
Rewritability in Monadic Disjunctive Datalog,
MMSNP, and Expressive Description Logics∗

Cristina Feier†, Antti Kuusisto†, and Carsten Lutz†

† Fachbereich Informatik, University of Bremen, Germany
lastname@uni-bremen.de

Abstract
We study rewritability of monadic disjunctive Datalog programs, (the complements of) MMSNP
sentences, and ontology-mediated queries (OMQs) based on expressive description logics of the
ALC family and on conjunctive queries. We show that rewritability into FO and into monadic
Datalog (MDLog) are decidable, and that rewritability into Datalog is decidable when the original
query satisfies a certain condition related to equality. We establish 2NExpTime-completeness
for all studied problems except rewritability into MDLog for which there remains a gap between
2NExpTime and 3ExpTime. We also analyze the shape of rewritings, which in the MMSNP
case correspond to obstructions, and give a new construction of canonical Datalog programs that
is more elementary than existing ones and also applies to non-Boolean queries.

1998 ACM Subject Classification F.4.1, I.2.3, I.2.4, I.1.2, F.2.2, H.2.4, H.2.3

Keywords and phrases FO-Rewritability, MDDLog, MMSNP, DL, Ontology Mediated Queries

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

In data access with ontologies, the premier aim is to answer queries over incomplete and
heterogeneous data while taking advantage of the domain knowledge provided by an ontology
[10, 17]. Since traditional database systems are often unaware of ontologies, it is common
to rewrite the emerging ontology-mediated queries (OMQs) into more standard database
query languages. For example, the DL-Lite family of description logics (DLs) was designed
specifically so that any OMQ Q = (T ,Σ, q) where T is a DL-Lite ontology, Σ a data signature,
and q a conjunctive query, can be rewritten into an equivalent first-order (FO) query that
can then be executed using a standard SQL database system [2, 18]. In more expressive
ontology languages, it is not guaranteed that for every OMQ there is an equivalent FO query.
For example, this is the case for DLs of the EL and Horn-ALC families [23, 37], and for DLs
of the expressive ALC family. In many members of the EL and Horn-ALC families, however,
rewritability into monadic Datalog (MDLog) is guaranteed, thus enabling the use of Datalog
engines for query answering. In ALC and above, not even Datalog-rewritability is generally
ensured. Since ontologies emerging from practical applications tend to be structurally simple,
though, there is reason to hope that (FO-, MDLog-, and Datalog-) rewritings do exist in many
practically relevant cases even when the ontology is formulated in an expressive language.
This has in fact been experimentally confirmed for FO-rewritability in the EL family of
DLs [27], and it has led to the implementation of rewriting tools that, although incomplete,
are able to compute rewritings in many practical cases [28,36,40].

∗ The authors were funded by ERC grant 647289.

© Cristina Feier and Antti Kuusisto and Carsten Lutz;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 Rewritability in MDDLog, MMSNP, and Expressive DLs

Fundamental problems that emerge from this situation are to understand the exact
limits of rewritability and to provide (complete) algorithms that decide the rewritability
of a given OMQ and that compute a rewriting when it exists. These problems have been
adressed in [8, 9, 27] for DLs from the EL and Horn-ALC families. For DLs from the ALC
family, first results were obtained in [11] where a connection between OMQs and constraint
satisfaction problems (CSPs) was established that was then used to transfer decidability
results from CSPs to OMQs. In fact, rewritability is an important topic in CSP (where it
would be called definability) as it constitutes a central tool for analyzing the complexity of
CSPs [21,22,24,29]. In particular, rewritability of (the complement of) CSPs into FO and
into Datalog is NP-complete [4, 19, 29], and rewritability into MDLog is NP-hard and in
ExpTime [19]. In [11], these results were used to show that FO- and Datalog-rewritability
of OMQs (T ,Σ, q) where T is formulated in ALC or a moderate extension thereof and q is
an atomic query (AQ) of the form A(x) is decidable and, in fact, NExpTime-complete. For
MDLog-rewritability, one can show NExpTime-hardness and containment in 2ExpTime.

The aim of this paper is to study the above questions for OMQs where the ontology
is formulated in an expressive DL from the ALC family and where the actual query is
a conjunctive query (CQ) or a union of conjunctive queries (UCQ). As observed in [11],
transitioning in OMQs from AQs to UCQs corresponds to the transition from CSP to its
logical generalization MMSNP introduced by Feder and Vardi [24] and studied, for example,
in [12, 31–33]. More precisely, while the OMQ language (ALC,AQ) that consists of all
OMQs (T ,Σ, q) where T is formulated in ALC and q is an AQ has the same expressive
power as the complement of CSP (with multiple templates and a single constant), the
OMQ language (ALC,UCQ) has the same expressive power as the complement of MMSNP
(with free variables)—which in turn is a notational variant of monadic disjunctive Datalog
(MDDLog). It should be noted, however, that while all these formalisms are equivalent in
expressive power, they differ significantly in succinctness [11]; in particular, the best known
translation of OMQs into MMSNP/MDDLog involves a double exponential blowup. In
contrast to the CSP case, FO-, MDLog-, and Datalog-rewritability of (the complement of)
MMSNP sentences was not known to be decidable. In this paper, we establish decidability
of FO- and MDLog-rewritability in (ALC,UCQ) and related OMQ languages, in MDDLog,
and the complement of MMSNP. We show that FO-rewritability is 2NExpTime-complete
in all three cases, and that MDLog-rewritability is in 3ExpTime; a 2NExpTime lower
bound was established in [15]. Let us discuss our results on FO-rewritability from three
different perspectives. From the OMQ perspective, the transition from AQs to UCQs results
in an increase of complexity from NExpTime to 2NExpTime. From the monadic Datalog
perspective, adding disjunction (transitioning from monadic Datalog to MDDLog) results in
a moderate increase of complexity from 2ExpTime [6] to 2NExpTime. And from the CSP
perspective, the transition from CSPs to MMSNP results in a rather dramatic complexity
jump from NP to 2NExpTime.

For Datalog-rewritability, we obtain only partial results. In particular, we show that
Datalog-rewritability is decidable and 2NExpTime-complete for MDDLog programs that, in
a certain technical sense made precise in the paper, have equality. For the general case, we
only obtain a potentially incomplete procedure. It is well possible that the procedure is in
fact complete, but proving this remains an open issue for now. These results also apply to
analogously defined classes of MMSNP sentences and OMQs that have equality.

While we mainly focus on deciding whether a rewriting exists rather than actually
computing it, we also analyze the shape that rewritings can take. Since the shape turns out
to be rather restricted, this is important information for algorithms (complete or incomplete)

C. Feier and A. Kuusisto and C. Lutz XX:3

that seek to compute rewritings. In the CSP/MMSNP world, this corresponds to analyzing
obstruction sets for MMSNP, in the style of CSP obstructions [3, 16, 34] and not to be
confused with colored forbidden patterns sometimes used to characterize MMSNP [33]. More
precisely, we show that an OMQ (T ,Σ, q) from (ALC,UCQ) is FO-rewritable if and only
if it is rewritable into a UCQ in which each CQ has treewidth (1,max{2, nq}), nq the size
of q;1 similarly, the complement of an MMSNP sentence ϕ is FO-definable if and only if it
admits a finite set of finite obstructions of treewidth (1, k) where k is the diameter of ϕ (the
maximum size of a negated conjunction in its body, in Feder and Vardi’s terminology). We
also show that (T ,Σ, q) is MDLog-rewritable if and only if it is rewritable into an MDLog
program of diameter (1,max{2, nq}); similarly, the complement of an MMSNP sentence ϕ
is MDLog-definable if and only if it admits a (potentially infinite) set of finite obstructions
of treewidth (1, k) where k is the diameter of ϕ. For the case of rewriting into unrestricted
Datalog, we give a new and direct construction of canonical Datalog-rewritings. It has
been observed in [24] that for every CSP and all `, k, it is possible to construct a canonical
Datalog program Π of width ` and diameter k in the sense that if any such program is a
rewriting of the CSP, then so is Π; moreover, even when there is no (`, k)-Datalog rewriting,
then Π is the best possible approximation of such a rewriting. The existence of canonical
Datalog-rewritings for (the complement of) MMSNP sentences was already known from [13].
However, the construction given there is quite complex, proceeding via an infinite template
that is obtained by applying an intricate construction due to Cherlin, Shelah, and Shi [20],
which makes them rather hard to analyze. In contrast, our construction is elementary and
essentially parallels the CSP case; it also applies to MMSNP formulas with free variables,
where the canonical program takes a rather special form that involves parameters, similar in
spirit to the parameters to least fixed-point operators in FO(LFP) [5].

