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Abstract

We develop a game-theoretic semantics (GTS) for the fragment ATL+ of the
Alternating-time Temporal Logic ATL∗, essentially extending a recently introduced
GTS for ATL. We show that the new game-theoretic semantics is equivalent to the
standard compositional semantics of ATL+ (with perfect-recall strategies). Based
on the new semantics, we provide an analysis of the memory and time resources
needed for model checking ATL+ and show that strategies of the verifier that use
only a very limited amount of memory suffice. Furthermore, using the GTS we
provide a new algorithm for model checking ATL+ and identify a natural hierarchy
of tractable fragments of ATL+ that extend ATL.

1 Introduction

The full Alternating-time Temporal Logic ATL∗ [3] is one of the main logical systems used
for formalising and verifying strategic reasoning about agents in multi-agent systems.
It is very expressive, and that expressiveness comes at the high (2-EXPTIME) price of
computational complexity of model checking. Its basic fragment ATL (the multi-agent
analogue of CTL) has, on the other hand, tractable model checking but its expressive-
ness is rather limited. In particular, ATL only allows expressing strategic objectives of
the type 〈〈A〉〉Φ where Φ is a simple temporal goal involving a single temporal operator
applied directly to state sub-formula(e). Thus ATL cannot express multiple simultaneous
temporal goals. The intermediate fragment ATL+ naturally emerges as a good alterna-
tive, extending ATL so that it is possible to directly express strategic objectives which
are Boolean combinations of simple temporal goals. The price for this is the reasonably
higher computational complexity of model checking ATL+, viz. PSPACE-completeness
[5]. Still, the PSPACE-completeness result alone gives a rather crude estimate of the
amount of memory needed for model checking ATL+.

In this paper we take an alternative approach to semantic analysis and model check-
ing of some fragments of ATL∗, in particular of ATL+, based not on the standard
compositional semantics but on game-theoretic semantics GTS. The main aims and
contributions of this paper are three-fold:
1. We introduce an adequate GTS for ATL+ equivalent to the standard compositional
semantics.
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2. We propose new model checking algorithms for ATL+ and some of its fragments,
using the GTS developed here, rather than the standard semantics. We also analyse the
use of memory resources in ATL+ via GTS.
3. We apply the GTS-based approach to model checking in order to identify new tractable
fragments of ATL+.

The main part of the paper consists of a detailed presentation and analysis of the
new GTS for ATL+, which we prove to be equivalent to the standard compositional se-
mantics with perfect-recall strategies. While our proposal looks similar in spirit to the
recently introduced in [11] GTS for ATL, it is based on a range of new technical ideas
and mechanisms needed for the correct evaluation of multiple temporal goals pursued si-
multaneously by the proponent coalition. We prove—as shown for ATL in [11]—that our
GTS for ATL+ ensures (even on infinite models) that it is always sufficient to construct
finite paths only when formulae are evaluated. While the proof for ATL+ is substantially
more complex, the technical machinery we use is in many respects lighter, we claim, than
the one used in [11].

The approach via GTS enables us, inter alia, to perform a more precise analysis on
the memory resources needed in evaluating ATL+-formulae than the algorithm from [5]
which employs a mix of a path construction procedure for checking strategic formulae
〈〈A〉〉Φ on one hand, and the standard labelling algorithm on the other hand. Our model
checking algorithm for ATL+ follows uniformly a procedure directly based on GTS and in
fact enables us, inter alia, to identify and correct a flaw in the model checking procedure
of [5] and some of the claims on which it is based (see Section 5). However, the PSPACE
upper bound result of [5] is easily confirmed by our algorithm, and we provide a new
simple proof of that result. In addition to new methods, we use some ideas from [5].

As a new complexity result obtained via GTS, we identify in Section 5 a natural hier-
archy of fragments of ATL+ that extend ATL and have a tractable model checking. The
hierarchy is based on bounding the Boolean strategic width (cf. Section 5) of formulae.

We note that a GTS for ATL+ alternative to ours could be obtained via a GTS for
coalgebraic fixed point logic [18, 9, 10], but such a semantics (being designed for more
powerful logics) would not directly lead to our GTS that is custom-made for ATL+ and
thereby enables the complexity analysis we require. Also, the alternative approach would
not give a semantics where the construction of only finite paths suffices.

The current paper expands the results in [11] in various non-trivial ways. Several
new ideas and technical notions, such as the role of a seeker and the use of a truth
function, will be introduced in order to enable the transition from ATL to ATL+ in
the GTS setting. Also, a connection of our GTS with Büchi games will be established;
the connection applies trivially also to the games of [11]. Most importantly, we can
directly use the new upgraded semantics in a model checking procedure for ATL+ and
the fragments ATLk. This would not be possible with with the semantics in [11].

We mention here a few other relevant works with respect to ATL and its extensions:
[1, 20, 8, 2, 15, 17, 6].

2 Preliminaries

Definition 2.1. A concurrent game model (CGM) is M := (Agt,St,Π,Act, d, o, v)
which consists of:
– The following non-empty sets: agents Agt = {a1, . . . , ak}, states St, proposition
symbols Π, actions Act;
– The following functions: an action function d (s.t. d : Agt× St → P(Act) \ {∅})
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which assigns a non-empty set of actions available to each agent at each state; a transi-

tion function o which assigns an outcome state o(q, ~α) to each state q ∈ St and action
profile (a tuple of actions ~α = (α1, . . . , αk) such that αi ∈ d(ai, q) for each ai ∈ Agt);
and finally, a valuation function v : Π → P(St).

We use symbols p, p0, p1, . . . to denote proposition symbols and q, q0, q1, . . . to denote
states. Sets of agents are called coalitions. The complement A = Agt \A of a coalition
A is the opposing coalition of A. The set action(A, q) of action tuples available to
coalition A at state q ∈ St is defined as

action(A, q) := {(αi)ai∈A | αi ∈ d(ai, q) for each ai ∈ A}.

Example 2.2. Let M∗ = (Agt,St,Π,Act, d, o, v), where:

Agt = {a1, a2}, St = {q0, q1, q2, q3, q4}

Π = {p1, p2, p3}, Act = {α, β}

d(a2, q0) = d(a1, q1) = {α, β} and else d(ai, qi) = {α}

o(q0, αα) = q1, o(q0, αβ) = q2, o(q1, αα) = q2,

o(q1, αβ) = q3, o(q2, αα) = q1 and o(q3, αα) = q3

v(p1) = {q2, q4}, v(p2) = {q3} and v(p3) = {q1}.

p3

p1 p2

p1

M∗:

q0 q1

q2 q3

q4

αα

αβ

αα

αα αα

βα
αα

Definition 2.3. Let M = (Agt,St,Π,Act, d, o, v) be a CGM. A path in M is a sequence
Λ : N → St of states such that for each n ∈ N, we have Λ[n+1] = o(Λ[n], ~α) for some
admissible action profile ~α in Λ[n]. A finite path (aka history) is a finite prefix
sequence of a path in M. We let paths(M) denote the set of all paths in M and
pathsfin(M) the set of all finite paths in M.

A positional strategy of an agent a ∈ Agt is a function sa : St → Act such that
sa(q) ∈ d(a, q) for each q ∈ St. A (perfect-recall) strategy of agent a ∈ Agt is a
function sa : pathsfin(M) → Act such that sa(λ) ∈ d(a, λ[k]) for each λ ∈ pathsfin(M)
where λ[k] is the last state in λ. A collective strategy SA for A ⊆ Agt is a tuple of
individual strategies, one for each agent in A. We let paths(q, SA) denote the set of all
paths that can be formed when the agents in A play according to a strategy SA, beginning
from q. In this paper, we only consider the perfect information scenario.

The syntax of ATL+ is given by the following grammar.

State formulae: ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈〈A〉〉Φ
Path formulae: Φ ::= ϕ | ¬Φ | Φ ∨ Φ | Xϕ | ϕUϕ

where p ∈ Π. Other Boolean connectives are defined as usual, and furthermore, Fϕ, Gϕ
and ϕRψ are abbreviations for ⊤Uϕ, ¬(⊤U¬ϕ), and ¬(¬ϕU¬ψ) respectively. We
use Φ and Ψ to denote path formulae only; ϕ, ψ, χ will be freely used to denote state
and path formulae.
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Definition 2.4. Let M be a CGM. Truth of state and path formulae of ATL+ is defined,
respectively, with respect to states q ∈ St and paths Λ ∈ paths(M), as follows:

• M, q |= p iff q ∈ v(p) (for p ∈ Π ).

• M, q |= ¬ϕ iff M, q 6|= ϕ.

• M, q |= ϕ ∨ ψ iff M, q |= ϕ or M, q |= ψ.

