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Abstract
We study combinations of the description logic DL-
LiteNboolwith the branching temporal logics CTL∗
and CTL. We analyse two types of combina-
tions, both with rigid roles: (i) temporal opera-
tors are applied to concepts and ABox assertions,
and (ii) temporal operators are applied to con-
cepts and Boolean combinations of concept inclu-
sions and ABox assertions. For the resulting logics,
we present algorithms for the satisfiability problem
and (mostly tight) complexity bounds ranging from
EXPTIME to 3EXPTIME.

1 Introduction
Over the last 25 years, plenty of extensions of classical de-
scription logics (DLs) with an explicit temporal component
have been investigated. The study of temporal DLs (TDLs)
is motivated by the fact that, arguably, in almost every do-
main where ontologies are used many terms are described and
classified based on certain temporal patterns. For instance, in
the biomedical domain, where DL-ontologies are commonly
used, diseases or findings are defined according to the evo-
lution of specific symptoms or the repetition of certain pat-
terns over time [Shankar et al., 2008; O’Connor et al., 2009;
Crowe and Tao, 2015]. Another prominent application of
TDLs is the representation of and reasoning about temporal
conceptual data models (TCMs) [Artale et al., 2007b; 2011;
2014] introduced in the context of temporal databases as ex-
tensions of classical conceptual models such as ER and UML.

The most popular approach to TDLs is to combine DLs
with traditional temporal logics such as LTL or CTL∗and pro-
vide a two-dimensional semantics, one dimension for time
and the other for DL quantification, in the style of many-
dimensional modal logics [Gabbay et al., 2003]. In the con-
struction of this kind of TDLs there are a number of design
choices, depending on the desired level of interaction be-
tween the component logics. For example, we can choose
whether temporal operators are applied to concepts, roles or
TBox and ABox axioms. Unfortunately, many TDLs be-
come undecidable if they allow to reason about the tempo-
ral evolution of both roles and concepts [Artale et al., 2007a;

∗Gutiérrez-Basulto was funded by the EU’s Horizon 2020 pro-
gramme under the Marie Skłodowska-Curie grant No 663830.

Lutz et al., 2008; Gutiérrez-Basulto et al., 2014]. In fact,
these undecidability results hold already if roles are de-
clared rigid (not changing their interpretation over time), the
temporal operators available are heavily restricted and the
lightweight sub-Boolean DL EL is used. On the other hand,
in their seminal work, Artale et al. [2007a] showed that TDLs
based on LTL and members of the family of lightweight DLs
DL-Lite [Artale et al., 2009] can support rigid roles and tem-
poral concepts without compromising decidability. Further-
more, it was recently shown [Artale et al., 2014] that this
type of TDLs, besides being complexity-wise well-behaved,
are well-suited to encode many important aspects of TCMs.

The purpose of this paper is to make further progress in the
study of temporal extensions of DL-Lite. We are particularly
interested in setting the basis for the development of a fine-
grained analysis of TDLs based on DL-Lite and the branch-
ing temporal logics CTL∗ and CTL. To this aim, we investi-
gate combinations of the expressive member DL-LiteNbool of
DL-Lite with CTL∗ and CTL, and provide algorithms for the
satisfiability problem and (mostly tight) complexity bounds.
We believe the obtained results are important because the un-
derstanding of this kind of TDLs was very limited; indeed,
only initial results were available [Gutiérrez-Basulto et al.,
2014]. Moreover, in the light of the results by Artale et
al. [2014] above, these TDLs might be well-suited to encode
TCMs incorporating branching time to capture various ver-
sions of the different components of conceptual schemas over
time [Golendziner and dos Santos, 1995; Moro et al., 2001;
de Matos Galante et al., 2005], or version document mod-
els, also requiring branching time [Noronha et al., 1998;
Weitl et al., 2009].

We look at two types of combinations: (i) CTL∗-LiteNbool
and CTL-LiteNbool with rigid roles in the case where temporal
operators are applied to concepts and temporal ABox asser-
tions of certain shape are allowed, too. (ii) we look again at
the TDLs in (i), but additionally temporal operators can be
applied to Boolean combinations of concept inclusions and
ABox assertions. For both types of combinations, we develop
a uniform algorithm (working for both CTL and CTL∗-based
TDLs) for satisfiability based on a combination of type-based
abstractions and tree automata. This approach to satisfiability
was originally introduced in [Gutiérrez-Basulto et al., 2012]
for combinations of CTL and CTL∗ with ALC; here, we ex-
tend and adapt it to deal with ABoxes, unqualified number



restrictions and rigid roles. Note that, as discussed, if rigid
roles are allowed in qualified existential restrictions, already
combinations of sub-fragments of CTL with the sub-logic EL
of ALC are undecidable [Gutiérrez-Basulto et al., 2014].

Our results are as follows: For combinations of type (i), we
develop a uniform algorithm for knowledge base satisfiability
based on a combination of type-elimination with automata-
theoretic approaches to temporal reasoning in CTL and
CTL∗, yielding tight 2EXPTIME and EXPTIME upper bounds
for CTL∗-LiteNbool and CTL-LiteNbool, respectively. For combi-
nations of type (ii), we devise a uniform approach to formula
satisfiability that combines type-based abstractions, nondeter-
ministic automata for CTL and CTL∗, and two-way alternat-
ing tree automata. We obtain 3EXPTIME and 2EXPTIME up-
per bounds for CTL∗-LiteNbool- and CTL-LiteNbool formulas, re-
spectively. For CTL-LiteNbool, we get a matching lower bound.

We note in passing that previously developed techniques
for combinations of LTL with DL-LiteNbool cannot be straight-
forwardly adapted to the branching case. For combinations
of type (i), upper bounds cannot be obtained by adapting
the two-step technique developed by Artale et al. [2014] be-
cause the second step of such technique relies on the past
being unbounded, which is not the standard semantics for
CTL and CTL∗. For combinations of type (ii), elementary
upper bounds cannot be derived by providing a satisfiabil-
ity preserving translation into (a decidable sub-fragment of)
the one-variable fragment of first-order branching temporal
logic [Hodkinson et al., 2002] because (to our knowledge)
no elementary complexity bounds are known. In contrast, for
LTL-LiteNbool formulas tight upper bounds are obtained via a
satisfiability preserving translation into the one-variable frag-
ment of first-order temporal logic [Artale et al., 2007a].

An extended version with an appendix can be found in
http://tinyurl.com/ktkgwqg.

2 Preliminaries
Syntax. We introduce the TDLs CTL∗-LiteNbool and
CTL-LiteNbool based on the DL DL-LiteNbool. We consider
a vocabulary of countably infinite disjoint sets of concept
names NC, role names NR and individual names NI, and
assume that NR is partitioned into two countably infinite
sets of rigid role names Nrig and local role names Nloc.
CTL∗-LiteNbool-state concepts C,D and CTL∗-LiteNbool-path
concepts C, D are defined by the following grammar:

C,D ::= A | ≥ n r | ¬C | C uD | EC

C,D ::= C | C uD | ¬C | ©C | �C | CU D

with A ∈ NR, r ∈ {s, s− | s ∈ NR} a role, C,D state con-
cepts, C, D path concepts and n a positive integer given in bi-
nary. CTL-LiteNbool is the fragment of CTL∗-LiteNbool in which
temporal operators ©,�,U must be immediately preceded
by the path quantifier E. From now on, the term concept
refers to a state concept.

Roles and concepts of the form r− and ≥ n r are called
inverse roles and number restrictions, respectively. We iden-
tify r− with s ∈ NR if r = s−, use standard abbreviations
>,⊥, C tD,C → D,∃r and ≤ n r, and temporal abbrevi-
ations AC = ¬E¬C and ♦C = ¬�¬C. In CTL-LiteNbool the

abbreviations A©C, ACUD, E♦C and A♦C are defined as
in CTL [Clarke and Emerson, 1981] - cf. appendix.

A CTL∗-LiteNbool TBox T is a finite set of concept inclu-
sions (CIs) C v D with C,D CTL∗-LiteNbool concepts1 -
CTL-LiteNbool TBoxes are defined analogously. An ABox A
is a finite set of concept assertions and role assertions of the
form
(P©)iA(a), (P©)i¬A(a), (P©)is(a, b), (P©)i¬s(a, b),

where P ∈ {A,E}, A ∈ NC, s ∈ NR, {a, b} ⊆ NI

and (P©)i denotes P© i times, with i given in unary. To
avoid clunky notation, from here on, we write P©i instead of
(P©)i. Moreover, we assume wlog. that E©is(a, b) 6∈ A if
A©is(a, b) ∈ A. A knowledge base (KB) K is a pair (T ,A).

We use ind(A), CN(K), Rol(K) to denote, respectively,
the set of all (i) individual names occurring in A, (ii) con-
cept names occurring in K, (iii) role names occurring in K
and their inverses; and Rolrig/loc(K), ]rT and ]A to denote, re-
spectively, (iv) the subset of rigid/local roles of Rol(K), (v)
the set containing 1 and all numbers n such that≥ n r occurs
in T and (vi) all numbers 0 ≤ n ≤ i such that ©iα occurs in
A.

Semantics. An interpretation I based on an infinite tree
T = (W,E) is a structure (∆I, (Iw)w∈W ), where each
Iw is a classical DL interpretation with domain ∆I, that is,
for each w ∈ W we have aIw ∈ ∆I, AIw ⊆ ∆I, and
rIw ⊆ ∆I×∆I. We additionally require that the interpre-
tations of a rigid role name is the same at all w ∈ W . More-
over, we make the two common assumptions constant domain
assumption (CDA), that is, all w ∈ W share the same do-
main ∆I, and standard name assumption, that is, we assume
aIw = a for all a ∈ ind(A), w ∈ W . From here on, we
usually write AI,w instead of AIw , and refer to nodes in T as
time points or worlds.

For a path π = w0w1w2 · · · in T , we write π[i] for wi,
π[i..] for the path wiwi+1 · · · and use Paths(w) to denote the
set of all paths starting at node w. The mapping ·I,w is then
extended from concept names and role names as follows:

(¬C)
I,w

= ∆I \ CI,w,

(C uD)I,w = CI,w ∩DI,w,

(r−)I,w = {(d′, d) | (d, d′) ∈ rI,w},
(≥ n r)I,w = {d | ]{d′ | (d, d′) ∈ rI,w} ≥ n},

(EC)I,w = {d ∈ ∆I | d ∈ CI,π for some π ∈ Paths(w)},
where CI,π refers to the extension of CTL∗-LiteNbool-path con-
cepts on a given path π, defined as:

CI,π = CI,π[0] for state concepts C,
(¬C)

I,π
= ∆I \ CI,π,

(C uD)
I,π

= CI,π ∩DI,π,

(©C)
I,π

= {d ∈ ∆I | d ∈ CI,π[1..]},
(�C)

I,π
= {d ∈ ∆I | ∀j ≥ 0.d ∈ CI,π[j..]},

(CU D)I,π = {d ∈ ∆I | ∃ j ≥ 0.(d ∈ DI,π[j..]