Our main technical tool is the translation of an MMSNP sentence into a generalized CSP,
i.e. a CSP in which there are multiple templates, exhibited by Feder and Vardi in [24]. The
translation is not equivalence preserving and involves a double exponential blowup, but was
designed so as to preserve complexity up to polynomial time reductions. Here, we are not so
much interested in the complexity aspect, but rather in the semantic relationship between
the original MMSNP sentence and the constructed CSP. It turns out that the translation
does not quite preserve rewritability. In particular, when the original MMSNP sentence has a
rewriting, then the natural way of constructing from it a rewriting for the CSP is sound only
on instances of high girth. However, FO- and MDLog-rewritings that are sound on high girth
(and unconditionally complete) can be converted into rewritings that are unconditionally
sound (and complete). The same is true for Datalog-rewritings when the MMSNP sentence
has equality, but it remains open whether it is true in the general case.

The structure of this paper is as follows. In Section 2, we give some preliminaries. In
Section 3, we summarize the main properties of Feder and Vardi’s translation of MMSNP
into CSP. This is used in Section 4 to show that FO- and MDLog-rewritability of Boolean
MDDLog programs and of the complement of MMSNP sentences is decidable, also establishing
the announced complexity results. In Section 5, we analyze the shape of FO- and MDLog-
rewritings and of obstructions for MMSNP sentences. In Section 6, we study Datalog-
rewritability of MDDLog programs that have equality and construct canonical Datalog
programs. Section 7 lifts the results from the Boolean case to the general case. Section 8
introduces OMQs and further lifts our results to this setting. We conclude in Section 9.

A long version of the paper is available at: http://arxiv.org/abs/1701.02231.

1 What we mean here is that q has a tree decomposition in which every bag has at most max{2, nq}
elements and in which neighboring bag overlap in at most one element.

XX:4 Rewritability in MDDLog, MMSNP, and Expressive DLs

2 Preliminaries

A schema is a finite collection S = (S1, . . . , Sk) of relation symbols with associated arity. An
S-fact is an expression of the form S(a1, . . . , an) where S ∈ S is an n-ary relation symbol,
and a1, . . . , an are elements of some fixed, countably infinite set const of constants. For an
n-ary relation symbol S, pos(S) is {1, . . . , n}. An S-instance I is a finite set of S-facts. The
active domain dom(I) of I is the set of all constants that occur in a fact in I. For an instance
I and a schema S, we write I|S to denote the restriction of I to the relations in S.

A tree decomposition of an instance I is a pair (T, (Bv)v∈V), where T = (V,E) is an
undirected tree and (Bv)v∈V is a family of subsets of dom(I) such that: for all a ∈ dom(I),
{v ∈ V | a ∈ Bv} is nonempty and connected in T ; for every fact R(a1, . . . ar) in I, there is a
v ∈ V such that a1, . . . , ar ∈ Bv. Unlike in the traditional setup [25], we are interested in two
parameters of tree decompositions instead of only one. We call (T, (Bv)v∈V) an (`, k)-tree
decomposition if for all v, v′ ∈ V , |Bv ∩Bv′ | ≤ ` and |Bv| ≤ k. An instance I has treewidth
(`, k) if it admits an (`, k)-tree decomposition.

An instance I has a cycle of length n if it contains distinct facts R0(a0), . . . , Rn−1(an−1),
ai = ai,1 · · · ai,mi

, and there exist pi, p
′
i ∈ pos(Ri), 0 ≤ i < n such that: pi 6= p′i for 1 ≤ i ≤ n,

and ai,p′
i

= ai⊕1,pi⊕1 for 0 ≤ i < n, where ⊕ denotes addition modulo n. The girth of I is the
length of its shortest cycle and ∞ if it has no cycle (in which case we say that I is a tree).

A constraint satisfaction problem (CSP) is defined by an instance T over a schema SE ,
called template. The problem associated with T , denoted CSP(T), is to decide whether an
input instance I over SE admits a homomorphism to T , denoted I → T . We use coCSP(T)
to denote the complement problem, that is, deciding whether I 6→ T . A generalized CSP
is defined by a set of templates S over the same schema SE and asks for a homomorphism
from the input I to at least one templates T ∈ S, denoted I → S.

An MMSNP sentence θ over schema SE has the form ∃X1 · · · ∃Xn∀x1 · · · ∀xmϕ with
X1, . . . , Xn monadic second-order variables, x1, . . . , xm first-order variables, and ϕ a con-
junction of quantifier-free formulas of the form α1 ∧ · · · ∧ αn → β1 ∨ · · · ∨ βm with n,m ≥ 0,
where each αi takes the form Xi(xj) or R(x) with R ∈ SE , and each βi takes the form
Xi(xj). The diameter of θ is the maximum number of variables in some implication in ϕ.

A conjunctive query (CQ) takes the form ∃yϕ(x,y) where ϕ is a conjunction of relational
atoms and x, y denote tuples of variables; the equality relation may be used. Whenever
convenient, we will confuse a CQ ∃yϕ(x,y) with the set of atoms in ϕ. A union of conjunctive
queries (UCQ) is a disjunction of CQs with the same free variables.

A disjunctive Datalog rule ρ has the form S1(x1)∨ · · · ∨Sm(xm)← R1(y1)∧ · · · ∧Rn(yn)
where n > 0 and m ≥ 0. When m ≤ 1, the rule is a Datalog rule. We refer to S1(x1) ∨ · · · ∨
Sm(xm) as the head of ρ, and to R1(y1) ∧ · · · ∧ Rn(yn) as the body. Every variable that
occurs in the head of a rule ρ is required to also occur in the body of ρ. A (disjunctive)
Datalog ((D)DLog) program Π is a finite set of (disjunctive) Datalog rules with a selected
goal relation goal that does not occur in rule bodies and appears only in non-disjunctive goal
rules goal(x)← R1(x1) ∧ · · · ∧Rn(xn). The arity of Π is the arity of the goal relation; Π is
Boolean if it has arity zero. Relation symbols that occur in the head of at least one rule of
Π are intensional (IDB) relations, and all remaining relation symbols in Π are extensional
(EDB) relations. relation. A (D)DLog program is called monadic or an M(D)DLog program
if all its IDB relations with the possible exception of goal have arity at most one. The size of
a DDLog program Π is the number of symbols needed to write it (where relation symbols
and variables names count one), its width is the maximum arity of non-goal IDB relations
used in it, and its diameter is the maximum number of variables that occur in a rule in Π.

C. Feier and A. Kuusisto and C. Lutz XX:5

An (`, k)-DLog program is a DLog program of width ` and diameter k. Sometimes we omit k
and speak of `-DLog programs.

For Π an n-ary MDDLog program over schema SE , an SE-instance I, and a1, . . . , an ∈
dom(I), we write I |= Π(a1, . . . , an) if Π ∪ I |= goal(a1, . . . an) where variables in all rules of
Π are universally quantified and thus Π is a set of first-order (FO) sentences. A query q over
SE of arity n is:

sound for Π if for all SE-instances I and a ∈ dom(I), I |= q(a) implies I |= Π(a);
complete for Π if for all SE-instances I and a ∈ dom(I), I |= Π(a) implies I |= q(a);
a rewriting of Π if it is sound for Π and complete for Π.