• M, q |= 〈〈A〉〉Φ iff there exists a (perfect-recall) strategy SA such that M,Λ |= Φ for
each Λ ∈ paths(q, SA).

• M,Λ |= ϕ iff M,Λ[0] |= ϕ (where ϕ is a state formula).

• M,Λ |= Xϕ iff M,Λ[1] |= ϕ.

• M,Λ |= ¬Φ iff M,Λ 6|= Φ.

• M,Λ |= Φ ∨Ψ iff M,Λ |= Φ or M,Λ |= Ψ.

• M,Λ |= ϕUψ iff there exists i ∈ N such that M,Λ[i] |= ψ and M,Λ[j] |= ϕ for all
j < i.

The set of subformulae, SUB(ϕ), of a formula ϕ is defined as usual. Subformulae
with a temporal operator as the main connective will be called temporal subformulae,
while subformulae with 〈〈〉〉 as the main connective are strategic subformulae. The
subformula Ψ of a formula ϕ = 〈〈A〉〉Ψ is called the temporal objective of ϕ. We also
define the set At(Φ) of relative atoms of Φ as follows:

• At(χ ∨ χ′) = At(χ) ∪ At(χ′) and At(¬χ) = At(χ).

• At(〈〈A〉〉χ) = {〈〈A〉〉χ} and At(p) = {p} for p ∈ Π.

• At(χUχ′) = {χUχ′} and At(Xχ) = {Xχ}.

We say that χ ∈ At(Φ) occurs positively (resp. negatively) in Φ if χ has an
occurrence in the scope of an even (resp. odd) number of negations in Φ. We denote by
SUBAt(Φ) the subset of SUB(Φ) that contains all the relative atoms of Φ and also all
the Boolean combinations χ of these relative atoms such that χ ∈ SUB(Φ).

Example 2.5. Let ϕ∗ := 〈〈a1〉〉Ψ, where

Ψ := (¬X p3 ∧ 〈〈a2〉〉X p1) ∨ (F p1 ∧ (¬p1)U p2).

Note that ϕ∗ is an ATL+ formula. Written without using abbreviations, Ψ becomes

¬(¬¬X p3 ∨ ¬〈〈a2〉〉X p1) ∨ ¬(¬(⊤U p1) ∨ ¬((¬p1)U p2)).

Here At(Ψ) = {X p3, 〈〈a2〉〉X p1,⊤U p1, (¬p1)U p2}, where 〈〈a2〉〉X p1 is a state formula
and the rest are path formulae. The formula X p3 occurs negatively in Ψ and the rest of
the formulae in At(Ψ) occur positively in Ψ.

3 Game-theoretic semantics

In this section we define bounded, finitely bounded and unbounded evaluation games for
ATL+. These games give rise to three different semantic systems, namely, the bounded,
finitely bounded and unbounded GTS for ATL+. We use some terminology and notational
conventions introduced in [11].
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3.1 Evaluation games: informal description

Given a CGM M, a state qin and a formula ϕ, the evaluation game G(M, qin, ϕ)
is, intuitively, a formal debate between two opponents, Eloise (E) and Abelard (A),
about whether the formula ϕ is true at the state qin in the model M. Eloise claims that
ϕ is true, so she (initially) adopts the role of a verifier in the game, and Abelard tries
to prove the formula false, so he is (initially) the falsifier. These roles (verifier, falsifier)
can swap in the course of the game when negations are encountered in the formula. If
P ∈ {E,A}, then P denotes the opponent of P, i.e., P ∈ {E,A} \ {P}.

We now provide an intuitive account of the bounded evaluation game and thus the
bounded GTS for ATL+. The intuitions underlying the finitely bounded and unbounded
GTS are similar. A reader unfamiliar with the concept of GTS may find it useful to
consult, for example, [13] for GTS in general, or [11] for ATL-specific GTS. The particular
GTS for ATL+ presented here follows the general principles of GTS, the main original
feature here being the treatment of strategic formulae 〈〈A〉〉Φ. We first give an informal
account of the way such formulae are treated in our evaluation games. Formal definitions
and some concrete examples will be given further, beginning from Section 3.2.

The evaluation of ATL+ formulae of the type 〈〈A〉〉Φ in a given model is based on
constructing finite paths in that model. The following two main ideas are central.

Firstly, the path formula Φ in 〈〈A〉〉Φ can be divided into goals for the verifier (V),
these being the relative atoms ψ ∈ At(Φ) that occur positively in Φ, and goals for the
falsifier (V), these being the relative atoms ψ ∈ At(Φ) that occur negatively in Φ.
(Some formulae may be goals for both players.) For simplicity, let us assume for now
that Φ is in negation normal form and all the atoms in At(Φ) are temporal formulae of
the type F p. Then the verifier’s goals are eventuality statements F p, while the falsifier’s
goals are statements F p′ that occur negated, and thus correspond to safety statements
G¬p′. The verifier wishes to verify her/his goals. The falsifier, likewise, wants to verify
her/his goals, i.e., (s)he wishes to falsify the related safety statements.

Secondly, every temporal goal has a unique“finite determination point” on any given
path, meaning the following. If a goal F p is true on an infinite path π, then there exists
an earliest point q on that path where the fact that F p holds on π becomes verified
simply because p is true at q. Once F p has been verified, it will remain true on π, no
matter what happens on the path after q. Similarly, if a statement G¬p′ is false on an
infinite path, there is a unique point where G¬p′ first becomes falsified. Furthermore,
G¬p′ will remain false on the path no matter what happens later on. (Note that there is
no analogous finite determination point for ATL∗-formulae such as 〈〈A〉〉GF p on a given
infinite path.)

Now, the game-theoretic evaluation procedure of an ATL+-formula 〈〈A〉〉Φ proceeds
roughly as follows. The verifier is controlling the agents in the coalition A and the falsifier
the agents in the opposing coalition A = Agt \A. The players start constructing a
path. (Each transition from one state to another is carried out according to the process
“Step phase” defined formally in Section 3.2.2.) The verifier is first given a change to
verify some of her/his goals in Φ. The falsifier tries to prevent this and to possibly verify
some her/his own goals instead. During this path construction/verification process, the
verifier is said to have the role of the seeker. A player is allowed to stay as the seeker
for only a finite number of rounds. This is ensured by requiring the seeker to announce
an ordinal, called timer, 1 before the path construction process begins, and then
lower the ordinal each time a new state is reached. The process ends when the ordinal

1Note that the term “timer” is used here differently from [11].
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becomes zero or when the seeker is satisfied, having verified some of her/his goals. Since
ordinals are well-founded, the process must terminate.

After the verifier has ended her/his seeker turn, the falsifier may either end the
game or take the role of the seeker. If (s)he decides to become the seeker, then (s)he
sets a new timer and the path construction process continues for some finite number of
rounds. When the falsifier is satisfied, having verified some of her/his goals, the verifier
may again take the seeker’s role, and so on. Thus the verifier and falsifier take turns
being the seeker, trying to reach (verify) their goals. The number of these alternations
is bounded by a seeker turn counter which is a finite number that equals the total
number of goals in Φ. (The formal description of seeker turn alternation is given in
“Deciding whether to continue and adjusting the timer” in Section 3.2.2.)

Each time a goal in Φ becomes verified, this is recorded in a truth function T . (The
recording of verified goals is described formally in the process“Adjusting the truth function”
defined in Section 3.2.2.) The truth function carries the following information at any
stage of the game:

• The verifier’s goals that have been verified.

• The falsifier’s goals that have been verified.

• The goals that are not mentioned above remain open.

When neither of the players wants to become the seeker, or when the seeker turn counter
becomes zero, the path construction process ends and the players play a standard Bool-
ean evaluation game on Φ by using the values given by T ; the open goals are then given
truth values as follows:

• The verifier’s open goals are (so far) not verified and thus considered false.

• Likewise, the falsifier’s open goals are (so far) not verified and thus considered
false. (Recall that the falsifiers goals are negated.)

Next we consider the conditions when a player is “satisfied” with the current status of
the truth function T—and thus wants to end the game—and when (s)he is “unsatisfied”
and wants to continue the game as the seeker. Note that when the path construction
ends, then every goal is given a Boolean truth value based on the truth function T , as
described above. With these values, the formula Φ is either true or false. If Φ is true
with the current values based on T , then the verifier can win the Boolean game for Φ;
dually, if Φ is not true with the values based on T , then the falsifier can win the Boolean
game for Φ. Hence the players want to take the role of the seeker in order to modify the
truth function T in such a way that the truth of Φ with respect to T changes from false
to true (whence V is satisfied) or from true to false (whence V is satisfied).

The thruth value of Φ with respect to T can keep changing when T is modified, but
only a finite number of changes is possible. Indeed, the maximum number of such truth
alternations is the total number of goals in Φ.

