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Abstract
We investigate the decidability and computational
complexity of query conservative extensions in Horn
description logics (DLs) with inverse roles. This is
more challenging than without inverse roles because
characterizations in terms of unbounded homo-
morphisms between universal models fail, block-
ing the standard approach to establishing decid-
ability. We resort to a combination of automata
and mosaic techniques, proving that the problem is
2EXPTIME-complete in Horn-ALCHIF (and also
in Horn-ALC and in ELI). We obtain the same up-
per bound for deductive conservative extensions, for
which we also prove a CONEXPTIME lower bound.

1 Introduction
In the past years, access of incomplete data mediated by de-
scription logic (DL) ontologies has gained increasing impor-
tance [Poggi et al., 2008; Bienvenu and Ortiz, 2015]. The
main idea is to specify domain knowledge and semantics of
the data in the ontology, resulting in more complete answers
to queries. Significant research activity has led to efficient
algorithms and tools for a wide range of DLs such as DL-Lite
[Calvanese et al., 2007], more expressive Horn-DLs [Eiter
et al., 2012; Trivela et al., 2015; Bienvenu et al., 2016], and
“full Boolean” DLs such as ALC [Kollia and Glimm, 2013;
Zhou et al., 2015].

In contrast to query answering, which is by now well-
understood, there is a need to develop reasoning services for
ontology engineering that are tailored towards query-centric
applications and support tasks such as ontology versioning
and module extraction from ontologies. For example, if one
wants to safely replace an ontology with a new version or with
a smaller subset of itself (a module), then the new ontology
should preserve the answers to all queries over all ABoxes
(which store the data) [Kontchakov et al., 2010]. The same
guarantee ensures that one can safely replace an ontology with
another version in an application [Konev et al., 2012]. In both
cases, ontologies need to be tested not for their logical equiva-
lence, but for giving the same answers to relevant queries over
relevant datasets.

This requirement can be formalized using conservative ex-
tensions. In the following, we use the DL term TBox instead

of ontology. A TBox T2 ⊇ T1 is a (Γ,Σ)-query conserva-
tive extension of a TBox T1, where Γ and Σ are signatures of
concept/role names relevant for data and queries, respectively,
if all Σ-queries give the same answers w.r.t. T1 and T2, for
every Γ-ABox. Note that the subset relationship T2 ⊇ T1

is natural when replacing a TBox with a module, but not
in versioning, so we might not want to insist on it. In this
more general case, T1 and T2 are called (Γ,Σ)-query insepa-
rable. Conservativity and inseparability of TBoxes, as defined
above, are useful when knowledge is considered static and
data changes frequently. Variants of these notions for knowl-
edge bases (KBs), which consist of a TBox and an ABox, can
be used for applications with static data [Wang et al., 2014;
Arenas et al., 2016].

We also consider the basic notion of query entailment: T1

(Γ,Σ)-query entails T2 if all Σ-queries give at least the an-
swers w.r.t. T1 that they give w.r.t. T2, on any Γ-ABox. Query
inseparability and conservativity are special cases of entail-
ment: inseparability is bidirectional entailment and conser-
vativity is entailment with the assumption that T1 ⊆ T2. It
thus suffices to prove upper bounds for query entailment and
lower bounds for conservative extensions. As a query lan-
guage, we concentrate on conjunctive queries (CQs); since
we work with Horn-DLs and quantify over the queries, this
is equivalent to using unions of CQs (UCQs) or positive ex-
istential queries (PEQs). CQ entailment has been studied for
various DLs [Kontchakov et al., 2009; Lutz and Wolter, 2010;
Konev et al., 2012; Botoeva et al., 2016c], also in the KB
version [Botoeva et al., 2016b; Botoeva et al., 2016c] and
for OBDA specifications [Bienvenu and Rosati, 2015], see
also the survey [Botoeva et al., 2016a]. Nevertheless, there is
still a notable gap in our understanding of this notion: query
entailment between TBoxes is poorly understood in Horn
DLs with inverse roles, often considered a crucial feature, for
which there do not seem to be any available results. This is
for a reason: it has been observed in [Botoeva et al., 2016a;
Botoeva et al., 2016b] that standard techniques for Horn DLs
without inverse roles fail when inverse roles are added.

In fact, for Horn-DLs without inverse roles query en-
tailment can be characterized by the existence of homo-
morphisms between universal models [Lutz and Wolter, 2010;
Botoeva et al., 2016a]. The resulting characterizations pro-
vide an important foundation for decision procedures, of-
ten based on tree automata [Botoeva et al., 2016a]. In



the presence of inverse roles, however, such characteriza-
tions are only correct if we require the existence of n-
bounded homomorphisms, for any n [Botoeva et al., 2016a;
Botoeva et al., 2016b]. It is not obvious how the existence
of such infinite families of bounded homomorphisms can be
verified using tree automata (or related techniques) and, conse-
quently, decidability results for query conservative extensions
in Horn-DLs with inverse roles are difficult to obtain. The
only result we are aware of concerns inseparability of KBs,
and it is proved using intricate game-theoretic techniques.

In this paper, we develop decision procedures for query
entailment and related problems in Horn DLs with inverse
roles. The main idea is to provide a more refined charac-
terization, mixing unbounded and bounded homomorphisms
and using bounded homomorphisms only in places where
this is strictly necessary. We can then deal with the “un-
bounded part” using tree automata while the “bounded part”
is addressed by precomputing relevant information using a
mosaic technique. In this way, we establish decidability and
a 2EXPTIME upper bound for query entailment (and thus in-
separability and conservativity) in Horn-ALCHIF . Together
with lower bounds from [Botoeva et al., 2016c], we get 2EXP-
TIME-completeness for all fragments of Horn-ALCHIF that
contain ELI or Horn-ALC.

We additionally study the case of deductive entailment be-
tween TBoxes, i.e., the question whether T1 entails at least
the same concept and role inclusions as well as functional-
ity assertions over Σ as T2. This problem too has not pre-
viously been studied for Horn DLs with inverse roles. We
consider ELHIF⊥-TBoxes and show that deductive entail-
ment is equivalent to a restricted version of query entailment.
We obtain a model theoretic characterization, a decision pro-
cedure, and a 2EXPTIME upper complexity bound. We also
give a CONEXPTIME lower bound.

Omitted proofs can be found in the long version here:
www.informatik.uni-bremen.de/tdki/research/papers.html

2 Preliminaries
2.1 Horn-ALCHIF
We introduce Horn-ALCHIF , a member of the Horn-SHIQ
family of DLs whose reasoning problems have been widely
studied [Hustadt et al., 2007; Krötzsch et al., 2007; Eiter et
al., 2008; Kazakov, 2009; Lutz and Wolter, 2012; Ibáñez-
Garcı́a et al., 2014]. Let NC,NR,NI be sets of concept, role,
and individual names. A role is either a role name r or an
inverse role r−. As usual, we identify (r−)− and r, allowing
to switch between roles names and their inverses easily. A
concept inclusion (CI) is of the form L v R, where L and R
are concepts defined by the syntax rules

R,R′ ::= > | ⊥ | A | ¬A | R uR′ | ¬L tR | ∃r.R | ∀r.R

L,L′ ::= > | ⊥ | A | L u L′ | L t L′ | ∃r.L

with A ranging over concept names and r over roles. A role
inclusion (RI) is of the form r v s with r, s roles and a
functionality assertion (FA) is of the form func(r) with r a
role. ELI⊥-concepts are expressions that are built according
to the syntax rule for L above, but do not use “t”.

A Horn-ALCHIF TBox T is a set of CIs, RIs, and FAs.
An ELHIF⊥ TBox is a set of ELI⊥-CIs, RIs, and FAs. To
avoid dealing with rather messy technicalities that do neither
seem to be very illuminating from a theoretical viewpoint nor
too useful from a practical one,1 we generally assume that
functional roles cannot have any subroles, that is, r v s ∈ T
implies func(s) /∈ T . We conjecture that our main results also
hold without that restriction. An ABox A is a non-empty set
of concept and role assertions of the form A(a) and r(a, b),
where A ∈ NC, r ∈ NR and a, b ∈ NI. We write ind(A) for
the set of individuals in A.

The semantics is defined as usual in terms of interpretations
I = (∆I , ·I) complying with the standard name assumption,
i.e., aI = a for all a ∈ NI [Baader et al., 2017]. An interpreta-
tion I is a model of a TBox T if it satisfies all inclusions and
assertions in it, and likewise for ABoxes. A is consistent with
T if T and A have a common model.

A signature Σ is a set of concept and role names. A Σ-ABox
is an ABox that uses only concept and role names from Σ, and
likewise for Σ-ELI⊥-concepts and other syntactic objects.

Generally and without further notice, we work with Horn-
ALCHIF TBoxes that are in a certain nesting-free normal
form, that is, they contain only CIs of the form

> v A, A v ⊥, A1 uA2 v B, A v ∃r.B, A v ∀r.B,
where A,B,A1, A2 are concept names and r, s are roles. It is
well-known that every Horn-ALCHIF TBox T can be con-
verted into a TBox T ′ in normal form (introducing additional
concept names) such that T is a logical consequence of T ′ and
every model of T can be extended to one of T ′ by interpreting
the additional concept names, see e.g. [Bienvenu et al., 2016].
As a consequence, all results obtained in this paper for TBoxes
in normal form lift to the general case.

