1, . . . ,OPRA8

Associative Boolean algebra
R4 S W R6 R6l R7 R9 PL R10
3 3 3 — — — — — —

RCD

Semi-assoc. Bool. alg. with conv-involution
R4 S W R6 R6l R7 R9 PL R10
— 3 3 — — 3 — — —

QTC-C21, -C22

Weakly associative Boolean Algebra R4 S W R6 R6l R7 R9 PL R10
— — 3 — — — — — —cCDR

Fig. 6: Overview of algebra notions and calculi tested

5. COMBINATION AND INTEGRATION
Although qualitative calculi and constraint-based reasoning are predominant features
of qualitative knowledge representation languages, they are rarely used by themselves
in applications. For example, many applications involve several aspects of spatial and
temporal knowledge simultaneously, e.g., topology and orientation of spatial objects.
Others require additional forms of symbolic reasoning, such as logical reasoning. These
requirements can best be solved by combining calculi or integrating them with other
symbolic formalisms. In this section we review the interaction of qualitative calculi
with other components of knowledge representation languages.

5.1. Qualitative Calculi in Constraint-Based Knowledge Representation Languages
The simplest case of a qualitative knowledge representation language is a single qual-
itative calculus. Sometimes further elements of constraint languages are used in ad-
dition, for example, constants and difference operators as in the case of PIDN [Pujari
and Sattar 1999], or a restricted form of disjunction [Li et al. 2013].

To model several aspects of spatial and temporal knowledge and their interdepen-
dencies, combinations of calculi are studied. Wölfl and Westphal [2009] identify two
general approaches to such combinations and reasoning therein: loose integration is
based on the simple cross product of the base relations plus interdependency con-
straints [Gerevini and Renz 2002; Westphal and Wölfl 2008]; tight integration designs
a new calculus internalizing the interdependencies [Wölfl and Westphal 2009]. For ex-
ample, INDU combines IA and PC1 tightly, reducing the 13× 3 pairs of relations to the
25 semantically possible. A combination of RCC-8 with IA was introduced in [Gerevini
and Nebel 2002]; several combinations of RCC-8 with direction calculi were analyzed
[Liu et al. 2009; Cohn et al. 2014]. In general, combinations do not inherit algebraic
and reasoning properties from their constituent calculi (cf. Fig. 5 and 6 for INDU).

Hernández [1994] describes the use of topological and orientation relations, which
does not result in a dedicated calculus, but reveals the effects of constraining one as-
pect on reasoning in the other.
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Alternative ways to solve the combination problem include formalizing the domain
and qualitative relations in an abstract logic – which typically are computationally
more expensive – or applying the efficient paradigm of linear programming to qualita-
tive calculi over real-valued domains [Kreutzmann and Wolter 2014].

5.2. Qualitative Relations and Classical Logics: Spatial Logics
There are several developments to enrich qualitative representation with concepts
found in classical logics or to combine the two strands. Domain representations purely
based on qualitative relations can be viewed as quantifier-free formulae with vari-
ables ranging over a certain spatial or temporal domain. QCSP instances can be
posed as satisfiability problems of conjunctive constraint formulae with existentially
quantified variables. Adopting this logic view for QCSPs leads to the field of spatial
logics [Aiello et al. 2007], which is involved with combinations of qualitative calculi
and logics. Already in the 1930s topological statements as those expressible in RCC
were found to constitute a fragment of the modal logic S4 plus the universal modal-
ity (S4u), comprehensively described by Bennett [1997]. The cartesian product of S4u
with linear temporal logic captures topological relationships changing over time [Ben-
nett et al. 2002]. Qualitative relations and their interrelations can also be described
by axiomatic systems; this approach was argued to comprise the composition-table
approach and support the construction of composition tables [Eschenbach 2001]. Ax-
iomatic systems are given, e.g., in [Eschenbach and Kulik 1997; Gotts 1996; Hahmann
and Grüninger 2011]. The field of spatial logics can thus be viewed as a continuum
between purely qualitative knowledge representation languages and logics. Current
work studies the computational complexity of increasing expressivity of qualitative
relations, e.g., by introducing Boolean expressions of spatial variables PO(A ∩ B,C)
[Wolter and Zakharyaschev 2000], introducing a temporal modality [Kontchakov et al.
2007], or even combining spatial and temporal logics [Gabelaia et al. 2005].

5.3. Qualitative Calculi and Description Logics
Description logics (DLs) are a successful family of knowledge representation languages
tailored to capturing conceptual knowledge in ontologies and reasoning over it [Baader
et al. 2007]. The most prominent DL-based ontology language is the W3C standard
OWL.4 Several approaches to combining DLs and qualitative calculi have evolved,
aiming at describing spatial and temporal qualities of application domains. A prin-
cipal approach developed by Lutz and Milićič [2007] allows adding qualitative cal-
culi that satisfy certain admissibility conditions to ALC, the basic DL, incorporating
spatial/temporal reasoning into a standard DL reasoning procedure. According to the
authors, a practical implementation would be challenging. Stocker and Sirin [2009]
describe PelletSpatial, an extension of the DL reasoner Pellet [Sirin et al. 2007] for
query answering over non-spatial (DL) and spatial (RCC-8) knowledge. Batsakis and
Petrakis [2011] describe SOWL, an OWL ontology capturing static, spatial, and tem-
poral information, using a DL axiomatization of spatial relations from the calculi CDC
and RCC-8. Temporal and spatial reasoning are separated (a-closure and Pellet, resp.).
Ben Hmida et al. [2012] sketch an implementation of logic programming that combines
9-int with OWL ontologies and constructive solid geometry.

5.4. Qualitative Calculi and Situation Calculus
The situation calculus is a popular framework for reasoning about action and change;
runtime systems such as DTGolog [Ferrein et al. 2004] and ReadyLog [Ferrein and

4http://www.w3.org/TR/owl2-overview

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

http://www.w3.org/TR/owl2-overview


A Survey of Qualitative Spatial and Temporal Calculi A:29

Lakemeyer 2008] are used in robotic applications. Qualitative relations are relevant
to world modeling and underlie high-level behavior specifications [Schiffer et al. 2012].

Bhatt et al. [2006] aim at general integration of QSTR into reasoning about action
and change, i.e., a general domain-independent theory, in order to reason about dy-
namic and causal aspects of spatial change. With a naive characterization of objects
based on their physical properties they particularly investigate key aspects of a topo-
logical theory of space on the basis of RCC-8 [Bhatt and Loke 2008].

6. ALTERNATIVE APPROACHES
This section presents an overview of reasoning techniques that have also been used
to address QSTR reasoning problems, but are not based on QSTR techniques. Since
spatial reasoning connects to fields in mathematics related to geometry or topology,
there are manifold possible connections to make. In the following we only hint at fields
that have already proven to provide impulses to QSTR research.

6.1. Algebraic Topology
Fundamental concepts of algebraic topology resemble expressivity of topological QSTR
calculi such as RCC-8. For example, Euler’s well-known polyhedron formula “vertices
- edges + faces = 2” is a representative of Euler characteristics that characterize topo-
logical invariants of a space or body. The PLCA framework [Takahashi 2012] exploits
the Euler characteristics to reason about topological space by invariants.

6.2. Combinatorial Geometry
A set of Jordan curves (i.e., sets that are homeomorphic to the interval [0, 1] in the
plane) induce an intersection graph. The string graph problem poses the question,
whether a given graph can be an intersection graph of a set of curves in the plane.
While the problem itself already is of a spatial nature, Schaefer and Štefankovič [2004]
reduced reasoning about topological relations in RCC-8 about planar regions to the
string graph problem and later proved the string graph problem to be NP-complete
[Schaefer et al. 2003], directly contributing to QSTR research.