∧(∀ 0 ≤ k < j. d ∈ CI,π[k..]))}.
1Inclusions between path concepts are not admitted since they

lead to undecidability [Hodkinson et al., 2002; Lutz et al., 2008].



The satisfaction relation |= is defined as follows, where ε is
the root world and ∗ stands for all if P = A and for some if
P = E.

I |= C v D iff CI,w ⊆ DI,w, for all w ∈W ;

I |= P©i A(a) iff a ∈ AI,π[i], for ∗π ∈ Paths(ε);

I |= P©i ¬A(a) iff a 6∈ AI,π[i], for ∗π ∈ Paths(ε);

I |= P©is(a, b) iff (a, b) ∈ sI,π[i], for ∗π ∈ Paths(ε);

I |= P©i¬s(a, b) iff (a, b) 6∈ sI,π[i], for ∗π ∈ Paths(ε).

An interpretation I is a model of a TBox T , written I |= T ,
if I |= α for all α ∈ T , and it is a model of an ABox A,
written I |= A, if I |= α for all α ∈ A. Thus, a TBox T is
interpreted globally and ABox assertions are interpreted with
respect to the root world ε. Finally, I is a model of a KB K =
(T , A), denoted by I |= K, if I |= T and I |= A.
Fragments. We consider the sub-language CTL-Litehorn of
CTL-LiteNbool that disallows the constructor ¬ (and thus ab-
breviations C t D, etc) and numbers n ≥ 2 in number re-
strictions ≥ n r. In this context, we see the operator A© as
a primitive instead of as an abbreviation.
Reasoning Problem. We are interested in the knowledge
base satisfiability problem: given a KBK, determine whether
there exists an interpretation I such that I |= K.

3 KB Satisfiability in CTL- & CTL∗-LiteNbool
We next devise an algorithm for the KB satisfiability prob-
lem in CTL- & CTL∗-LiteNbool, yielding tight EXPTIME and
2EXPTIME upper bounds, respectively. The lower bounds
are inherited from CTL and CTL∗ [Fischer and Ladner, 1979;
Vardi and Stockmeyer, 1985]. We present for both TDLs
a uniform approach to satisfiability that amalgamates Pratt-
style type elimination [Pratt, 1979] with automata-based tech-
niques for temporal logics [Kupferman and Vardi, 2005;
Vardi, 2006]. We particularly use the fact that for deciding
whether a (propositional) CTL or CTL∗ formula ϕ is satis-
fiable, one can construct a nondeterministic Büchi tree au-
tomaton (NBTA) Aϕ that accepts all (tree) models of ϕ, and
then check whether any tree is accepted by Aϕ, see appendix
for details. The overall approach is sanctioned by the rather
limited interaction between the temporal and DL dimensions,
which allows us to ‘independently’ reason about the tempo-
ral evolution of each domain element, and then use all such
one-dimensional temporal models to construct a single two-
dimensional one.

In the rest of the paper, we use standard terminology for
trees [Vardi, 1998]. We will say that a tree T is k-ary, k ≥ 1,
if every node of T has exactly k successors. Let Σ be a finite
alphabet. A Σ-labelled tree is a pair (T, τ) with T a tree and
τ : W → Σ assigns a letter from Σ to each node.

Let K = (T ,A) be the KB whose satisfiability is to be de-
cided, with T formulated in CTL-LiteNbool or CTL∗-LiteNbool.
We assume wlog. that T is of the form {> v CT } and
that if P©is(a, b) ∈ A then P©is−(b, a) ∈ A, and use
ccl(K) to denote the concept closure under subconcepts and
single negation of {CT } ∪ {C | C(a) ∈ A} ∪ {∃r | r ∈

Rol(K)} ∪ {P©i ≥ n r | P©ir(a, b) ∈ Arol ∧ n ∈ ]rT }
where Arol = {P©jR(a, b) | P©iR(a, b) ∈ A, j ≤ i} with
R of the form r or ¬r.

A concept type forK is a set t ⊆ ccl(K) such that (i)CT ∈
t and (ii) if ≥ n r ∈ t, then ≥ m r ∈ t, for all m ∈ ]rT with
m < n; and tp(K) denotes the set of all concept types for K.
An ABox type for K is a pair (t, a) with t ⊆ ccl(K) ∪ Arol

and a ∈ ind(A) such that t satisfies (i)-(ii) above and (iii)
if P©iR(b, c) ∈ t, then b = a or c = a; and atp(K) denotes
the set of all ABox types for K. From here on, we write ta
instead of (t, a) and use α ∈ ta to denote that α ∈ t. We say
type for K to refer to either a concept or ABox type for K,
and freely use ≥ 1 r or ∃r. If no confusion arises, we omit
the name a in ta and write t.

We now introduce the temporal component in our type-
based abstraction. A temporal type forK is a pair (t, i) where
t ∈ tp(K)∪ atp(K) is a type for K and i ≥ 0 denotes the dis-
tance of a world w from the root time point. For any n0 ≥ 0,
ttpn0

(K) denotes the set of all temporal types (t, i) for K
with i ≤ n0.

As the next step, in order to use the automata machinery
for temporal reasoning, we surrogate the ‘DL-component’
from our logics. We start by introducing a surrogation on
types that will allow us to use them as an alphabet of mod-
els of the (propositional) temporal formulas defined below.
For a type t, let t̄ denote the result of replacing (i) every
C ∈ t, C 6∈ CN(K), with a fresh propositional variable XC ,
and (ii) every β = P©iR(a, b) ∈ t with a fresh proposi-
tional variable Xβ . Let cn be the set of resulting proposi-
tional variables, including CN(K). As the final step, we sur-
rogate concepts and role assertions so as to obtain temporal
formulas. For C ∈ ccl(K), C̄ denotes the result of replac-
ing in C every subconcept ≥ n r with Xn

r and u with ∧; for
β = P©iR(a, b) ∈ Arol, β̄ denotes the result of replacing in
β R(a, b) with XR(a,b).

We are now ready to describe the overall decision proce-
dure, we will establish later on an appropriate n0 bound. Our
algorithm performs type-elimination, similar to what has been
done for combinations (without rigid roles and ABoxes) of
ALC with CTL and CTL∗ [Gutiérrez-Basulto et al., 2012].
The algorithm starts with the set S0 = ttpn0

(K) and obtains
the set Sj+1 from Sj by removing temporal types that, in-
tuitively, cannot appear in any model of K: A temporal type
(ta, i) is eliminated from Sj if it is not realisable in Sj . Abus-
ing notation, in the next definition ta denotes a concept or
ABox type; in the former case, the subindex a is vacuous.
Definition 1. A temporal type (ta, i) is realisable in Sj if it
satisfies the following conditions.

1. (ta, i) is DL-realisable in Sj , that is, if≥ n r ∈ ta, then
there is a (t′, i) ∈ Sj with t′ ∈ tp(K) and (∃r−) ∈ t′;

2. (ta, i) is temporally realisable in Sj , that is, there is a
2cn-labelled ]E(K)-ary tree (T, τ) that satisfies the fol-
lowing

(a) for some w ∈ T at distance i from the root (|w| =
i), we have that τ(w) = t̄a;

(b) for each w ∈ T , there is a (t′a, %(|w|)) ∈ Sj with
τ(w) = t̄′a;



(c) ε satisfies ϕ = A�(
∧3
i=1 ϕi) ∧ ϕ4 ∧ ϕ5 where

ϕ1 =
∧

XC∈cn
XC ↔ C̄ ∧

∧
Xβ∈cn

Xβ ↔ β̄

ϕ2 =
∧

Xr(a,b)∈cn
Xr(a,b) ∧ (X¬r(a,b) ∨X¬r−(b,a))→ ⊥

ϕ3 =
∧

r∈Rolrig(K), n∈]T

E♦ Xn
r → A� Xn

r

ϕ4 =
∧

r∈Rol(K),i∈]A

A©iX
nr,ia
r

ϕ5 =
∧

r∈Rolloc(K),XE◦ir(a,b)∈cn

E©i(Xr(a,b) ∧X
n̂r,ia
r )

where %(i) = min(i, n0), ]E(K) denotes the number of con-
cepts and assertions of the form EC and E©iα inK, and nr,ia
and n̂r,ia are defined as follows: Let Ari be the set defined as:

• {r(a, b) | P©jr(a, b) ∈ A}, if r ∈ Rolrig(K),

• {r(a, b) | A©ir(a, b) ∈ A}}, if r ∈ Rolloc(K).
Then, nr,ia is max({0} ∪ {m ∈ ]rT | r(a, b1) . . . r(a, bm) ∈
Ari , for distinct b1, . . . , bm}) and n̂r,ia is nr,ia +1 if nr,ia +1 ∈
]rT , and nr,ia , otherwise.

Intuitively, Condition 1 takes care of the ‘DL-dimension’ in
the sense that it ensures that each time point will have associ-
ated an appropriate DL-interpretation. Condition 2 generally
takes care of the temporal evolution of a single domain ele-
ment a, captured by the tree (T, τ), and of verifying Boolean
consistency of types; indeed, that is why types are not re-
quired to ‘respect’ Booleans. More interestingly, Condition
2(c) takes care of the temporal dimension by checking that
(i) the fresh concept names faithfully represent the surrogated
concepts and role assertions they are substituting (ϕ1), (ii) no
inconsistencies are introduced by role assertions (ϕ2), (iii)
the semantics of rigid roles is respected, that is, if a fresh con-
cept name standing for a number restriction involving rigid
roles is satisfied at some world, then it must be satisfied at all
worlds (ϕ3) and (iv) r-successors induced by the ABox are
properly witnessed (ϕ4 and ϕ5). The numbers nr,ia and n̂r,ia ,
used in (iv), intuitively, take into account the number of r-
successors of a induced by A at worlds at distance i from the
root.

The algorithm terminates when Sj = Sj+1 (no further
temporal types are eliminated) and returns “satisfiable” if for
every a ∈ ind(A), there is a type (ta, 0) ∈ Sj such that (i)
if P©iC(a) ∈ A (C of the form A or ¬A), then P©iC ∈ ta
and (ii) if a occurs in a role assertion α ∈ A, then α ∈ ta;
and “unsatisfiable” otherwise.
Bound n0. It now remains to determine the value of n0 for
which the algorithm is correct. Intuitively, we are looking for
an n0 ensuring that all necessary information to build an (in-
finite) model is captured in the final result S of the algorithm.
In other words, it must be ensured that all the temporal types
of the infinite expansion

Sω = S ∪ {(t,m) | (t, n0) ∈ S ∧m > n0)}
are realisable in the sense that they satisfy Conditions 1 and 2
of Definition 1 when %(i) is replaced with i.