To additionally specify the syntactic shape of q, we speak of a UCQ-rewriting, an MDLog-
rewriting, and so on. An FO-rewriting takes the form of an FO-query that uses only relations
from the EDB schema and possibly equality, but neither constants nor function symbols. We
say that Π is Q-rewritable if there is a Q-rewriting of Π, for Q ∈ {FO, UCQ, MDLog}.

It was shown in [11] that the complement of an MMSNP sentence can be translated into
an equivalent Boolean MDDLog program in polynomial time and vice versa; moreover, the
transformations preserve diameter and all other parameters relevant for this paper. Thus, we
will not explicitly distinguish between Boolean MDDLog and (the complement of) MMSNP.

3 From MDDLog via Simple MDDLog to CSPs

Feder and Vardi show how to translate an MMSNP sentence into a generalized CSP that
has the same complexity up to polynomial time reductions [24]. The generalized CSP has a
different schema to the original MMSNP sentence and is thus not equivalent to it. We use
this translation to reduce rewritability problems for MDDLog to corresponding problems
for CSPs. In this section, we sum up the results obtained in [24] that are relevant for our
reduction and refer to the long version for more details.

To capture the relation between the schema of an MDDLog program and the generalized
CSP constructed from it, we introduce the notion of an aggregation schema. Let SE be
a schema. A schema S′E is a k-aggregation schema for SE if its relations have the form
Rq(x) where q(x) is a CQ over SE without quantified variables and the arity of Rq(x) is
identical to the number of variables in x, which is at most k. For I an SE-instance, its
corresponding S′E-instance I ′ consists of all facts Rq(x)(a) such that I |= q(a). Conversely,
for I ′ an S′E-instance, the corresponding SE-instance I consists of all facts S(b) such that
Rq(x)(a) ∈ I ′ and S(b) is a conjunct of q(a).

I Example 1. Let SE = {r}, r a binary relation, q(x) = r(x1, x2)∧ r(x2, x3)∧ r(x3, x1)
where x = (x1, x2, x3), and S′E = {Rq(x)}. If I ′ is the S′E-instance {Rq(a, a′, c′), Rq(b, b′, a′),
Rq(c, c′, b′)}, then its corresponding SE-instance I is {r(a, a′), r(a′, c′), r(c′, a), r(b, b′),
r(b′, a′), r(a′, b), r(c, c′), r(c′, b), r(b′, c)}. Note that the S′E-instance I ′′ that corresponds
to I is a strict superset of I ′: it contains additional facts such as Rq(c′, b′, a′), see Figure 1.

The translation in [24] consists of two steps. The first step is to transform the given
Boolean MDDLog program Π into a Boolean MDDLog program ΠS over a suitable aggregation
schema S′E . ΠS is of a restricted syntactic form, called simple, which means that each of its
rules contains at most one EDB atom, that this atom contains all variables of the rule body,
each variable exactly once, and that rules without an EDB atom contain at most a single
variable. To achieve this, Π is first saturated by adding all rules that can be obtained from a
rule in Π by identifying variables; then Π is rewritten in an equivalence-preserving way so

XX:6 Rewritability in MDDLog, MMSNP, and Expressive DLs

S′
E-instance I ′ SE-instance I SE-instance I ′′

b

a′ b′

cc′a

Rq Rq

Rq

b

a′ b′

cc′a
r r

r r r
r

r r

r

b

a′ b′

cc′a

Rq Rq

Rq

Rq

Figure 1 Translating an S′
E-instance into an SE-instance and vice versa

that all rule bodies are biconnected, introducing fresh unary and nullary IDBs as needed.
Finally, for each rule body the conjunction q(x) of its EDB atoms is replaced with a single
EDB atom Rq(x)(x), additionally taking care of interactions between the new EDB relations
that arise, e.g. when we have two relations Rq(x) and Rp(x) such that q(x) is contained in
p(x) (in the sense of query containment).

I Theorem 2 ([24]). Given a Boolean MDDLog program Π over EDB schema SE of diameter
k and size n, one can construct a simple Boolean MDDLog program ΠS over a k-aggregation
schema S′E for SE such that

1. If I is an SE-instance and I ′ the corresponding S′E-instance, then I |= Π iff I ′ |= ΠS;
2. If I ′ is an S′E-instance and I the corresponding SE-instance, then

a. I ′ |= ΠS implies I |= Π;
b. I |= Π implies I ′ |= ΠS if the girth of I ′ exceeds k.

The size of Πs and the cardinality of S′E are bounded by 2p(k·logn), p a polynomial. The
construction takes time polynomial in the size of ΠS.

Note that ΠS is equivalent to Π only on instances whose girth exceeds k, the maximal arity
of a relation symbol in S′E .

In the second step, the simple MDDLog program ΠS is translated into a generalized CSP
whose complement is equivalent to ΠS . Informally, one introduces one template for every
0-type (set of nullary IDBs), each template contains one constant for every 1-type (set of
at most unary IDBs) that is compatible with the 0-type and interprets the EDB relations
in a maximal way so that all rules in Π are satisfied (when interpreting the IDBs true as
suggested by the 1-types).

I Theorem 3 ([24]). Let Π be a simple Boolean MDDLog program over EDB schema SE

and with IDB schema SI , m the maximum arity of relations in SE. Then there exists a set
of templates SΠ over SE such that

1. Π is equivalent to coCSP(SΠ);
2. |SΠ| ≤ 2|SI | and |T | ≤ |SE | · 2m|SI | for each T ∈ SΠ;
The construction takes time polynomial in

∑
T∈SΠ

|T |.

4 FO- and MDLog-Rewritability of Boolean MDDLog Programs

We exploit the translation described in the previous section to lift the decidability of FO-
rewritability and of MDLog-rewritability from coCSPs to Boolean MDDLog, and thus also to

C. Feier and A. Kuusisto and C. Lutz XX:7

MMSNP. In the case of FO, we obtain tight 2NExpTime complexity bounds. For MDLog, the
exact complexity remains open (as in the CSP case), between 2NExpTime and 3ExpTime.

We start with observing that FO-rewritability and MDLog-rewritability are more closely
related than one might think at first glance. In fact, every MDLog-rewriting can be viewed
as an infinitary UCQ-rewriting and, by Rossman’s homomorphism preservation theorem [38],
FO-rewritability of a Boolean MDDLog program coincides with (finitary) UCQ-rewritability.
The latter is true also in the non-Boolean case.

I Proposition 4. An MDDLog program Π is FO-rewritable iff it is UCQ-rewritable.

For utilizing the translation of Boolean MDDLog programs to generalized CSPs in the
intended way, the interesting aspect is to deal with the translation of a Boolean MDDLog
program Π into a simple program ΠS stated in Theorem 2, since it is not equivalence
preserving. The following lemma relates rewritings of Π to rewritings of ΠS .

I Lemma 5. Let Π be a Boolean MDDLog program of diameter k, ΠS as in Theorem 2, and
Q ∈ {UCQ,MDLog,DLog}. Then

1. every Q-rewriting of ΠS can effectively be converted into a Q-rewriting of Π;
2. every Q-rewriting of Π can effectively be converted into a Q-rewriting of ΠS that is

(i) sound on instances of girth exceeding k and (ii) complete.
Proof.(sketch) We only give the constructions for the case Q = UCQ and refer to the long
version for the other cases and for correctness proofs. For Point 1, let qΠS

be a UCQ-rewriting
of ΠS . Then we obtain a UCQ-rewriting of Π by replacing every atom Rq(x)(y) with q[y/x],
that is, with the result of replacing the variables x in q(x) with the variables y.