An alternative approach to reasoning with directional relations can be found in ori-
ented matroid theory, which comprise several equivalent combinatorial structures such
as directed graphs, point and vector configurations, pseudoline arrangements, arrange-
ments of hyperplanes [Björner et al. 1999]. Already Knuth [1992] points out the im-
portance of oriented matroids for qualitative spatial reasoning. In the context of LR
constraint networks, a connection to the oriented matroid axiomatization of so-called
chirotopes lead to complexity results in QSTR [Wolter and Lee 2010; Lee 2014].

6.3. Graph Theoretical Approaches
Worboys [2013] describes topological configurations through their representation as
labeled trees, called map trees. Graph edit operations on map trees can be defined
to correspond to spatial change of the topological configuration, providing an efficient
approach to reason about spatial change.

A different way to represent qualitative spatial change consists in describing the
change on two levels of detail. Stell [2013] represents a scene of regions via a bipartite
graph (U, V,E) where the elements of U (V ) represent regions that can be seen as
connected at a coarse level of detail (when accounting for finer details). This way it is
possible to describe the splitting, connecting and change of distance of regions, as well
as the creation, deletion and change of size of a (part of a) region.
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6.4. Logic Frameworks
Viewing vectors in a vector space as abstract arrows, Aiello and Ottens [2007] intro-
duce a hybrid modal logic (arrow logic) for capturing mereotopological relations be-
tween sets of vectors. Inversion and composition of arrows are modeled by morpholog-
ical operators such as dilation, erosion and difference. A resolution calculus allows for
automated reasoning about topological relations and relative size.

6.5. Model-theoretic and Constraint Reasoning Methods
Qualitative constraint satisfaction problems can be reformulated as general constraint
satisfaction problems. Then, the consistency problem can be tackled using model-
theoretic methods [Bodirsky and Wölfl 2011; Westphal 2015] or using SAT solving
or datalog programs [Westphal 2015], leading to greater flexibility.

6.6. Quantitative Methods
Linear programming (LP) techniques have been used to decide constraint problems
posed as linear inequalities, allowing polyhedral regions, lines, and points to be repre-
sented. LP can mix free-ranging variables with concrete values (e.g., points at known
positions) and, beyond consistency checking, determine a model in polynomial time. By
posing QCSP instances as LPs, constraints originating in distinct calculi can easily be
mixed. While some QSTR problems can almost directly be posed as LPs [Jonsson and
Bäckström 1998; Ligozat 2011; Lee et al. 2013], disjunctive LP formulae allow several
QSTR calculi to be handled simultaneously [Kreutzmann and Wolter 2014]. In a sim-
ilar fashion, Schockaert et al. [2011] combine qualitative and quantitative reasoning
of relations about different spatial aspects by using genetic optimization. Techniques
for deciding satisfiability of equations yield advancements on the inherent problem of
consistency checking for directional constraints such as those present in the LR cal-
culus, as (disjunctions of) linear equations can capture relevant geometric invariances
[Lücke and Mossakowski 2010; van Delden and Mossakowski 2013].

7. CONCLUSION AND FUTURE RESEARCH DIRECTIONS
Qualitative spatial and temporal reasoning explores potentially interesting domain
conceptualizations and their computational effects. As a consequence, QSTR is con-
nected to various research areas in and around artificial intelligence, such as knowl-
edge representation, linguistics and spatial cognition. Thus QSTR plays the role of
a hub for connecting symbolic techniques to real-world applications. The notion of a
qualitative calculus attests to this role by representing knowledge about spatial and
temporal domains as an abstract algebra that provides the semantics to knowledge
representation languages. Reasoning with qualitative representations occurs in sev-
eral forms, with deductive forms of inference, such as deciding consistency, being in
a central position. This is captured in the qualitative constraint satisfaction problem,
which is decidable for all qualitative calculi (in the strict sense of Definition 3.3), rang-
ing from low-order polynomial time complexity to within PSPACE (cf. Table IV). With
this survey we present the first comprehensive overview of the known computational
properties of all qualitative calculi proposed so far.

7.1. Beneficiaries of This Survey
This survey addresses a broad range of researchers and engineers from different re-
search communities and application areas. We expect three groups of beneficiaries.

The first group comprises researchers and engineers who apply QSTR and build
systems for their applications. Our survey provides them with a comprehensive and
concise overview of the formalisms available, allowing objective design choices.
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The second group consists of researchers contributing to QSTR to whom we provide
revised definitions that are general enough to address all formalisms proposed so far.
The overview of domain conceptualizations studied so far fosters identification of in-
teresting new conceptualizations to be studied. Moreover, the summary of algebraic
and computational properties of existing formalisms reveals open research questions:
for calculi not listed in Table V reasoning properties have still to be analyzed.

Last, but not least, the third group benefiting from this presentation consists of
developers of reasoning tools. In order to accrete the position of QSTR as hub, sophis-
ticated tools are necessary that disseminate formalisms and algorithms, linking basic
research to application development. On the one hand, we provide pointers to all for-
malisms proposed and the decision methods necessary to perform reasoning. This also
reveals commonalities between formalisms, hopefully gearing tools towards becoming
universal in the sense that they allow many variants of representations to be handled.
On the other hand – and related to the discrepancy between the amount of formalisms
proposed and those fully analyzed discussed before – the most efficient algorithms to
decide QCSP instances have often not yet been identified and solid algorithm engi-
neering can likely yield a great leap ahead for QSTR.

7.2. Open Problem Areas in QSTR
Combining qualitative abstractions. Despite the work reported in Section 5.1, gen-

erally applicable methods for combining existing abstractions for different spatial and
temporal aspects are missing – a potential threat to the applicability of qualitative
methods. It is clearly not feasible to identify all potentially useful combinations indi-
vidually: there are infinitely many abstractions that give rise to a qualitative calculus.

Integration with other symbolic methods. In addition to the above observation that
an application may need to handle more than one calculus at the same time, expressiv-
ity provided by domain-independent knowledge representation techniques may be im-
portant too. There are first contributions (e.g., combining description logic with QSTR),
but these are limited to specific combinations using specific methods. A promising ap-
proach is the integration of a variety of QSTR formalisms into a first-order framework
[Bhatt et al. 2011]—the challenge being the development of efficient reasoning meth-
ods. We expect that this will result in a combination of first-order methods, constraint-
solving methods, relation-algebraic methods and specialised methods for the existen-
tial theory over the reals, see [van Delden and Mossakowski 2013] for some first steps.

Integration with quantitative approaches. Qualitative approaches link metric data
and symbolic reasoning, but consistent interpretation of sensor data considering its
inevitable uncertainty is a recurring and challenging task. An algorithmic understand-
ing of this problem has to the best of our knowledge not been developed yet. Conversely,
it can also be helpful to link qualitative inference with quantitative or other kinds of
constraints. As Liu and Li [2012] recently discovered, constraint-based qualitative rea-
soning with information partially grounded in data can differ significantly from classic
qualitative reasoning and thus calls for further exploration.

Algebras for higher-arity qualitative calculi. Abstract algebras provide the founda-
tions for symbolic knowledge manipulation and enable optimizations to reasoning pro-
cedures. Our study gives an extensive account of algebraic properties of existing bi-
nary calculi, but we have also seen that it is highly non-trivial to extend this study to
ternary calculi. The main problem is a missing notion of relation algebra already for
ternary relations that is general enough to encompass the variety of existing calculi.

Practical reasoning algorithms. Few of the various methods required in qualitative
reasoning (see Table V) have been studied rigorously in a practical context. In the
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light of continuously growing data bases, identifying best-practice algorithms, evalu-
ating the scaling behavior, and potentially developing heuristic approximations will be
crucial to foster the relevance of QSTR methods.