In the general case, formulae of the type ϕUψ, Xϕ and state formulae ϕ may also
occur in At(Φ) as goals, and Φ does not have to be in negation normal form. Formulae of
the type ϕUψ can be either verified, by showing that ψ is true, or falsified, by showing
that ϕ is not true at respective states. State formulae ϕ can only be verified at the
initial state and the nexttime formulae Xϕ can only be verified at the second state on
the path.
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3.2 Evaluation games: formal description

Now we will present the bounded evaluation game which uses the bounded tran-

sition game as a subgame for evaluating strategic subformulae. Interleaved with the
definition we will provide, in italics, a running example that uses M∗ and ϕ∗ from
Examples 2.2 and 2.5 respectively.

3.2.1 Rules of the bounded evaluation game

Let M = (Agt,St,Π,Act, d, o, v) be a CGM, qin∈St a state, ϕ a state formula and Γ > 0
an ordinal called a timer bound. The Γ-bounded evaluation game G(M, qin, ϕ,Γ)
between the players A and E is defined as follows.

A location of the game is a tuple (P, q, ψ, T ) where P ∈ {A,E}, q ∈ St is a state,
ψ is a subformula of ϕ and T is a truth function, mapping some subset of SUB(ϕ)
into {⊤,⊥, open}. (T can also be called a truth history function.)

The initial location of the game is (E, qin, ϕ, Tin), where Tin is the empty function.
In every location (P, q, ψ, T ), the player P is called the verifier and P the falsifier for
that location. Intuitively, q is the current state of the game and T encodes truth values
of formulae on a path that has been constructed earlier in the game.

Each location is associated with exactly one of the rules 1–6 given below. First we
provide the rules for locations (P, q, ψ, T ) where ψ is either a proposition symbol or has
a Boolean connective as its main operator:

1. A location (P, q, p, T ), where p ∈ Π, is an ending location of the evaluation game.
If T 6= ∅, then P wins the game if T (p) = ⊤ and else P wins. Respectively, if T = ∅,
then P wins if q ∈ v(p) and else P wins.

2. From a location (P, q,¬ψ, T ) the game moves to the location (P, q, ψ, T ).
3. In a location (P, q, ψ ∨ θ, T ) the player P chooses one of the locations (P, q, ψ, T )
and (P, q, θ, T ), which becomes the next location of the game.

We then define the rules of the evaluation game for locations of type (P, q, 〈〈A〉〉Φ, T ) as
follows.

4. Suppose a location (P, q, 〈〈A〉〉Φ, T ) is reached.

• If T 6= ∅, then this location is an ending location where P wins if T (〈〈A〉〉Φ) = ⊤ and
else P wins.

• If T = ∅, then the evaluation game enters a transition game g(P, q, 〈〈A〉〉Φ,Γ). The
transition game is a subgame to be defined later on. The transition game eventually
reaches an exit location (P′, q′, ψ, T ′), and the evaluation game continues from that
location. Note that an exit location only ends the transition game, so exit locations of
transition games and ending locations of the evaluation game are different concepts.

The rules for temporal formulae are defined using the truth function T (updated in an
earlier transition game) as follows.

5. A location (P, q, ϕUψ, T ) is an ending location of the evaluation game. P wins if
T (ϕUψ) = ⊤ and else P wins.

6. Likewise, a location (P, q,Xϕ, T ) is an ending location. P wins if T (Xϕ) = ⊤ and
otherwise P wins.

These are the rules of the evaluation game. We note that the timer bound Γ will
be used in the transition games. If Γ = ω, we say that the evaluation game is finitely
bounded.

The initial location of the finitely bounded evaluation game G(M∗, q0, ϕ
∗, ω) (see Exam-

ples 2.2 and 2.5) is (E, q0, 〈〈a1〉〉Ψ, ∅), from where the transition game g(E, q0, 〈〈a1〉〉Ψ, ω) begins.
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3.2.2 Rules of the transition game

Recall that transition games are subgames of evaluation games. Their purpose is to
evaluate the truth of strategic subformulae, in a game-like fashion.

Now we give a detailed description of transition games. 2 A transition

game g(V, q0, 〈〈A〉〉Φ,Γ), where V ∈ {A,E}, q0 ∈ St, 〈〈A〉〉Φ ∈ ATL+ and Γ > 0 is
an ordinal, is defined as follows. V is called the verifier in the transition game.
The game g(V, q0, 〈〈A〉〉Φ,Γ) is based on configurations, i.e., tuples (S, q, T, n, γ, x),
where the player S ∈ {E,A} is called the seeker; q is the current state; T : At(Φ) →
{⊤,⊥, open} is a truth function; n ∈ N is a seeker turn counter (n ≤ |At(Φ)|); γ < Γ
is an ordinal called timer; and x ∈ { i, ii, iii } is an index showing the current phase

of the transition game. The gameg(V, q0,〈〈A〉〉Φ,Γ)begins at the initial configuration

(V, q0, T0, |At(Φ)|,Γ, i), with T0(χ) = open for all χ ∈ At(Φ).

The transition game g(E, q0, 〈〈a1〉〉Ψ, ω) begins from the initial configuration (E, q0, T0, 4, ω, i),

since |At(Ψ)| = 4.

The transition game then proceeds by iterating the following phases i, ii and iii

which we first describe informally; detailed formal definitions are given afterwards.

i. Adjusting the truth function: In this phase the players make claims on the truth of
state formulae at the current state q. If P makes some claim, then the opponent P
may either: 1) accept the claim, whence truth function is updated accordingly, or
2) challenge the claim. In the latter case the transition game ends and truth of the
claim is verified in a continued evaluation game.

ii. Decidingwhether to continue and adjusting the timer: Here the current seeker S may
either continue her/his seeker turn and lower the value of the timer, or end her/his
seeker turn. If S chooses the latter option, then the opponent S of the seeker may
either 1) take the role of the seeker and announce a new value for the timer or 2)
end the transition game, whence the formula Φ is evaluated based on current values
of the truth function.

iii. Step phase: Here the verifier V chooses actions for the agents in the coalition in A at
the current state q. Then V chooses actions for the agents in the opposing coalition
A. After the resulting transition to a new state q′ has been made, the game continues
again with phase i.

We now describe the phases i, ii and iii in detail:

i. Adjusting the truth function.
Suppose the current configuration is (S, q, T, n, γ, i). Then the truth function T is up-
dated by considering, one by one, each formula χ ∈ At(Φ) (in some fixed order). If
T (χ) 6= open, then the value χ cannot be updated. Else the value of χ may be modified
according to the rules A – C below.

A. Updating T on temporal formulae: Suppose that we have ϕUψ ∈ At(Φ). Now
first the verifier V may claim that ψ is true at the current state q. If V makes this
claim, then V chooses either of the following:

• V accepts the claim of V, whence the truth function is updated such that ϕUψ 7→ ⊤
(ϕUψ becomes verified).

• V challenges the claim of V, whence the transition game ends at the exit location

(V, q, ψ, ∅). (We note that here, and elsewhere, when a transition game ends, the

2A transition game for ATL+ is similar to the ‘embedded game’ introduced in [11] for the GTS
of ATL. The role of the seeker S here is similar to the role of the controller in that embedded
game.
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evaluation game will be continued from the related exit location and the evaluation
game will never return to the same exited transition game any more.)

If V does not claim that ψ is true at q, then V may make the same claim (that ψ is
true at q). If V makes this claim, then the same above two steps concerning accepting
and challenging are followed, but with V and V swapped everywhere.

Suppose then that neither of the players claims that ψ is true at q. Then first V can
claim that ϕ is false at q. If V makes this claim, then V chooses either of the following:

• V accepts the claim, whence the truth function is updated such that ϕUψ 7→ ⊥
(ϕUψ becomes falsified).

• V challenges the claim. Then the transition game ends at the exit location (V, q,¬ϕ, ∅).

If V does not claim that ϕ is false at q, then V may make the same claim. If (s)he does,
then the same steps as those above are followed, but with V and V swapped.

B. Updating T on proposition symbols and strategic formulae: The truth function can
be updated on proposition symbols p ∈ At(Φ) and strategic formulae 〈〈A′〉〉Ψ ∈ At(Φ)
only when the phase i is executed for the first time (whence we have q = q0). In this
case, given such a formula χ, first V can claim that χ is true at q. Now, if V accepts
this claim, then the truth function is updated s.t. χ 7→ ⊤. If V challenges the claim,
then the transition game ends at the exit location (V, q, χ, ∅). If V does not claim that
χ is true at q, then V may make the same claim. If (s)he does, then the same steps are
followed, but with V and V swapped.