For Point 2, let qΠ be a UCQ-rewriting of Π. We obtain a UCQ-rewriting of ΠS by taking
the UCQ that consists of all CQs which can be obtained as follows:

1. choose a CQ q(x) from qΠ, identify variables in q to obtain a CQ q′(x′), and choose a
partition q1(x1), . . . , qn(xn) of q′(x′);

2. for each i ∈ {1, . . . , n}, choose a relation Rp(z) from the EDB schema of ΠS and a vector
y of |z| variables (repeated occurrences allowed) that are either from xi or do not occur in
x′ such that qi(xi) ⊆ p[y/z]; then replace qi(xi) in q′(x′) with the single atom Rp(z)(y).

o

Point 2 of Lemma 5 only yields a rewriting of ΠS on S′E-instances of high girth. We
next show that for CSPs, the existence of a Q-rewriting on instances of high girth, Q ∈
{UCQ,MDLog}, implies the existence of a Q-rewriting that works on instances of unrestricted
girth. Whether the same is true for Q = Datalog remains as an open problem.

I Lemma 6. Let S be a set of templates over schema SE, g ≥ 0, and Q ∈ {UCQ,MDLog}.
If coCSP(S) is Q-rewritable on instances of girth exceeding g, then it is Q-rewritable.

The proof of Lemma 6 uses a well-known combinatorial lemma that goes back to Erdös and
was adapted to CSPs by Feder and Vardi.Putting together Theorem 2 and 3, Proposition 4,
and Lemmas 5 and 6, we obtain the following reductions of rewritability of Boolean MDDLog
programs to CSP rewritability.

I Proposition 7. Every Boolean MDDLog program Π can be converted into a set of templates
SΠ such that

1. Π is Q-rewritable iff SΠ is Q-rewritable for every Q ∈ {FO,UCQ,MDLog};

XX:8 Rewritability in MDDLog, MMSNP, and Expressive DLs

2. every Q-rewriting of Π can be effectively translated into a Q-rewriting of SΠ and vice
versa, for every Q ∈ {UCQ,MDLog}.

3. |SΠ| ≤ 22p(n) and |T | ≤ 22p(n) for each T ∈ SΠ, n the size of Π and p a polynomial.
The construction takes time polynomial in

∑
T∈SΠ

|T |.

FO-rewritability of CSPs is NP-complete [29] and it was observed in [11] that the upper bound
lifts to generalized CSPs. MDLog-rewritability of coCSPs is NP-hard and in ExpTime [19].
We show in the long version that this upper bound lifts to generalized coCSPs. Together
with Proposition 7 and the lower bounds from [15], we obtain the following:

I Theorem 8. For Boolean MDDLog programs and the complement of MMSNP sentences,

1. FO-rewritability (equivalently: UCQ-rewritability) is 2NExpTime-complete;
2. MDLog-rewritability is in 3ExpTime (and 2NExpTime-hard).

5 Shape of Rewritings and Obstructions for MMSNP sentences

An important first step towards the design of practical algorithms that compute rewritings
(when they exist) is to analyze the shape of the rewritings. In the case of CSPs, both UCQ-
and MDLog-rewritings are known to be of a rather restricted shape, far from exploiting the
full expressive power of the target languages: any FO-rewritable CSP has a UCQ-rewriting
that consists of tree-shaped CQs and any MDLog-rewritable CSP has an MDLog-rewriting in
which each rule has at mosrt a single EDB atom. In this section, we establish corresponding
results for Boolean MDDLog.

Exploiting the results concerning the shape of UCQ- and MDLog- rewritings for CSPs
and the constructions from the proof of Point 2 of Lemma 5, one can show the following.

I Theorem 9. Let Π be a Boolean MDDLog program of diameter k. Then

1. if Π is FO-rewritable, then it has a UCQ-rewriting in which each CQ has treewidth (1, k);
2. if Π is MDLog-rewritable, then it has an MDLog-rewriting of diameter k.

In a sense, the concrete bound k in Points 1 and 2 of Theorem 9 is quite remarkable.
Point 2 says, for example, that when eliminating disjunction from a Boolean MDDLog
program, it never pays off to increase the diameter.

For CSPs, FO- and MDLog-rewritability is closely related to the theory of obstructions:
an obstruction set O for a CSP template T over schema SE is a set of instances over the
same schema, called obstructions, such that for any SE-instance I, we have I 6→ T iff O → I

for some O ∈ O. A lot is known about CSP obstructions. For example, T is FO-rewritable if
and only if it has a finite obstruction set [3] if and only if it has a finite obstruction set that
consists of finite trees [35], and T is MDLog-rewritable if and only if it has a (potentially
infinite) obstruction set that consists of finite trees [24].

Here we establish similar results for the case of MMSNP. Obstruction sets for MMSNP
are defined in the obvious way: an obstruction set O for an MMSNP sentence θ over schema
SE is a set of instances over the same schema such that for any SE-instance I, we have I 6|= θ

iff O → I for some O ∈ O. The following result, which essentially is a consequence of Point 1
of Theorem 9, characterizes FO-rewritability of MMSNP sentences in terms of obstruction
sets.

I Corollary 10. For every MMSNP sentence θ, the following are equivalent:

1. θ is FO-rewritable;

C. Feier and A. Kuusisto and C. Lutz XX:9

2. θ has a finite obstruction set;
3. θ has a finite set of finite obstructions of treewidth (1, k).
We now turn to MDLog-rewritability.

I Proposition 11. Let θ be an MMSNP sentence of diameter k. Then ¬θ is MDLog-rewritable
iff θ has a set of obstructions (equivalently: finite obstructions) that are of treewidth (1, k).

We remark that the results in [13] almost give Proposition 11, but do not seem to deliver a
concrete bound on the parameter k of the treewidth of obstruction sets.

6 Datalog-Rewritability of Boolean MDDLog Programs and
Canonical Datalog Programs

We study the Datalog-rewritability of Boolean MDDLog programs. In contrast to the case
of FO- or MDLog-rewritings, we obtain a procedure that is sound, but whose completeness
remains an open problem. We can show, however, that the procedure is complete for MDDLog
programs that have equality, a condition that is defined in detail below. We also give a
new and direct construction of canonical Datalog-rewritings of Boolean MDDLog programs
(equivalently: the complements of MMSNP sentences), bypassing the construction of infinite
templates which involves the application of a non-trivial construction due to Cherlin, Shelah,
and Shi [13,20].

6.1 Datalog-Rewritability of Boolean MDDLog Programs
We say that an MDDLog program Π has equality if its EDB schema includes the distinguished
binary relation eq, Π contains the rules P (x) ∧ eq(x, y)→ P (y) and P (y) ∧ eq(x, y)→ P (x)
for each IDB relation P , and these are the only rules that mention eq. For an MDDLog
program Π that does not have equality, we use Π= to denote the extension of Π with the
fresh EDB relation eq and the above rules. If Π has equality, then Π= simply denotes Π.
Clearly, a DLog-rewriting of Π= can be converted into a DLog-rewriting of Π by dropping
all rules that use the relation eq. This gives the following lemma.

I Lemma 12. For any MDDLog program Π, DLog-rewritability of Π= implies DLog-
rewitability of Π.

It remains an interesting open question whether the converse of Lemma 12 holds.
A CSP template T has equality if its schema includes the distinguished binary relation

eq and T interprets eq as the relation {(a, a) | a ∈ dom(T)}. It can be verified that when an
MDDLog program that has equality is converted into a generalized CSP based on a set of
templates SΠ according to Theorems 2 and 3 (using the concrete constructions in the long
version), then all templates in SΠ have equality. The interesting aspect of having equality is
that it allows us to establish a counterpart of Lemma 6 also for Datalog-rewritability.

I Lemma 13. Let S be a set of templates over schema SE that have equality, and let g ≥ 0.
If coCSP(S) is DLog-rewritable on instances of girth exceeding g, then it is DLog-rewritable.