By completing the picture of computational complexity and identifying practical so-
lutions to reasoning with all individual calculi, either individually or in combination
with one another or even other KR techniques, it will be possible to realize truly uni-
versal QSTR tools. These tools will foster the position of QSTR as a hub, not only
conceptually, but implemented in almost all knowledge-based systems.

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library. It
contains additional examples, observations, proofs, and details for Sections 3 and 4.
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A. EXAMPLES FOR SECTION 3
Example A.1. The one-dimensional point calculus PC1 [Vilain and Kautz 1986]

symbolically represents the relations <,=, > between points on a line (which may
model points in time), see Figure 7 a. These three relations are called base relations
in Def. 3.1; PC1 additionally represents all their unions and intersections: the empty
relation and 6,>, 6=,S. The calculus provides the relation symbols <, =, and >; sets
of symbols represent unions of base relations, e.g., {<, =} represents 6. The symbol =
represents the identity = .

PC1 further provides converse and composition. For example, the converse of < is >:
whenever x < y, it follows that y > x; the composition of < with itself is again <:
whenever x < y and y < z, we have x < z. PC1 represents the converse as a list of size
3 (the converses of all relation symbols) and the composition as a table of size 3 × 3
(one composition result for each pair of relation symbols). •

Example A.2. The calculus RCC-5 [Randell et al. 1992] symbolically represents five
binary topological relations between regions in space (which may model objects): “is
discrete from”, “partially overlaps with”, “equals”, “is proper part of”, and “has proper
part”, plus their unions and intersections, see Figure 7 b. For this purpose, RCC-5
provides the relation symbols DC, PO, EQ, PP, and PPi. The latter two are each other’s
converses; the first three are their own converses. The composition of DC and PO is
{DC, PO, PP} because, whenever region x is disconnected from y and y partially overlaps
with z, there are three possible configurations between x and z: those represented by
DC, PO, PP. •

Example A.3. The calculus CYCb [Isli and Cohn 2000] symbolically represents four
binary topological relations orientated lines in the plane (which may model observers
and their lines of vision): “equals”, “is opposite to”, and “is to the left/right of”, plus
their unions and intersections, see Figure 7 c. For this purpose, CYCb provides the
relation symbols e, o, l, and r. The latter two are each other’s converses; e and o are
their own converses. The composition of l and r is {e, l, r}: whenever orientation x is
to the left of y and y is to the left of z, then x can be equal to, to the left of, or to the
right of z. •

Example A.4. The calculus PC1 is based on the binary abstract partition scheme
S(PC1) := (R, {<,=, >}) where R is the set of reals and {<,=, >} is clearly JEPD. For
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Fig. 7: Illustration of the base relations for the calculi (a) PC1, (b) RCC-5, and (c) CYCb

RCC-5, the universe is often chosen to be the set of all regular closed subsets of the 2-
or 3-dimensional space R2 or R3. The five base relations from Figure 7 b are JEPD. For
CYCb, the universe is the set of all oriented line segments in the plane R2, given by
angles between 0° and 360°. The four base relations from Figure 7 c are JEPD. •

Example A.5. In PC1, “x < y” represents the relationship a < b, which holds com-
plete information because < is atomic in S(PC1). The statement “x {<, =} y” represents
the coarser relationship a 6 b holding the incomplete information “a < b or a = b”.
Clearly “x {<, =, >} y” holds no information: “a < b or a = b or a > b” is always true. •

Example A.6. Consider the modification PC′1 based on the non-PD set {6,>}. Then
the relationship a = b can be expressed in two ways using relation symbols <= and >=
representing 6 and >: “x <= y” and “x >= y”.

Conversely, consider the variant PC′′1 based on the non-JE set {<,>}. Then the con-
straint a = b cannot be expressed. Therefore, in any given set of constraints where it is
known that x, y stand for identical entities, we would find the empty relation between
x, y. The standard reasoning procedure described in Section 3.2 would declare such
sets of constraints to be inconsistent, although they are not – we have simply not been
able to express x = y. •

Example A.7. Clearly, = in S(PC1) and “equals” in S(RCC-5) and S(CYCb) are the
identity relation over the respective domain. •

Example A.8. In S(PC1) we have that <˘ is >; =˘ is =; >˘ is <. The converses of
the base relations in S(RCC-5) and S(CYCb) were named in Examples A.2 and A.3. •

Example A.9. In Figure 8 we depict the permutations sc (rotation), hm (permuta-
tion), and inv for one relation from the ternary Double Cross Calculus (2-cross) [Freksa
and Zimmermann 1992]. The 2-cross relations specify the location of a point P3 relative
to an oriented line segment given by two points P1, P2. Figure 8 a shows the relation
right-front. The relations resulting from applying the permutations are depicted in
Figure 8 b; e.g., sc(right-front) = right-back because the latter is P1’s position rela-
tive to the line segment

−−−→
P2P3. Figure 8 c will be relevant later.

Example A.10. It follows that S(PC1), S(RCC-5), and S(CYCb) are even partition
schemes. In contrast, the abstract partition scheme (R, {6, >}) is not a partition
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Fig. 8: (a) The 2-cross relation right-front; (b) permutations of right-front; (c) the
composition right-front ◦ right-front
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Fig. 9: Calculi CDR and RCD: (a) reference tiles; (b) the CDR base relation x N:W:B y;
(c) the RCD base relation x NW:N:W:B y

scheme: it violates both conditions of Observation B.1 (and thus of Definition 3.2).
•

Example A.11. As an example of an intuitive and useful abstract partition scheme
that is not a partition scheme, consider the calculus Cardinal Direction Relations
(CDR) [Skiadopoulos and Koubarakis 2005]. CDR describes the placement of regions
in a 2D space (e.g., countries on the globe) relative to each other, and with respect to a
fixed coordinate system. The axes of the bounding box of the reference region y divide
the space into nine tiles, see Fig. 9 a. The binary relations in S(CDR) now determine
which tiles relative to y are occupied by a primary region x: e.g., in Fig. 9 b, tiles N, W,
and B of y are occupied by x; hence we have x N:W:B y. Simple combinatorics yields
29 − 1 = 511 base relations.

Now S(CDR) is not a partition scheme because it violates Condition 2 of Observation
B.1 (and thus of Definition 3.2): e.g., the converse of the base relation S (south) is not a
base relation. To justify this claim, assume the contrary. Take two specific regions x, y
with x S y, namely two unit squares, where y is exactly above x. Then we also have
y N x; therefore the converse of S is N. Now stretch the width of x by any factor > 1.
Then we still have y N x, but no longer x S y. Hence the converse of S cannot comprise
all of N, which contradicts the assumption that the converse of S is a base relation.

The related calculus RCD [Navarrete et al. 2013] abstracts away from the concrete
shape of regions and replaces them with their bounding boxes, see Fig. 9 c. S(RCD) is
not a partition scheme, with the same argument from above. •

Example A.12. To turn, say, CDR into a partition scheme, one would have to break
down the 511 base relations into smaller ones, resulting in even more, less cognitively
plausible ones.

Example A.13. In S(PC1) we have, e.g., that < ◦< equals < because a < b and b < c
imply a < c. Furthermore, < ◦ > yields the universal relation, i.e., the union of <, =,
and >, because “a < b and b > c” is consistent with each of a < c, a = c, and a > c. •

Example A.14. It says: if the location of x relative to u and v is determined by
r and the location of w relative to v and x is determined by s, then the location of
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w relative to u and v is determined by r ◦3FZ s. Fig. 8 c shows the composition of the
2-cross relation right-front with itself; i.e., right-front ◦3FZ right-front. The red
area indicates the possible locations of the point P4; hence the resulting relation is
{right-front, right-middle, right-back}. A generalization to other calculi and arities
n > 3 is obvious.