C. Updating T on formulae with X : The truth function can be updated on formulae
of type Xψ ∈ At(Φ) only when phase i is executed for the second time in the transition
game (whence q is some successor of q0). First V can claim that ψ is true at q. If V
accepts this claim, then the truth function is updated s.t. Xψ 7→ ⊤. If V challenges
the claim, then the transition game ends at the exit location (V, q, ψ, ∅). If V does not
claim that ψ is true at q, then V can make the same claim. If (s)he does, the same steps
are followed, but with V and V swapped.

If neither player makes any claim which would update the value of a formula χ ∈
At(Φ), then the value of χ is left open. Once the values of the truth function T have
been updated (or left as they are) for all formulae in At(Φ), a new truth function T ′ is
obtained. The transition game then moves to the new configuration (S, q, T ′, n, γ, ii).

In the configuration (E, q0, T0, 4, ω, i) the players begin adjusting T0 for which initially

T0(χ) = open for every χ ∈ At(Ψ). Since it is the first round of the transition game, the value of

X p3 cannot be modified, but the value of 〈〈a2〉〉X p1 can be modified. Suppose that Eloise claims

that 〈〈a2〉〉X p1 is true at the current state q0. Now Abelard could challenge the claim, whence

the transition game ends and the evaluation game continues from location (E, q0, 〈〈a2〉〉X p1, ∅)

(which leads to a new transition game g(E, q0, 〈〈a2〉〉X p1, ω)). Suppose Abelard does not challenge

the claim, whence 〈〈a2〉〉X p1 is mapped to ⊤.

Since F p1 and (¬p1)U p2 occur positively in Φ, Eloise has interest only to verify them and

Abelard has interest only to falsify them. Eloise could verify F p1 by claiming that p1 is true, or

verify (¬p1)U p2 by claiming that p2 is true. But if Eloise makes either of these claims, then

Abelard wins the whole evaluation game by challenging, since q0 /∈ v(p1) ∪ v(p2). Suppose that

Eloise does not make any claims. Now, Abelard could claim that ¬p1 is not true, in order to

falsify (¬p1)U p2. But if he does this, he loses the evaluation game if Eloise challenges, since

q0 /∈ v(p1). Suppose that Abelard does not make any claims, either. Then the transition game

proceeds to configuration (E, q0, T, 4, ω, ii), where T (〈〈a2〉〉X p1) = ⊤ and T (χ) = open for the

other χ ∈ At(Ψ).
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ii. Deciding whether to continue and adjusting the timer.
Suppose a configuration (S, q, T, n, γ, ii) has been reached. Assume first that γ 6= 0.
Then the seeker S can choose whether to continue the transition game as the seeker.
If yes, then S chooses some ordinal γ′ < γ and the transition game continues from
(S, q, T, n, γ′, iii). If S does not want to continue, or if γ = 0, then one of the following
applies.

a) Assume that n 6= 0. Then the player S chooses whether (s)he wishes to continue the
transition game. If yes, then S chooses an ordinal γ′ < Γ (note that S may reset
here the value of timer) and the transition game continues from (S, q, T, n− 1, γ′, iii).
Otherwise the transition game ends at the exit location (V, q,Φ, T ).

b) Assume n = 0. Then the transition game ends at the exit location (V, q,Φ, T ).

In (E, q0, T, 4, ω, ii) Eloise may decide whether to continue the transition game as a seeker.

Suppose that Eloise does not continue, whence Abelard may now become a seeker and continue

the transition game, or end it. If Abelard ends the transition game, then the evaluation game

is continued from (E, q0,Ψ, T ). But since T (X p3) = open and T (〈〈a2〉〉X p1) = ⊤, Eloise can

then win the evaluation game by choosing the left disjunct of Ψ. Suppose that Abelard decides to

become a seeker, whence he chooses somem < ω and the next configuration is (A, q0, T, 3,m, iii).

iii. Step phase. 3

Suppose that the configuration is (S, q, T, n, γ, iii).

a) First V chooses an action αi ∈ d(ai, q) for each ai ∈ A.

b) Then V chooses an action αi ∈ d(ai, q) for each ai ∈ A.

The resulting action profile produces a successor state q′ := o(q, α1, . . . , αk). The
transition game then moves to the configuration (S, q′, T, n, γ, i).

In the configuration (A, q0, T, 3,m, iii) Eloise (who is the verifier V) first chooses action

for agent a1, then Abelard chooses action for agent a2, which produces either successor state

q1 or q2. Then the transition game continues from the configuration (A, qj , T, 3,m, i), where

j ∈ {1, 2}.

This concludes the definition of the rules for the phases i, ii and iii in the transition
game g(V, q0, 〈〈A〉〉Φ,Γ).

Suppose first that the transition game is continued from (A, q2, T, 3,m, i). Since it is the

second round, Abelard could now try to verify X p3 by claiming that p3 is true at q2. However,

then Eloise would win by challenging. But if Abelard does not try to verify X p3 now, then the

value of X p3 will stay open. In that case Eloise will win the evaluation game simply by not

making any more claims in the transition game.

Suppose then that the game continued from (A, q1, T, 3,m, i). Suppose that Abelard verifies

X p3 by claiming that p3 is true and that Eloise does not challenge. If the transition game would

end at (E, q1,Ψ, T
′), where T ′(X p3) = ⊤, Abelard would win. Thus, suppose that Abelard ends

his seeker turn and Eloise chooses some finite timer, say 2. At (E, q1, T
′, 2, 2, iii) Eloise can

force the resulting state q3 by choosing α for a1. At (E, q3, T
′, 2, 2, i) Eloise can verify (¬p1)U p2

by claiming that p2 is true at q2. Furthermore, Eloise can move via q1 to q4 and verify F p1
there, before timer reaches 0. When the evaluation game is eventually continued, Eloise wins by

choosing the right disjunct of Ψ.

3The procedure in this phase is analogous to the step game, step(V, A, q), which was intro-
duced for the GTS for ATL ([11]).
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3.2.3 The unbounded evaluation game

Let G(M, q, ϕ,Γ) be a Γ-bounded evaluation game. We can define a corresponding un-

bounded evaluation game, G(M, q, ϕ), by replacing transition games g(V, q, 〈〈A〉〉Φ,Γ)
with unbounded transition games, g(V, q, 〈〈A〉〉Φ); these are played with the same
rules as g(P, q0, 〈〈A〉〉Φ,Γ) except that timers γ are not used in them. Instead, the
players can keep the role of a seeker for arbitrarily long and thus the game may last
for an infinite number of rounds. In the case of an infinite play, the player who took
the last seeker turn loses the entire evaluation game. (Recall that the number of seeker
alternations is bounded by the number |At(Φ)|.)

3.3 Defining the game theoretic semantics

In this section we define a game-theoretic semantics (GTS) for ATL+ by defining truth
as an existence of a winning strategy for Eloise in the corresponding evaluation game.
Γ-bounded and unbounded evaluation games lead to Γ-bounded and unbounded GTS,
respectively.

Remark 3.1. The description of transition games given here was based on a simplified
notion of configurations. The phases i–iii consist of several “subphases” and there is
more information that should be encoded into configurations. The fully extended notion
of configuration, should also include the following: In phase i, a counter indicating
the relative atom currently under consideration by the players; flags for each player
indicating whether and what claim (s)he has made on the truth of the current relative
atom; a 3-bit flag indicating if it is the first, second or some later round in the transition
game. For phase ii, a flag whether the current seeker wants to continue, and for phase
iii, a record of the current choice of actions for the agents in A by V. To keep things
simple, we shall not present configurations in a fully extended form like this.

Hereafter a position in an evaluation game will mean either a location of the form
(P, q, ϕ, T ) or a configuration in the fully extended form described in the remark above.
Note that by this definition, at every position, only one of the players (Abelard or Eloise)
has a move to choose. Thus the entire evaluation game—including transition games as
subgames—is a turn-based game of perfect information.

By the game tree, TG , of an evaluation game G, we mean the tree whose nodes
correspond to all positions arising in G, and whose every branch corresponds to a possible
play of G (including transition games as subgames). Note that some of these plays may
be infinite, but only because an embedded transition game does not terminate, in which
case a winner in the entire evaluation game is uniquely assigned according to the rules
in Section 3.2.3.

The formal definitions of players’ memory-based strategies in the evaluation games
games are defined as expected, based on histories of positions. As usual, a strategy for a
player P is called winning if, following that strategy, P is guaranteed to win regardless
of how P plays. A strategy is positional if it is only based on the current position.

Definition 3.2. Let M be a CGM, q ∈ St, ϕ ∈ ATL+ and Γ an ordinal. Truth of ϕ
according to Γ-bounded ( Γ ) and unbounded (  ) GTS is defined as follows:

M, q Γ ϕ (resp. M, q  ϕ) iff Eloise has a positional

winning strategy in G(M, q, ϕ,Γ) (resp. G(M, q, ϕ)).