2.2 Query Conservative Extensions and
Entailment

A conjunctive query (CQ) is of the form q(x) = ∃yϕ(x,y),
where x and y are tuples of variables and ϕ(x,y) is a con-
junction of atoms of the form A(v) or r(v, w) with A ∈ NC,
r ∈ NR, and v, w ∈ x ∪ y. We call x answer variables
and y quantified variables of q. A CQ q is tree-shaped if it
does not contain atoms of the form r(x, x) and the undirected
graph (x ∪ y, {{v, w} | r(v, w) is an atom in q}) is a tree;
tree-shaped CQs are thus connected and may contain multi-
edges. A tree-shaped CQ q is strongly tree-shaped or an stCQ
if the root is the one and only answer variable and q has no
multi-edges, that is, for any distinct variables z, z′ in q, there
is at most one role atom that contains both z and z′.

A match of q in an interpretation I is a function π : x ∪
y → ∆I such that π(v) ∈ AI for every atom A(v) of q
and (π(v), π(w)) ∈ rI for every atom r(v, w) of q. We
write I |= q(a1, . . . , an) if there is a match of q in I with
π(xi) = ai for all i < n. A tuple a of elements from NI is a
certain answer to q over an ABox A given a TBox T , written
T ,A |= q(a), if I |= q(a) for all models of T and A.

1E.g., out of 439 available ontologies in BioPortal [Matentzoglu
and Parsia, 2017], only 21 (≤ 4.8%) contain the described pattern. A
significant fraction of the occurrences of the pattern appear to be due
to modeling mistakes.

http://www.informatik.uni-bremen.de/tdki/research/papers.html


Definition 1 Let Γ,Σ be signatures and T1, T2 Horn-
ALCHIF TBoxes. We say that T1 (Γ,Σ)-CQ entails T2, writ-
ten T1 |=CQ

Γ,Σ T2, if for all Γ-ABoxes A consistent with T1 and
T2, all Σ-CQs q(x) and all tuples a ⊆ ind(A), T2,A |= q(a)
implies T1,A |= q(a). If in addition T1 ⊆ T2, we say that T2

is a (Γ,Σ)-CQ conservative extension of T1. If T1 |=CQ
Γ,Σ T2

and vice versa, then T1 and T2 are (Γ,Σ)-CQ inseparable.

We also consider (Γ,Σ)-stCQ entailment, denoted |=stCQ
Γ,Σ and

defined in the obvious way by replacing CQs with stCQs.
If T1 6|=CQ

Γ,Σ T2 because T2,A |= q(a) but T1,A 6|= q(a) for
some Γ-ABox A consistent with both Ti, Σ-CQ q(x) and a,
we call the triple (A, q,a) a witness to non-entailment.
Example 2 Let T1 = {PhDStud v ∃advBy.Prof, adv v
advBy−} and T2 = T1 ∪ {func(advBy)}, Σ = {Prof} and
Γ = {PhDStud, adv}. Then T1 6|=CQ

Γ,Σ T2 because of the wit-
ness ({PhDStud(john), adv(mary, john)},Prof(x),mary).
If we drop from Definition 1 the condition that A must be
consistent with both T1 and T2, then we obtain an alternative
notion of CQ entailment that we call CQ entailment with
inconsistent ABoxes. While this new notion trivially implies
CQ entailment in the original sense, the converse fails.
Example 3 Let T1 = ∅, T2 = {A1 u A2 v ⊥} and Γ =

{A1, A2}, Σ = {B}. Then T1 |=CQ
Γ,Σ T2 but T1 does not

(Γ,Σ)-CQ entail T2 with inconsistent ABoxes.
The following lemma relates the two notions of CQ entailment.
CQ evaluation is the problem to decide, given a TBox T , an
ABox A, a CQ q, and a tuple a ∈ ind(A), whether T ,A |=
q(a).
Lemma 4 CQ entailment with inconsistent ABoxes can be
decided in polynomial time given access to oracles deciding
CQ entailment and CQ evaluation.
Consequently and since CQ evaluation is in EXPTIME in Horn-
ALCHIF [Eiter et al., 2008], all complexity results obtained
in this paper also apply to CQ entailment with inconsistent
ABoxes.

It is easy to see that T1 6|=CQ
Γ,Σ T2 if there is a Γ-role r and a

Σ-role s with T2 |= r v s but T1 6|= r v s. We write T1 |=RI
Γ,Σ

T2 if there are no such r and s. Clearly, T1 |=RI
Γ,Σ T2 can be

decided via |Γ| · |Σ| many Horn-ALCHIF subsumption tests,
thus in EXPTIME [Tobies, 2001]. It is thus safe to assume
T1 |=RI

Γ,Σ T2 when deciding CQ entailment, which we will
generally do from now on to avoid dealing with special cases.

2.3 Deductive Conservative Extensions
Another natural notion of entailment is deductive entail-
ment, which generalizes the notion of deductive conserva-
tive extensions [Ghilardi et al., 2006; Lutz et al., 2007;
Konev et al., 2009; Lutz and Wolter, 2010], and which sepa-
rates two TBoxes in terms of concept and role inclusions and
functionality assertions, instead of ABoxes and queries.
Definition 5 Let Σ be a signature and let T1 and T2 be
ELHIF⊥ TBoxes. We say that T1 Σ-deductively entails T2,
written T1 |=ELHIF⊥Σ T2, if for all Σ-ELI⊥-concept inclu-
sions α and all Σ-RIs and Σ-FAs α: T2 |= α implies T1 |= α.

If additionally T1 ⊆ T2, then we say that T2 is a Σ-deductive
conservative extension of T1. If T1 |=ELHIF⊥Σ T2 and vice
versa, then T1 and T2 are Σ-deductively inseparable.
Although closely related, it is not difficult to see that deductive
and query entailment are orthogonal.
Example 6 (1) Let T1, T2 be as in Example 3 and Σ =

{A1, A2, B}. Then T1 |=stCQ
Σ,Σ T2, but T1 6|=ELHIF⊥Σ T2.

(2) Let T1 = ∅ and T2 = {A v ∃r.B}, and Σ =

{A,B}. Then T1 |=stCQ
Σ,Σ T2, but T1 6|=CQ

Σ,Σ T2 as witnessed
by ({A(a)},∃xB(x), a). However, T1 |=ELHIF⊥Σ T2.
Nevertheless, the two notions are sufficiently closely related
so that we have the following.
Lemma 7 In ELHIF⊥, deductive entailment can be decided
in polynomial time given access to oracles for stCQ entailment
and stCQ evaluation.

2.4 Homomorphisms and the Universal Model
For interpretations I1, I2 and a signature Σ, a Σ-
homomorphism from I1 to I2 is a total function h : ∆I1 →
∆I2 such that (1) h(a) = a for all a ∈ NI, (2) h(d) ∈ AI2

for all d ∈ AI1 , A ∈ NC ∩ Σ, and (3) (h(d), h(d′)) ∈ rI2 for
all (d, d′) ∈ rI1 , r ∈ NR ∩ Σ. If there is a Σ-homomorphism
from I1 to I2, we write I1 →Σ I2.

Let T be a Horn-ALCHIF TBox in normal form andA an
ABox consistent with T . A type for T is a set t ⊆ sub(T )∩NC

such that T |=
d
t v A impliesA ∈ t for all concept namesA.

For a ∈ ind(A), let tpT (a) = {A | T ,A |= A(a)} be the
type of a relative to T . When a ∈ ind(A), t, t′ are types for
T , and r is a role, we write
• a  T ,Ar t if T ,A |= ∃r.

d
t(a) and t is maximal with

this condition, and
• t  Tr t′ if T |=

d
t v ∃r.

d
t′ and t′ is maximal with

this condition.
A path for A and T is a finite sequence π = ar0t1 · · ·
tn−1rn−1tn, n ≥ 0, with a ∈ ind(A), r0, . . . , rn−1 roles,
and t1, . . . , tn types for T such that

(i) a  T ,Ar0 t1 and, if func(r0) ∈ T , then there is no b ∈
ind(A) such that T ,A |= r0(a, b);

(ii) for every 1 ≤ i < n, we have ti  Tri ti+1 and, if
func(r) ∈ T , then ri−1 6= r−i .

When n > 0, we use tail(π) to denote tn. Let Paths be the set
of all paths for A and T . The universal model IT ,A of T and
A is defined as follows:

∆IT ,A = Paths

AIT ,A = {a ∈ ind(A) | T ,A |= A(a)} ∪
{π ∈ ∆I \ ind(A) | T |=

l
tail(π) v A}

rIT ,A = {(a, b) ∈ ind(A)2 | s(a, b) ∈ A, T |= s v r} ∪
{(π, πst) | πst ∈ Paths and T |= s v r} ∪
{(πst, π) | πst ∈ Paths and T |= s− v r}

It is standard to prove that IT ,A is indeed a model of T and
A and that it is universal in the sense that for every model I



of T and A, we have I → IT ,A. Consequently, T ,A |= q(a)
iff IT ,A |= q(a), for all CQs q(x) and tuples a of individuals.

We also need universal models of a TBox T and a type t,
instead of an ABox. More precisely, we define IT ,t = IT ,At
where At = {A(a) | A ∈ t} for a fixed a ∈ NI.