Example A.15. As an example, consider again n = 3 and 2-cross. Equation (5) says
that the composition result of the relations right-front, right-front, and left-back
is the set of all triples (u1, u2, u3) such that there is an element v with (u1, u2, v) ∈
right-front, (u1, v, u3) ∈ right-front, and (v, u2, u3) ∈ right-back. That set is exactly
the relation right-front, which can be seen drawing pictures similar to Fig. 8.

Example A.16. We can now observe that PC1 is indeed a binary calculus with the
following components.

— The set of relation symbols is Rel = {<, =, >}, denoting the relations depicted in
Figure 7 a. The 23 = 8 composite relations include, for example, R1 = {<, =} and
R2 = {<, =, >}.

— There are several possible interpretations, depending largely on the chosen uni-
verse. One of the most natural choices leads to the interpretation Int = {U , ϕ, π, ◦}
with the following components.
— The universe U is the set of reals.
— The map ϕ maps <, =, and > to <, =, and >, respectively; see Figure 7 a. Its

extension to composite relations maps, for example, R1 from above to > and R2

to the universal relation.
— The operations π and ◦ are the standard binary converse and composition opera-

tions from (2) and (3).
— The converse operation ˘ is given by Table VII a. For its extension to composite rela-

tions, we have, e.g., R1̆ = {>, =} and R2̆ = R2.

(a) r r̆
< >
= =
> <

(b) r\s < = >

< {<} {<} {<, =, >}
= {<} {=} {>}
> {<, =, >} {>} {>}

Table VII: Converse and composition tables for the point calculus PC1.

— The composition operation � is given by a 3×3 table where each cell represents r � s,
see Table VII b. For its extension to composite relations, we have, for example:

R1 �R2 = {<, =} � {<, =, >}
= {<} � {<} ∪ {<} � {=} ∪ . . . ∪ {=} � {>}
= {<} ∪ {<} ∪ · · · ∪ {>}
= R2

•
Example A.17. RCC-5 too is a binary calculus, with the following components.

— The set of relation symbols is Rel = {EQ, DC, PO, PP, PPi}, denoting the relations
depicted in Figure 7 b. The 25 = 32 composite relations include, for example,
R1 = {DC, PO, PP, PPi} (“both regions are distinct”) and R2 = {PP, PPi} (“one region is
a proper part of the other”).
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— Similarly to PC1, there are several possible interpretations, a natural choice being
Int = {U , ϕ, π, ◦} with the following components.
— The universe U is the set of all regular closed subsets of R2.
— The map ϕ maps, for example, DC to all pairs of regions that are disconnected

or externally connected. Figure 7 b illustrates ϕ(r) for all relation symbols r =
EQ, DC, PO, PP, PPi.

— The operations π and ◦ are the standard binary converse and composition opera-
tions from (2) and (3).

— The converse operation ˘ is given by Table VIII a. we have, e.g., R2̆ = R2.

(a) r r̆

EQ EQ
DC DC
PO PO
PP PP
PPi PPi

(b) r\s EQ DC PO PP PPi

EQ {EQ} {DC} {PO} {PO} {PPi}
DC {DC} U {DC, PO, PP} {DC, PO, PP} {DC}
PO {PO} {DC, PO, PPi} U {PO, PP} {DC, PO, PPi}
PP {PP} {DC} {DC, PO, PP} {PP} U
PPi {PPi} {DC, PO, PPi} {PO, PPi} {EQ, PO, PP, PPi} {PPi}

Table VIII: Converse and composition tables for the point calculus RCC-5. Universal
relation U stands for {EQ, DC, PO, PP, PPi}

— The composition operation � is given by a 5×5 table where each cell represents r � s,
see Table VIII b. For its extension to composite relations, we have, for example:

{PP, PPi} � {DC} = {PP} � {DC} ∪ {PPi} � {DC}
= {DC} ∪ {DC, PO, PPi}
= {DC, PO, PPi}

•

Example A.18. CYCb too is a binary calculus, with the following components.

— The set of relation symbols is Rel = {e, o, l, r}, denoting the relations depicted in
Figure 7 c. The 24 = 16 composite relations include, for example, R1 = {e, l} (“the
orientation y is to the left of, or equal to, x”) and R2 = {e, o} (“both orientations are
equal or opposite to each other”).

— The standard interpretation for CYCb is Int = {U , ϕ, π, ◦} with the following compo-
nents.
— The universe U is the set of all 2D-orientations, which can equivalently be viewed

as either the set of radii of a given fixed circle C, or the set of points on the
periphery of C, or the set of directed lines through a given fixed point (the origin
of C).

— The map ϕmaps, for example, l to all pairs (x, y) of directed lines where the angle
α from x to y, in counterclockwise fashion, satisfies 0◦ < α < 180◦. Analogously
o is mapped to those pairs where that angle is exactly 180◦. Figure 7 c illustrates
ϕ(r) for all relation symbols r = e, o, l, r.

— The operations π and ◦ are the standard binary converse and composition opera-
tions from (2) and (3).

— The converse operation ˘ is given by Table IX a. For its extension to composite rela-
tions, we have, e.g., R1̆ = {e, l}.
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(a) r r̆
e e
o o
l r
r l

(b) r\s e o l r

e {e} {o} {l} {r}
o {o} {e} {r} {l}
l {l} {r} {l, o, r} {e, l, r}
r {r} {l} {e, l, r} {l, o, r}

Table IX: Converse and composition tables for the point calculus CYCb.

— The composition operation � is given by a 4×4 table where each cell represents r � s,
see Table IX b. For its extension to composite relations, we have, for example:

R1 �R1 = {e, l} � {e, l}
= {e} � {e} ∪ {e} � {l} ∪ {l} � {e} ∪ {l} � {l}
= {e} ∪ {l} ∪ {l} ∪ {e, l, r}
= {e, l, r}

•

Example A.19. The converse and permutation operation in PC1 are both strong be-
cause (9) holds for all three relation symbols (e.g., ϕ(<̆ ) = ϕ(>) = > = <˘ = ϕ(<)̆ ), and
the binary version of (11), namely

ϕ(r1 � r2) = ϕ(r1) ◦ ϕ(r2),

holds for all nine pairs of relation symbols (e.g., ϕ(> � >) = ϕ(>) = > = > ◦ > =
ϕ(>) ◦ ϕ(>)). •

Example A.20. Consider the variant PCN
1 of PC1 that is interpreted over the uni-

verse N. It contains the same base relations with the usual interpretation and, ob-
viously, the same converse operation, see Example A.16. However, composition is no
longer strong because < ◦ < ( < holds: for “⊆” observe that, whenever x < y < z for
three points x, y, z ∈ N, it follows that x < z; and “+” holds because there are points x, z
with x < z for which there is no y with x < y < z, for example, x = 0, z = 1. More pre-
cisely, the result of the composition < � < should be the relation <1= {(x, z) | x+ 1 < z}.
Since <1 is not expressible by a union of base relations, we cannot endow this calculus
with a strong symbolic composition operation. Consequently we have a choice as to the
composition result in question. Regardless of that choice, the composition table will
incur a loss of information because it cannot capture that the pair (x, z) is in <1.

If we opt for weak composition, then Equation (10) requires us to generate the result
of < � < from the symbols for exactly those relations that overlap with the domain-level
composition < ◦<. From the above it is clear that this is exactly <. One can now easily
check that, for the case of weak composition, we get precisely Table VIII b.

On the contrary, if we do not care about composition being weak, then abstract com-
position (Inequality (7)) requires us to generate the result of < � < from the symbols
for at least those relations that overlap with < ◦ <. This means that we can postulate
< � < = {<} as before or, for example, < � < = {<, =, >}.