We will show later that evaluation games are determined with positional strategies.
Hence, if we allow perfect-recall strategies in the truth definition above, we would obtain
equivalent semantics.
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Example 3.3. Consider the following CGM

p1 p2M :

q0 q1 q2

αβ

βα
αα αα

αα

M = (Agt,St,Π,Act, d, o, v), where:

Agt = {1, 2}, St = {q0, q1, q2}, Π = {p1, p2}, Act = {α, β}

d(1, q0) = d(2, q1) = {α, β}; d(a, qi) = {α} in all other cases;

o(q0, sm) = q0, o(q0,mm) = q1, o(q1,mm) = o(q2,mm) = q2

v(p1) = {q0} and v(p2) = {q2}.

Let ϕ := 〈〈{a2}〉〉 (G p1 ∨ F p2) (note that G p1 = ¬F¬p1). We describe a winning strategy

for Eloise in the unbounded evaluation game G(M, q0, ϕ). Eloise immediately ends her seeker’s

turn and does not make any claims while being at q0. If Abelard makes any claims at q0, then

she challenges those claims. If Abelard ends the transition game at q0, then Eloise wins the

Evaluation game by choosing ¬F¬p1, since now the value of F¬p1 has to be open. Suppose that

Abelard forces a transition to q1 by choosing α for agent a1. If he claims that ¬p1 is true at q1,

Eloise does not challenge. If Abelard ends his seeker turn at q1, then Eloise becomes seeker. At

q1 she forces a transition to q2, by choosing α for agent a2. Then she verifies F p2 by claiming

that p2 is true at q2. If the transition game ends at q2, then she wins by choosing F p2, whose

value is now ⊤. Note that by following this strategy, Eloise cannot stay as a seeker for infinitely

many rounds.

3.4 Regular strategies

In this subsection we will define a concept of a regular strategy which will be important
for the proofs later in this paper. We only define this concept for Eloise in and only for
the transition games in which Eloise is the verifier. This suffices for our needs, but this
definition—and the related proof—could easily be generalized for both players and all
kinds of transition games.

Definition 3.4. We say that a Eloise’s strategy τ for a transition game g(E, q, 〈〈A〉〉Φ)
is regular, if the following properties hold:

i) τ instructs Eloise to challenge all the claims made by Abelard. (That is because
Eloise makes all the valid verifications/falsifications by herself).

ii) τ instructs to Eloise to try to end the game (by ending her seeker turn or by not
taking a new seeker turn) always when the truth function T has winning values for
Eloise (that is, she would win from the exit location if Abelard would not want to
continue as a seeker).

iii) Actions chosen by τ (for the agents in A) are independent of the current seeker S

and seeker turn counter n ∈ N in configurations.

Note that the conditions i)-iii) together imply that all the actions chosen by a regular
strategy are independent of the current seeker S and seeker turn counter n ∈ N in
configurations. Hence the actions chosen by a regular strategy depend only4 on the

4The parameter x and all the other information that is should be encoded in the configurations (see
Remark 3.1) are only for used for describing the current subphase of the game. Hence it is easy to see
players’ strategies cannot depend on these parameters.
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pairs (q, T ), where q is the current state and T is the current truth function. Also note
that since, by i), Eloise makes all the valid verifications and falsifications, the truth
function T is determined by the path that has been formed by the transition game.

The following proposition shows that from now on we may assume all winning strate-
gies to be regular. Since regular strategies depend only on the states and the truth
function, the extra parameters S and n cannot be used for signaling any information.

Claim I. If Eloise has a winning strategy in a transition game g(E, q, 〈〈A〉〉Φ), then she
has a regular winning strategy in that game.

Proof. Suppose that Eloise has winning strategy τ in a transition game g(E, q, 〈〈A〉〉Φ).
We first note that, for checking the regularity conditions i)-iii), it suffices the we only
consider the configurations that can be reached with Eloise strategy. This is because
we can choose arbitrary actions for all the other configurations in order to satisfy the
regularity conditions.

We make the strategy τ regular by doing the following modifications (in the given
order).

i) Let c = (S, q, T, i) be configuration which can be reached with τ and in which τ does
not instruct Eloise to challenge some claim ϕ that Abelard can make (if Abelard
claims that some formula ψ is false, then here ϕ = ¬ψ). If (A, q, ϕ) is a winning
location for Eloise, then we can redefine τ such that it instructs Eloise to challenge
the claim ϕ. Suppose then that (A, q, ϕ) is not a winning location for Eloise, whence
by determinacy, (E, q, ϕ) is a winning location for Eloise. Then we redefine τ in such
a way that Eloise makes the claim ϕ by herself. If Abelard then challenges this claim,
the exit position will be winning location for Eloise.

We do this modification for all configurations for which τ violates the regularity
property i).

ii) Let c = (P, q, T, n, ii) be a configuration that can be reached with τ such that
(E, q,Φ, T ) is is a winning location for Eloise, but τ does not instruct Eloise to try
to end the game at c. We redefine τ to instruct Eloise to try to end the game at c.
If Abelard also wants to end the game, then Eloise wins. And if Abelard does not
want to end the game, then the game continues from a configuration c′ that must
be a winning configuration for Eloise. We can thus modify τ in such way that it is
a winning strategy from c′. We can do this by maintaining the regularity conditions
i) and ii)—we simply do the same modifications as above for all new configurations
that violate the regularity.

By doing the the procedure above for all configurations for which τ violates the
regularity property ii), τ now satisfies the properties i) and ii).

iii) Suppose that c = (A, q, T, n, iii) is a configuration such that T is not winning for
Eloise. We now redefine τ at c to make the same choice as for c′ = (E, q, T, n−1, iii).
Since Abelard could end his seeker turn at (A, q, T, n, ii), the configuration c′ must
be winning for Eloise. We can thus modify τ in such way that it is a winning strategy
from c. We can do this by maintaining the regularity conditions i) and ii) by doing
the modifications above, if necessary.

We then do the following procedure for every integer n ≤ |At(Φ)|, beginning from
n = |At(Φ)|. Let cn = (P, q, T, n, iii) be a configuration that can be reached with
τ . Let n′ ≤ |At(Φ)| be the largest integer such that cn′ = (P, q, T, n′, iii) can be
reached with τ . We redefine τ at cn in such a way that it will select the same actions
as at cn′ . We continue this modification in such a way that, when playing from cn,
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we can only reach configurations of the same form as those that can be reached from
cn′ , the only difference being the value of seeker alternation counter. Now all the
exit positions that can be reached by using τ from cn must be winning positions for
Eloise. Since the truth function can be updated at most |At(Φ)| many times and,
by condition ii), T gets updated after every seeker alternation, it is impossible that
Eloise would lose the game because the seeker turn counter would become zero.

After doing this procedure down to an integer n′ ≤ |At(Φ)|, then τ is independent
of seeker turn counter n for every n ≥ n′. By applying the procedure for n′ we only
modify actions for configurations whose seeker turn counter is less or equal to n′.
Hence, by applying the procedure for all n′ ≤ |At(Φ)|, we finally obtain a winning
strategy that is completely independent of the seeker turn counter. Also note that,
by this applying this procedure, we also maintain the regularity conditions i) and
ii) for τ .

For proving that the actions chosen by τ for A are now independent of both the
seeker S and the seeker turn counter n, suppose that τ assigns different actions for
A in configurations c = (P, q, T, n, iii) and c′ = (P′, q, T, n′, iii) such that c 6= c′

and both c and c′ can be reached with τ . Since τ is independent of the seeker turn
counter, we must have P 6= P′. By symmetry we may assume that P = E and
P′ = A.

Suppose first that (E, q,Φ, T ) is a winning position for Eloise. Now, by the con-
dition ii), τ instructs Eloise to end her seeker turn at (E, q, T, n, ii), whence the
configuration c cannot be reached with τ and thus may be ignored. Suppose then
that (E, q,Φ, T ) is not a winning position for Eloise. Recall that we have defined τ
to make the same choice at c′ as at the configuration c′′ = (E, q, T, n′ − 1, iii). But
this is impossible since τ is independent of the seeker turn counter and that is the
only parameter that separates the configurations c and c′′.

By doing all the modifications above, τ becomes a regular strategy. Since it maintains
as a winning strategy for Eloise even after these modifications, Eloise thus has a regular
winning strategy.

4 Results on evaluation games

4.1 Positional determinacy

Here we show that both bounded and unbounded evaluation games are determined, and
that the winner in either of them has a positional strategy.

Proposition 4.1. Bounded evaluation games are determined and the winner has a
positional winning strategy.

Proof. (Sketch) Since ordinals are well-founded and they must decreased during tran-
sition games, it is easy to see that the game tree is well-founded. Thus positional
determinacy follows essentially by backward induction.