Proof.(sketch) With every SE-instance I and g ≥ 0, we associate an SE-instance Ig of girth
exceeding g such that for any template T over SE that has equality, Ig → T iff I → T . In
fact, Ig is obtained from I by duplicating domain elements, and introducing chains of equality
atoms. Then, for every DLog rewriting Γ of coCSP(S) on instances of girth exceeding g, it
is possible to construct a DLog program Γ′ such that I |= Γ′ iff Ig |= Γ. Intuitively, when

XX:10 Rewritability in MDDLog, MMSNP, and Expressive DLs

executed over I, Γ′ mimics the execution of Γ over Ig. Clearly, Γ′ is then a DLog-rewriting
of coCSP(S) on unrestricted instances. o

DLog-rewritability of CSPs is NP-complete [4,19] and it was observed in [11] that this result
lifts to generalized CSPs. It thus follows from Theorems 2 and 3 and Lemma 13 that DLog-
rewritability of Boolean MDDLog programs that have equality is decidable in 2NExpTime.
It is straightforward to verify that the 2NExpTime lower bound for DLog-rewritability of
MDDLog programs from [15] applies also to programs that have equality.

I Theorem 14. For Boolean MDDLog programs that have equality, DLog-rewritability is
2NExpTime-complete.

MDDLog programs obtained from OMQs typically do not have equality. Due to Lemma 12,
though, we obtain a sound but possibly incomplete algorithm for deciding DLog-rewritability
of an unrestricted MDDLog program Π by first replacing it with Π= and then deciding
DLog-rewritability as per Theorem 14. We speculate that this algorithm is actually complete.
Note that for CSPs, it is known that adding equality preseves DLog-rewritability [30], and
completeness of our algorithm is equivalent to an analogous result holding for MDDLog.

6.2 Canonical Datalog-Rewritings
For constructing actual DLog-rewritings instead of only deciding their existence, canonical
Datalog programs play an important role. Feder and Vardi show that for every CSP template
T and all `, k > 0, once can construct an (`, k)-Datalog program that is canonical for T in
the sense that if there is any (`, k)-Datalog program which is equivalent to the complement
of T , then the canonical one is [24]. In this section, we show that there are similarly simple
canonical Datalog programs for Boolean MDDLog. Note that the existence of canonical
Datalog programs for MMSNP (and thus for Boolean MDDLog) is already known from [13].
However, the construction given there is rather complex, proceeding via an infinite template
and exploiting that it is ω-categorial. This makes it hard to analyze the exact structure and
size of the resulting canonical programs. Here, we define canonical Datalog programs for
Boolean MDDLog programs in a more elementary way.

Let 0 ≤ ` < k, and let Π be a Boolean MDDLog program over EDB schema SE and with
IDB relations from SI . We first convert Π into a DDLog program Π′ that is equivalent to Π
on instances of treewidth (`, k). Unlike Π, the new program Π′ is no longer monadic. We start
with a preliminary. With every DDLog rule p(y) ← q(x) where q(x) is of treewidth (`, k)
and every (`, k)-tree decomposition (T, (Bv)v∈V) of q(x), we associate a set of rewritten rules
constructed as follows. Choose a root v0 of T , thus inducing a direction on the undirected
tree T . We write v ≺ v′ if v′ is a successor of v in T and use xv′ to denote Bv ∩Bv′ . For all
v ∈ V \ {v0} such that |xv| = m, introduce a fresh m-ary IDB relation Qv; note that m ≤ `.
Now, the set of rewritten rules contains one rule for each v ∈ V . For v 6= v0, the rule is

pv(yv) ∨Qv(xv)← q(x)|Bv
∧

∧
v≺v′

Qv′(xv′)

where pv(yv) is the sub-disjunction of p(y) that contains all disjuncts P (z) with z ⊆ Bv. For
v0, we include the same rule, but use only pv(yv) as the head. The set of rewritten rules
associated with p(y)← q(x) is obtained by taking the union of the rewritten rules associated
with p(y)← q(x) and any (T, (Bv)v∈V).

The DDLog program Π′ is constructed from Π as follows:

1. first extend Π with all rules that can be obtained from a rule in Π by identifying variables;

C. Feier and A. Kuusisto and C. Lutz XX:11

2. then delete all rules with q(x) not of treewidth (`, k) and replace every rule p(y)← q(x)
with q(x) of treewidth (`, k) with the rewritten rules associated with it.

It can be verified that Π′ satisfies the following conditions:

(I) Π′ is sound for Π, that is, for all SE-instances I, I |= Π′ implies I |= Π;
(II) Π′ is complete for Π on SE-instances of treewidth (`, k), that is, for all such instances I,

I |= Π implies I |= Π′.

Let S′I denote the additional IDB relations in Π′. We now construct the canonical
(`, k)-DLog program Γc for Π. Fix constants a1, . . . , a`. For `′ ≤ `, we use I`′ to denote the
set of all SI ∪ S′I -instances with domain a`′ := a1, . . . , a`′ . The program uses `′-ary IDB
relations PM , for all `′ ≤ ` and all M ⊆ I`′ . It contains all rules q(x)→ PM (y), M ⊆ I`′ ,
that satisfy the following conditions:

1. q(x) contains at most k variables;
2. for every extension J of the SE-instance Iq|SE

with SI ∪ S′I -facts such that

a. J satisfies all rules of Π′ and does not contain goal() and
b. for each PN (z) ∈ q, N ⊆ I`′′ , there is an L ∈ N such that L[z/a`′′] = J |SI∪S′

I
, z

there is an L ∈M such that L[y/a`′] = J |SI∪S′
I
,y

where L[x/a] denotes the result of replacing the constants in a with the variables in x (possibly
resulting in identifications) and where J |SI∪S′

I
,x denotes the simultaneous restriction of J

to schema SI ∪ S′I and constants x.2 We also include all rules of the form P∅(x)→ goal(),
P∅ of any arity from 0 to `.

The following theorem says that the canonical program is indeed canonical in the desired
sense. For two Boolean DLog programs Π1,Π2 over the same EDB schema SE , we write
Π1 ⊆ Π2 if for every SE-instance I, I |= Π1 implies I |= Π2.

I Theorem 15. Let Π be a Boolean MDDLog program, 0 ≤ ` ≤ k, and Γc the canonical
(`, k)-DLog program for Π. Then

1. Γ ⊆ Γc for every (`, k)-DLog program Γ that is sound for Π;
2. Π is (`, k)-DLog-rewritable iff Γc is a DLog-rewriting of Π.
Note that by Point 2 of Theorem 15, the canonical (`, k)-DLog program for an MDDLog
program Π is interesting even if Π is not rewritable into an (`, k)-DLog program as it is the
strongest sound (`, k)-DLog approximation of Π.

7 Non-Boolean MDDLog Programs

We lift the results about the complexity of rewritability, about canonical DLog programs, and
about the shape of rewritings and obstructions from the case of Boolean MDDLog programs
to the non-Boolean case. For all of this, a certain extension of (`, k)-Datalog programs with
parameters plays a central role. We thus begin by introducing these extended programs.

2 We could additionally demand that M is minimal so that Condition 2 is satisfied, but this is not strictly
required.

XX:12 Rewritability in MDDLog, MMSNP, and Expressive DLs

7.1 Deciding Rewritability
An (`, k)-Datalog program with n parameters is an n-ary (`+ n, k + n)-Datalog program in
which all IDBs have arity at least n and where in every rule, all IDB atoms agree on the
variables used in the last n positions (both in rule bodies and heads and including the goal
IDB). The last n positions of IDBs are called parameter positions. To visually separate the
parameter positions from the non-distinguished positions, we use “|” as a delimiter, writing
e.g. P (x1, x2 | y1, y1, y2)← Q(y1 | y1, y1, y2)∧R(x1, y1, y2, x2) where P,Q are IDB, R is EDB,
and there are three parameter positions. Note that, by definition, all variable positions in
goal atoms are parameter positions.