3 Model-theoretic Characterization
We aim to provide a model-theoretic characterization of query
entailment that will be the basis for our decision procedure
later on. The first step towards this characterization consists
in showing that non-entailment is always witnessed by tree-
shaped ABoxes and tree-shaped CQs with at most one answer
variable. Here, an ABoxA is tree-shaped if it does not contain
an assertion of the form r(a, a), the undirected graph GA =
(ind(A), {{a, b} | r(a, b) ∈ A}) is a tree, and for any a, b ∈
ind(A), A contains at most one role assertion that involves
both a and b.
Lemma 8 Let T1 and T2 be Horn-ALCHIF TBoxes with
T1 |=RI

Γ,Σ T2. If T1 6|=CQ
Γ,Σ T2, then there is a witness (A, q,a)

where A and q are tree-shaped and |a| ≤ 1, i.e., q has at
most one answer variable. If T1 6|=stCQ

Γ,Σ T2, then there is such
a witness where additionally q is an stCQ.
Our goal is to characterize query entailment in terms of homo-
morphisms between (universal) models. Homomorphisms are
natural because answers to CQs are preserved under homo-
morphisms (both on interpretations and on ABoxes). In fact,
they are preserved even under bounded homomorphisms if the
bound is not smaller than the number of variables in the CQ.

Let I1, I2 be interpretations, d ∈ ∆I1 , and n ≥ 0. We
say that there is an n-bounded Σ-homomorphism from I1 to
I2, written I1 →n

Σ I2, if for any subinterpretation I ′1 of I1

with |∆I′1 | ≤ n, we have I ′1 →Σ I2. Moreover, we write
I1 →fin

Σ I2 if I1 →n
Σ I2 for any n. The following characteri-

zation follows from the definition of CQ entailment, Lemma 8,
and the connection between CQs and suitably bounded homo-
morphisms.
Lemma 9 Let T1 and T2 be Horn-ALCHIF TBoxes with
T1 |=RI

Γ,Σ T2. Then T1 |=CQ
Γ,Σ T2 iff for all tree-shaped Γ-

ABoxes A consistent with T1 and T2, IT2,A →fin
Σ IT1,A.

Ideally, we would like to use Lemma 9 as a basis for a decision
procedure based on tree automata. To this end, it is useful that
the ABoxA and models IT1,A and IT2,A in the lemma are tree-
shaped. What is problematic is that Lemma 9 speaks about
bounded homomorphisms, for any bound (corresponding to
the bounded size of CQs), since it does not seem possible to
verify such a condition using automata. We would thus like
to replace bounded homomorphisms with unbounded ones,
which does not compromise the characterization in the case
of Horn-DLs without inverse roles [Lutz and Wolter, 2010;
Botoeva et al., 2016c]. However, this is not true already for
ELI TBoxes [Botoeva et al., 2016a]:
Example 10 Let T1 = {A v ∃s.B, B v ∃r−.B}, T2 =
{A v ∃s.B, B v ∃r.B}, Γ = {A}, and Σ = {r}. Then
both IT1,A and IT2,A contain an infinite r-path; the r-path
in IT1,A has a final element while the one in IT2,A does not.
Hence IT2,A 6→Σ IT1,A, but T1 |=CQ

Γ,Σ T2 (see Thm. 11 below).

We now show that it is possible to refine Lemma 9 so that
it makes a much more careful statement in which bounded
homomorphisms are partly replaced by unbounded ones. It is
then possible to check the unbounded homomorphism part of
the characterization using tree automata as desired, and to deal
with bounded homomorphisms using a mosaic technique that
“precompiles” relevant information about unbounded homo-
morphisms to be used in the automaton construction.

We start with introducing relevant notation. For a signa-
ture Σ, we use I|con

Σ to denote the restriction of the interpre-
tation I to those elements that can be reached from an ABox
individual by traveling along Σ-roles (forwards or backwards).
Tree-shaped interpretations are defined analogously to tree-
shaped CQs (thus multi-edges are allowed). For a TBox T ,
an ABox A, and a ∈ ind(A), we use IT ,A|a to denote the
subtree interpretation in the universal model IT ,A rooted at a.
A Σ-subtree in IT ,A is a maximal tree-shaped, Σ-connected
sub-interpretation I of IT ,A that does not comprise any ABox
individuals. The root of I is the (unique) element of ∆I that
can be reached from an ABox individual on a shortest path
among all element of ∆I . The refined characterization uses
simulations instead of homomorphisms for the stCQ case be-
cause they are insensitive to multi-edges. Given a signature
Σ and two interpretations I,J , a Σ-simulation of I in J is a
relation σ ⊆ ∆I×∆J such that: (1) (a, a) ∈ σ for all a ∈ NI,
(2) if d ∈ AI with A ∈ Σ and (d, e) ∈ σ, then e ∈ AJ , and
(3) if (d, d′) ∈ rI with r a Σ-role and (d, e) ∈ σ, then there is
some e′ with (e, e′) ∈ rJ and (d′, e′) ∈ σ. We write I �Σ J
if there is a Σ-simulation of I in J .

Theorem 11 Let T1 and T2 be Horn-ALCHIF TBoxes with
T1 |=RI

Γ,Σ T2. Then T1 |=CQ
Γ,Σ T2 iff for all tree-shaped Γ-

ABoxes A consistent with T1 and T2, and for all tree-shaped,
finitely branching models I1 of A and T1, the following hold:

(1) IT2,A|con
Σ →Σ I1;

(2) for all Σ-subtrees I in IT2,A, one of the following holds:

(a) I →Σ I1;
(b) I →fin

Σ IT1,tpI1 (a) for some a ∈ ind(A).

Furthermore, T1 |=stCQ
Γ,Σ T2 iff IT2,A|con

Σ �Σ I1 for all A and
I1 as above iff IT2,A|con

Σ �Σ IT1,A.

4 Decidability and Complexity
We prove that, in Horn-ALCHIF , CQ entailment can be de-
cided in 2EXPTIME. By existing lower bounds, the former is
thus 2EXPTIME-complete in all fragments of Horn-ALCHIF
that contain ELI or Horn-ALC. Moreover, stCQ entailment
in Horn-ALCHIF and deductive entailment in ELHIF⊥ can
also be decided in 2EXPTIME. We establish a CONEXPTIME
lower bound and leave the precise complexity open.

To obtain the upper bounds, we use a combination of tree
automata and mosaics to implement the characterization in
Theorem 11. We start with a mosaic-based decision procedure
for Condition (2b). Note that a Σ-subtree I in IT2,A can
be uniquely identified by the type t2 of its root. It therefore
suffices to show the following.



Theorem 12 Given two Horn-ALCHIF TBoxes T1 and T2

and types ti for Ti, i ∈ {1, 2}, it can be decided in time
22p(|T2|log|T1|) whether IT2,t2 |con

Σ →fin
Σ IT1,t1 , p a polynomial.

Although we cannot get rid of bounded homomorphisms in
Theorem 11, a central idea for applying a mosaic approach to
prove Theorem 12 is to first replace bounded homomorphisms
with unbounded ones. To make this possible, we also replace
IT1,t1 with a suitable class of interpretations used as targets
for the unbounded homomorphisms.

To illustrate, consider Example 10 and let t1 = t2 = {B}.
The difference between IT2,t2 →fin

Σ IT1,t1 and IT2,t2 →Σ

IT1,t1 is that unbounded homomorphisms fail once they “reach
the root” of IT1,t1 while bounded homomorphisms can, de-
pending on the bound, map the root of IT2,t2 deeper and
deeper into IT1,t1 , thus never reaching its root. The latter is
possible because IT1,t1 is regular in the sense that any two
elements which have the same type root isomorphic subtrees.
This is of course not only true in this example, but by construc-
tion in any universal model. To transition back from bounded
to unbounded homomorphisms, we replace IT1,t1 with a class
of (finite and infinite) interpretations that can be seen as a
“backwards regularization” of IT1,t1 . In our concrete example,
we would include an interpretation where a predecessor is
added to the root of IT1,t1 because IT1,t1 contains an element
of the same type as the root that has such a predecessor, an
interpretation where that predecessor has a predecessor, and
so on, even ad infinitum. We will now make this precise.

An interpretation I is quasi tree-shaped if:
1. ∆I ⊆ ({−1} ∪ N)∗;
2. (d, e) ∈ rI implies that e = d · c or d = e · c for some
c ∈ {−1} ∪ N.

For d, e ∈ ∆I , we say that e is a successor of d if e = d · c
for some c ∈ N or d = e · −1. By this convention, quasi tree-
shaped interpretations can be viewed as directed graphs. The
directedness does not correspond to the distinction between
roles and inverse roles; in particular, there can be several role
edges in both directions between the same d and e. Quasi
tree-shaped interpretations can be viewed as a finite or infinite
trees that need not have a root as they can extend indefinitely
not only downwards but also upwards.
Let T be a Horn-ALCHIF TBox and let tp(T ) be the set of
all types for T consistent with T . For every t0 ∈ tp(T ), we
use tp(T , t0) to denote the set of all t ∈ tp(T ) that occur in
the universal model IT ,t0 of t0 and T . Furthermore, given a
quasi tree-shaped interpretation I and an element d ∈ ∆I , the
1-neighborhood of d in I is a tuple nI1 (d) = (t−, ρ, t, S) such
that (a) t = tpI(d); (b) if there is a predecessor d0 ∈ ∆I of
d, then t− = tpI(d0) and ρ = {r | (d0, d) ∈ rI}, otherwise
ρ = t− = ⊥; (c) S is the set of all pairs (ρ′, t′) such that there
is a successor d′ of d such that t′ = tpI(d′) and ρ′ = {r |
(d, d′) ∈ rI}. We write (t−1 , ρ1, t1, S1) v (t−2 , ρ2, t2, S2) if
t1 = t2, S1 ⊆ S2 and, if ρ1 6= ⊥, then ρ1 = ρ2 and t−1 = t−2 .