We start by observing that while for CTL-LiteNbool types
capture the required information about models, making the
number of types an appropriate n0 bound, they fail to do so
for CTL∗-LiteNbool. Intuitively, this is because CTL∗-LiteNbool
allows to nest an arbitrary number of temporal operators, as
for example in E©©©C, but this is not reflected in the def-
inition of (state) subconcepts and therefore in that of types.
To solve this problem, we follow an approach suggested by
Gutiérrez-Basulto et al. [2012] in which the aforementioned
connection between NBTAs and CTL and CTL∗ is used to
show that the states Q of the NBTA Aϕ, accepting pre-
cisely the 2cn-labelled ]E(K)-ary trees satisfying ϕ in Con-
dition 2(c), ensure that all elements of the infinite expansion
of S are realisable; indeed, states do ‘memorise’ consecu-
tive temporal operators. We thus obtain the following bound
n0 := |Q|·|tp(K)|·|atp(K)|, where |Q| ∈ 22poly(|ϕ|)

if ϕ is
a CTL∗ formula, and |Q| ∈ 2poly(|ϕ|) if ϕ is a CTL for-
mula [Kupferman and Vardi, 2005; Vardi, 2006]. See the
appendix for more details on the bound. Having n0 at hand:

Theorem 1. The algorithm returns “satisfiable” iff there is a
model of K.

For proving “⇒”, we inductively construct a two-
dimensional model of K using the infinite trees (T, τ) wit-
nessing that all temporal types in Sω satisfy the modified
Condition 2. We roughly proceed as follows. We start with
fixing the temporal evolutions of all ABox individuals by
choosing, for every a ∈ ind(A), some (ta, 0) ∈ Sω , and the
corresponding infinite tree witnessing Condition 2. For the
inductive step, assume that an element d has in its type t at
time point w with |w| = i a number restriction ‘demand’
≥ n r. In such a case, we add n elements d1, . . . , dn to
the domain (if there already some r-successors, we add less).
Then, we choose some type (t′, i) from Sω witnessing Con-
dition 1 of Definition 1 for (t, i), and complete the temporal
evolution of each dj according to the infinite tree (T, τ) wit-
nessing (the modified) Condition 2 for (t′, i).
Overall Complexity. We finally argue that the algorithm
runs in double and single exponential time for CTL∗-LiteNbool
and CTL-LiteNbool, respectively. Clearly, the bound n0 is in
22poly(|K|)

for CTL∗-LiteNbool and in 2poly(|K|) for CTL-LiteNbool,
and the number of steps of the algorithm is in n0 · 2poly(|K|).
The number of states of Aϕ, used to check Condition 2(c),
is n0, and NBTAs to check Conditions 2(a) and 2(b) can be
constructed using at most n0 states. Thus, the desired result
is obtained from the above arguments and the two following
facts: (i) a constant number of NBTAs can be intersected
with only a polynomial blowup, and (ii) non-emptiness of
NBTAs can be checked in quadratic time in the number of
states [Vardi, 1998].

Theorem 2. KB satisfiability is EXPTIME-complete for
CTL-LiteNbool and 2EXPTIME-complete for CTL∗-LiteNbool.

Note that CTL-LiteNbool is rather robust in the sense that by
just lightening its components better complexity is not imme-
diately obtained. Indeed, the following can be shown using
ideas of the EXPTIME-hardness proof for subsumption in the
DL ELI [Baader et al., 2008].



Theorem 3. KB satisfiability is EXPTIME-hard for CTL-
Litehorn with only the temporal operators E© and A©.

4 CTL- & CTL∗-LiteNbool Formulas
In this section, we study extensions of CTL-LiteNbool and
CTL∗-LiteNbool in which temporal operators are not only ap-
plied to concepts, but also to Boolean combinations of con-
cept inclusions and ABox assertions. CTL∗-LiteNbool-state
formulas ϕ, ϑ and CTL∗-LiteNbool-path formulas ψ, χ are de-
fined by the following grammar:

ϕ, ϑ ::= C v D | C(a) | r(a, b) | ¬ϕ | ϕ ∧ ϑ | Eϕ
ψ, χ ::= ϕ | ¬ψ | ψ ∧ χ | ©ψ | ψ U χ

where C,D are CTL∗-LiteNbool-concepts, {a, b} ⊆ NI and
r ∈ NR. Given an interpretation I, a world w in I and a
path π, the truth relations I, w |= ϕ and I, π |= ψ are defined
as expected (cf. appendix); for instance, I, w |= C v D
iff CI,w ⊆ DI,w. We say CTL∗-LiteNbool-formula to re-
fer to a CTL∗-LiteNbool-state formula (CTL-LiteNbool-formulas
are defined analogously), and say that I is a model of a
CTL∗-LiteNbool-formula ϕ, written I |= ϕ, iff I, ε |= ϕ.

4.1 Satisfiability of Temporal Formulas
We next devise an algorithm for the satisfiability problem of
CTL∗-LiteNbool and CTL-LiteNbool formulas combining again
type-based abstractions with automata-based approaches to
temporal reasoning. We obtain 3EXPTIME and 2EXPTIME
upper bounds for CTL∗-LiteNbool- and CTL-LiteNbool formulas,
respectively. In contrast to the TDLs in Section 3, for tempo-
ral formulas the independence of elements at each Iw is lost,
and therefore one cannot ‘separately’ reason about the tem-
poral evolution of each domain element. Indeed, the intro-
duction of temporal TBox formulas, e.g. A♦�(A v E♦∃r),
forces to see each Iw as one inseparable entity. As a con-
sequence, in our decision procedure, tree automata run over
trees labelled with sets of types (rather than a single type),
representing interpretations.

Let ϕ be a CTL∗-LiteNbool or a CTL-LiteNbool-formula whose
satisfiability is to be decided, and ind(ϕ), Rol(ϕ), CN(ϕ),
Rolrig/loc(ϕ), ]rϕ denote the expected sets, see Section 2.
We use cl(ϕ) and sub(ϕ) to respectively denote the set of
all (i) state concepts occurring in ϕ together with {∃r |
r ∈ Rol(ϕ)}, closed under subconcepts and single nega-
tion, and (ii) state subformulas of ϕ, closed under single
negation. We assume wlog. that if r(a, b) ∈ sub(ϕ), then
r−(b, a) ∈ sub(ϕ). A concept type for ϕ is a set t ⊆ cl(ϕ)
such that≥ n r ∈ t implies≥ mr ∈ t, for all≥ n r ∈ cl(ϕ)
and m ∈ ]rϕ with m < n; and tp(ϕ) denotes the set of all
concept types for ϕ. A pointed type for ϕ is a pair (t, a) with
t ∈ tp(ϕ) and a ∈ ind(ϕ), and ptp(ϕ) denotes the set of all
pointed types for ϕ - ta is used as in the previous section.
Definition 2. A quasistate for ϕ is a tuple (S1, S2, S3) with
S1 ⊆ tp(ϕ), S2 ⊆ ptp(ϕ) and S3 ⊆ sub(ϕ) is a formula
type for ϕ such that

1. For each t ∈ S1, if ≥ n r ∈ t, then there is a t′ ∈ S1

with ∃r− ∈ t′;

2. For each a ∈ ind(ϕ), S2 contains exactly one pointed
type ta;

3. If (t, a) ∈ S2, then t ∈ S1;

4. For all C(a) ∈ sub(ϕ) and ta ∈ S2, C(a) ∈ S3 iff
C ∈ ta;

5. For all a ∈ ind(ϕ), r ∈ Rol(ϕ), ≥ nra r ∈ ta;

6. For all t ∈ S1, C v D ∈ S3 iff C ∈ t implies D ∈ t, for
all C v D ∈ sub(ϕ),

where nra = max({0} ∪ {m ∈ ]rϕ | r(a, b1), . . . , r(a, bm) ∈
S3 for distinct b1, . . . bm}). A quasimodel Q for ϕ is a qs(ϕ)-
labelled tree (of any outdegree) with qs(ϕ) denoting the set
of all quasistates for ϕ.

Similar to Section 3, we again surrogate the ‘DL com-
ponent’ to use the automata machinery for temporal rea-
soning. For t ∈ tp(ϕ), t̄ is the result of replacing each
C ∈ t \ CN(ϕ) with a fresh concept name XC , and ccn de-
notes the set of all resulting names, including CN(ϕ). For
all C ∈ cl(ϕ), C̄ denotes the result of replacing in C every
subconcept ≥ n r with Xn

r ; and u with ∧. We also sur-
rogate the ‘DL-component’ at the formula level: For every
ϑ ∈ sub(ϕ), ϑ̄ denotes the result of replacing every subfor-
mula α of ϑ of the form C v D, C(a), r(a, b) or ¬r(a, b)
with a fresh concept name Yα, and fcn denotes the set of
all concept names introduced in this way. We will ‘indepen-
dently’ reason about the temporal evolution of concepts and
formulas. For S ⊆ sub(ϕ), S̄ refers to {ϑ̄ | ϑ ∈ S}. For a
quasimodel Q, we then use Q3 to denote the 2fcn-labelled tree
obtained by associating each w ∈ Q with the label S̄3(w).

We next give conditions on quasimodels for ϕ ensuring
they appropriately describe models of ϕ.
Definition 3. A quasimodel Q = (T, τ) for ϕ is proper if:

1. Q3 |= ϕ̄ ∧A�(ϕ1 ∧ ϕ2), where

ϕ1 =
∧

r(a,b)∈sub(ϕ)

Xr(a,b) ∧ (X¬r(a,b) ∨X¬r−(b,a))→⊥

ϕ2 =
∧

r∈Rolrig(ϕ),r(a,b)∈sub(ϕ)

E♦Xr(a,b) → A�Xr(a,b)

2. For all w ∈ T , τ(w) = (S1, S2, S3) and all t ∈ S1,
there is a 2ccn-labelled tree (T, τ ′) such that

(a) τ ′(w) = t̄;
(b) For all w′ ∈ T with τ(w′) = (S′1, S

′
2, S
′
3), there is

a t′ ∈ S′1 such that τ ′(w′) = t̄′;
(c) ε satisfies ϑ = A�(ϑ1 ∧ ϑ2) where

ϑ1 =
∧

XC∈ccn
XC ↔ C̄

ϑ2 =
∧

r∈Rolrig(ϕ),n∈]rϕ

E♦Xn
r → A�Xn

r

3. For all a ∈ ind(ϕ), τ(ε) = (S1, S2, S3) with (t, a) ∈
S2, there is a 2cnn-labelled tree (T, τ ′) with Condition
(c) as in Point 2 above and

(a) τ ′(ε) = t̄;



(b) For all w′ ∈ T with τ(w′) = (S′1, S
′
2, S
′
3) and

(t′, a) ∈ S′2, we have that τ ′(w′) = t̄′.
Intuitively, Condition 1 takes care of Q satisfying the tem-

poral formula ϕ; in particular, it ensures consistency of role
assertions and that if a role assertion involving a rigid role is
satisfied at some point, then it is satisfied at all time points.
Conditions 2 and 3 ensure that each (pointed) type has an
appropriate temporal evolution through the quasimodel; the
meaning of Conditions 2(c) and 3(c) is similar to that of the
analogous Conditions in Section 3, cf. Definition 1.