Proposition 4.2. Unbounded evaluation games are determined and the winner has a
positional winning strategy.

Proof. We will show that unbounded evaluation games are essentially Büchi-games (see,
e.g., [16]). We first discuss the case where the underlying CGM M is finite. We follow
the technicalities for Büchi-games from [7].
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Take a triple (M, q, ϕ), where M is a finite CGM, q a state of M, and ϕ a formula of
ATL. We will convert this triple into a Büchi game BG such that M, q |= ϕ iff player 2
has a winning strategy in BG from a certain position of BG determined by the state q.
The required Büchi game BG corresponds almost exactly to the unbounded evaluation
game G(M, q, ϕ). The set of states of BG is the finite set of positions in G(M, q, ϕ).
The states of BG assigned to player 1 (resp., player 2) of BG are the positions where
Abelard (resp., Eloise) is to move. The edges of the binary transition relation E of BG
correspond to the changes of positions in G(M, q, ϕ). Also, E is defined such that ending
locations in the evaluation game connect (only) to themselves via E. This ensures that
every state of BG has a successor state.

We set a co-Büchi-objective such that an infinite play of BG is winning for player 2
iff the set of states visited infinitely often is a subset of the following states of BG:

1. States of BG corresponding to configurations of the transition games where Abelard
is the seeker.

2. States of BG corresponding to such ending locations in the game G(M, q, ϕ) where
Eloise has already won.

Clearly, Eloise (Abelard) has a positional winning strategy in the evaluation game start-
ing at a position pos of the evaluation game iff the player 2 (player 1) of BG has a
positional winning strategy from the state of BG corresponding to pos . Finite Büchi
games enjoy positional determinacy (see e.g. [7]), which completes the case of finite
CGMs. For infinite CGMs, the argument is the same but requires positional determi-
nacy of Büchi games on infinite game graphs. This is well-known and follows easily from
Theorem 4.3 of [12].

We say that Eloise (Abelard) has a winning strategy in a transition game, if she
(he) can force that game to end at a position where she (he) has a winning strategy in
the evaluation game that continues. By the previous propositions, both bounded and
unbounded transition games are positionally determined. By the determinacy, we have
the following consequence: If Eloise (Abelard) has a perfect recall strategy in a bounded
or unbounded evaluation game (or transition game), then she (he) has a positional
winning strategy in that game.

4.2 Finding stable timer bounds

We then consider a “semi-bounded” variant of the transition game in which one of the
players must use timers when being the seeker and the other player is allowed to play
without timers. We say that a timer bound Γ > 0 is stable for an unbounded transition
game g(V, q0, 〈〈A〉〉Φ) if the player who has a winning strategy in g(V, q0, 〈〈A〉〉Φ) can
in fact win the game using timers below Γ. If c = (S, q, T, n, x) is a configuration
in an unbounded transition game and γ is an ordinal, we use the following notation
c[γ] := (S, q, T, n, γ, x).

We first identify stable timer bounds for finite models.

Proposition 4.3. Let M be a finite CGM, q0 ∈ St a state and Φ ∈ ATL+ a path formula.
Then k := |St | · |At(Φ)| is a stable timer bound for g(V, q0, 〈〈A〉〉Φ).

Proof. (Sketch) Let c = (E, q, T, n, x) be a configuration (for an unbounded game, so no
timer is listed). Suppose that (V, q,Φ, T ) is not a winning location for Eloise. Then she
wants to stay as the seeker until the truth function is modified to T ′ so that T ′ makes
Φ true. Since T is updated state-wise, it is not beneficial for Eloise to go in loops such
that T is not updated. Hence, if Eloise has a winning strategy from c, then she has a
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winning strategy in which T is updated at least once every |St | rounds. Since T can be
updated at most |At(Φ)| times, we see that a timer greater than k := |St | · |At(Φ)| is
not needed.

Corollary 4.4. If M is a finite CGM, the unbounded GTS is equivalent on M to the
(|St | · |ϕ|)-bounded GTS.

In order to find stable timer bounds for infinite models, we give the following defini-
tion (cf. Def 4.12 in [11]).

Definition 4.5. Let M be a CGM and let q ∈ St. We define the branching degree of

q, BD(q), as the cardinality of the set of outcome states from q: BD(q) := card({o(q, ~α) |
~α ∈ action(Agt, q)}). We define the regular branching bound of M as the smallest
cardinal RBB(M) for which the following conditions hold:

1. RBB(M) > BD(q) for every q ∈ St.

2. RBB(M) is infinite.

3. RBB(M) is a regular cardinal.

Note that RBB(M) = ω if and only if M is image finite.

Proposition 4.6. Let M be a finite CGM, q0 ∈ St and Φ ∈ ATL+ a path formula. Then
RBB(M) is a stable timer bound for g(V, q0, 〈〈A〉〉Φ).

Proof. Suppose first that Eloise has a winning strategy τ in g(M, q0, 〈〈A〉〉Φ). Let c be
any configuration of the form c = (P,A, q, T, n, ii) such that

• c can be reached with τ .

• If Abelard decides to quit seeking at c, then τ instructs Eloise to become seeker.

We need to find an ordinal γ0 < RBB(M) for Eloise to announce if she needs to become
seeker at c and supplement τ with instructions on lowering the ordinal after every
transition while she is a seeker. We will use the instructions given by τ for verifications
and choices for actions.

Suppose that Abelard quits seeking at c. Let Tg,c be the tree that is formed by all
of those paths of confiqurations, starting from c, in which Eloise stays as the seeker and
plays according to τ . Since τ is a winning strategy, every path in Tg,c must be finite,
and thus Tg,c is well-founded. We prove the following claim by well-founded induction
on Tg,c:

For every c′ ∈ Tg,c, there is an ordinal γ < RBB(M)

s.t. c′[γ] is a winning position for Eloise.

We can choose γ = 0 for every leaf on Tg,c. Suppose then that c′ is not a leaf. By the
induction hypothesis, the claim holds for every configuration that can be reach with a
transition from c′. We can now define γ to be the successor of the supremum of these
ordinals. Since RBB(M) is regular, we have γ < RBB(M). Hence there is γ0 < RBB(M)
such the c[γ0] is a winning configuration for Eloise.

Corollary 4.7. Suppose that Γ ≥ RBB(M). Then the unbounded GTS is equivalent on
M to the Γ-bounded GTS.

Proof. Suppose first that M, q  ϕ. By Proposition 4.6 Eloise can win the evaluation
game using timers smaller than Γ when being the seeker. Hence clearly M, q Γ ϕ.
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Suppose then M, q 6 ϕ. By Proposition 4.2, Abelard has a winning strategy
in G(M, q, ϕ). Thus, by Proposition 4.6, Abelard can win G(M, q, ϕ) using timers
smaller than Γ when being the seeker. Hence Abelard clearly has a winning strategy in
G(M, q, ϕ,Γ) and thus M, q 6Γ ϕ.

Consequently, finite timers suffice in image finite models. However, the finitely bounded
GTS (Γ = ω) is not generally equivalent to the unbounded GTS (see Example 3.7 in
[11]).

4.3 GTS vs compositional semantics for ATL+

We now define a so-called finite path semantics, to be used later. See [5] for a similar
definition. We define the length lgt(λ) of a finite path λ as the number of transitions
in λ (whence the last state of λ is λ[lgt(λ)].) If λ is a prefix sequence of λ′, we write
λ � λ′.

Definition 4.8. Let M be a CGM and λ ∈ pathsfin(M). Truth of an ATL+ path
formula Φ on λ is defined as follows:

• M,Λ |= ϕ iff M,Λ[0] |= ϕ (where ϕ is a state formula).

• M,Λ |= Xϕ iff lgt(λ) ≥ 1 and M,Λ[1] |= ϕ.

• M,Λ |= ¬Φ iff M,Λ 6|= Φ.

• M,Λ |= Φ ∨Ψ iff M,Λ |= Φ or M,Λ |= Ψ.

• M,Λ |= ϕUψ iff there exists some i ≤ lgt(λ) such that M,Λ[i] |= ψ and M,Λ[j] |= ϕ
for all j < i.

Definition 4.9. Let M be a CGM, λ ∈ paths(M) and Φ a path formula of ATL+. An
index i ≥ 1 is a truth swap point of Φ on λ if either of the following holds:

1. M, λ[i−1] 6|= Φ and M, λ[i] |= Φ.

2. M, λ[i−1] |= Φ and M, λ[i] 6|= Φ.

We define the truth swap number of Φ on λ, TSN (Φ, λ) as follows:

TSN (Φ, λ) := card({i | i is a truth swap point of Φ on λ}).

The claims of the following lemma are easy to prove. Similar observations have been
made in [5].