The difference between weak and abstract composition is that abstract composition
allows us to make the composition result arbitrarily general, whereas weak composi-
tion forces us to take exactly those relations into account that contain possible pairs of
(x, z). Weak composition therefore restricts the loss of information to an unavoidable
minimum, whereas abstract composition does not provide such a guarantee: the more
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base relations are included in the composition result, the more information we lose on
how x and z are interrelated.

In this connection, it becomes clear why we require composition to be at least ab-
stract: without this requirement, we could omit, for example, < from the above com-
position result. This would result in adding spurious information because we would
suddenly be able to conclude that the constellation x < y < z is impossible, just be-
cause < � < = ∅. This insight, in turn, is particularly important for ensuring soundness
of the most common reasoning algorithm, a-closure, see Section 3.2. •

Example A.21. In PC1 we may have the two constraints c1 = x1 < x2 and c2 =
x2 {<, =} x3. The valuation ψ : X → R with ψ(x1) =

√
2, ψ(x2) = 3.14 and ψ(x3) = 42

satisfies both constraints. If we set ψ(x3) = 3.14, then both constraints remain satisfied
by ψ; if we set ψ(x3) = 2.718, then ψ no longer satisfies c2. •

Example A.22. The QCSP in Figure 3 c based on PC1 is not path-consistent because
rA,C implicitly takes on the universal relation, and thus Equation (14) is violated for
x = A, y = C, z = B. By contrast, the QCSP in Figure 3 b is path-consistent, which can
be verified by considering each permutation of A,B,C in turn. •

Example A.23. Consider the PC1 QCSP in Figure 3 c. The missing edge between
variables A and C indicates an implicit constraint via the universal relation u =
{<, =, >}. Enforcing a-closure as per (16) updates this constraint with u ∪ < � <, which
yields <, resulting in Figure 3 b. Further applications of (16) do not cause any more
changes; hence the QCSP in Figure 3 b is algebraically closed. •

Example A.24. Consider the modification PC′′′1 based on the binary abstract parti-
tion scheme S(PC′′′1 ) = ({0, 1, 2}, {<,=, >}), i.e., the domain now has 3 elements. Then
the QCSP containing 4 nodes and the constraints {x0 < x1, x1 < x2, x2 < x3} has the
algebraic closure {xi < xj | 0 6 i < j 6 3}, which has no solution in the 3-element
domain. •

B. OBSERVATIONS FOR SECTION 3.1 IN THE SPECIAL CASE OF BINARY RELATIONS
OBSERVATION B.1. A binary partition scheme (U ,R) is a binary abstract partition

scheme with the following two additional properties.

(1) R contains the identity relation id2.
(2) For every r ∈ R, there is some s ∈ R such that r̆ = s.

OBSERVATION B.2. A binary qualitative calculus is a tuple (Rel, Int, ,̆ �) with the
following properties.

— Rel is as in Definition 3.3.
— Int = (U , ϕ, π, ◦) is an interpretation with the following properties.

— U is a universe.
— ϕ : Rel→ 2U×U is an injective map as in Definition 3.3.
— π is the standard converse operation on binary domain relations from (2).
— ◦ is the standard composition operation on binary domain relations from (3).

— The converse operation ˘ is a map ˘ : Rel→ 2Rel that satisfies

∀r ∈ Rel : ϕ(r̆ ) ⊇ ϕ(r)π .

— The composition operation � is a map � : Rel× Rel→ 2Rel that satisfies

∀r, s ∈ Rel : ϕ(�(r, s)) ⊇ ◦(ϕ(r), ϕ(s)) .
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C. ADDITIONAL PROOFS FOR SECTION 3.1
C.1. Proof of Fact 3.5
Fact 3.5. Every strong permutation (composition) is weak, and every weak permutation
(composition) is abstract.

PROOF. “Every strong permutation is weak.” We assume that the permutation ˘ as-
sociated with π is strong, i.e., for all r ∈ Rel,

ϕ(r̆ ) = ϕ(r)π, (18)

and show that ˘ is weak, i.e., for all r ∈ Rel:

r̆ =
⋂
{S ⊆ Rel | ϕ(S) ⊇ ϕ(r)π} (19)

For “⊆”, it suffices to show that, for every S ⊆ Rel with ϕ(S) ⊇ ϕ(r)π, we have r̆ ⊆ S.
This follows from the inclusion “⊆” of (18) and the injectivity of ϕ.

For “⊇”, let s ∈
⋂
{S ⊆ Rel | ϕ(S) ⊇ ϕ(r)π}, that is, s ∈ S for every S ⊆ Rel with

ϕ(S) ⊇ ϕ(r)π}. Since r̆ is such an S due to the inclusion “⊇” of (18), we have s ∈ r̆ .

“Every weak permutation is abstract.” Strictly speaking, the phrasing in Definition 3.4
implies this statement. However, it is easy to show the stronger statement that (19)
implies

ϕ(r̆ ) ⊇ ϕ(r)π .

Indeed, this is justified by the following chain of equalities and inclusions.

ϕ(r̆ ) = ϕ
(⋂
{S ⊆ Rel | ϕ(S) ⊇ ϕ(r)π}

)
=
⋂
{ϕ(S) ⊆ Rel | ϕ(S) ⊇ ϕ(r)π}

⊇ ϕ(r)π,

where the first equality follows from (19), the second follows from the extension of ϕ to
composite relations as per Definition 3.3, and the final inclusion is an obvious property
of sets.

The respective statements about composition are proven analogously.

C.2. Proof of Fact 3.6
Fact 3.6. Given a qualitative calculus (Rel, Int,˘1, . . . ,˘k, �) based on the interpretation
Int = (U , ϕ, ·π1 , . . . , ·πk , ◦), the following hold.
For all relations R ⊆ Rel and i = 1, . . . , k:

ϕ(R˘i) ⊇ ϕ(R)πi (20)

For all relations R1, . . . , Rm ⊆ Rel:

ϕ(�(R1, . . . , Rm)) ⊇ ◦(ϕ(R1), . . . , ϕ(Rm)) (21)

If ˘i is a weak permutation, then, for all R ⊆ Rel:

R˘i =
⋂
{S ⊆ Rel | ϕ(S) ⊇ ϕ(R)πi} (22)

If ˘i is a strong permutation, then, for all R ⊆ Rel:

ϕ(R˘i) = ϕ(R)πi (23)
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If � is a weak composition, then, for all R1, . . . , Rm ⊆ Rel:

� (R1, . . . , Rm) =
⋂
{S ⊆ Rel | ϕ(S) ⊇ ◦(ϕ(R1), . . . , ϕ(Rm)} (24)

If � is a strong composition, then, for all R1, . . . , Rm ⊆ Rel:

ϕ(�(R1, . . . , Rm)) = ◦(ϕ(R1), . . . , ϕ(Rm)) (25)

PROOF. For (20), consider

ϕ(R˘i) =
⋃
r∈R

ϕ(r̆ i) definition of ϕ(R˘i)

⊇
⋃
r∈R

ϕ(r)πi property (6)

=

(⋃
r∈R

ϕ(r)

)πi

distributivity in set theory

= ϕ(R)πi definition of ϕ(R).

For (21), consider

ϕ(�(R1, . . . , Rm)) =
⋃

r1∈R1

· · ·
⋃

rm∈Rm

ϕ(�(r1, . . . , rm)) definition of ϕ(�(R1, . . . , Rm))

⊇
⋃

r1∈R1

· · ·
⋃

rm∈Rm

◦(ϕ(r1), . . . , ϕ(rm)) property (7)

= ◦

( ⋃
r1∈R1

ϕ(r1), . . . ,
⋃

rm∈Rm

ϕ(rm)

)
distributivity in set theory

= ◦(ϕ(R1), . . . , ϕ(Rm)) definition of ϕ(Ri)

Properties (23) and (25) are proven using (9) and (11) in the same way as we have just
proven (20) and (21) using (6) and (7).