We first show that satisfiability of temporal formulas is
characterised by the existence of a proper quasimodel:
Lemma 1. ϕ is satisfiable iff there is a proper quasimodel
for ϕ.

As the next step, we will construct a tree automaton A that
accepts precisely the proper quasimodels for ϕ. To achieve
this, most importantly, A will simulate the runs of the NBTAs
Aϑ associated with Condition 2(c) in Definition 3. The use
of A is sanctioned by the fact that the outdegree of proper
quasimodels can be bounded, see [Gutiérrez-Basulto, 2013,
Lemma 3.22]. Let Aϑ = (Q1,Σ, Q

0
1, δ1, F1) be the NBTA

accepting precisely the 2ccn-labelled ]E-ary trees satisfying
ϑ, where ]E is the number of state concepts of the form EC
in ϕ. We have the following:
Lemma 2. There is a proper quasimodel for ϕ iff there is a
proper quasimodel of arity k = |qs(ϕ)|·|tp(ϕ)|·|ind(ϕ)|·Q1.

The tree automaton A we construct in the appendix is a
two-way alternating tree automaton (2ATA) [Vardi, 1998].
Intuitively, a 2ATA is needed because of two reasons: (i) A
must be two-way, and therefore allow a predecessor state, be-
cause while simulating Aϑ in A the simulation needs to start
at an arbitrary world w, however, the original run of Aϑ starts
at the root world ε. Note that this would not be necessary
if we assume expanding domains, instead of a constant one.
(ii) A must be alternating, and therefore being able to send
several state successors along a branch, because A needs to
simulate a run of Aϑ for each type in a given world. Finally,
note that the simulated Aϑ needs to be a NBTA (rather than
an ATA) because we must ensure that one state is assigned
to each successor - cf. Conditions 2(b) and 3(b) in Defini-
tion 3. Since the definition of A is essentially the same as the
one previously introduced by Gutiérrez-Basulto et al. [2012]
for temporal formulas based onALC and CTL and CTL∗, we
differ it to the appendix.
Overall Complexity. (i) Non-emptiness of 2ATAs can be
checked in EXPTIME in the number of states [Vardi, 1998].
(ii) The number of states of Aϑ, the most dominating in the
definition of the states in A, is in 22poly(|ϕ|)

if ϑ is a CTL∗ for-
mula and in 2poly(|ϕ|) if ϑ is a CTL formula. We thus obtain:
Theorem 4. Satisfiability is in 3EXPTIME for CTL∗-LiteNbool-
and in 2EXPTIME for CTL-LiteNbool-formulas.

4.2 CTL-Litehorn Formulas
Finally, we look at CTL-Litehorn-formulas, the sub-fragment
of CTL-LiteNbool in which C,D are CTL-Litehorn-concepts,
and show that this fragment is already 2EXPTIME-hard. In
particular, we show the following:

Theorem 5. Satisfiability of CTL-Litehorn-formulas with
only local roles and, A© and E© is 2EXPTIME-hard.

The proof of Theorem 5 is by reduction of the word prob-
lem of an exponentially space bounded alternating Turing
machine. We next outline the main ideas of the reduction.
(i) The computation tree of an ATM is represented by the
temporal evolution of a single individual name a, such that
each time point corresponds to a tape cell and a configura-
tion is then represented by exponentially consecutive time
points. (ii) To synchronise i-cells in consecutive configu-
rations, the ‘content of a’ at position i is stored in a fresh lo-
cal ra-successor and then recovered back to a using temporal
TBoxes of the form > v A ∨ > v Ā, with A and Ā disjoint,
ensuring that all domain elements in a given time point share
the truth value of A. (iii) Information is transported between
neighbouring configurations using binary counters.

From Theorems 4 and 5, the following is obtained:

Theorem 6. Satisfiability of CTL-Litehorn- and CTL-LiteNbool
formulas is 2EXPTIME-complete.

5 Conclusions and Future Work
This paper has advanced the understanding of TDLs based on
DL-LiteNbool and, CTL∗ and CTL. In particular, we developed
uniform algorithms for both CTL∗and CTL-based extensions,
providing (mostly tight) elementary upper bounds.

As immediate future work, we will look for tractable frag-
ments. To this aim, we plan to follow in the footsteps of Ar-
tale et al. [2013; 2014] and analyse clausal fragments of CTL
and CTL∗. For example, tractable fragments allowing E♦
(arbitrarily used in both sides of concept inclusions) might
be identified since, in contrast to ♦, it does not lead to non-
convexity [Gutiérrez-Basulto et al., 2014].

We will also study branching temporal extensions of DL-
Lite in the OBDA scenario. We are particularly interested
in studying the query answering problem over branching
temporal DL-Lite ontologies. Indeed, it has been argued
that in some settings allowing for different versions of data
over time might be desirable [Rondogiannis et al., 1998;
Chomicki and Toman, 2005].

Beyond TDLs, we will investigate whether our approaches
can be extended so as to derive elementary upper bounds for
decidable fragments of first-order branching temporal logic.
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APPENDIX

CTL∗ and CTL
Syntax. Fix a countably infinite set of propositional variables
AP. CTL∗ state formulas ϕ and CTL∗ path formulas ψ are
defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | Eψ

ψ ::= ϕ | ¬ψ | ψ1 ∧ ψ2 | ©ψ | �ψ | ψ1Uψ2

where p ranges over AP, ϕ,ϕ1, ϕ2 are state formulas, and
ψ,ψ1, ψ2 are path formulas. Without further quantification,
a CTL∗ formula is a state formula. In CTL∗ we can define
Boolean abbreviations standardly, plus the following tempo-
ral abbreviations: Aϕ = ¬E¬ϕ, ♦ψ = ¬�¬ψ.

CTL is the fragment of CTL∗ in which temporal opera-
tors ©,� and U must be immediately preceded by the path
quantifier E. Formally, CTL state formulas ϕ and CTL path
formulas ψ are defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | Eψ
ψ ::= ©ϕ | �ϕ | ϕ1Uϕ2

where p ranges over AP, ϕ,ϕ1, ϕ2 are state formulas, and ψ
is a path formula. In CTL temporal abbreviations are defined
as follows:

A©ϕ=¬E©¬ϕ, E♦ϕ=E(trueUϕ),

A�ϕ=¬E♦¬ϕ, A♦ϕ=¬E�¬ϕ,
A(ϕ1 U ϕ2) = ¬E(¬ϕ2 U (¬ϕ1 ∧ ¬ϕ2)) ∧ ¬E�¬ϕ2.

Trees. A tree is a directed graph T = (W,E) where W ⊆
(N\{0})∗ is a prefix-closed non-empty set of nodes andE =
{(w,wc) | wc ∈ W,w ∈ N∗, c ∈ N} a set of edges; we
generally assume that wc ∈ W and c′ < c implies wc′ ∈ W
and that E ⊆ W×W is a total relation. We say that wc is a
successor of w, and that the node ε ∈W is the root of T . For
brevity and since E can be reconstructed from W , we will
usually identify T with W . Furthermore, we say that T is a
k-ary tree, k≥1 if every node of T has exactly k successors.
Let Σ be a finite alphabet. A Σ-labeled tree T is a pair (T, τ)
where T is a tree and τ : T → Σ assigns a letter from Σ to
each node. We sometimes identify (T, τ) with τ .

A path in a tree T = (W,E) starting at a node w is a
minimal set π ⊆ W such that w ∈ π and for each w′ ∈ π,
there is exactly one c ∈ N with w′c ∈ π. We use Paths(w)
to denote the set of all paths starting at the node w; and for a
path π = w0w1w1 · · · and i ≥ 0, we use π[i] to denote wi
and π[i..] to denote the path wiwi+1 · · · .

Semantics. To define the semantics of CTL∗, we consider
Σ-labeled trees with Σ = 2AP. Intuitively, the label of a time
point contains the propositional letters holding at this time
point.

Let T = (T, τ) be a 2AP-labeled tree. For a time point w
in T, the truth relation |= for CTL∗ state formulas is defined
as follows.

T, w |= p ∈ AP iff p ∈ τ(w);

T, w |= ¬ϕ iff T, w 6|= ϕ;

T, w |= ϕ1 ∧ ϕ2 iff T, w |= ϕ1 and T, w |= ϕ2;

T, w |= Eψ iff T, π |= ψ for some π ∈ Paths(w).

For a path π in T, the truth relation |= for path formulas is
defined as follows:

T, π |= ϕ iff T, π[0] |= ϕ;

T, π |= ¬ψ iff T, π 6|= ψ;

T, π |= ψ1 ∧ ψ2 iff T, π |= ψ1 and T, π |= ψ2;

T, π |= ©ψ iff T, π[1..] |= ψ;

T, π |= �ψ iff ∀j ≥ 0.T, π[j..] |= ψ;

T, π |= ψ1 U ψ2 iff ∃j ≥ 0.(T, π[j..] |= ψ2 ∧
∀0 ≤ k < j.(T, π[k..] |= ψ) ).

Reasoning Problems. In CTL∗, as in DLs, one of the clas-
sical reasoning problems is the satisfiability problem: a 2AP-
labeled tree T is a model of a CTL∗ formula ϕ if T, ε |= ϕ.
A CTL∗ formula ϕ is satisfiable if there exists a 2AP-labeled
tree T such that T is a model of ϕ.

Nondeterministic Tree Automata
A nondeterministic Büchi tree automaton (NBTA) over Σ-
labeled k-ary trees is a tuple A = (Q,Σ, Q0, δ, F ) where
Q is a finite set of states, Q0 ⊆ Q is the set of initial states,
F ⊆ Q is a set of recurring states, and δ : Q×Σ→ 2Q

k

is the
transition function. A run of A on τ is a Q-labeled k-ary tree
(T, r) such that r(ε) ∈ Q0 and for each node w ∈ T , we have
〈r(w · 1), . . . , r(w · k)〉 ∈ δ(r(w), τ(w)). The run is accept-
ing if for every path π = w0w1 · · · which starts at ε, we have
r(wi) ∈ F for infinitely many i. The set of trees accepted
by A is denoted by L(A). The emptiness-problem is the fol-
lowing: given a NBTA A, determine whether L(A) 6= ∅. The
emptiness-problem for NBTAs can be decided in quadratic
time in the number of states [Vardi and Wolper, 1986].

For n>0, we use Modn(ϕ) to denote the set of all n-ary
models of ϕ, and ap(ϕ) to denote the set of atomic propo-
sitions in a CTL∗ formula ϕ. The following property shows
that it is sufficient to only consider models of certain arity.