I Example 16. The following is an MDLog program with one parameter that returns all
constants which are on an R-cycle, R a binary EDB relation:

P (y |x) ← R(x | y); P (z |x) ← P (y |x) ∧R(y, z); goal(x) ← P (x |x)

Parameters in Datalog programs play a similar role as parameters to least fixed-point operators
in FO(LFP), see for example [5] and references therein. The program in Example 16 is not
definable in MDLog without parameters, which shows that adding parameters increases
expressive power. But although (`, k)-DLog programs with n parameters are (`+ n, k + n)-
DLog programs, one should think of them as a mild generalization of (`, k)-programs.

To lift decidability and complexity results from the Boolean case to the non-Boolean case,
we show that rewritability of an n-ary MDDLog program into (`, k)-DLog with n parameters
can be Turing reduced to rewritability of Boolean MDDLog programs into (`, k)-DLog
(without parameters). Note that the case ` = 0 is about UCQ-rewritability (and thus about
FO-rewritability) since 0-DLog programs (with and without parameters) are an alternative
presentation of UCQs.

The reduction proceeds in two steps: first, rewritability of an n-ary MDDLog program
into (`, k)-DLog with n parameters is Turing reduced to rewritability of Boolean MDDLog
programs with constants into (`, k)-DLog with constants; then (`, k)-DLog rewritability of
a Boolean MDDLog program with constants is reduced to (`, r)-DLog rewritability of a
Boolean MDDLog program with constants, where r is the maximum number of occurrences
of variables in a rule body of the program with constants. We can now lift the complexity
results from Theorems 8 and 14 to the non-Boolean case.

I Theorem 17. In MDDLog,

1. FO-rewritability (equivalently: UCQ-rewritability) is 2NExpTime-complete;
2. rewritability into MDLog with parameters is in 3ExpTime (and 2NExpTime-hard);
3. DLog-rewritability is 2NExpTime-complete for programs that have equality.

In view of Point 2, we remark that for non-Boolean MDDLog programs Π, MDLog with
parameters is in a sense a more natural target for rewriting than MDLog without parameters.

I Example 18. The following MDDLog program is rewritable into the MDLog program
with parameters from Example 16, but not into an MDLog program without parameters:

P0(x) ∨ P1(y)← R(x, y); goal(x)← P0(x;) P1(y)← P1(x) ∧R(x, y); goal(x)← P1(x)

MDLog with parameters also enjoys similarly nice properties as standard MDLog. For
example, containment is decidable. This follows from [14,39] where generalizations of MDLog
with parameters are studied, the actual parameters being represented by constants. We also

C. Feier and A. Kuusisto and C. Lutz XX:13

remark that Theorem 17 remains true even when we admit constants in MDDLog programs
and that, as another consequence of our reductions, rewritability of MDDLog programs into
DLog programs with parameters is decidable if and only if DLog-rewritability of Boolean
MDDLog programs is decidable.

.

7.2 Canonical Datalog-Rewritings
We now turn our attention to canonical DLog-rewritings for non-Boolean MDDLog programs.
For any n-ary MDDLog program Π, and ` < k, we construct a canonical (`, k)-DLog program
with n parameters. The construction is a refinement of the one from the Boolean case.

We start with some preliminaries. An n-marked instance is an instance I endowed with n
(not necessarily distinct) distinguished elements c = c1, . . . , cn. An (`, k)-tree decomposition
with n parameters of an n-marked instance (I, c) is an (`+m, k +m)-tree decomposition
of I, m the number of distinct constants in c, in which every bag Bv contains all constants
from c. An n-marked instance has treewidth (`, k) with n parameters if it admits an (`, k)-tree
decomposition with n parameters.

We first convert Π into a DDLog program Π′ that is equivalent to Π on instances
of bounded treewidth. The construction is identical to the Boolean case (first variable
identification, then rewriting) except that, in the rewriting step,

1. we use treewidth (`+ n, k + n) in place of treewidth (`, k); consequently, the arity of the
freshly introduced IDB relations may also be up to `+ n;

2. for goal rules, all head variables occur in the root bag of the tree decomposition (they can
then be treated in the same way as a Boolean goal rule despite the n-ary head relation).

It can be verified that Π′ is sound for Π. It is complete for Π only on n-marked instances of
treewidth (`, k) with n parameters: for all such instances (I, c), I |= Π[c] implies I |= Π′[c].

Let S′I denote the new IDB relations in Π′. We now construct the canonical (`, k)-DLog
program with n parameters Γc. Fix constants a1, . . . , a`, b1, . . . , bn and let I`′+n denote
the set of all SI ∪ SI′-instances with domain a`′+n := a1, . . . , a`′ , b1, . . . , bn. The program
uses `′ + n-ary IDB relations PM , for all `′ ≤ ` and all M ⊆ I`′+n. It contains all rules
q(x)→ PM (y |xp), M ⊆ I`′+n, that satisfy the following conditions:

1. q(x) contains at most k + n variables;
2. in every extension J of the SE-instance Iq|SE

with SI ∪ S′I -facts such that

a. J satisfies all rules of Π′ and does not contain goal(xp) and
b. for each PN (z |xp) ∈ q, N ⊆ I`′′+n, there is an L ∈ N such that L[zxp/a`′′+n] =
J |SI∪S′

I
, z

there is an L ∈M such that L[yxp/a`′+n] = J |SI∪S′
I
,y

We also include all rules of the form P∅(y |xp)→ goal(xp). This finishes the construction. It
is straightforward to verify that Γc is sound for Π and complete in the same sense as Π′. We
obtain the following generalization of Theorem 15.

I Theorem 19. Let Π be an n-ary MDDLog program, 0 < ` ≤ k, and Γc the canonical
(`, k)-DLog program with n parameters associated with Π. Then

1. Γ ⊆ Γc for every (`, k)-DLog program Γ that is sound for Π;
2. Π is rewritable into (`, k)-DLog with n parameters iff Γc is a rewriting of Π.

XX:14 Rewritability in MDDLog, MMSNP, and Expressive DLs

7.3 Shape of Rewritings and Obstructions
We now analyze the shape of rewritings of non-Boolean MDDLog programs. An (`, k)-tree
decomposition with n parameters of an n-ary CQ q is an (`+ n, k + n)-tree decomposition of
q in which every bag Bv contains all answer variables of q. The treewidth with parameters
of an n-ary CQ is now defined in the expected way.

I Theorem 20. Let Π be an n-ary MDDLog program of diameter k. Then

1. if Π is FO-rewritable, then it has a UCQ-rewriting in which each CQ has treewidth (1, k)
with n parameters;

2. if Π is rewritable into MDLog with n parameters, then it has an MDLog-rewriting with n
parameters of diameter k.

As in the Boolean case, rewritings are closely related to obstructions. We define obstruction
sets for MMSNP formulas with free variables and summarize the results that we obtain for
them. A set of marked obstructions O for an MMSNP formula θ with n free variables over
schema SE is a set of n-marked instances over the same schema such that for any SE-instance
I, we have I 6|= θ[a] iff for some (O, c) ∈ O, there is a homomorphism h from O to I with
h(c) = a. We obtain the following corollary from Point 1 of Theorem 20 in exactly the same
way in which Corollary 10 is obtained from Point 1 of Theorem 9.

I Corollary 21. For θ an MMSNP formula with n free variables, the following are equivalent:

1. θ is FO-rewritable;
2. θ has a finite marked obstruction set;
3. θ has a finite set of finite marked obstructions of treewidth (1, k) with n parameters.

It is interesting to note that this result can be viewed as a generalization of the character-
ization of obstruction sets for CSP templates with constants in terms of ‘c-acyclicity’ in [1];
our parameters correspond to constants in that paper. We now turn to MDLog-rewritability.