For (22), let R = {r1, . . . , rn} for some n > 1 and r1, . . . , rn ∈ Rel. Due to Definition 3.4
(8), we have that

rj˘
i =

⋂
{S ⊆ Rel | ϕ(S) ⊇ ϕ(ri)

πi}

for every j = 1, . . . , n. Let Sj1, . . . , Sjmj be the S over which the above intersection
ranges, i.e.,

rj˘
i =

mj⋂
h=1

Sjh .

Due to Definition 3.3, we have that

R˘i =

n⋃
j=1

rj˘
i =

n⋃
j=1

mj⋂
h=1

Sjh =

m1⋂
h1=1

· · ·
mn⋂
hn=1

n⋃
j=1

Sjhj
,

where the last equality is due to the distributivity of intersection over union. Now (22)
follows if we show that, for every S ∈ Rel, the following are equivalent.

(1) ϕ(S) ⊇ ϕ(R)πi
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(2) there are S1, . . . , Sn with S = S1∪· · ·∪Sn and ϕ(Sj) ⊇ ϕ(rj)
πi for every j = 1, . . . , n.

For “1 ⇒ 2”, assume ϕ(S) ⊇ ϕ(R)πi , i.e., ϕ(S) ⊇
⋃n
j=1 ϕ(rj)

πi (Definition 3.3). If we
further assume that S = {s1, . . . , s`}, which implies that ϕ(S) ⊇

⋃`
h=1 ϕ(sh) (Definition

3.3), then we can choose Sj = {sh | ϕ(sh) ∩ ϕ(rj)
πi 6= ∅} for every j = 1, . . . , n. Because

C is based on JEPD relations, we have that ϕ(Sj) ⊇ ϕ(rj)
πi .

For “2 ⇒ 1”, let S = S1 ∪ · · · ∪ Sn and ϕ(Sj) ⊇ ϕ(rj)
πi for every j = 1, . . . , n. Due

to Definition 3.3 and because C is based on JEPD relations, we have that ϕ(S) =⋃n
j=1 ϕ(Sj). Hence, ϕ(S) ⊇

⋃n
j=1 ϕ(rj)

πi via the assumption, and ϕ(S) ⊇ ϕ(R)πi due to
Definition 3.3.

(24) is proven analogously.

D. EXPRESSIVITY RELATIONS BETWEEN CALCULI, FIGURE 5
We give additional proof sketches for expressivity relations presented in Figure 5. Re-
call that we say a calculus is of equivalent expressivity as another calculus if every
QCSP instance of the first can be simulated by a propositional formulae of constraints
in the second.

THEOREM D.1. Temporal calculi PC,IA,SIC,DIA,GenInt and spatial calculi BA,
CDC, and CI form a cluster of expressivity.

PROOF SKETCH. Temporal point- and interval-based calculi (semi-intervals in case
of SIC) represent ordering relations which can all be translated into Boolean formulae
of PC relations among interval start and end point. Solutions for QCSPs over these
temporal calculi in the cluster can easily be obtained from their corresponding PC
formulae by instantiating intervals from their start and and points.

The spatial calculus BA is an independent product IA×IA easily expressible using
propositional BA formulae, analogously is CDC expressible as product PC×PC. CI rep-
resents a cyclic order (e.g., intervals of longitude). These relations can be simulated
with PC by instantiating an lower and upper limit points p− and p+ and splitting all
intervals containing either p− or p+ to continue from the opposite border.

THEOREM D.2. VR relations can be expressed using LR constraints.

PROOF SKETCH. VR expresses visibility of convex objects in the plane using ternary
relations. Visibility relations can be represented based on the relative position of tan-
gent points of the base entities, e.g., visibility between two objects is not affected if and
only if a third object discrete from the first two does not intersect with the four-sided
polygon obtained by connecting the upper and lower tangent points of the two objects.
Overlap between polygonal contours can easily be written using LR constraints, e.g., a
point is outside a convex polygon if it is located to the right hand side of at least one
edge of the polygon, assuming the polygon edges to be ordered in counter-clockwise
manner. The construction is then performed for every visibility relation, instantiating
lower and upper tangent points individually for every pair of VR entities. The VR en-
tities which are regions are then represented only by their set of tangent points which
can be enforced to be arranged along a convex-shaped contour. Additional details are
provided by Wolter and Lee [2016].

THEOREM D.3. Calculi TPCC,OPRA,EOPRA, 1-, and 2-cross constitute a cluster of
equal expressive power for Boolean combinations of constraints.

PROOF SKETCH. This group of calculi considers locations of points in the Euclidean
plane. We first consider equivalence of OPRA, 1-, and 2-cross and later address TPCC
and EOPRA which augment the first group by additional distance concepts. All calculi
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from the first group employ a partition scheme that is based on relations that speci-
fies directions to points relative to some entity-specific orientation (either by reference
to another entity in case of 1-, and 2-cross or as intrinsic part of the base entity in
case of OPRA). Directions measured in radians are represented by membership in a
finite and JEPD set of intervals partitioning (0, 2π], using solely rational ratios of π
as boundaries. By geometric construction one can obtain any of these direction inter-
vals (i.e., sectors) of these calculi from a any partition scheme for point location that is
able to express superposition of points, a statement that two line segments connecting
three points A,B,C meet in a right angle, i.e., ∠(A,B,C) = π

2 as well as a statement
saying that a point is located directly in front of some point P with respect to “front”
orientation of P All the named calculi meet these conditions and allow for the follow-
ing construction: Let P be the entity for which we seek to construct direction intervals
in form of a sector. First, enforce four points A,B,C,D to form a rectangle with A in
superposition with P and C in front of P . Next we construct E to be positioned on the
intersection of AC and BD which meet in a right angle. Doing so we have constructed
a square. Repeating the construction we can construct a grid from which we can derive
the desired angular sectors.

Now we show that OPRA, TPCC, and EOPRA have the same expressivity. EOPRA
augments OPRA by a relative distance concept in the same way TPCC augments
1-cross. Constructions translating EOPRA to OPRA are very similar to translating
TPCC to 1-cross, so we only consider the first case. Distance classes in the calculi
OPRA and TPCC are named “close”, “same”, and “far” and are defined by comparison of
the Euclidean distance between two entities with an object-specific threshold distance.
This means that the statement “A is close to B” is independent from “B is close to A”.
These distance constraints can be simulated in OPRA by introducing border points for
each entity along the “same” distance, one for every pair of entities. To this end we
have to enforce that all border points are in the same distance to their corresponding
entity. This can be accomplished by OPRA constraints by first constructing a bisector
for a pair of border points (as done in the construction above) and, second, enforcing a
right angle between the line connecting two border points with the bisector. Additional
details are provided by Wolter and Lee [2016].

E. ADDITIONAL COMPLEXITY PROOFS FOR TABLE IV
Fact E.1. Consistency of QCSPs for DRA-conn can be decided in time O(n3).

PROOF. The DRA-conn calculus is an abstraction of the more fine-grained dipole cal-
culi, only retaining connectivity relations of line segments. Connectivity is represented
by equality relations between positions of a dipole’s start or end point. For checking
consistency of a set of DRA-conn constraints, the clusters of equally positioned points
need to be constructed. This can easily be done with the algebraic closure algorithm.
Since the effect of a disjunctive relation in DRA-conn with respect to single point equal-
ity is identical to absence of the constraint, reasoning with partial atomic QCSPs is
equivalent in complexity to reasoning with general QCSPs with DRA-conn.