In the following, we define a class canω(T , t0) of quasi
tree-shaped models of T . To construct a model from this class,
choose a type t ∈ tp(T , t0) and define I = ({d0}, ·I) such
that tpI(d0) = t. Then extend I by applying the following
rule exhaustively in a fair way:

(R) Let d ∈ ∆I . Choose some e ∈ ∆IT ,t0 such that
nI1 (d) v nIT ,t01 (e), and add to d the predecessor and/or
successors required to achieve nI1 (d) = n

IT ,t0
1 (e).

The potentially infinite class canω(T , t0) is the set of all
interpretations I obtained as a limit of this construction.
Lemma 13 Let T be a Horn-ALCHIF TBox, t0 ∈ tp(T ),
and I a tree-shaped interpretation. Then I →fin

Σ IT ,t0 iff
there is a J ∈ canω(T , t0) with I →Σ J .
We can now use Lemma 13 to devise the mosaic-based proce-
dure for deciding the existence of a bounded homomorphism.
Let T1, T2 be as in Theorem 11. We denote with rol(Ti) the
set of all roles r, r− such that the (possibly inverse) role r
occurs in Ti. Moreover, for a set of roles ρ, denote with ρ|Σ
the restriction of ρ to Σ-roles.

Fix now some t1 ∈ tp(T1). Intuitively, a mosaic for t1 rep-
resents a possible 1-neighborhood of some element in IT1,t1
together with a decoration with sets of types for T2 that can
be homomorphically embedded into the neighborhood. For-
mally, a mosaic for t1 is a tuple M = (t−, ρ, t, S, `) such
that (t−, ρ, t, S) = n

IT1,t1
1 (d) for some d ∈ ∆IT1,t1 and

` : {t−, t} ∪ S → 2tp(T2) satisfies the following condition:

(M) For all t̂ ∈ `(t) we have t̂∩Σ ⊆ t and, for all t̂′ ∈ tp(T2),
r ∈ rol(T2) with t̂  T2

r t̂′, one of the following holds
for σ = {s ∈ rol(T2) | T2 |= r v s}:
(a) σ|Σ = ∅;
(b) t− 6= ⊥, σ|Σ ⊆ ρ−, and t̂′ ∈ `(t−);
(c) there is (ρ′, t′) ∈ S with t̂′ ∈ `(ρ′, t′) and

σ|Σ ⊆ ρ′.
To ease notation, we use t−M to denote t−, ρM to denote ρ, and
likewise for the other components of a mosaic M . LetM be
the set of all mosaics for t1 andM′ ⊆ M. An M ∈ M′ is
good inM′ if the following conditions are satisfied:
1. for each (ρ, t) ∈ SM , there is an N ∈ M′ such that

(tM , ρ, t) = (t−N , ρN , tN ), `M (ρ, t) = `N (tN ), and
`M (tM ) = `N (t−N ).

2. if t−M 6= ⊥, there is N ∈M′ with (ρM , tM ) ∈ SN , t−M =

tN , `M (t−M ) = `N (tN ), and `M (tM ) = `N (ρM , tM ).
LetM0,M1, . . . be the sequence obtained by starting with
M0 = M and definingMi+1 to beMi when all mosaics
that are not good inMi have been removed. Assume thatMp

is where the sequence stabilizes.
Lemma 14 Let ti ∈ tp(Ti) for i ∈ {1, 2}. Then there is a
J ∈ canω(T1, t1) such that IT2,t2 |con

Σ →Σ J iffMp contains
a mosaic M with t2 ∈ `M (tM ).

Since there are at most 2|T1|2|T2| mosaics for t1, we obtain the
desired Theorem 12.

We now develop the decision procedure for CQ and stCQ
entailment in Horn-ALCHIF , based on Theorems 11 and 12.
Our main tool are alternating two-way tree automata with
counting (2ATAc), an extension of alternating tree automata
over unranked trees [Grädel and Walukiewicz, 1999] with the
ability to count. A tree is a non-empty (potentially infinite)



set of words T ⊆ (N \ 0)∗ closed under prefixes. We assume
that trees are finitely branching, i.e., for every w ∈ T , the set
{i | w·i ∈ T} is finite. For anyw ∈ (N\0)∗, we setw·0 := w.
If w = n0n1 · · ·nk, k ≥ 0, we set w ·−1 := n0 · · ·nk−1. For
an alphabet Θ, a Θ-labeled tree is a pair (T, L) with T a tree
and L : T → Θ a node labeling function.

A 2ATAc is a tuple A = (Q,Θ, q0, δ,Ω) where Q is a finite
set of states, Θ is the input alphabet, q0 ∈ Q is the initial
state, δ is a transition function, and Ω : Q→ N is a priority
function. The transition function δ maps every state q and
input letter a ∈ Θ to a positive Boolean formula δ(q, a) over
the truth constants true and false and transition atoms of the
form q, 〈−〉q, [−]q, 3nq and 2nq. Informally, a transition q
expresses that a copy of A is sent to the current node in state
q; 〈−〉q means that a copy is sent in state q to the predecessor
node, which is required to exist; [−]q means the same except
that the predecessor node is not required to exist; 3nq (resp.,
2nq) means that a copy of q is sent to n (resp., to all but n)
successors. The semantics of 2ATAc is given in terms of runs
as usual, please see the appendix. We use L(A) to denote
the set of trees accepted by A. It is standard to verify closure
of 2ATAc under intersection. The following is obtained via
reduction to standard alternating parity tree automata [Vardi,
1998].
Theorem 15 The emptiness problem for 2ATAc can be solved
in time exponential in the number of states.

Let T1, T2 be Horn-ALCHIF TBoxes and Γ,Σ signatures.
We aim to show that one can construct a 2ATAc A such that
L(A) 6= ∅ iff T1 6|=CQ

Γ,Σ T2. In fact, A is the intersection of
four 2ATAc A1,A2,A3,A4. They run over Θ-labeled trees
with Θ = 2Θ0 × 2Θ1 × 2Θ2 , where Θ0 = Γ ∪ {r− | r ∈ Γ}
and Θi = sig(Ti) ∪ {r− | r ∈ sig(Ti)} for i = 1, 2. For a
Θ-labeled tree (T, L), we use Li, i ∈ {0, 1, 2} to refer to the
i-th component of L, that is, L(n) = (L0(n), L1(n), L2(n)),
for all n ∈ T . The component L0 represents a (possibly
infinite) ABox A = {A(n) | A ∈ L0(n)} ∪ {r(n · −1, n) |
n 6= ε, r ∈ L0(n)}, where r−(a, b) is identified with r(b, a).
The 2ATAc A1 accepts a Θ-labeled tree (T, L) iff A is finite,
tree-shaped (and thus connected) and includes the root of T ,
and it is straightforward to construct.

Components L1, L2 give rise to interpretations I1 =
(T, ·I1) and I2 = (ind(A), ·I2), where for i ∈ {1, 2}:

AIi = {n | A ∈ Li(n)}
rIi = {(n, n · −1) | r−∈Li(n)} ∪ {(n · −1, n) | r∈Li(n)}
A2 verifies that I1 is a model of A and T1, which is standard,
too. A3 verifies that A is consistent with T2, and I2 is IT2,A
restricted to ind(A). This involves computing the type of an
ABox element without having access to the anonymous (that
is: non-ABox) part of IT2,A, using a characterization of ABox
entailments [Bienvenu et al., 2013] in terms of derivation trees.
Finally, A4 verifies that either (1) or (2) from Theorem 11
is not satisfied. For (1), A4 sends a copy of itself to every
tree I starting at an ABox element in IT2,A, and attempts
to show that I cannot be homomorphically embedded into a
corresponding tree in I1. This attempt is successful if either
incompatible types are found in the root or, recursively, there
is some successor of the current type in IT2,A that cannot be

mapped to any neighbor in I1. Since the anonymous part of
IT2,A is not explicit in the input, the current type is stored
in the states, and the generating relation t  T2

r t′ is “hard-
coded” into the transition function. For Condition (2a), A4

non-deterministically guesses a Σ-subtree I and proceeds
as in (1); Condition (2b) is verified based on Theorem 12
by pre-computing→fin

Σ . Thus the number of states of A4 is
exponential in T2 (because of the types) but only polynomial
in |T1|. Automata A1,A2,A3 have polynomially many states.

In the special case of stCQ entailment, we simply replace
A4 with a 2ATAc A′4 that refutes the simulation condition of
Theorem 11 analogously to how A4 refutes Condition (1).

To obtain the desired upper complexity bounds for query
and deductive entailment, we observe that, in both cases, A
can be constructed in time polynomial in |T1| and exponential
in |T2|, and the emptiness check adds an exponential blowup
(Theorem 15). For deductive entailment, we use the reduction
to stCQ entailment (Lemma 7).