I Proposition 22. Let θ be an MMSNP formula of diameter k with n free variables. Then ¬θ
is rewritable into an MDLog program with n parameters iff θ has a set of marked obstructions
(equivalently: finite marked obstructions) that are of treewidth (1, k) with n parameters.

8 Ontology-Mediated Queries

We study rewritability of ontology-mediated queries, covering several standard description
logics as the ontology language. We start with introducing the relevant classes of queries.

An ontology-mediated query (OMQ) over a schema SE is a triple (T ,SE , q) where T is a
TBox formulated in a description logic and q is a query over the schema SE ∪ sig(T), sig(T)
the set of relation symbols used in T . The TBox can introduce symbols that are not in
SE , which allows it to enrich the schema of the query q. As the TBox language, we use
the description logic ALC, its extension ALCI with inverse roles, and the further extension
SHI of ALCI with transitive roles and role hierarchies. Since all these logics admit only
unary and binary relations, we assume that these are the only allowed arities in schemas
throughout the section. As the actual query language, we use UCQs and CQs. The OMQ
languages that these choices give rise to are denoted with (ALC,CQ), (SHI,UCQ), and so
on. In OMQs (T ,SE , q) from (SHI,UCQ), we disallow superroles of transitive roles in q; it
is known that allowing such roles in the query poses serious additional complications, which
are outside the scope of this paper, see e.g. [7, 26]. The semantics of an OMQ is given in

C. Feier and A. Kuusisto and C. Lutz XX:15

terms of certain answers. More details are provided in the long version of the paper. An
OMQ Q = (T ,SE , q) is FO-rewritable if there is an FO query ϕ(x) over schema SE (and
possibly involving equality), called an FO-rewriting of Q, such that for all SE-instances
I and a ⊆ dom(I), we have I |= Q(a) iff I |= ϕ(a). Other notions of rewritability such
as UCQ-rewritability are defined accordingly. Note that the TBox T can be inconsistent
with the input instance I, that is, there could be no model of T and I. It can thus be a
sensible alternative to work with consistent FO-rewritability, considering only SE-instances
I that are consistent w.r.t. T . As argued in the long version, our results apply to consistent
FO-rewritability, too.
I Theorem 23. In all OMQ languages between (ALC,UCQ) and (SHI,UCQ), as well as
between (ALCI,CQ) and (SHI,UCQ),
1. FO-rewritability (equivalently: UCQ-rewritability) is 2NExpTime-complete; in fact, there

is an algorithm which, given an OMQ Q = (T ,SE , q), decides in time 22p(nq·lognT) whether
Q is FO-rewritable;

2. MDLog-rewritability is in 3ExpTime (and 2NExpTime-hard); in fact, there is an
algorithm which, given an OMQ Q = (T ,SE , q), decides in time 222p(nq·lognT)

whether Q
is MDLog-rewritable

where nq and nT are the size of q and T and p is a polynomial.
Note that the runtime for deciding FO-rewritability stated in in Theorem 23 is double
exponential only in the size of the actual query q (which tends to be very small) while it is
only single exponential in the size of the TBox (which can become large) and similarly for
MDLog-rewritability, only one exponential higher.

The lower bounds in Theorem 23 are from [15]. We obtain the upper bounds by translating
the OMQ into an equivalent MDDLog program and then applying the constructions that
we have already established. As shown in [11] and refined in [15], every OMQ from the
languages mentioned in Theorem 23 can be converted into an equivalent MDDLog program
at the expense of a single or even double exponential blowup, depending on the OMQ
language. Thus, we can decide FO- or MDLog-rewritability of an OMQ Q from (SHI,UCQ)
by translating Q into an MDDLog program Π and deciding the same problem for Π. A
detailed analysis of all the relevant blowups involved in the composed reductions reveals that,
when implemented with sufficent care, we actually obtain a 2NExpTime upper bound.

9 Discussion

We have clarified the decidability status and computational complexity of FO- and MDLog-
rewritability in MMSNP, MDDLog, and various OMQ languages based on expressive de-
scription logics and conjunctive queries. For Datalog-rewritability, we were only able to
obtain partial results, namely a sound algorithm that is complete only on a certain class of
inputs and potentially incomplete in general. This raises several natural questions: is our
algorithm actually complete in general? Does an analogue of Lemma 6 (that is, rewritability
on high girth implies rewritability) hold for Datalog as a target language? What is the
complexity of deciding Datalog-rewritability in the afore-mentioned languages? From an
OMQ perspective, it would also be important to work towards more practical approaches for
computing (FO-, MDLog-, and DLog-) rewritings. Given the high computational complexities
involved, such approaches might have to be incomplete to be practically feasible. However,
the degree/nature of incompleteness should then be characterized, and we expect the results
in this paper to be helpful in such an endeavour.
Acknowledgement. We thank Libor Barto, Manuel Bodirsky, and Florent Madeleine for
helpful discussions.

XX:16 Rewritability in MDDLog, MMSNP, and Expressive DLs

References

1 Bogdan Alexe, Balder ten Cate, Phokion G. Kolaitis, and Wang Chiew Tan. Characterizing
schema mappings via data examples. ACM Trans. Database Syst., 36(4):23, 2011.

2 Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Zakharyaschev. The
DL-Lite family and relations. JAIR, 36:1–69, 2009.

3 Albert Atserias. On digraph coloring problems and treewidth duality. Eur. J. Comb.,
29(4):796–820, 2008.

4 Libor Barto. The collapse of the bounded width hierarchy. J. Log. Comput., 26(3):923–
943, 2016. URL: http://dx.doi.org/10.1093/logcom/exu070, doi:10.1093/logcom/
exu070.

5 Michael Benedikt, Pierre Bourhis, and Michael Vanden Boom. A step up in expressiveness
of decidable fixpoint logics. In Proc. of LICS. IEEE Computer Society, 2016.

6 Michael Benedikt, Balder ten Cate, Thomas Colcombet, and Michael Vanden Boom. The
complexity of boundedness for guarded logics. In Proc. of LICS, pages 293–304. IEEE
Computer Society, 2015.

7 Meghyn Bienvenu, Thomas Eiter, Carsten Lutz, Magdalena Ortiz, and Mantas Simkus.
Query answering in the description logic S. In Proc. of DL2010, volume 573 of CEUR
Workshop Proceedings. CEUR-WS.org, 2010. URL: http://ceur-ws.org/Vol-573/paper_
20.pdf.

8 Meghyn Bienvenu, Peter Hansen, Carsten Lutz, and Frank Wolter. First order-rewritability
and containment of conjunctive queries in horn description logics. In Proc. of IJCAI, 2016.

9 Meghyn Bienvenu, Carsten Lutz, and Frank Wolter. First-order rewritability of atomic
queries in horn description logics. In Proc. of IJCAI, 2013.

10 Meghyn Bienvenu and Magdalena Ortiz. Ontology-mediated query answering with data-
tractable description logics. In Proc. of Reasoning Web, volume 9203 of LNCS, pages
218–307. Springer, 2015.

11 Meghyn Bienvenu, Balder ten Cate, Carsten Lutz, and Frank Wolter. Ontology-based
data access: A study through disjunctive Datalog, CSP, and MMSNP. ACM Trans.
Database Syst., 39(4):33:1–33:44, 2014. URL: http://doi.acm.org/10.1145/2661643,
doi:10.1145/2661643.

12 Manuel Bodirsky, Hubie Chen, and Tomás Feder. On the complexity of MMSNP. SIAM
J. Discrete Math., 26(1):404–414, 2012.

13 Manuel Bodirsky and Víctor Dalmau. Datalog and constraint satisfaction with infinite
templates. J. Comput. Syst. Sci., 79(1):79–100, 2013. URL: http://dx.doi.org/10.1016/
j.jcss.2012.05.012, doi:10.1016/j.jcss.2012.05.012.