Fact E.2. Consistency of atomic QCSPs for EIA can be decided in polynomial time.

PROOF. As described by Zhang and Renz [2014], extended interval algebra con-
straints can be translated to INDU constraint networks, and those can be decided in
polynomial time [Balbiani et al. 2006]. EIA describes relative ordering with respect to
interval start, end, and center point. Consequently, for every single variable in a given
EIA network, the translation introduces three variables representing an interval and
its two halves, together with the obvious constraints between them.
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Fact E.3. The tractable subset of GenInt consisting of all strongly pre-convex general
relations covers less than 1‰ of all relations for the case of 3-intervals.

PROOF. Generalized intervals [Condotta 2000] generalize IA relations to tuples of
intervals. Relations between a p- and and a q-tuple, general relations, are represented
in a p × q matrix of IA relations. A strongly pre-convex general relation is a matrix
where all entries are strongly preconvex. Since the strongly pre-convex relations are a
subset of pre-convex relations and only some 10% of all IA relations are pre-convex, at
most a fraction of 0.1p·q of all general relations is strongly pre-convex, which is far less
than 1‰ if p = q = 3. Even if we could take the matrix entries from a tractable subset
of, say, 20% of IA, we would still get 0.2p·q � 1‰ tractable relations.

Fact E.4. Deciding consistency of atomic QCSPs for OM-3D is NP-hard and can be
reduced to solving multivariate polynomial equalities.

PROOF. OM-3D generalizes the double-cross calculus from 2D arrangement to 3D
arrangement, containing the 2D case as a sub-algebra. Since base relations of the 2D
case are already NP-hard [Wolter and Lee 2010], so is OM-3D. All base relations for
the 3D case can be modeled by multivariate polynomial equalities similar to the 2D
case.

Fact E.5. Consistency of QCSPs with convex relations for STARm and STARrm can be
decided in polynomial time.

PROOF. STARm defines 4m relations (line segments and sectors); STARrm defines 2m
relations which are all sectors. Tractability of convex relations follows from the obser-
vation that these can be represented by half-plane intersections using linear inequal-
ities, systems of which can be decided in polynomial time using linear programming
techniques.

While the number of all relations in STAR(r)
m grows exponentially with m, there are

only m convex relations that include 1, . . . ,m relations, i.e., O(m2) convex relations.
The percentage of convex relations thus decreases with increasing values of m.

F. ADDITIONAL PROOFS FOR SECTION 4.1
F.1. R6 and R6l from Table VI are equivalent given R7 and R9

We only show that R6 implies R6l; the converse direction is analogous. We first establish
that id̆ = id.

id̆ = id̆ � id (R6)

= id̆ � (id̆ )̆ (R7)

= (id̆ � id)̆ (R9)

= (id̆ )̆ (R6)

= id (R7)

Now we use this lemma to establish R6l.

id � r = (id̆ )̆ � (r̆ )̆ (R7)

= (r̆ � id̆ )̆ (R9)

= (r̆ � id)̆ (Lemma)

= (r̆ )̆ (R6)

= r (R7)
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F.2. Proof of Fact 4.2
Fact 4.2. Every qualitative calculus (Def. 3.3) satisfies R1–R3, R5, R⊇7 , R8, W⊇, S⊇ for
all (atomic and composite) relations. This axiom set is maximal: each of the remaining
axioms in Table VI is not satisfied by some qualitative calculus.

PROOF. Axioms R1–R3 are always satisfied because they are a characterization of
a Boolean algebra; and the set operations on the relations form a Boolean algebra
because ϕ maps base relations to a set of JEPD relations and complex relations to sets
of interpretations of base relations.

The definition of the converse and composition operations for non-base relations in
Definition 3.3 ensures that Axioms R5 and R8 hold.

Axiom R⊇7 always holds due to JEPD and the converse being weak: For every r ∈ Rel,
we have that

ϕ(r̆ )̆ ⊇ ϕ(r̆ )̆ ⊇ ϕ(r)̆ ˘ = ϕ(r),

where the first inclusion is due to Fact 3.6 (12) with R = r̆ , the second inclusion is due
to Definition 3.3 (6) for r, and the equation is due to the properties of binary relations
over the universe U . Since the ϕ(r) are a set of JEPD relations, r̆ ˘ ⊇ r follows. This
reasoning carries over to arbitrary relations.

Axioms W⊇ and S⊇ always hold due to JEPD and the composition being weak: For
every r ∈ Rel, we have that

ϕ((r � 1) � 1) ⊇ ϕ(r � 1) ◦ ϕ(1) = ϕ(r � 1) ◦ (U × U) ⊇ ϕ(r � 1),

where the first inclusion is due to to Fact 3.6 (13) with R = r �1 and S = 1, and the last
inclusion is due to the fact that R◦(U×U) ⊇ R for any binary relation R ⊆ U×U . Since
the ϕ(r) are a set of JEPD relations, (r � 1) � 1 ⊇ r � 1 follows. Again, this reasoning
carries over to arbitrary relations.

Axioms R⊆6 , R⊆6l , R⊆7 are violated by the following calculus. Let Rel = {r1, r2}, U =
{0, 1}, id = r1, 1 = {r1, r2} with:

ϕ(r1) = {(0, 0), (0, 1)} r1̆ = 1 r1 � r1 = 1

ϕ(r2) = {(1, 0), (1, 1)} r2̆ = 1 r1 � r2 = r1

r2 � r1 = 1

r2 � r2 = r2

This calculus satisfies the conditions in Definition 3.3 but violates Axioms R⊆6 , R⊆6l , R⊆7 :

R⊆6 r1 � id = 1 * r1

R⊆6l id � r1 = 1 * r1

R⊆7 r1̆ ˘ = 1 * r1

Axioms W⊆, S⊆, R⊆4 , R⊇4 , R⊇6 , R⊇6l , R⊆9 , R⊇9 , R⊆10, R⊇10, PL⇒, PL⇐ are violated by the
following calculus. Let Rel = {r1, r2, r3, r4}, U = {0, 1}, id = r1, 1 = {r1, r2} with:

ϕ(r1) = {(0, 0)} r1̆ = r1

ϕ(r2) = {(1, 1)} r2̆ = r2

ϕ(r3) = {(0, 1)} r3̆ = r4

ϕ(r4) = {(1, 0)} r4̆ = r3

right operand r1 r2 r3 r4
left operand �

r1 r1 ∅ r3 ∅
r2 ∅ r3 ∅ r4
r3 ∅ r3 ∅ r1, r4
r4 r1, r4 ∅ r2 ∅
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This calculus satisfies the conditions from Definition 3.3 but violates Axioms W⊆, S⊆,
R⊆4 , R⊇4 , R⊇6 , R⊇6l , R⊆9 , R⊇9 , R⊆10, R⊇10, PL⇒, PL⇐:

W⊆,S⊆ : (r1 � 1) � 1 = 1 * {r1, r3, r4} = r1 � 1

R⊆4 : (r1 � r3) � r4 = r3 � r4 = {r1, r4} * r1 = r1 � {r1, r4} = r1 � (r3 � r4)

R⊇4 : (r4 � r3) � r4 = r2 � r4 = r4 + {r1, r4} = r4 � {r1, r4} = r4 � (r3 � r4)