Theorem 16 In Horn-ALCHIF , the following problems can
be decided in time 22p(|T2|log|T1|) , p a polynomial: (Γ,Σ)-CQ
entailment, (Γ,Σ)-CQ inseparability, and (Γ,Σ)-CQ conser-
vative extensions. The same holds for Σ-deductive entailment,
Σ-deductive inseparability, and Σ-deductive conservative ex-
tensions in ELHIF⊥.

Matching lower bounds for all problems except deductive
entailment are provided by [Botoeva et al., 2016c]. They hold
even in the case where Γ = Σ.

Corollary 17 In any fragment of Horn-ALCHIF that con-
tains ELI or Horn-ALC, the following problems are
2EXPTIME-complete: (Γ,Σ)-CQ entailment, (Γ,Σ)-CQ in-
separability, and (Γ,Σ)-CQ conservative extensions.

In the description logic EL, which is ELI without inverse roles,
deductive conservative extensions and deductive Σ-entailment
are EXPTIME-complete [Lutz and Wolter, 2010]. This raises
the question whether the upper bound for deductive entailment
reported in Theorem 16 is tight. While we leave this question
open, we observe that the transition from EL to ELI does
increase the complexity of deductive conservative extensions
and related problems to at least CONEXPTIME. We consider
this a surprising result since in reasoning problems that are not
defined in terms of conjunctive queries, adding inverse roles
does typically not result in an increase of complexity. The
following is established by a non-trivial reduction of a tiling
problem.

Theorem 18 In any DL between ELI and ELHIF⊥, deduc-
tive conservative extensions, deductive Σ-entailment, and de-
ductive Σ-inseparability are CONEXPTIME-hard.

5 Conclusion
As future work, it would be interesting to close the gap in com-
plexity between CONEXPTIME and 2EXPTIME for deductive
entailment in ELI and ELHIF⊥. Furthermore, it would be
interesting to extend the results to ontology languages from
the family of Datalog+/- (aka existential rules), in particular
to frontier-guarded TGDs.
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A Proofs for Section 2
A.1 Additional Definitions and Properties
If an interpretation I is a common model of a TBox T and
ABox A, then we also write I |= (T ,A) and call I a model
of (T ,A).

The following is standard to prove.

Lemma 19 For every Horn-ALCHIF TBox T in normal
form and ABox A consistent with T , the following hold:

(1) IT ,A |= (T ,A).

(2) For all models I of (T ,A), we have IT ,A → I.

(3) For all types t, t′ for T with t ⊆ t′, we have IT ,t → IT ,t′ .
(4) T ,A |= q(a) iff IT ,A |= q(a), for all CQs q(x) and

tuples a of individuals.

In the following subsections, we need to deal with the question
whether any Γ-ABox that is inconsistent with some TBox
T2 is inconsistent with another TBox T1. We say that T1

Γ-inconsistency entails T2, written T1 |=⊥Γ T2, if for all Γ-
ABoxesA: ifA is inconsistent with T2, then A is inconsistent
with T1.

A.2 Proof of Lemma 4

Lemma 4 CQ entailment with inconsistent ABoxes can be
decided in polynomial time given access to oracles deciding
CQ entailment and CQ evaluation.

To prove Lemma 4, we proceed in two steps: first, we show
how to deal with inconsistency entailment as defined in Sec-
tion A.1; second we show how to use this type of entailment
to deal with CQ entailment with inconsistent ABoxes.

For the first step, we can reduce inconsistency entailment to
CQ entailment because, ifA is inconsistent with T , then either
(a) IT ,A contains a B-instance for some B with B v ⊥ ∈ T ,
or (b) A contains a “fork” {r(a, b), r(a, c)} that is prohibited
by func(r) ∈ T . We write T1 |=fork

Γ T2 if for all Γ-ABoxes
A = {r(a, b), r(a, c)}: if A is inconsistent with T2, then also
with T1. Thus, if we have a witness ABox A for T1 6|=⊥Γ T2,
then A is inconsistent with T2 either by Case (a) – which we
can detect via CQ entailment if we allow a fresh concept name
in the CQ and slightly modify the TBoxes – or by Case (b),
which implies T1 6|=fork

Γ T2.

Lemma 20 Let Γ be a signature and let T1 and T2 be
Horn-ALCHIF TBoxes. Furthermore, let A be a fresh con-
cept name and T Ai be obtained from Ti by replacing each
occurrence of ⊥ with A and adding the axioms ∃s.A v A
and ∃s−.A v A for every role s occurring in Ti, for i = 1, 2.
Then the following are equivalent.

(1) T1 |=⊥Γ T2

(2) T A1 |=
CQ
Γ,{A} T A2 and T1 |=fork

Γ T2

(3) T A1 |=
stCQ
Γ,{A} T A2 and T1 |=fork

Γ T2

Note that we only need the equivalence between (1) and (2)
to prove Lemma 4. However, we will need (3) later to prove
Lemma 7. Indeed, (2) and (3) are obviously equivalent given
the primitive query signature {A} and the propagation of A
throughout the T Ai .

Proof.
“1 ⇒ 2”. We prove the contrapositive. Assume T A1 6|=

CQ
Γ,{A}

T A2 or T1 6|=fork
Γ T2. In case T1 6|=fork

Γ T2, every witness ABox
is a witness for T1 6|=⊥Γ T2 too.

In case T A1 6|=CQ
Γ,{A} T A2 is violated, consider a witness

(A, q,a). Since A is the only symbol allowed in q, all atoms
of q have the form A(z) for arbitrary variables z. If q consists
of several atoms, then it is disconnected and we can omit all
but one atom from q and still have a witness (see also proof
of Lemma 8, Property d). Hence we can assume w.l.o.g. that
q is of the form (i) q(x) = A(x) or (ii) q() = ∃y A(y) and,
furthermore, that A and thus the universal models ITi,A are
connected. (Due to the “propagation” of A in the Ti, we can
even assume that q is of the form (i) only, but that does not
matter in the following argumentation.) We now have:
• A is inconsistent with T2:

Assume to the contrary that A is consistent with T2 and
consider the universal model IT2,A for T2 and A (Sec-
tion 2.4). Clearly, for all domain elements d of IT2,A, we
have T2 6|=

d
tpIT2,A(d) v ⊥. Since A is fresh and by

the definition of T A2 we get T A2 6|=
d
tpIT2,A(d) v A.

Now Lemma 19 (1) for T A2 implies that IT2,A |= (T2,A);
hence IT2,A satisfies all axioms in T A2 that have been
taken over from T2 without modification, i.e., all axioms
that are not of the form B v A. But axioms of the latter
form are also satisfied because T A2 6|=

d
tpIT2,A(d) v A

for every domain element d. Hence IT2,A |= (T A2 ,A).
Now, since IT2,A has no A-instance, we cannot have
T A2 ,A |= q(a) for any {A}-query q; contradicting the
assumption that (A, q,a) is a witness.

• A is consistent with T1:

Since (A, q,a) is a witness, we have IT A1 ,A 6|= q(a)
by Lemma 19 (4). Due to the additional axioms in
the definition of T A1 , which “propagate” A into every
domain element of the connected (see above) univer-
sal model IT A1 ,A, we have T A1 6|=

d
tpITA

1
,A

(d) v A

for all domain elements d. Since A is fresh, we have
T1 6|=

d
tpITA

1
,A

(d) v ⊥. With the same reasoning as

above, we get IT A1 ,A |= (T1,A); hence A is consistent
with T1.

Consequently T1 6|=⊥Γ T2, as desired.

“2 ⇒ 3”. This is immediate because T A1 |=
CQ
Γ,{A} T A2 implies

T A1 |=
stCQ
Γ,{A} T A2 .

“3 ⇒ 1”. We prove the contrapositive. Assume T1 6|=⊥Γ T2,
i.e., there is a Γ-ABox A that is is inconsistent with T2 but
consistent with T1. We need to show that T A1 6|=

stCQ
Γ,{A} T A2 or

T1 6|=fork
Γ T2.



From A being inconsistent with T2, we first conclude that
one of the following two properties must hold.

(i) There is some d ∈ BIT2,A with B v ⊥ ∈ T2.

(ii) A contains a “fork” A− = {r(a, b), r(a, c)} such that
A− is inconsistent with T2.

Indeed, if neither (i) nor (ii) holds, then we have IT2,A |=
(T2,A), contradicting the inconsistency of A with T2: First,
IT2,A |= A follows directly from the construction of IT2,A.
Second, IT2,A |= T2 can be shown analogously to the (omitted)
standard proof of Lemma 19 (1), via a case distinction over
the axioms in T2, using “not (i)” and “not (ii)” instead of the
assumption that A is consistent with T2.

Now first assume that (ii) holds. Since A is consistent with
T1, so is A−. Hence T1 6|=fork

Γ T2.
In case (ii) does not hold, (i) must hold. To show that

T A1 6|=stCQ
Γ,{A} T A2 , consider the stCQ q = A(x) and some

a ∈ ind(A) to which the element d from (i) is connected
in IT2,A, i.e., if d ∈ ind(A), then choose a = d; otherwise
choose a such that d is in the subtree IT2,A|a. We then have:

• A is consistent with T A2 :

Since T A2 does not contain ⊥ and A does not contain
forks as in (ii), A is consistent with T A2 is consistent, as
witnessed by the universal model IT A2 ,A (we again refer
to the standard proof of Lemma 19 (1); except that the FA
case in the ABox part of IT A2 ,A is now due to “not (ii)”).