Proposition 1 ([Kupferman et al., 2000]). A CTL∗ formula ϕ
is satisfiable iff Mod#E(ϕ) 6= ∅, where #E(ϕ) is the number
of subformulas of ϕ that are of the form Eψ.

We now assert the precise relation between the satisfiability
problem for temporal logics and the nonemptiness problem
for NBTAs.

Theorem 7 ([Kupferman and Vardi, 2005; Vardi, 2006]).
For a CTL∗-formula ϕ and n ≥ 0, one can construct an
NBTA Aϕ = (Q,Σ, δ, Q0, F ) in time poly(|Q|+n) such
that L(Aϕ) = Modn(ϕ), Σ = 2ap(ϕ), |Q| ∈ 22poly(|ϕ|)

,
and |Q| ∈ 2poly(|ϕ|) when ϕ is a CTL formula.

Note that Theorem 7 admits any outdegree.



Proofs for Section 3
Before showing the correctness of our algorithm, cf. Theo-
rem 1, we describe the strategy to show that the proposed n0

bounds in Section 3 guarantee the correctness of the algo-
rithm. Since we want to guarantee that the the infinite expan-
sion Sω of the result S of the algorithm conforms with the
realisability conditions, we show the following property.

Theorem 8. Let Q be the states of the NBTA Aϕ associated
with ϕ in Condition 2(c). If n0 := |Q|·|atp(K)|·|etp(K)|,
then the following holds:

• (t, n0) is realisable in S implies (t, n0 + `) is realizable
in S for all ` > 0

Proof Sketch. We next describe the strategy of the proof. The
details of the intermediate results can be proved using the
techniques developed for CTLALC and CTL∗ALC [Gutiérrez-
Basulto et al., 2012], see [Gutiérrez-Basulto, 2013,
Lemma 3.6-3.9] for details. As discussed, we make use of the
states Q of the automaton Aϕ, with ϕ as in Condition 2(c) of
Definition 1; naturally, for the final result of the algorithm we
are interested on those states occuring in accepting run of Aϕ.
We thus have the following.

Definition 4. An extended temporal type for K is a triple
(t, q, i) with (t, i) a temporal type for K and q ∈ Q. Let Ŝ be
the set of all extended temporal types such that (t, i) ∈ S and
there is a 2cn-labeled tree and an accepting run (T, r) of Aϕ
such that the following holds

• for some w ∈ T with |w| = i, we have that τ(w) = t̄
and r(w) = q;

• for eachw ∈ T there is a (t, %(|w|)) ∈ S with τ(w) = t̄.

It is not hard to see that Ŝ satisfies an ‘extended’ version
of the realisability conditions in Definition 1. Note that Ŝ in-
herently satisfies Condition 2(c). We thus have the following
(the subindex a is vacuous if t is a concept type).

Proposition 2. For all (ta, q, i) the following holds:

1̂ If (≥ n r) ∈ ta, there is a (t, i) ∈ Ŝ such that (∃r−) ∈
t;

2̂ There is a 2cn-labeled tree (T, τ) and an accepting run
(T, r) of Aϕ on (T, τ) such that

(a) for some w ∈ T at distance i from the root (|w| =
i), we have that τ(w) = t̄a and r(w) = q ;

(b) for each w ∈ T , there is a (t′a, q
′, %(|w|)) ∈ Sj

with τ(w) = t̄′a and r(w) = q′.

The key result to show the desired property of Theorem 8
above is that the temporal types in Ŝ exhibit a monotonic
behaviour in the sense that over time we can only lose ex-
tended types or get stable. This result, intuitively, holds due
to the ‘light interaction’ between the component logics, and
therefore the high degree of independence of the elements
in each Iw. We note in passing that this has also been ob-
served in combinations, with similar design choices, based
on LTL [Lutz et al., 2008, Lemma 15].

Lemma 3. For all i ≤ n0, let Si = {(t, q) | (t, q, i) ∈ Ŝ}.
We have that

1. Si+1 ⊆ Si,

2. Si = Si+1 implies Si = Si + ` for all i+ ` ≤ n0.

With Lemma 3 at hand, it is not hard to see that the infinite
continuation Ŝω of Ŝ is realizable. More precisely, Ŝω =

{(t, q, i) | (t, q, %(i)) ∈ Ŝ} satisfies conditions 1̂′ and 2̂′,
which are as in Proposition 2, but i ∈ N is allowed and %(i)
is replaced with i in 2(b).

We are now ready to finish the proof:
We define conditions 1’ and 2’ as variants of Conditions 1

and 2 in Definition 1 by admitting every i ∈ N and replacing
ρ(i) with i in Condition 2. Let (t, n0) ∈ S, then, by definition
of Ŝ, there is some q such that (t, q, n0) ∈ Ŝ. We know
(t, q, n0 + `) ∈ Ŝω for every ` ≥ 0, i.e., (t, q, n0 + `) satisfies
conditions 1̂

′
and 2̂

′
. Thus, there is some (t′, q′, n0 + `) ∈ Ŝω

witnessing condition 1̂
′
. By definition of Ŝω , (t′, q′, n0) ∈

Ŝω , thus (t, n0) ∈ S and (t, n0 + `) ∈ Sω . Hence, condition
1’ is satisfied for (t, n0 + `). It can be shown that (t, n0 + `)
satisfies Condition 2’ in analogous way. Therefore, (t, n0+`)
is realizable in S.

This completes the proof of Theorem 8.

We are now ready to show the correctness of the algorithm.

Theorem 1 The algorithm returns ‘satisfiable’ iff there is a
model of K.

Proof. “⇒” Let S be the final result of the algorithm; and fix
k = ]E(K). Recall that due to Theorem 8 above, for every
(t, i) ∈ Sω there is a 2cn-labeled k-ary tree (T, τt,i) satis-
fying Condition 2 ϕ (replacing %(i) with i) in Definition 1.
We construct a model I = (∆I, (Iw)w∈W ) of K, where the
underlying (infinite) tree T = (W,E) is a k-ary tree.

Before proceeding with the construction, we make the fol-
lowing observations, which will be used later on.

Observation 1. For all (t, i) ∈ Sω and w ∈ W , if Xr
n ∈

τt,i(w) then

• there is a (t′, j) ∈ Sω such that with X∃r− ∈ τt′,j(w)
and τt′,j witness Condition 2 in Definition 1 for (t′, j) .

In this case we say that τt′,j is r-compatible with τt,i in w.

The observation follows from these facts: (i) since all
(t, i) ∈ Sω are realizable (in particular, they fulfil the DL-
Condition), there is a (t′, j) ∈ Sω such that X∃r− ∈ τt′,j(w′)
and |w| = |w′| and, moreover, τt′,j witness Condition 2 for
(t′, j); and (ii) the desired τt′,j can be obtained from that in
(i) by permuting successors. In particular, it is not hard to see
that if there is an accepting run of Aϕ over τt′,j as in (i), then
there is accepting run over the ‘permuted’ one. Indeed, the
transitions of Aϕ are closed under permuting successors.

Observation 2. Following the arguments above, we also as-
sume wlog. that for all ABox types (ta, i) ∈ Sω and w ∈ W ,
if Xr(a,b) ∈ τta,0(w) then Xr−(b,a) ∈ τtb,0(w).



To construct I, we define sequences ∆0,∆1, . . . and partial
mappings πi : ∆i → S and θi : ∆i×W → 2cn, and relations
Rr0, R

r
1 with r ∈ Rol(K).

We start the construction of I as follows. For each a ∈
ind(A), let (ta, 0) be a type fulfilling the ‘satisfiable’ require-
ment when the algorithm terminates. Then set:

• ∆0 = ind(A);

• π(a) = (ta, 0), for all a ∈ ∆0;

• θ(a,w) = τta,0(w), for all a ∈ ∆0 and w ∈W ;

• If Xr(a,b) ∈ τta,0(w) proceed as follows:

– If r ∈ Rolloc(K), add (a, b, w) to Rr0;
– If r ∈ Rolrig(K), add (a, b, w′) to Rr0, for all w′ ∈
W .

We now introduce some required definitions to continue with
the inductive steps. The required r-rank for a d ∈ ∆i, i ≥ 1,
at world w and step i is defined as follows:

]r,wd,i = max{n ∈ ]rT | Xr
n ∈ θi(d,w)}2

The actual r-rank for a d ∈ ∆i, i ≥ 1, at world w and step i
is defined as follows:

ξr,wd,i = max{{0} ∪ {n ∈ ]rT | ∃ distinct e1, . . . en ∈ ∆i ∧

(d, ej) ∈ Rri (w) or (ej , d) ∈ Rr
−

i (w)}}

For the inductive step, set ∆i = ∆i−1, πi = πi−1, θi =
θi−1, Rri = Rri−1 and apply the following, which is meant to
fix ‘defective’ points missing successors:

• If ]r,wd,i − ξ
r,w
d,i = n > 0 for some d ∈ ∆i−1 and w ∈ W

and r ∈ Rol(K), then proceed as follows:

1. Add e1, . . . , en to ∆i;
2. Add (d, ek, w) to Rri if r is local; otherwise, for all
w′ ∈W , add (d, ek, w

′) to Rri ;
3. For all w′ ∈ W , set θi(ek, w′) ::= τ(t,j)(w

′) such
that τt,j is r-compatible with τπi(d) in w; and set
πi(ek) ::= (t, j).

Finally, put ∆I =
⋃
i≥0 ∆i, π =

⋃
i≥0 πi, θ =

⋃
i≥0 θi

and Rr =
⋃
i≥0R

r
i . It remains to define the interpretation of

concept and role names (recall we make the standard name
assumption):

AI,w = {d ∈ ∆I | A ∈ θ(d,w)};
sI,w = {(d, e) ∈ (∆I)2 | (d, e, w) ∈ Rs}∪

{(d, e) ∈ (∆I)2 | (e, d, w) ∈ Rs−}

For finishing the “⇒” we use the following claim, which
can be proved by simultaneous induction on the structure of
C and C.

Claim. For all d ∈ ∆I, w ∈W and C ∈ ccl(K) we have that

C ∈ θ(d,w) iff d ∈ CI,w,

2By convention n = 0 if no such proposition is in θ(d,w)

and for every π ∈ Paths(w) and path concept C

d ∈ CI,π iff τπ(d) |= C̄

Proof of Claim. (i) Let d 6∈ ind(A), π(d) = (t, i) and
θ(d,w) = τt,i(w) for some (t, i) ∈ Sω .

• C = ¬D “if:” d ∈ ¬DI,w, that is, d 6∈ DI,w. Now, by
I.H., XD 6∈ τt,i(w). Furthermore, by Condition 2′(c),
(T, τt,i), w |= ¬D. Finally, again by Condition 2′(c),
X¬D ∈ τt,i(w).
“only if:” X¬D ∈ τt,i(w), by Condition 2′(c),
(T, τt,i), w 6|= D. Now, by Condition 2′(c), XD 6∈
τt,i(w). By, I.H., d 6∈ DI,w. Therefore, d ∈ (¬D)I,w.