R⊇6 : r2 � id = r2 � r1 = ∅ + r2

R⊇6l : id � r2 = r1 � r2 = ∅ + r2

R⊆9 ,R
⊇
9 : (r3 � r4)̆ = {r1, r4}̆ = {r1, r3}

*
+ {r1, r4} = r3 � r4 = r4̆ � r3̆

R⊆10,R
⊇
10 : r3̆ � r3 � r1 = r4 � ∅ = r4 � 1 = {r1, r2, r4}

*
+ {r2, r3, r4} = r1

PL⇒ : (r1 � r4) ∩ r1̆ = ∅ ∩ r1 = ∅ but (r4 � r1) ∩ r1̆ = {r4, r1} ∩ r1 = r4 6= ∅
PL⇐ : (r4 � r1) ∩ r1̆ = {r4, r1} ∩ r1 = r1 6= ∅ but (r1 � r1) ∩ r4̆ = r1 ∩ r3 = ∅

Remark F.1. Of course, there are calculi that satisfy only the weak conditions from
Definition 3.3 but are a relation algebra, for example the following. Let Rel = {r0, r1},
U = {0, 1}, id = r1, 1 = {r1, r2} with:

ϕ(r1) = {(0, 0), (0, 1)} r1̆ = r2 r1 � r1 = r1

ϕ(r2) = {(1, 0), (1, 1)} r2̆ = r1 r1 � r2 = 1

r2 � r1 = 1

r2 � r2 = r2

G. DETAILED DESCRIPTION OF THE TEST RESULTS IN SECTION 4.4
The results of the analysis are summarized in Table X. A part of the calculi have al-
ready been tested by Mossakowski [2007], using a different CASL specification based
on an equivalent axiomatization from [Ligozat and Renz 2004]. He comprehensively
reports on the outcome of these tests, and on errors discovered in published compo-
sition tables. We now list counterexamples for the cases where axioms are violated.

cCDR

— R6 is violated for all base relations but one.
— R6l is violated for only 209 base relations.
— R7 is violated for 214 base relations.
— R9 is violated for 5,607 pairs of base relations. Counterexample:

(S � S)̆ 6= S̆ � S̆

— R10 is violated for 41,834 pairs of base relations. Counterexample:

S̆ � S � S * S

— PL is violated for 22,976 triples of base relations. Counterexample:
(W-NW-N-NE-E � NW-N-NE) ∩ B-S̆ = {} 6= {B} = (NW-N-NE � B-S) ∩W-NW-N-NE-Ĕ

— R4 is violated for 2,936,946 triples of base relations. Counterexample:
W-NW-N-NE-E-SE � (W-NW-N-NE-E-SE �W-NW-N-NE-E)

6= (W-NW-N-NE-E-SE �W-NW-N-NE-E-SE) �W-NW-N-NE-E
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Calculus Testsa R4 S W R6 R6l R7 R9 PL R10

BAn, n 6 2 HS 3 3 3 3 3 3 3 3 3

CDC MHS 3 3 3 3 3 3 3 3 3

CYCb HS 3 3 3 3 3 3 3 3 3

DRAfp, DRA-conn HS 3 3 3 3 3 3 3 3 3

IA MHS 3 3 3 3 3 3 3 3 3

PC1 HS 3 3 3 3 3 3 3 3 3

RCC-5, DepCalc MHS 3 3 3 3 3 3 3 3 3

RCC-8, 9-int MHS 3 3 3 3 3 3 3 3 3

STARr
4 HS 3 3 3 3 3 3 3 3 3

DRAf MHS 19 3 3 3 3 3 3 3 3

INDU MHS 12 3 3 3 3 3 3 3 3

OPRAn, n 6 8 MHS 21–91b 3 3 3 3 3 3 3 3

QTC-Bxx MHS 3 3 3 89–100 3 3 3 3

QTC-C21 HS 55 3 3 99 99 3 2 <1 1
QTC-C22 HS 79 3 3 99 99 3 3 <1 1
RCD HS 3 3 3 97 92 89 66 7 52
cCDR HS 28 17 3 99 99 98 12 <1 88

acalculus was tested by: M = [Mossakowski 2007], H = Hets, S = SparQ
b21%, 69%, 78%, 83%, 86%, 88%, 90%, 91% for OPRAn, n = 1, . . . , 8

Table X: Overview of calculi tested and their properties. The symbol “3” means that
the axiom is satisfied; otherwise the percentage of counterexamples (relations, pairs
or triples violating the axiom) is given.

— S is violated for 38 base relations. Counterexample:

(B-S-W-NW � 1) � 1 6= B-S-W-NW � 1

DRA

— DRAc violates R4 for 704 triples of base relations. Counterexample:

rrrl � (rrrl � llrl) 6= (rrrl � rrrl) � llrl

— DRAf violates R4 for 71,424 triples of base relations, with the same counterexample,
or with the one reported by Moratz et al. [2011], who attribute the violation of asso-
ciativity to the composition operation being weak and illustrate this by the example
bfii � lllb = llll.

— DRAfp and DRA-conn satisfy all axioms.

INDU
R4 is violated by 1,880 triples of base relations. The violation of associativity has al-
ready been reported and attributed to the absence of strong composition in [Balbiani
et al. 2006]: e.g.,

bi> � (mi> �m>) 6= (bi> �mi>) �m>.

MC-4
MC-4 is not based on a partition scheme because the relation cg (“congruent”), which
behaves in the context of the other three relations as if it were an identity relation, is
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coarser than id2. Furthermore, MC-4 is still an abstract partition scheme and thus fits
into our general notion of a calculus.

For testing purposes, we have implemented an artificial variant of MC-4 where we
divided the cg relation into id2 and the difference of cg and id2. That calculus too is a
relation algebra.

OPRAn, n 6 8

R4 is violated by
1,664 triples for OPRA1, e.g., 33 � (32 � 03) 6= (33 � 32) � 03

257,024 triples for OPRA2, e.g., 77 � (77 � 67) 6= (77 � 77) � 67
2,963,952 triples for OPRA3, e.g., 1111 � (1111 � 1110) 6= (1111 � 1111) � 1110

16,711,680 triples for OPRA4, e.g., 1515 � (1515 � 1515) 6= (1515 � 1515) � 1515
63,840,000 triples for OPRA5, e.g., 1919 � (1919 � 1919) 6= (1919 � 1919) � 1919

190,771,200 triples for OPRA6, e.g., 2323 � (2323 � 2323) 6= (2323 � 2323) � 2323
481,275,648 triples for OPRA7, e.g., 2727 � (2727 � 2727) 6= (2727 � 2727) � 2727

1,072,693,248 triples for OPRA8, e.g., 3131 � (3131 � 3131) 6= (3131 � 3131) � 3131

QTC

— QTC-B11, -B12, -C21, -C22 violate R6 and R6l for all base relations but one; QTC-B21,
-B22 do so for all base relations. After introducing a new id relation and making the
relations JEPD, QTC-B11 and -B12 satisfy all axioms [Mossakowski 2007].

— QTC-C21 (81 base relations) violates R4 for 292,424 triples, R9 for 160 pairs, R10 for
80 pairs, and PL for 1056 triples.5

— QTC-C22 (209 base relations) violates R9 for 1248 pairs, R10 for 624 pairs, PL for
12,768 triples, and R4 for 7,201,800 triples, see also footnote 5.

RCD

— R6 is violated for all base relations but one.
— R6l is violated for only 33 base relations.
— R7 is violated for 32 base relations.
— R9 is violated for 855 pairs. Counterexample:

(B � S:SW)̆ 6= S:SW˘� B̆

— R10 is violated for 671 pairs. Counterexample:

B̆ � B � S:SW * S:SW

— PL is violated for 3424 triples. Counterexample:

(B � N) ∩ B:W˘ = ∅ < (N � B:W) ∩ B̆ = ∅

5Note that, for calculi that violate R9, the equivalence between PL and R10 is no longer ensured, hence the
mentioning of both of them. Furthermore, R10 is the only axiom that should be tested for all relations, but
we have only tested it for all base relations. Therefore, there could be more violations than the four listed.
The same cautions apply to QTC-C22.
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