• A is consistent with T A1 :

It is not difficult to see that IT1,A |= (T A1 ,A): From
IT1,A |= (T1,A), it follows that IT1,A is a model of
A and satisfies all axioms in T A1 that T A1 shares with
T1. The modified axioms B v A with B v ⊥ ∈ T1 are
satisfied, too, because IT1,A cannot have anyB-instances.
Finally, the additional propagation axioms are satisfied
because IT1,A has no A-instance as A is fresh.

• T A2 ,A |= q(a):

Due to (i), we have IT2,A |= ∃y B(y) for some B v
⊥ ∈ T2. Hence IT A2 ,A |= ∃y B(y), which follows from
the construction of both universal models (in fact the
only difference between IT A2 ,A and IT2,A is that some
domain elements of IT A2 ,A may be A-instances). Hence
IT A2 ,A has a B-instance in the subtree IT2,A|a and thus,
by construction, an A-instance. By the “propagation” of
A in T A2 , we have that a is an instance of A in IT A2 ,A;
hence IT A2 ,A |= A(a) = q.

• T A1 ,A 6|= q(a):

Follows from IT1,A |= (T A1 ,A) (as shown above) and
IT1,A 6|= q(a) (given the lack of A-instances).

o

Proposition 21 Fork entailment T1 |=fork
Γ T2 can be (Turing)

reduced in polynomial time to stCQ evaluation.

Proof. Perform 2|Γ| many ABox consistency checks by eval-
uating the stCQ A(a) on both Ti, where A is a concept name
that does not occur in any of the Ti. o

For the second step, we can now reduce CQ entailment with
inconsistent ABoxes to the disjunction of our original notion
of CQ entailment and inconsistency entailment. We need an
additional notion: Given a TBox T and signatures Γ,Σ, we
say that T is (Γ, Σ)-universal if

(∗) for all Γ-ABoxes A and Σ-CQs q(x) and all tuples
a ⊆ ind(A) with |a| = |x|, we have T ,A |= q(a).

Lemma 22 Let Γ,Σ be signatures and let T1 and T2 be
Horn-ALCHIF TBoxes. Then T1 (Γ,Σ)-CQ entails T2 with
inconsistent ABoxes iff one of the two following conditions
holds.

(1) T1 |=CQ
Γ,Σ T2 and T1 |=⊥Γ T2

(2) T1 is (Γ, Σ)-universal.

Proof. We prove both implications via contraposition.

“⇒”. Assume (1) and (2) are both false, i.e., T1 is not (Γ, Σ)-
universal and either (a) T1 6|=CQ

Γ,Σ T2 or (b) T1 6|=⊥Γ T2. In
case (a), T1 trivially does not (Γ,Σ)-CQ entail T2 with in-
consistent ABoxes. In case (b), consider a witness Γ-ABox
A. Since T1 is not (Γ, Σ)-universal, there is a Γ-ABox A′, a
Σ-CQ q(x) and a tuple a ⊆ ind(A′) with |a| = |x| such that
T1,A′ 6|= q(a). We assume w.l.o.g. that A and A′ use distinct
sets of individuals. We set A′′ = A ∪A′ and have:

• T2,A′′ |= q(a) because A is inconsistent with T2 and so
is A′′.

• T1,A′′ 6|= q(a): let J be the disjoint union of the uni-
versal model IT1,A and the model I witnessing T1,A′ 6|=
q(a). Clearly J |= (T1,A′′) but J 6|= q(a).

Hence T1 does not (Γ,Σ)-CQ entail T2 with inconsistent
ABoxes, as desired.

“⇐”. Assume T1 does not (Γ,Σ)-CQ entail T2 with incon-
sistent ABoxes and consider a witness (A, q,a). Then it is
immediate that (2) does not hold. Furthermore, if A is con-
sistent with both T1 and T2, then T1 6|=CQ

Γ,Σ T2. Otherwise A
must be inconsistent with T2 but consistent with T1; hence
T1 6|=⊥Γ T2. Therefore (1) does not hold either. o

Proposition 23 (Γ,Σ)-universality can be (Turing) reduced
in polynomial time to stCQ evaluation.

Proof. It suffices to check Condition (∗) above (i) for all
singleton Γ-ABoxes {A(a)} and all single-atom Σ-CQs B(x)
or r(x, x), and (ii) for all two-element Γ-ABoxes {r(a, b)}
and all Σ-CQs as in (i) but with possibly two distinct answer
variables. o



Lemma 4 is now a direct consequence of Lemmas 22 and 20,
and Propositions 21 and 23.

A.3 Proof of Lemma 7
Lemma 7 In ELHIF⊥, deductive entailment can be decided
in polynomial time given access to oracles for stCQ entailment
and stCQ evaluation.

Lemma 7 is an immediate consequence of the following lemma
because the additional T1 |=⊥Σ T2 can be reduced to rstCQ
entailment and stCQ evaluation via Lemma 20.

Lemma 24 Let Σ be a signature and T1, T2 ELHIF⊥ TBoxes
such that T1 |=RI

Σ,Σ T2. Then

T1 |=ELHIF⊥Σ T2 iff T1 |=stCQ
Σ,Σ T2 and T1 |=⊥Σ T2.

Proof. We prove both implications via contraposition.

“⇐”. We assume that T1 6|=ELHIF⊥Σ T2. In case this is
witnessed by a Σ-FA func(r), we immediately get a witness
Σ-ABox = {r(a, b), r(a, c)} for T1 6|=⊥Σ T2 and are done.

Otherwise, T1 contains all Σ-FAs from T2, and there is
a witness Σ-CI C v D (witness RIs are excluded by the
assumption T1 |=RI

Σ,Σ T2). Since ELI⊥-concepts that contain
⊥ are equivalent to ⊥, the left-hand side C cannot contain
⊥ (i.e., is an ELI concept) and, if D does, then C v ⊥ is
a witness. We show that such witnesses give rise to either
a witness AC for T1 6|=⊥Σ T2 or a witness (AC , qD, a) for
T1 6|=stCQ

Σ,Σ T2 with qD(x) an stCQ.
We first consider the case that there is a witness C v ⊥

with C an ELI concept. We can construct from C in the
obvious way a tree-shaped Σ-ABox AC and root a: A reflects
the tree structure of C; however, to respect the Σ-FAs in
T1 (and thus those in T2), we need to merge the subtrees of
all nodes that are r-neighbors of the same node, whenever
func(r) ∈ T1. Consider the universal model IT2,AC

2 and
observe that a ∈ CIT2,AC from the construction of IT2,AC .
Since T2 |= C v ⊥, we have that IT2,AC is not a model of
T2. Hence, by the contrapositive of Lemma 19 (1), AC is
inconsistent with T2. On the other hand, since T1 6|= C v ⊥,
there is a model I |= T1 and an instance d ∈ CI . We can turn
I into a model of AC by interpreting the ABox individuals
accordingly (“partial” unraveling might be necessary to ensure
that the standard name assumption is respected), witnessing
the consistency ofA with T1. We thus have T1 6|=⊥Σ T2 and are
done.

In the second case, all witnesses C v D consist solely of
ELI concepts C,D. We construct the same ABox AC with
root a from C and transform D into a Σ-stCQ qD(x) with
a single answer variable that represents the tree shape of D.
Now (AC , qD, a) is a witness to T1 6|=stCQ

Σ,Σ T2 for the following
reasons.

• AC is consistent with T1: a model can be obtained in the
obvious way from the model witnessing T1 6|= C v D
(possibly involving “partial” unraveling as above).

2The assumption thatA is consistent with T is not needed for the
construction of IT ,A, only for the proof of Lemma 19 (1).

• AC is consistent with T2: since C v ⊥ is not a witness
to T1 6|=ELHIF⊥Σ T2, there must be a model I |= T2

with d ∈ CI . We claim that we can turn I into a
model of AC by interpreting the ABox individuals with-
out violating the standard name assumption. If we
assume to the contrary that this is not possible, then
there are subconcepts C1, . . . , Cn of C corresponding
to subtrees that have been merged in the construction
of AC , such that T2 |= C1 u · · · u Cn v ⊥. However,
T1 6|= C1 u · · · u Cn v ⊥ because AC is consistent with
T1, as shown previously. Hence C1 u · · · u Cn v ⊥
would be a witness to T1 6|=ELHIF⊥Σ T2, which we have
ruled out – a contradiction.
• T2,AC |= qD(a), witnessed by IT2,AC , together with
a ∈ CIT2,AC and T2 |= C v D.
• T1,AC 6|= qD(a): take a model I witnessing T1 6|= C v
D and an element d ∈ CI \ DI . As in the previous
case, we can turn I into a model J of AC by interpret-
ing the ABox individuals (again involving unraveling if
necessary), obtaining J 6|= qD(a).

“⇒”. Assume T1 6|=stCQ
Σ,Σ T2 or T1 6|=⊥Σ T2.

In case T1 6|=⊥Σ T2, consider a witness Σ-BoxA and assume
w.l.o.g. that A is tree-shaped. Let a ∈ ind(A) be its root. We
can assume that T1 contains all Σ-FAs from T2 (otherwise
T1 6|=ELHIF⊥Σ T2 and we are done). We turn A into a Σ-ELI
concept CA in the obvious way. Then CA v ⊥ is a witness to
T1 6|=ELHIF⊥Σ T2:
• T2 |= CA v ⊥ because, if there were a model I of T2

with d ∈ CIA, we could turn it into a model of (T2,A) by
interpreting the ABox individuals accordingly (possibly
involving partial unraveling as above), which would con-
tradict the assumption that A is a witness to T1 6|=⊥Σ T2.
• T1 6|= CA v ⊥, witnessed by IT1,A.