• C = D u E “if:” d ∈ (D u E)I,w, that is, d ∈ DI,w

and d ∈ EI,w. By I.H., XD ∈ τt,i(w) and XE ∈
τt,i(w). Now, by Condition 2′(c), (T, τt,i), w |= D and
(T, τt,i), w |= E. So, (T, τt,i), w |= D∧E. Once again,
by Condition 2′(c), (T, τt,i), w |= XDuE . Therefore,
XDuE ∈ τt,i(w).
“only if:”XDuE ∈ τt,i(w), by Condition 2′(c), we have
that (T, τt,i), w |= D ∧ E, that is, (T, τt,i), w |= D and
(T, τt,i), w |= E. Once again, by Condition 2′(c), we
have that XD, XE ∈ τt,i(w). Now, by I.H., d ∈ DI,w

and (t, i) ∈ dI,w. Therefore, d ∈ (D u E)I,w.
• C =≥ n r

– r is local: d ∈ (≥ n r)I,w iff ]{e | (d, e) ∈
rI,w} ≥ n. iff , by definition of I, ]{e | (d, e) ∈
Rr(w) or (e, d) ∈ Rr−(w)} ≥ n iff there is a step
j in the construction in which the inductive rule was
applied to d for some Xr

m ∈ θ(d,w) with maximal
m ≥ n and Xr

m ∈ θ(d,w) iff , by second condition
of type, Xr

n ∈ θ(d,w).
– r is rigid: d ∈ (≥ n r)I,w iff ]{e | (d, e) ∈
rI,w} ≥ n. iff , by definition of I, ]{e | (d, e) ∈
Rr(w) or (e, d) ∈ Rr−(w)} ≥ n iff there is a step
j in the construction in which the inductive rule was
applied to d for some Xr

m ∈ θ(d,w′) with w′ ∈W
and maximal m ≥ n and Xr

m ∈ θ(d,w′) iff , by
second condition of type, Xr

n ∈ θ(d,w′) iff, by ϕ3

in 2(c), Xr
n ∈ τt,i(w) = θ(d,w).

• C = EC “if:” d ∈ (EC)I,w. This implies that, by se-
mantics, d ∈ CI,π for some π ∈ Paths(w). Now, by the
second point of the claim, (T, τt,i), π |= C. Therefore,
by semantics, (T, τt,i), w |= EC. Since, (T, τt,i) |= ϕ
from Condition 2′(c), then XEC ∈ τt,i(w).
“only if:” XEC ∈ τt,i(w) = t′. By Condition 2′(c) we
have that (T, τt,i), w |= EC, that is, (T, τt,i), π |= C for
some π ∈ Paths(w). Now, by the second point of the
claim, (t, i) ∈ CI,π . Therefore, (t, i) ∈ (EC)I,w.

This finishes the proof of the first point of the claim.
We proceed to show the second point of the claim:

• C = D with D a state concept. “if:” d ∈ DI,π[0].
Note that π[0] = w, then, by the first point of the claim,
(T, τt,i), w |= D.



“only if:” (T, τt,i), π[0] |= D. By Condition 2′(c)XD ∈
τt,i(π[0]). Note that π[0] = w, then, by first point of the
claim, d ∈ DI,w.
• C = ¬D and C = C1 uC2, similar to the analogous case

for state concepts.

• C = ©D. “if:” d ∈ (©D)I,π , that is, d ∈ DI,π[1]. Now,
by I.H., (T, τt,i), π[1] |= D. Therefore, by semantics,
(T, τt,i), π |= ©D.
“only if:” (T, τt,i), π |= ©D. Hence, (T, τt,i), π[1] |=
D. Now, by I.H., d ∈ DI,π[1]. Therefore, by semantics,
d ∈ (©D)I,π .
• C = �D. “if:” d ∈ (�D)I,π , that is, for all j ≥ 0, d ∈
DI,π[j..]. Now, by I.H., (T, τt,i), π[j..] |= D. Therefore,
by semantics, (T, τt,i), π |= �D.
“only if:” (T, τt,i), π |= �D. This means that for all
j ≥ 0, (T, τt,i), π[j..] |= D. Now, by I.H., for all j ≥ 0,
d ∈ DI,π[j..]. Therefore, by semantics, d ∈ (�D)I,π .

• C = C1UC2. “if” ∃j ≥ 0.(d ∈ C
I,π[j..]
2 ∧ ∀0 ≤

k < j.d ∈ C
I,π[k..]
1 ). Now, by I.H., (T, τt,i), π[j..] |=

C2 ∧ ∀0 ≤ k < j.((T, τt,i), π[k..] |= C1). Therefore,
(T, τt,i), π |= (C1UC2).

“only if:” ∃j ≥ 0.((T, τt,i), π[j..] |= C2 ∧ ∀0 ≤ k <

j.((T, τt,i), π[k..] |= C1). Now, by I.H., d ∈ C
I,π[j..]
2 ∧

∀0 ≤ k < j.d ∈ C
I,π[k..])
1 . Therefore, d ∈ (C1UC2)I,π .

This finishes the proof of the second point of the claim.
(ii) Let a ∈ ind(A), π(a) = (ta, 0) and θ(a,w) = τta,0(w)
for some (t, i) ∈ Sω . All the cases work are exactly as above,
except for ≥ n r, but can be proved analogously using ϕ4

and ϕ5 in Condition 2 of Definition 1.
This finishes the proof of the Claim.

To finish the proof, it remains to show that I is a model of
K.

We first show that I |= T . Fix a d ∈ ∆I and π(d) =
(t, i) ∈ Sω . By definition of type, CT ∈ t and, by construc-
tion, XCT ∈ τt,i(w) = θ(d,w) for all w ∈ W . Then, by the
previous claim, d ∈ CI,w

T for all w ∈ W . Therefore, I is a
model of T .

We finally show that I is a model of the ABox A. For
all P©iA(a),P©i¬B(a) ∈ A, I |= P©iA(a) (I |=
P©i¬B(a)) follows from the claim above and the initial step
of the construction.

I |= P©ir(a, b) ∈ A and I |= P©i¬r(a, b) ∈ A follows
from the fact that ϕ1 and ϕ2 in Condition 2(c) of Definition 1
are satisfied, and from the last point in the initial step of the
construction.

“⇐:’ Let I = (∆I, (Iw)w∈W ) be a model of K. First, de-
fine for every a ∈ ind(A) the 2acl(K)-tree (T, τa) as follows,
for all w ∈W :

τa(w) ={C | C ∈ ccl(K) ∧ a ∈ CI,w} ∪
{P©ir(a, b) ∈ acl(K) | I |= P©ir(a, b)}

For all d ∈ ∆I \ ind(A), we define the 2ccl(K)-tree (T, τd)
as follows, for all w ∈W :

τd(w) ={C | C ∈ ccl(K) ∧ d ∈ CI,w}
We now define the following set of types

S = {(τd(w), i) | w ∈ T, d ∈ ∆, i ≤ %(|w|)}
It is routine to verify that S satisfies Conditions 1 and 2 of
Definition 1. Since I is a model of K, for each a ∈ ind(A),
there exists (ta, 0) ∈ S such that for all α ∈ A with a occur-
ring in α we have that α ∈ ta.

Proofs for Section 4
Definition 5 (Semantics of Temporal Formulas). Let I be a
temporal interpretation. For a time point w in I, the truth re-
lation |= for temporal CTL∗-LiteNbool-state Formulas is defined
as follows:

I, w |= C v D iff CI,w ⊆ DI,w,

I, w |= C(a) iff a ∈ CI,w,

I, w |= r(a, b) iff (a, b) ∈ rI,w,
I, w |= ¬ϕ iff I, w 6|= ϕ,

I, w |= ϕ1 ∧ ϕ2 iff I, w |= ϕ1 and I, w |= ϕ2,

I, w |= Eψ iff I, π |= ψ for some π ∈ Paths(w).

For a path π in I, the truth relation |= for path formulas is
defined as follows:

I, π |= ϕ iff I, π[0] |= ϕ,

I, π |= ¬ψ iff I, π 6|= ψ,

I, π |= ψ1 ∧ ψ2 iff I, π |= ψ1 and I, π |= ψ2,

I, π |= ©ψ iff I, π[1..] |= ψ,

I, π |= �ψ iff ∀j ≥ 0.π[j..] |= ψ,

I, π |= ψ1 U ψ2 iff ∃j ≥ 0.( I, π[j..] |= ψ2 ∧
∀0 ≤ k < j.( I, π[k..] |= ψ1) ).

We say that a temporal interpretation I is a model of a tem-
poral CTL∗ALC-TBox ϕ if I, ε |= ϕ.

Lemma 1 ϕ is satis. iff there is a proper quasimodel for ϕ

Proof Sketch. “⇒” Let I = (∆I, (Iw)w∈W ) be al model of
ϕ. We define a qs(w)-labeled tree structure Q = (T, τ) such
that for all w ∈ T , τ(w) is defined as follows:

π(d,w) = {C ∈ cl(ϕ) | d ∈ CI,w};
S1(w) = {π(d,w) | d ∈ ∆};
S2(w) = {(π(a,w), a) | a ∈ ind(ϕ)};
S3(w) = {ψ ∈ sub(ϕ) | I, w |= ψ}.

We obtain the 2fcn- labeled tree Q3 by associating each w ∈
Q with the label S̄3(w). Moreover, it is not hard to see that



for all w ∈ T with τ(w) = (S1, S2, S3) and all π(d,w) ∈ S1

there is a 2cnn-labeled tree (T, τ ′) satisfying 2(a)-(c), and for
all a ∈ ind(ϕ) and (π(a,w), a) ∈ S2 there is a 2cnn-labeled
tree (T, τ ′) satisfying 3(a)-(c). Then, Q is indeed a proper-
quasimodel of ϕ.

“⇐” Let Q = (T, τ) be a proper-quasimodel ofϕ. Accord-
ing to Condition 2 , for all w ∈ T with τ(w) = (S1, S2, S3)
and all t ∈ S1 there is a there is a 2ccn-labeled tree (T, τt,w)
satisfying 2(a)-(c). Analogously, due to Condition 3, for all
w ∈ T with τ(w) = (S1, S2, S3) and a ∈ ind(ϕ) with
(t, a) ∈ S2 there is a 2ccn-labeled tree (T, τta,w) satisfying
3(a)-(c). We define the interpretation I = (∆I, (Iw)w∈W )
inductively as follows:

We define infinite sequences ∆0,∆1, . . . and mappings θi :
∆i ×W → 2ccn and relations Rr0, R

r
1 with r ∈ Rol(ϕ).