Lemma 4.10. Let M be a CGM, λ ∈ paths(M) and Φ a path formula of ATL+. Now
the following claims hold:

1. TSN (Φ, λ) ≤ |{Ψ ∈ At(Φ) |Ψ is temporal subformula}|.

2. M, λ |= Φ iff there is some k ∈ N s.t. M, λ0 |= Φ for every finite λ0 � λ for which
lgt(λ0) ≥ k.

Theorem 4.11. The unbounded GTS is equivalent to the standard (perfect-recall) com-
positional semantics of ATL+.

Proof. We prove by induction on ATL+ state formulae ϕ that for any CGM M and a
state q in M:

M, q |= ϕ iff Eloise has a winning strategy in G(M, q, ϕ).

If ϕ is a proposition symbol, the claim holds trivially.
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Let ϕ = ¬ψ and suppose first that M, q |= ¬ψ, i.e. M, q 6|= ψ. By the induction
hypothesis Eloise does not have a winning strategy in G(M, q, ψ). Since evaluation
games are determined, Abelard has a winning strategy in G(M, q, ψ). Thus, Eloise has
a winning strategy in G(M, q,¬ψ).

Suppose then that Eloise has a winning strategy in the evaluation game G(M, q,¬ψ).
Then Eloise cannot have a winning strategy in G(M, q, ψ). Hence, by the induction
hypothesis M, q 6|= ψ, i.e. M, q |= ¬ψ.

Let ϕ = ψ ∨ θ and suppose first that M, q |= ψ ∨ θ, i.e. M, q |= ψ or M, q |= θ.
Suppose first that M, q |= ψ, whence by the induction hypothesis Eloise has a winning
strategy in G(M, q, ψ). Now Eloise can win G(M, q, ψ ∨ θ) by choosing ψ on the first
move. The case when M, q |= θ is analoguos. Suppose now that Eloise has a winning
strategy in the evaluation game G(M, q, ψ ∨ θ). Let χ ∈ {ψ, θ} be disjunct that Eloise
chooses when following her winning strategy. Now Eloise must have a winning strategy
in G(M, q, χ) and thus by the induction hypothesis M, q |= χ. Therefore M, q |= ψ ∨ θ.

Now, consider ϕ = 〈〈A〉〉Φ. It suffices to show that Eloise has winning strategy in the
(unbounded) transition game g(E, q, 〈〈A〉〉Φ) if and only if the coalition A has a (perfect
recall) strategy SA s.t. M, λ |= Φ for every λ ∈ paths(q, SA).

Suppose firts that E has a winning strategy τ in the transition game g(E, q, 〈〈A〉〉Φ).
By Claim I we may assume that τ is regular. Let Tg be the game tree that is formed
by all of those configurations that can be encountered with τ . We define SA by using
the actions according to τ for every finite path of states that occurs in consecutive
configurations in Tg. The actions for all other finite paths are irrelevant.

In order to show that SA is well-defined this way, let Λ,Λ′ be finite branches of
configurations in Tg such that the states occurring in configurations of Λ and Λ′ are in the
same order. Let c = (P, q, T, n, iii) and c′ = (P′, q, T ′, n′, iii) be the last configurations
in Λ and Λ′, respectively. It suffices to show that τ assigns the same actions for A in
both c and c′. Since Λ and Λ′ have visited the same states, by regularity condition i),
we must have T = T ′. Therefore, by regularity condition iii), τ assigns the same actions
for c and c′.

Let λ ∈ paths(q, SA), whence states in λ occur in some infinite tuple of configurations
in Tg. In the (infinite) play of g(E, q, 〈〈A〉〉Φ), that corresponds to λ, Eloise does only
finitely many verifications and cannot stay as a seeker for infinitely many rounds (since
τ is a winning strategy). Let k ∈ N be such that Eloise neither does any further
verifications nor becomes a seeker after the state λ[k]. Let λ0 � λ be a finite path s.t.
|λ0| ≥ k.

We can show by induction on the formulae in SUBAt(Φ) that if a position of the
form (P, λ0[l],Ψ, T ), where Ψ ∈ SUBAt(Φ), can be reached by using τ , then the following
holds:

M, λ0 |= Ψ iff P = E.

• The cases Ψ = ϕ and Ψ = Xϕ are easy to prove.

• Let Ψ = ψU θ and suppose first that P = E. Since τ is a winning strategy, there
must be i ≤ k s.t. Eloise verifies ψ U θ at λ0[i]. Now Abelard may have objected,
whence the evaluation game would have continued from the position (E, λ0[i], θ, T ).
By the (outer) induction hypothesis M, λ[i] |= θ. Let then j < i. Now Abelard could
have attempted to falsify ψ at λ[j], whence Eloise must have objected since τ is a
winning strategy. Then the evaluation game would have continued from the position
(E, λ[j], ψ, T ) and thus by the (outer) induction hypothesis M, λ[j] |= ψ. Thus we
have shown that M, λ0 |= ψ U θ.
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Suppose now that P = A. We also suppose, for the sake of contradiction, that
M, λ0 |= ψ U θ. Now there is i ≤ k s.t. M, λ0 |= θ. If Abelard would have verified
θ at λ0[i], then Eloise would have lost by the (outer) induction hypothesis. Hence
Eloise should have falsified ψ U θ at some state λ0[j], where j < i. But then by the
(outer) induction hypothesis we must have M, λ0[j] 6|= ψ, which is a contradiction.

• Suppose that Ψ = ¬Θ. The next position of the evaluation game is (P, λ[l],Θ, T )
and thus by the (inner) induction hypothesis, M, λ0 6|= Θ iff P = A. Hence we have
M, λ0 |= ¬Θ iff P = E

• The case Ψ = Θ1 ∨Θ2 is similar to the previous case.

Abelard is the seeker at the last state λ0[m] of λ0 and may attempt to end the transition
game at λ0[m]. By our assumption Eloise does not become a seeker and thus the
evaluation game is continued from (E, λ0[m],Φ, T ) for some T . By the induction above,
we must have M, λ0 |= Φ. Hence by Lemma 4.10 we have M, λ |= Φ.

Suppose now that there is a joint (perfect recall) strategy SA s.t. M, λ |= Φ for
every λ ∈ paths(q, SA). We define a perfect recall strategy τ for Eloise in the following
way: Suppose that game is at some configuration c that is reached with a finite path λ0
such that q0 is the last state of λ0.

• If some M, q0 |= θ for some ψ U θ ∈ At(Φ), then Eloise claims that θ is true.

• If some M, q0 6|= ψ for some ψU θ ∈ At(Φ), then Eloise claims that ψ is false.

• Suppose that q0 = λ[0] and ψ ∈ At(Φ) is a state formula. If M, q0 |= ψ, then Eloise
claims that ψ is true.

• Suppose q0 = λ[1] and Xψ ∈ At(Φ). If M, q0 |= ψ, then Eloise claims that Xψ is
true.

• If Abelard makes any claim on the truth of formulae, Eloise always challenges those
claims. (Note here that Abelard’s claim must be false—according to the compositional
truth condition—since else Eloise would already have made the same claim by herself.)

• If Eloise is the seeker in c and M, λ0 |= Φ, then Eloise decides to end seeking.

• If Abelard ends the seeking at c and M, λ0 6|= Φ, then Eloise decides to become seeker.
Else Eloise ends the transition game at c.

• If Eloise needs to choose actions for agents in coalition A at c, she chooses them
according to SA(λ0).

We show by (co)-induction on the configurations of the transition game g(E, q, 〈〈A〉〉Φ),
that when Eloise uses τ she cannot end up in a losing ending position.

• Let c = (E,S, q′, T, n, i). Since the verifications and objections are made according to
the compositional semantics on the current state, Eloise has a winning strategy from
any possible exit position by the (outer) induction hypothesis.

• Let c = (E,S, q′, T, n, ii). By Lemma 4.10 and the definition of τ , the transition game
can only end when M, λ0 |= Φ. Hence from the exit position (E, q′,Φ, T ), Eloise
can play in such way that for any position (P, q′,Ψ, T ), that is reached, the following
condition holds:

M, λ0 |= Ψ iff P = E,

where Ψ is a subformula of Φ such that there is ϕ ∈ At(Φ) which is a subformula of
Ψ. Eventually, a location of the form (P, q′, ϕ, T ) is reached, where ϕ ∈ At(Φ). Since
the verifications by τ are made according to the compositional truth of the relational
atoms of Φ, it is quite obvious to see that (P, q′, ϕ, T ) is a winning position for Eloise.
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• Let c = (E,S, q′, T, n, iii). This configuration does not lead to any exit locations.