In case T1 6|=stCQ
Σ,Σ T2, by Lemma 8 there is a witness (A, q, a)

with A tree-shaped and q a Σ-stCQ with exactly one answer
variable. We construct CA as above and another Σ-ELI con-
cept Dq from q in the obvious way. It can be shown anal-
ogously to the previous case that CA v Dq is a witness to
T1 6|=ELHIF⊥Σ T2. o

B Proofs for Section 3
B.1 Unraveling ABoxes
To obtain tree-shaped ABoxes or CQs, we use unraveling,
which needs to be more cautious in the presence of inverse
roles and functionality. In particular, we need to ensure that,
whenever a role is functional in an ABox, then so it is in its
unraveling. We define an unraveling for Horn-ALCHIF
similar to the one for Horn-ALCIF in [Lutz and Wolter,
2012].

LetA be an ABox. The unraveling Ua
A ofA at an individual

a ∈ ind(A) is the following ABox:
• ind(Ua

A) is the set of sequences b0r0b1 · · · rn−1bn with
n ≥ 0, where b0 = a, bi ∈ ind(A) for all 0 ≤ i ≤ n,
ri(bi, bi+1) ∈ A for all 0 ≤ i < n, and (bi−1, r

−
i−1) 6=



(bi+1, ri) (the latter inequality is needed to ensure preser-
vation of functionality).
• The concept assertions in Ua

A are all assertions of the
shape C(α) such that α = b0 · · · bn−1rn−1bn ∈ ind(A)
and C(bn) ∈ A. The role assertions in Ua

A are all as-
sertions of the shape r(b0 · · · bn−1, α) such that α =
b0 · · · bn−1rn−1bn ∈ ind(A).

The following is standard to prove:
Proposition 25 Let T be a Horn-ALCHIF TBox, A an
ABox, and a ∈ ind(A). If A is consistent with T , then so
is Ua

A.

B.2 Proof of Lemma 8
We reformulate the lemma to make its statement more explicit.

Lemma 8, reformulated equivalently. Let T1, T2 be
Horn-ALCHIF TBoxes with T1 |=RI

Γ,Σ T2. If T1 6|=CQ
Γ,Σ T2,

then there is a tree-shaped Γ-ABox A consistent with T1 and
T2, and a tree-shaped Σ-CQ q such that one of the following
holds:
(1) q has a single answer variable and there is an a ∈ ind(A)

such that T2,A |= q(a) but T1,A 6|= q(a);
(2) q is Boolean and T2,A |= q but T1,A 6|= q.

If T1 6|=stCQ
Γ,Σ T2, then there is a tree-shaped Γ-ABox A and a

tree-shaped Σ-stCQ q with (1).

Proof. Unrestricted CQs. Assume T1 6|=CQ
Γ,Σ T2, i.e.,

T2,A |= q(a) and T1,A 6|= q(a), for some Γ-ABox A
consistent with both Ti, some Σ-CQ q and some tuple a.
Lemma 19 (4) yields IT2,A |= q(a) and IT1,A 6|= q(a). We
first show that the following properties of q and a are without
loss of generality:

(a) Every match of q(x) into IT2,A maps every quantified
variable into the anonymous part.

(b) q(x) does not contain atoms of the form r(x1, x2) with
x1, x2 answer variables.

(c) If x = (x1, . . . , xn) and a = (a1, . . . , an), then ai 6= aj
for all i, j with 1 ≤ i < j ≤ n.

(d) q(x) is connected.

For (a), take a match π of q in IT2,A and a quantified variable
y such that π(y) = b ∈ ind(A). Obtain q′(x, y) from q(x) by
removing the quantification over y, thus making y an answer
variable. Clearly, we have IT2,A |= q′(a, b) and IT1,A 6|=
q′(a, b), and thus T2,A |= q′(a, b) and T1,A 6|= q′(a, b).

For (b), observe that such atoms can always be dropped,
since they cannot be inferred via T1 or T2: Let q(x) =
∃y (r(x1, x2) ∧ ϕ(x′,y)) with x1, x2 ∈ x, and let IT2,A |=
q(a) be witnessed by the match π with π(xi) = ai, i = 1, 2.
Construct the CQ q(x′) = ∃yϕ(x′,y) by dropping the atom
r(x1, x2) (and thus possibly removing x1 and/or x2 from the
free variables). It is clear that IT2,A |= q′(a′) for the corre-
sponding restriction a′ of the tuple a; thus it suffices to show
that IT1,A 6|= q′(a′).

From IT2,A |= q(a) we can conclude that (a1, a2) ∈
rIT2,A . By construction of IT2,A there is some Γ-role r′ with

r′(a1, a2) ∈ A and T2 |= r′ v r (which includes the possibil-
ity r′ = r, i.e., r(a1, a2) ∈ A). Due to T1 |=RI

Γ,Σ T2, we also
have T1 |= r′ v r and hence (a1, a2) ∈ rIT1,A . This implies
the desired IT1,A 6|= q′(a′) because, otherwise, any match π
of q′ in IT1,A with π(xi) = ai, i = 1, 2, could be extended to
a match of q.

This construction does not introduce any violations of (a).
For (c), observe that, whenever ai = aj for some i, j with

1 ≤ i < j ≤ n, we can always drop xj and aj : Let x′ and
a′ be x and a with xj and aj removed, and transform q(x)
into q′(x′) by replacing every occurrence of xj with xi. Now
T2,A |= q′(a′) and T1,A 6|= q′(a′). This construction does
not introduce any violations of (a) or (b).

For (d), observe that T2,A |= q(a) and T1,A 6|= q(a)
implies T2,A |= q′(a) and T1,A 6|= q′(a) for some connected
component q′ of q. This construction does not introduce any
violations of (a), (b), or (c). While this is easy to see for (b)
and (c), Property (a) requires a closer look: If the possibly
disconnected CQ q satisfies (a) and has at least one match π
in IT2,A, then every match of any connected component q′ in
IT2,A can be extended to a match of q in IT2,A via π restricted
to the remaining connected components. Since the match of q
satisfies (a), so does the match of q′.

Thus, as long as q violates any of the above properties, we
apply the corresponding modification as described and in the
order given. From now on, we assume that q satisfies proper-
ties (a) to (d). Furthermore, they imply:

(e) q(x) does not contain a proper path between any two
answer variables, which is a non-empty sequence of
atoms r1(z1, z2), r2(z2, z3), . . . , rn(zn, zn+1) with vari-
ables z1, zn+1 ∈ x and zi ∈ y for 1 < i ≤ n, and
with roles ri such that zi+1 6= zi−1 for every 1 < i ≤ n.

To show this, assume the opposite, i.e., q(x) contains a proper
path as above between two answer variables x, x′. By (b) we
have n > 1. By (a) and (c), π maps all zi with 1 < i ≤ n to the
anonymous part of IT2,A. However, there is no corresponding
proper path between any two ABox individuals in IT2,A; a
contradiction.

Assume now that q(x) = ∃yϕ(x,y) is not tree-shaped, i,e.,
there is a cycle r1(z1, z2), r2(z2, z3), . . . , rn(zn, zn+1) with
variables zi ∈ x ∪ y, z1 = zn+1, and roles ri such that
zi+1 6= zi−1 for every 1 < i ≤ n and z2 6= zn. By (e), we
have zi ∈ y for all 1 ≤ i ≤ n+ 1. Let π be a match of q(x)
in IT2,A. By (a), π maps all variables to the anonymous part
of IT2,A which, by construction, is acyclic. Hence π cannot
satisfy the properties of a match; contradiction.

Assume now that x in q(x) contains more than one answer
variable, say x 6= x′, matched by a and a′ in IT2,A, with
a 6= a′ due to (c). By (d), q is connected, and thus, there is a
path from x to x′ in q. Since x 6= x′, there is even a proper
path; contradicting (e).

Thus, we now have that q is tree-shaped and behaves as
required by (1) or (2). It remains to transform A into a tree-
shaped ABox: In case q is Boolean, we get from (a) and (c) that
every match of q in IT2,A is into the anonymous subtree rooted



at some ABox individual a; in case q has one answer variable,
let a = a. Consider the unraveling Ua

A of A at a. Clearly,
T2, U

a
A |= q(a) and T1, U

a
A 6|= q(a), which is still consistent

with both Ti, due to Proposition 25. By compactness, there is
a finite subset B ⊆ Ua

A with T1,B |= q(a) and T2,B 6|= q(a).
Clearly, we can also assume that B is connected.

stCQs. Since stCQs are already tree-shaped and have exactly
one answer variable, the previous argument for unrestricted
CQs reduces to observing Properties (a) and (c) and unraveling
the witness ABox as described. o

B.3 Proof of Lemma 9
Lemma 9 Let T1 and T2 be Horn-ALCHIF TBoxes with
T1 |=RI

Γ,Σ T2. Then T1 |=CQ
Γ,Σ T2 iff for all tree-shaped Γ-

ABoxes A consistent with T1 and T2, IT2,A →fin
Σ IT2,A.

Proof. We prove both implications via contraposition.