To start the construction of I, set

• ∆0 = {(t, w) | t ∈ S1(w), w ∈W} ∪ ind(ϕ);

• For all (t, v) ∈ ∆0, set θ0((t, v), w) ::= τt,v(w);

For all a ∈ ind(ϕ), set θ0(a,w) ::= τt,ε(w) such that
(t, a) ∈ S2(w);3

• For r ∈ Rolloc(ϕ), Rr0 is defined as follows

{(a, b, w) ∈ (∆0)2×W | r(a, b) ∈ S̄3(w) ∧ a, b ∈ ind(ϕ)}

• For r ∈ Rolrig(ϕ), Rr0 is defined as follows. For all
w′ ∈W

{(a, b, w′) ∈ (∆0)2×W | ∃w ∈W. r(a, b) ∈ S̄3(w) ∧
a, b ∈ ind(ϕ)}

In the inductive step below, we fix again ‘defective’ points
missing successors. For this purpose, we will use the notions
of required and actual rank as in the proof of Theorem 1. The
required r-rank for a d ∈ ∆i, i ≥ 1, at world w and step i is
defined as follows:

]r,wd,i = max{n ∈ ]rT | Xr
n ∈ θi(d,w)}4

The actual r-rank for a d ∈ ∆i, i ≥ 1, at world w and step i
is defined as follows:

ξr,wd,i = max{{0} ∪ {n ∈ ]rT | ∃ distinct e1, . . . en ∈ ∆i ∧

(d, ej) ∈ Rri (w) or (ej , d) ∈ Rr
−

i (w)}}

For the inductive step, set ∆i = ∆i−1, θi = θi−1,
Rri = Rri−1 and apply the following, which is meant to fix
‘defective’ points missing successors:

• If ]r,wd,i − ξ
r,w
d,i = n > 0 for some d ∈ ∆i−1 and w ∈ W

and r ∈ Rol(K), then proceed as follows:

1. Add e1, . . . , en to ∆i;
2. Add (d, ei, w) to Rri if r is local; otherwise, for all
w′ ∈W , add (d, ei, w

′) to Rri ;

3Recall that by Definition 2 such (t, a) is unique
4By convention n = 0 if no such proposition is in θ(d,w)

3. For all w′ ∈ W , set θi(ei, w′) = τ(t,w)(w
′) such

that ∃r− ∈ t.

Finally, put ∆I =
⋃
i≥0 ∆i, θ =

⋃
i≥0 θi and Rr =⋃

i≥0R
r
i . It remains to define the interpretation of concept

and role names (recall we make the standard name assump-
tion):

AI,w = {d ∈ ∆I | A ∈ θ(d,w)};
sI,w = {(d, e) ∈ (∆I)2 | (d, e, w) ∈ Rs}∪

{(d, e) ∈ (∆I)2 | (e, d, w) ∈ Rs−}

By using the properties of a proper-quasimodel, one can
prove the following claims, by simultaneous structural induc-
tion as in the proof of Theorem 1 above, which imply that I
is a model of ϕ.
Claim 1. For all d ∈ ∆I, w ∈ W and C ∈ ccl(ϕ), we have

that

d ∈ CI,w iff XC ∈ θ(d,w)

Claim 2. For all ϑ ∈ sub(ϕ) and w ∈W , we have that

Q3, w |= ϑ̄ iff I, w |= ϑ,

for every π ∈ Paths(w) and path formula ψ, we have

Q3, π |= ψ̄ iff I, π |= ψ.

Alternating Tree Automata
We need some preliminaries. For a set X , let B+(X) be the
set of Boolean formulas built from elements in X using ∧,
∨, true and false. Let Y ⊆ X . We say that Y satisfies a
formula θ ∈ B+(X) if assigning true to the members of Y
and assigning false to the members of X \ Y makes θ true.
For k ∈ N, we define [k] = {−1, 0, . . . , k}. For any w ∈
(N \ {0})∗ and m ∈ k, we put mov(w,m) = w if m = 0,
mov(w,m) = w ·m if m > 0, and mov(w,m) = u if m =
−1 and w = uc with c ∈ N.

An alternating 2-way Büchi tree automaton (2ABTA) over
Σ-labeled k-ary trees is a tuple A = (Q,Σ, q0, δ, F ) where
Q is a finite set of states, q0 ∈ Q is an initial state, δ is the
transition function δ : Q × Σ × {t, f} → B+([k] × Q) and
F ⊆ Q is the set of recurring states. Let (T, τ) be a Σ-
labeled k-ary tree. For w ∈ T , put root(w) = t if w = ε
and root(w) = f otherwise. A run of A on τ is a T × Q-
labeled tree (Tr, r) such that r(ε) = (ε, q0) and whenever
x ∈ Tr, r(x) = (w, q), and δ(q, τ(w), root(w)) = θ, then
there is a set S = {(m1, q1), . . . , (mn, qn)} ⊆ [k] × Q such
that S satisfies θ and for 1 ≤ i ≤ n, we have x · i ∈ Tr,
mov(w,mi) is defined, and τr(x · i) = (mov(w,mi), qi).
Using the ‘root flag’ as an additional third component in the
transition function is non-standard, but it does not cause any
problems. We use it to define a more compact 2ABTA below.
Theorem 4 Satisfiability is in 3EXPTIME for CTL∗-LiteNbool-
and in 2EXPTIME for CTL-LiteNbool-formulas



Proof Sketch. We next formally define a 2ABTA A′ =
(Q,Σ, δ, q0, F ) simulating a run of Aϑ for every w ∈ T and
t ∈ S1 such that τ(w) = (S1, S2, S3).

Set Σ = qs(ϕ), F = F1, Q∗1 = Q1 ∪ {∗} and

Q = {q0} ∪ (Q1 ×Q∗1) ∪ (Q1 × 2cnn ×Q∗1)

For all σ = (S1, S2, S3) ∈ Σ, the transition relation δ is
defined as follows:

δ(q0, σ, ·) =
∧k
i=1(i, q0) ∧

∧
t∈S1

∨
q∈Q1

(0, (q, t, ∗))

δ((q, q′), σ, ·) =
∨
t∈S1

(0, (q, t, q′))

δ((q, t, q′), σ, t) = Θ

δ((q, t, q′), σ, f) =
∨
q′′∈Q1

(−1, (q′′, q′))) ∧Θ

where Θ =
∨

(q1,...,qk)∈δ1(q,t)|q′∈{q1,...,qk}
∧k
i=1(i, (qi, ∗)),

‘·’ means that the transition is triggered with both t and f,
and ‘∗’ is used as a placeholder for all states q ∈ Q1 with
q ∈ {q1, . . . , qk}.

In the definition of δ, states of the form (q, q′) and (q, t, q′)
use the q′ component to help ‘putting together’ a run of Aϑ
that starts from the root, while initiating a simulation from an
arbitrary node. The intuitive reading is that a run of Aϑ is
currently being simulated in state q, and q′ has been assigned
to some successor node. Additionally, (q, t, q′) takes care of
choosing a t ∈ S1 at the current node, as required by Con-
dition 2 in Definition 3. The definition of δ also makes clear
why the simulated Aϑ needs to be a NBTA (rather than an
ABTA): one state needs to be assigned to each successor (cf.
Condition 2(b)).

As the last step in the construction of A, since 2ABTAs
are trivially closed under intersection, it remains to describe
how to construct 2ABTAs checking Conditions 1 and 3: (i) a
2ABTA to check Condition 1 is obtained by manipulating the
NBTA Aψ accepting the models (2fcn-labeled trees) of ψ =
ϕ̄ ∧ A�(ϕ1 ∧ ϕ2), so that it has input alphabet qs(ϕ) and
each symbol (S1, S2, S3) is handled as S̄3, and (ii) a 2ABTA
to check Condition 3 is obtained as a simpler variant of A′.
Note that we assume wlog. (cf. appendix) that the automata
above and Aϑ in A′ run on trees of outdegree k (cf. Lemma 2)
- this assumption does not affect Q1 above, and thus k.
Overall Complexity. The upper bounds follow from the fol-
lowing facts: (i) Non-emptiness of 2ABTAs can be checked
in EXPTIME in the number of states [Vardi, 1998]. (ii) The
number of states of Aϑ, which is the most dominating in the
definition of Q in A′ (and thus also in A), is in 22poly(|ϕ|)

if ϑ
is a CTL∗ formula and in 2poly(|ϕ|) if ϑ is a CTL formula.

Alternating Turing Machines
An Alternating Turing Machine (ATM) is a tuple M =
(Q,Σ,Γ, q0, δ), where:

• Q is a set of states containing pairwise disjoint sets of
existential states Q∃, universal states Q∀, and halting
states {qa, qr}, where qa is an accepting and qr a reject-
ing state;

• Σ is an input alphabet and Γ a working alphabet, con-
taining the blank symbol such that Σ ⊆ Γ and 6∈ Σ;
• q0 ∈ Q∃ ∪Q∀ is the initial state;
• δ is a transition relation is of the form δ ⊆ Q ×

Γ × Q × Γ × {`, r, n}. We write (q′, b,m) ∈ δ(q, a)
for (q, a, q′, b,m) ∈ δ. We assume that q ∈ Q∃ ∪ Q∀
implies δ(q, b) 6= ∅ for all b ∈ Γ and q ∈ {qa, qr} im-
plies δ(q, b) = ∅ for all b ∈ Γ. Intuitively, the triple
(q′, b,m) describes the transition to state q′, involving
overwriting of symbol a with b and a shift of the head
to the left (m = l), to the right (m = r) or no shift
(m = n).

A configuration of an ATM is a word wqw′ with w,w′ ∈
Γ∗ and q ∈ Q stating that the tape contains the word ww′
(with only blanks before and behind it), the machine is in
state q, and the head is on the leftmost symbol of w′. The
successor configurations of a configuration wqw′ are defined
in terms of the transition relation δ. A halting configuration
is of the form wqw′ with q ∈ {qa, qr}.

A computation path of an ATM M on a word w is a (fi-
nite or infinite) sequence of configurations c1, c2, . . . such
that c1 = q0w and ci+1 is a successor configuration of ci
for i ≥ 0. All ATMs considered in this paper have only fi-
nite computation paths on any input5. A halting configura-
tion is accepting iff it is of the form wqaw

′. A non-halting
configurations c = wqw′ is accepting if at least one (all)
successor configurations is accepting for q ∈ Q∃ (q ∈ Q∀,
respectively). An ATM accepts an input w if the initial con-
figuration q0w is accepting. We denote L(M) the language
{w ∈ Σ∗ |M accepts w}.

We set the configurations of an accepting computation of
an ATM M on a word w in an acceptance tree which is a
finite tree whose nodes are labelled with configurations such
that
• the root node is labelled with the initial configuration
q0w;
• if a node s in the tree is labelled with wqw′, q ∈ Q∃,

then s has exactly one successor, and this successor is
labelled with a successor configuration of wqw′;
• if a node s in the tree is labelled withwqw′, q ∈ Q∀, then

there is exactly one successor of s for each successor
configuration of wqw′;
• leaves are labelled with accepting halting configurations.