Since Eloise chooses actions for agents in A according to SA, every path of states that
is formed with τ is a prefix sequence of some path λ ∈ paths(q, SA). Since M, λ |= Φ
for every λ ∈ paths(q, SA), by Lemma 4.10, and the definition of τ , Eloise cannot stay
as a seeker forever when playing with τ . If Abelard stays as a seeker forever, then
Eloise wins. Hence τ is a (perfect recall) winning strategy for Eloise. Since unbounded
transition games are positionally determined, there is also positional winning strategy
τ ′ for Eloise.

By combining Theorem 4.11 and Corollary 4.7, we immediately obtain the following
corollary:

Corollary 4.12. If Γ ≥ RBB(M), then the Γ-bounded GTS is equivalent on M with
the standard (perfect recall) compositional semantics of ATL+.

5 Model checking ATL+ using GTS

In this section we apply our GTS to model checking problems for ATL+ and its fragments.

5.1 Revisiting thePSPACE upper bound proof

As mentioned earlier, the PSPACE upper bound proof for the model checking of ATL+

in [5] contains a flaw. Indeed, the claim of Theorem 4 in [5] is incorrect and a coun-
terexample to it can be extracted from our Example 3.3, where M, q0 |= ϕ for ϕ =
〈〈{a2}〉〉 (G p1 ∨ F p2). In the notation of [5], since |StM| = 3 and APF(ϕ) = 2, by the
claim there must be a 6-witness strategy for the agent 2 for (M, q0,G p1∨F p2). However,
this is not the case, since the player 1 can choose to play at q0 4 times β, and then α.
Then M, λ 6|=6 (G p1 ∨ F p2) on any resulting path λ.

The reason for the problem indicated above is that compositional semantics easily
ignores the role and power of the falsifier (Abelard) in the formula evaluation process.
Still, using the GTS introduced above, we will demonstrate in a simple way that the
upper bound result is indeed correct.

The input to the model checking problem of ATL+ is an ATL+ formula, a finite CGM
M and a state q in M. We assume that M is encoded in the standard, explicit way (cf.
[3, 5]) that provides a full explicit description of the transition function o. We need
not assume any bound on the number of agents or proposition symbols in the input.
We do not assume any bounds on the number of proposition symbols or agents in the
input. We only consider here the semantics of ATL+ based on perfect information and
perfect-recall strategies.

Theorem 5.1 ([5]). The ATL+ model checking problem is PSPACE-complete.

Proof. We get the lower bound directly from [5], so we only prove the upper bound here.
By Theorem 4.11 and Proposition 4.3, if M is a finite CGM, we have M, q |= ϕ iff Eloise
has a positional winning strategy in G(M, q, ϕ,N) with N = |St | · |ϕ|. It is routine
to construct an alternating Turing machine TM that simulates G(M, q, ϕ,N) such that
the positions for Eloise correspond to existential states of TM and Abelard’s positions
to universal states. Due to the timer bound N , the machine runs in polynomial time.
It is clear that if Eloise has a (positional or not) winning strategy in the evaluation
game, then TM accepts. Conversely, if TM accepts, we can read a non-positional win-
ning strategy for Eloise from the the computation tree (with only one successful move
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for existential states recorded everywhere) which demonstrates that TM accepts. By
Proposition 4.1, Eloise thus also has a positional winning strategy in the evaluation
game. Since APTIME = PSPACE, the claim follows.

5.2 A hierarchy of tractable fragments of ATL+

We now identify a natural hierarchy of tractable fragments of ATL+. Let k be a positive
integer. Define ATLk to be the fragment of ATL+ where all formulae 〈〈A〉〉Φ have the
property that |At(Φ)| ≤ k. Note that ATL1 is essentially the same as ATL (with Release).
Note also that the number of non-equivalent formulae of ATLk is not bounded for any
k even in the special case where the number of propositions and actions is constant,
because nesting of strategic operators 〈〈A〉〉 is not limited. Still, we will show that the
model checking problem for ATLk is PTIME-complete for any fixed k. Again we assume
that CGMs are encoded explicitly and impose no restrictions on the number of allowed
propositions or actions in input formulae. Using the GTS, we can prove the following.

Theorem 5.2. For any fixed k ∈ N, the model checking problem for ATLk is PTIME-
complete.

Proof. (Sketch) The claim is well-known for ATL (see [3]), so we have the lower bound
for free for any k. One possible proof strategy for the upper bound would involve using
alternating LOGSPACE-machines, but here we argue via Büchi-games instead.

Consider a triple (M, q, ϕ), where ϕ is formula of ATLk. By the proof of Proposition
4.2, there exists a Büchi game BG such that Eloise wins the unbounded evaluation
game G(M, q, ϕ) if the player 2 wins BG from the state of BG that corresponds to the
beginning position of the evaluation game. We then observe that since we are considering
ATLk for a fixed k, the domain size of each truth function T used in the evaluation game
is at most k, and thus the number of positions in G(M, q, ϕ) is polynomial in the size of
the input (M, q, ϕ). (Check Remark 3.1 for all the information that should be encoded
in a position in bounded evaluation games; here we only use the simpler unbounded
games.) Thus also the size of BG is polynomial in the input size.

We note that in order to avoid blow-ups, it is essential that the maximum domain
size k of truth functions T is fixed. We also note—as mentioned already in [3]—that
the number of transitions in M is not bounded by the square of the number of states of
M. In fact, already because we impose no limit on the number of actions (other than
finiteness) in M, the number of transitions in relation to states is arbitrary. However,
this is no problem to us since an explicit encoding of M—which lists all transitions
explicitly—is part of the input to the model checking problem. Since Büchi games can
be solved in PTIME, the claim follows.

5.3 Bounded memory semantics for ATL
k

Here we show that to capture the compositional (perfect-recall) semantics for ATLk, it
suffices to consider agents’ strategies that use only a limited amount of memory.

Strategies with bounded memory for ATL∗ can be naturally defined using finite state
transducers. (For a transdu-cer-based definition of bounded memory strategies, see e.g.
[19], and see [4] for more on this topic.) Using such strategies, an agent’s moves are
determined both by the current state in the model and by the current state (memory
cell) of the agent’s transducer. Then transitions take place both in the model and in
the state of the transducer. (Thus, such strategies are positional with respect to
the product of the two state spaces.) In the compositional m-bounded memory
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semantics (|=m) for ATL+, agents are allowed to use at most m memory cells, i.e.,
strategies defined by transducers with at most m states.

Since the use of the truth function T in our GTS is analogous to the use of memory
cells in m-bounded memory semantics, we obtain the following result.

Theorem 5.3. For ATLk, the unbounded GTS is equivalent to the m-bounded memory
semantics for m = 3k − 2k

Proof. Let m := 3k − 2k and ϕ ∈ ATLk. We show that

M, q  ϕ iff M, q |=m ϕ.

The implication from right to left is immediate by Theorem 4.11. We prove the other
direction by induction on ϕ. The only interesting case is when ϕ = 〈〈A〉〉Φ. Suppose
that Eloise has a winning strategy in g(E, q, 〈〈A〉〉Φ). By Claim I we may assume that
τ is regular.

We define a memory transducer T that Eloise can use to define strategies for all
agents in A. We fix the set of states C of T to be the set of all truth functions T for
At(Φ) such that T (χ) = open for at least one χ ∈ At(Φ). Since T (χ) ∈ {open,⊤,⊥},
we have |C| ≤ 3k − 2k = m. The initial state of T is T0 where T0(χ) = open for every
χ ∈ At(Φ). The transitions in T are defined according to how Eloise updates the truth
function T during the transition game. However, when the truth function T becomes
fully updated (i.e. T (χ) 6= open for every χ ∈ At(Φ)), then no further transitions are
made, because in this case all the relative atoms have been verified/falsified and the
truth of Φ on the path is fixed.

Now, the strategy for each agent a ∈ A is defined positionally on C × St as follows:
At a state T of T and state q ∈ M, the agent a follows the action prescribed by Eloise’s
winning strategy for the corresponding step phase in the transition game. Note that
the strategy for A is now well-defined since τ is regular and thus depends only on the
current state and the current truth function.

It is now easy to show that M, λ |=m Φ for any path λ that is consistent with the
resulting collective strategy for the coalition A.

By Theorem 4.11, we obtain the following corollary.

Corollary 5.4. For ATLk, the perfect recall compositional semantics is equivalent to the
(3k − 2k)-bounded memory semantics.

This extends the known fact that positional strategies (using 1 memory cell) suffice
for the semantics of ATL (which is essentially the same as ATL1).

For a better bound of the required memory it would be sufficient to modify slightly
the transition games and consider a bound k not on the number of all relative atoms in
strategic subformulae, but only of the temporal objectives occurring in them.

Conclusion

The GTS for ATL+ developed here has both conceptual and technical importance, as
it explains better how the memory-based strategies in the compositional semantics can
be generated, and thus also provides better insight on the algorithmic aspects of that
semantics. A natural extension of the present work is to develop GTS for the full ATL∗.
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