14 Pierre Bourhis, Markus Krötzsch, and Sebastian Rudolph. Reasonable highly expressive
query languages. In Proc. of IJCAI2015, pages 2826–2832. AAAI Press, 2015. URL:
http://ijcai.org/papers15/Abstracts/IJCAI15-400.html.

15 Pierre Bourhis and Carsten Lutz. Containment in monadic disjunctive Datalog, MMSNP,
and expressive description logics. In Proc. of KR, 2016.

16 Andrei A. Bulatov, Andrei A. Krokhin, and Benoit Larose. Dualities for constraint satisfac-
tion problems. In Complexity of Constraints - An Overview of Current Research Themes,
volume 5250 of LNCS, pages 93–124. Springer, 2008.

17 Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, Antonella
Poggi, Mariano Rodriguez-Muro, and Riccardo Rosati. Ontologies and databases: The
DL-Lite approach. In Proc. of Reasoning Web 2009, volume 5689 of LNCS, pages 255–
356. Springer, 2009. URL: http://dx.doi.org/10.1007/978-3-642-03754-2_7, doi:10.
1007/978-3-642-03754-2_7.

http://dx.doi.org/10.1093/logcom/exu070
http://dx.doi.org/10.1093/logcom/exu070
http://dx.doi.org/10.1093/logcom/exu070
http://ceur-ws.org/Vol-573/paper_20.pdf
http://ceur-ws.org/Vol-573/paper_20.pdf
http://doi.acm.org/10.1145/2661643
http://dx.doi.org/10.1145/2661643
http://dx.doi.org/10.1016/j.jcss.2012.05.012
http://dx.doi.org/10.1016/j.jcss.2012.05.012
http://dx.doi.org/10.1016/j.jcss.2012.05.012
http://ijcai.org/papers15/Abstracts/IJCAI15-400.html
http://dx.doi.org/10.1007/978-3-642-03754-2_7
http://dx.doi.org/10.1007/978-3-642-03754-2_7
http://dx.doi.org/10.1007/978-3-642-03754-2_7

C. Feier and A. Kuusisto and C. Lutz XX:17

18 Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Tractable reasoning and efficient query answering in description logics: The
DL-Lite family. J. Autom. Reasoning, 39(3):385–429, 2007.

19 Hubie Chen and Benoit Larose. Asking the metaquestions in constraint tractability. CoRR,
abs/1604.00932, 2016.

20 Gregory L. Cherlin, Saharon Shelah, and Niandong Shi. Universal graphs with forbidden
subgraphs and algebraic closure. Advances in Applied Mathematics, 22:454–491, 1999.

21 Víctor Dalmau and Benoit Larose. Maltsev + datalog –> symmetric datalog. In Proc. of
LICS, pages 297–306. IEEE Computer Society, 2008.

22 László Egri, Benoit Larose, and Pascal Tesson. Symmetric datalog and constraint satis-
faction problems in logspace. In Proc. of LICS, pages 193–202. IEEE Computer Society,
2007.

23 Thomas Eiter, Magdalena Ortiz, Mantas Simkus, Trung-Kien Tran, and Guohui Xiao.
Query rewriting for Horn-SHIQ plus rules. In Proc. of AAAI. AAAI Press, 2012.

24 Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through datalog and group theory. SIAM J. Comput.,
28(1):57–104, 1998.

25 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006.

26 Georg Gottlob, Andreas Pieris, and Lidia Tendera. Querying the guarded fragment
with transitivity. In Proc. of ICALP2013, volume 7966 of LNCS, pages 287–298.
Springer, 2013. URL: http://dx.doi.org/10.1007/978-3-642-39212-2_27, doi:10.
1007/978-3-642-39212-2_27.

27 Peter Hansen, Carsten Lutz, İnanç Seylan, and Frank Wolter. Efficient query rewriting in
the description logic el and beyond. In Proc. of IJCAI, 2015.

28 Mark Kaminski, Yavor Nenov, and Bernardo Cuenca Grau. Computing datalog rewritings
for disjunctive datalog programs and description logic ontologies. In Proc. of RR, pages
76–91, 2014.

29 Benoit Larose, Cynthia Loten, and Claude Tardif. A characterisation of first-order con-
straint satisfaction problems. Logical Methods in Computer Science, 3(4), 2007. URL:
http://dx.doi.org/10.2168/LMCS-3(4:6)2007, doi:10.2168/LMCS-3(4:6)2007.

30 Benoit Larose and László Zádori. Bounded width problems and algebras. Algebra univer-
salis, 56(3):439–466, 2007.

31 Florent R. Madelaine. Universal structures and the logic of forbidden patterns. Logical
Methods in Computer Science, 5(2), 2009. URL: http://arxiv.org/abs/0904.2521.

32 Florent R. Madelaine. On the containment of forbidden patterns problems. In Proc. of
CP2010, volume 6308 of LNCS, pages 345–359. Springer, 2010. URL: http://dx.doi.org/
10.1007/978-3-642-15396-9_29, doi:10.1007/978-3-642-15396-9_29.

33 Florent R. Madelaine and Iain A. Stewart. Constraint satisfaction, logic and forbidden
patterns. SIAM J. Comput., 37(1):132–163, 2007. URL: http://dx.doi.org/10.1137/
050634840, doi:10.1137/050634840.

34 Jaroslav Nesetril. Many facets of dualities. In Proc. of Workshop on Combinatorial Optim-
ization, pages 285–302. Springer, 2008.

35 Jaroslav Nešetřil and Claude Tardif. Duality theorems for finite structures (characterising
gaps and good characterisations). J. Comb. Theory, Ser. B, 80(1):80–97, 2000.

36 Héctor Pérez-Urbina, Boris Motik, and Ian Horrocks. Tractable query answering and re-
writing under description logic constraints. JAL, 8(2):186–209, 2010.

37 Riccardo Rosati. On conjunctive query answering in EL. In Proc. of DL, pages 451–458,
2007.

http://dx.doi.org/10.1007/978-3-642-39212-2_27
http://dx.doi.org/10.1007/978-3-642-39212-2_27
http://dx.doi.org/10.1007/978-3-642-39212-2_27
http://dx.doi.org/10.2168/LMCS-3(4:6)2007
http://dx.doi.org/10.2168/LMCS-3(4:6)2007
http://arxiv.org/abs/0904.2521
http://dx.doi.org/10.1007/978-3-642-15396-9_29
http://dx.doi.org/10.1007/978-3-642-15396-9_29
http://dx.doi.org/10.1007/978-3-642-15396-9_29
http://dx.doi.org/10.1137/050634840
http://dx.doi.org/10.1137/050634840
http://dx.doi.org/10.1137/050634840

XX:18 Rewritability in MDDLog, MMSNP, and Expressive DLs

38 Benjamin Rossman. Homomorphism preservation theorems. J. ACM, 55(3):15:1–15:53,
2008.

39 Sebastian Rudolph and Markus Krötzsch. Flag & check: data access with monadically
defined queries. In Proc. of PODS, pages 151–162. ACM, 2013.

40 Despoina Trivela, Giorgos Stoilos, Alexandros Chortaras, and Giorgos B. Stamou. Optim-
ising resolution-based rewriting algorithms for OWL ontologies. J. Web Sem., 33:30–49,
2015.

	Introduction
	Preliminaries
	From MDDLog via Simple MDDLog to CSPs
	FO- and MDLog-Rewritability of Boolean MDDLog Programs
	Shape of Rewritings and Obstructions for MMSNP sentences
	Datalog-Rewritability of Boolean MDDLog Programs and Canonical Datalog Programs
	Datalog-Rewritability of Boolean MDDLog Programs
	Canonical Datalog-Rewritings

	Non-Boolean MDDLog Programs
	Deciding Rewritability
	Canonical Datalog-Rewritings
	Shape of Rewritings and Obstructions

	Ontology-Mediated Queries
	Discussion