According to [Chandra et al., 1981], the problem of deciding
whether w ∈ L(M) is 2EXPTIME-hard. We assume that the
length of every computation of M on w ∈ Σk is bounded
by 22k , and for all configurations uqu′ in this computation
| uu′ |≤ 2k.

Theorem 5 Satisfiability of CTL-Litehorn-formulas without
rigid roles is 2EXPTIME-hard

Proof. The upper bounds follow from Theorem 4. We
next show that satisfiability of CTL-Litehorn-formulas is

5As this case is simpler than the general one, we define accep-
tance for ATMs with finite computation paths only, and refer to
[Chandra et al., 1981] for the full definition.



2EXPTIME-hard, by reducing from the word problem for
exponentially space bounded alternating Turing machines
(ATM).

Let M = (Q,Σ,Γ, q0, δ) be such an ATM with a
2EXPTIME-hard word problem, and ω = a0 . . . an−1 ∈ Σ
the input of length n. We construct in polynomial time a
CTL-Litehorn formula ϕM,ω such that ϕM,ω is satisfiable
iff M accepts ω. In what follows, we assume that triples
α in δ(q, a) are linearly ordered such that nα denotes the
number of α in the ordering (starting from 0). Let u ::=
max{δ(q, a) | q ∈ Q ∧ a ∈ Σ}. We assume wlog. q0 ∈ Q∃.

We outline the main ideas of the reduction: (i) the compu-
tation tree of an ATM is represented by the temporal evolution
of a single individual name a, such that each time point cor-
responds to a tape cell and a configuration is then represented
by exponentially consecutive time points. (ii) To synchro-
nise i-cells in consecutive configurations, the ‘content of a’
at that position i is stored in a fresh local ra-successor and
then recovered back to a using temporal TBoxes of the form
> v A ∨ > v Ā, with A and Ā disjoint, ensuring that all
domain elements in a given time point share the truth value
of A. (iii) Information is transported between neighbouring
configurations using binary counters.

We proceed now with the reduction. Throughout the re-
duction, we use various 2n-counters over the temporal dimen-
sions. We next exemplify how to implement a counter X (1)-
(5). To this aim, we use concepts X0, X0 . . . , Xn−1, Xn−1

simulating the bits of a number in binary.
For every, 0 ≤ j < i < n

Xi uXj v A©Xi, (1)

Xi uXj v A©Xi, (2)
For every 0 ≤ j < n,

Xj uXj−1 u . . . uX1 v A©Xj , (3)

Xj uXj−1 u . . . uX1 v A©Xj . (4)
For every 0 ≤ i < n

Xi uXi v ⊥ (5)

We use abbreviations Zero and End to respectively denote

n−1l

j=0

Xj

n−1l

j=0

Xj

As the next step, we enforce basic structural requirements
of ATMs (6)- (8). To this aim, we use the following signature
• Concept names Aa for each a ∈ Γ;
• Concept namesQq , for each q ∈ Q, to denote the current

state and the position of the head;
• Concept H , marking in a configuration all the cells to

the right of the head;
• Concept names Mα,Nα for every α ∈ Ξ, where Ξ =
{(q, a,m) | (q′, b, q, a,m) ∈ δ for any b ∈ Γ∧ q′ ∈ Q};
• Concept names Nq,a

nα , Sq,a
nα , for every a ∈ Γ, q ∈ Q \

{qa, qr} and α ∈ δ(q, a);

• Local role names ra for each a ∈ Γ.

To define the desired requirements, we use a counter Tape
over a configuration ofM; in particular, we use abbreviations
ZeroTape and EndTape as above. First, we ensure that in
each configuration the head position is labelled with at most
one state variable, and that each cell is labelled with exactly
one alphabet letter (6). Furthermore, we require that in each
configuration at most one tape cell is labelled with a state
Qq (8). To this aim, we mark all cells to right (until we reach
the end of the tape) of the head position with H (7).

∧
q 6=q′∈Q

(Qq uQq′ v ⊥) ∧
∧

a 6=a′∈Γ

(Aa uAa′ v ⊥) (6)

∧
q∈Q

(Qq v A©H) ∧
n−1∧
j=0

(H u Tapej v A©H) (7)

∧
q∈Q

(H uQq v ⊥) (8)

We will further use a counters Head and Head′, which stop
when reaching the end of the tape.

n−1∧
j=0

(Tapej uXi uXj v A©Xi), (9)

n−1∧
j=0

(Tapej uXi uXj v A©Xi), (10)

For every 0 ≤ j < n,

n−1∧
j=0

(Tapej uXj uXj−1 u . . . uX1 v A©Xj), (11)

n−1∧
j=0

(Tapej uXj uXj−1 u . . . uX1 v A©Xj). (12)

We next use the counter Head, concepts Mα and concepts
Nq,a
nα storing the information generated by the transition func-

tion (13), which will be used to establish the successor con-
figuration. In particular, we carry this information to the end
of the tape (14).∧
a∈Γ,q∈Q\{qa,qr}

(AauQq v
l

α∈δ(q,a)

E©(MαuNq,a
nα )uZeroHead)

(13)
n−1∧
j=0

(Mα uNq,a
nα u Tapej v A©(Mα uNq,a

nα )) (14)

We use copies Nq,a,m of Mq,a,m, Sq,a
nα of Nq,a

nα and Head′
of the counter Head to avoid clashes while synchronis-
ing neighbouring configurations (15)-(16). In (16), we use
A© (CHead′ = CHead+ 1 mod 2n) to denote that the value
of the Head′-counter in all successor worlds is equal to the



value of the Head-counter (in the current world) plus 1 mod-
ulo 2n; this can be implemented by recasting the incremen-
tation axioms given above. We transport the copies until the
end of the tape (17).∧

α∈Ξ

(Mα u EndTape uNq,a
nα v E©(Nα uSq,a

nα )) (15)

EndTape v A© (CHead′ = CHead + 1 mod 2n) (16)∧
α∈Ξ

n−1∧
j=0

(Nα uSq,a
nα u Tapej v A©(Nα uSq,a

nα )) (17)

∧
α 6=α′∈Ξ

((Nα uNα′ v ⊥) ∧ (Mα uMα′ v ⊥)) (18)

We next describe the changes imposed by the transition rela-
tion for elements under the head. We particularly ensure that
the new tape symbol is written, the state variable is set in the
correct position and that the head is not pushed beyond the
end of the tape.∧

(q,a,m)∈Ξ

Nq,a,m u ZeroHead′ v Aa (19)

∧
(q,a,n)∈Ξ

Nq,a,n u ZeroHead′ v Qq (20)

∧
(q,a,r)∈Ξ

Nq,a,r u ZeroHead′ v A©Qq (21)

∧
(q,a,l)∈Ξ

Nq,a,r u EndHead′ v Qq (22)

∧
(q,a,l)∈Ξ

ZeroHead′ u ZeroTape v Nq,a,m (23)

We next ensure that cells that are not under the head do not
change their contents during the transition. We first store
the information of their contents in fresh elements and syn-
chronise them with the previous configuration using a counter
Cell. To store the content of a cell, we will use concept names
Ca and copies Ba, for each a ∈ Γ. In (24)-(26) below, we
transport such concept names until the end of the previous
configuration, and then make copies to avoid clashes.

∧
a∈Γ

n−1∧
j=0

(Tapej uE©Ba v Ba) (24)

∧
a∈Γ

n−1∧
j=0

(Tapej uE©Ca v Ca) (25)

∧
a∈Γ

(EndTape uE©Ca v Ba) (26)

∧
a6=a′∈Γ

(Ca u Ca′ v ⊥ ∧Ba uBa′ v ⊥) (27)

We proceed to propagate information of cells not meant to
change their contents, ensuring they remain the same in
neighbouring configurations. To do so, we enforce that in

a given time point all elements share the same alphabet sym-
bol (28), and the same value of Tape-counter value (29) - used
in (24)-(26) over the fresh ra-elements defined below. For all
those cells that are not in ZeroHead′, and therefore are not
changing, an ra-representative is generated and labelled with
Ca and aCell-counter is initialised for such element (30). Fi-
nally, we synchronise the content of each such i-cell with that
of the i-cell in the previous configuration (31).∧

a∈Γ

(> v Aa ∨ > v Aa) (28)

n−1∧
j=0

(> v Tapej ∨ > v Tapej) (29)

∧
a∈Γ

(

n−1∧
j=0

(Head′j uAa v ∃ra) ∧ (∃r−a v Ca u ZeroCell))

(30)∧
a 6=a′∈Γ

(Aa uBa′ u ZeroCell v ⊥) (31)

We next identify accepting configurations in a bottom-up
manner. Intuitively, we will propagate bottom-up the fact
that we have reached an (Acc∗) accepting configuration at the
leaves (32)-(33). We will generally use two types of Acc-
like markers to differentiate whether we are dealing with a
universal or existential state; and will copy the markers un-
til reaching the end of the tape of the previous configuration
and then make copies (34)-(35). In the inner nodes, we will
then proceed by differentiating whether we are looking (i) at
a universal state and are located at a successor configuration
of a universal (36) or existential state (37); or (ii) at a exis-
tential state and are located at a successor configuration of a
universal (38) or existential state (39). For all q1, q2 ∈ Q∀,
q′1, q

′
2 ∈ Q∃, a1, a2 ∈ Σ, α ∈ δ(qi, aj) and α′ ∈ δ(q′i, aj),

we define the following.

Sq1,a1
nα u qa v Accnα (32)

S
q′1,a1
nα′ u qa v Acc (33)∧n−1

j=0 ((Tapej uE©Acc v Acc) ∧

(Tapej uE©Accnα v Accnα))
(34)

(EndTape uE©Acc v Acc′) ∧

(EndTape uE©Accnα v Acc′nα)
(35)

Aa1 uQq1 u
l

k<]δ(q1,a1)

Acc′k uSq2,a2
nα v Accnα (36)

Aa1 uQq1 u
l

k<]δ(q1,a1)

Acc′k uS
q′1,a2
nα′ v Acc (37)

Qq′1 u Acc′ uSq1,a2
nα v Accnα (38)

Qq′1 u Acc′ uS
q′2,a2
nα′ v Acc (39)



We next define the initial configuration. For 1 ≤ i < n

A0 v Aa0 uQq0 u ZeroTape uE©A1

Ai v Aai uE©Ai+1

An v A∧n−1
j=0 (Tapej uA v E©A )

(40)

We define ψ as the conjunction of the TBoxes above and
ϕM,ω as A�ψ ∧ (A0 u Acc′)(a). Finally, following the in-
tuitive meaning of each conjunct above, it is not hard to see
that ϕM,ω is satisfiable iffM accepts ω.

This finishes the proof.