“⇐”. Assume T1 6|=CQ
Γ,Σ T2 and consider a witness (A, q,a),

By Lemma 8, we can assume that A is tree-shaped. From
Lemma 19 (4) we get IT2,A |= q(a) and IT1,A 6|= q(a). If we
take the finite subinterpretation I of IT2,A given by a match
of q in IT2,A, then we must have I 6→Σ IT1,A because of
IT1,A 6|= q(a). Hence IT2,A 6→fin

Σ IT1,A.

“⇒”. Assume IT2,A 6→fin
Σ IT1,A, i.e., there is a finite subin-

terpretation I of IT2,A with I 6→Σ IT1,A. Let a be the ABox
individuals in I and let qI be I viewed as a CQ whose vari-
ables correspond to the domain elements of I and the ABox
individuals are represented by answer variables. Then it can
be verified that IT2,A |= qI(a) and I1 6|= qI(a). o

B.4 Proof of Theorem 11
To prove the second part of Theorem 11 (the stCQ case),
we need a bounded variant of simulations, analogously to
bounded homomorphisms. We write I1 �nΣ I2 if for any
subinterpretation I ′1 of I1 with |∆I′1 | ≤ n, we have I ′1 �Σ I2.
Moreover, we write I1 �fin

Σ I2 if I1 �nΣ I2 for any n.
We begin with two useful insights about bounded homo-

morphisms (and simulations) and their connection to un-
bounded ones. We use I1|dn to denote the restriction of I1

to elements that can be reached by starting at d and traveling
along at most n role edges (forwards or backwards).

The first insight is straightforward.

Fact 26 Let Σ be a signature and I1, I2 be interpretations
such that I1 is finitely branching.

(1) The following are equivalent.

(a) I1 →fin
Σ I2

(b) For every d ∈ ∆I1 and every i ≥ 0 : I1|di →Σ I2

(2) The following are equivalent.

(a) I1 �fin
Σ I2

(b) For every d ∈ ∆I1 and every i ≥ 0 : I1|di �Σ I2

We will thus use Conditions (1b) and (2b) as alternative char-
acterizations of bounded homomorphisms and simulations.

The second insight shows that, under additional conditions,
we can extract an unbounded homomorphism from a suitable
family of bounded ones.

Lemma 27 Let I1, I2 be finitely branching interpretations
and let I1 be Σ-connected.

(1) If there are d0 ∈ ∆I1 and e0 ∈ ∆I2 such that for each
i ≥ 0 there is a Σ-homomorphism hi from I1|d0

i to I2

with hi(d0) = e0, then I1 →Σ I2.

(2) If there are d0 ∈ ∆I1 and e0 ∈ ∆I2 such that for each
i ≥ 0 there is a Σ-simulation ρi of I1|d0

i in I2 with
(d0, e0) ∈ ρi, then I1 �Σ I2.

Proof. We only show (1); Part (2) is analogous. We are going
to construct a Σ-homomorphism h from I1 to I2 step by step,
obtaining the desired homomorphism in the limit. We will
take care that, at all times, the domain of h is finite and

(∗) there is a sequence h0, h1, . . . with hi a Σ-homo-
morphism from I1|d0

i to I2 such that whenever h(d) is
already defined, then hi(d) = h(d) for all i ≥ 0.

Start with setting h(d0) = e0. The original sequence h0, h1

from the lemma witnesses (∗). Now consider the set Λ that
consists of all elements d ∈ ∆I1 such that h(d) is undefined
and there is an e ∈ ∆I1 with h(e) defined and such that d is
reachable from e along a Σ-role edge. Since the domain of h
is finite and I1 is finitely branching, Λ is finite. By (∗), since
every d ∈ Λ is reachable in one step from an element e such
that h(e) is defined, and since I2 is finitely branching, for each
d ∈ Λ there are only finitely many e′ such that hi(d) = e′

for some i. Thus there must be a function δ : Λ → ∆I2

such that, for infinitely many i, we have hi(d) = δ(d) for all
d ∈ Λ. Extend h accordingly, that is, set h(d) = δ(d) for
all d ∈ Λ. Clearly, the sequence h0, h1, . . . from (∗) before
the extension is no longer sufficient to witness (∗) after the
extension. We fix this by skipping homomorphisms that do
not respect δ, that is, define a new sequence h′0, h

′
1, . . . by

using as h′i the restriction of hj to the domain of I1|d0

i where
j ≥ i is smallest such that hj(d) = δ(d) for all d ∈ Λ. This
finishes the construction. Note that we will automatically have
h(a) = a for all individual names a (as required), no matter
whether d0 is an individual name or not. o

We are now ready to prove Theorem 11.

Theorem 11 Let T1 and T2 be Horn-ALCHIF TBoxes with
T1 |=RI

Γ,Σ T2. Then T1 |=CQ
Γ,Σ T2 iff for all tree-shaped Γ-

ABoxes A consistent with T1 and T2, and for all tree-shaped,
finitely branching models I1 of (T1,A), the following condi-
tions are satisfied:

(1) IT2,A|con
Σ →Σ I1;

(2) for all Σ-subtrees I in IT2,A, one of the following holds:

(a) I →Σ I1;
(b) I →fin

Σ IT1,tpI1 (a) for some a ∈ ind(A).

Furthermore, T1 |=stCQ
Γ,Σ T2 iff IT2,A|con

Σ �Σ I1 for all A and
I1 as above iff IT2,A|con

Σ �Σ IT1,A.



Proof. Unrestricted CQs, “if”. We show the contrapositive.
Thus first assume that T1 6|=CQ

Γ,Σ T2. By Lemma 8, there is
a tree-shaped Γ-ABox A consistent with both Ti, and a tree-
shaped Σ-CQ q such that either

(1′) q has a single answer variable and there is an element
a ∈ ind(A) such that T2,A |= q(a) but T1,A 6|= q(a)
or

(2′) q is Boolean and T2,A |= q but T1,A 6|= q.

In case (1′) holds, q is connected. Let h be a match of q in
IT2,A; in particular h(x) = a. Since q contains an answer
variable, we must have IT2,A|con

Σ 6→Σ IT1,A as otherwise the
composition of h and the witnessing homomorphism shows
IT1,A |= q(a), which is not the case. Thus Condition (1) is
violated for I1 = IT1,A.

In case (2′) holds, consider again a match h of q in IT2,A.
Let I ′T2,A be the restriction of IT2,A to the elements in the
range of h. Clearly, we have I ′T2,A 6→Σ IT1,A. Consequently,
IT2,A 6→n

Σ IT1,A where n is the number of variables in q,
implying that Conditions (2a) and (2b) are both false.

Unrestricted CQs, “only if”. Assume that T1 |=CQ
Γ,Σ T2 and

let A be a tree-shaped Γ-ABox consistent with both Ti. We
first show the following:

Claim. For all models I1 of (T1,A), we have IT2,A →fin
Σ I1.

Proof of claim: Assume to the contrary that IT2,A 6→fin
Σ I1.

Then IT2,A 6→n
Σ I1 for some n, that is, there is a subinter-

pretation I of IT2,A with |∆I | ≤ n such that I 6→Σ I1. Let
a be the ABox individuals in I and let qI be I viewed as a
CQ whose variables correspond to the domain elements of I
and the ABox individuals are represented by answer variables.
Then it can be verified that IT2,A |= qI(a) and I1 6|= qI(a).
Condition 1 is a consequence of Lemma 27: Fix a tree-shaped,
finitely branching model I1 |= (T1,A) and let IT2,A|con

Σ be
the disjoint union of the connected interpretations I1, . . . , Ik.
In each Ii, we find at least one individual ai from ind(A).
Let ` ∈ {1, . . . , k}. By the claim above and Fact 26, we
find a sequence h0, h1, . . . such that hi is a Σ-homomorphism
from I`|a`i to I1. Note that we must have hi(a`) = a` for
all i. Thus, Lemma 27 yields I` →Σ I1 and, in summary,
IT2,A|con

Σ →Σ I1.
Now for Condition 2. Let I be a Σ-subtree in IT2,A with
root d0. By the claim above and Fact 26, there is a sequence
h0, h1, . . . such that hi is a Σ-homomorphism from I|d0

i to
IT1,A.

First assume that there is an e0 ∈ ∆IT1,A such that hi(d0) =
e0 for infinitely many i. Construct a new sequence h′0, h

′
1, . . .

with h′i a Σ-homomorphism from I|d0

i to IT1,A by skipping
homomorphisms that do not map d0 to e0, that is, h′i is the
restriction of hj to the domain of I|d0

i where j ≥ i is smallest
such that hj(d0) = e0. Clearly, h′i(d0) = e0 for all i. Thus,
Lemma 27 yields I →Σ IT1,A and thus, by Lemma 19 (2)
I →Σ I1 for every tree-shaped, finitely branching model
I1 |= (T1,A).

It remains to deal with the case that there is no e0 ∈ ∆IT1,A

such that hi(d0) = e0 for infinitely many i. We can assume
that there is an a0 ∈ ind(A) such that hi(d0) ∈ ∆IT1,A|a0 for

all i; in fact, there must be an a0 such that hi(d0) ∈ ∆IT1,A|a0

for infinitely many i and we can again skip homomorphisms to
achieve this for all i. It is important to note that the remaining
homomorphisms do not necessarily map all ancestors of d0 in
I to elements in IT1,A|a0

due to the presence of inverse roles.
Now, since IT1,A is are finitely branching, for all i, n ≥ 0 we
must find a j ≥ i such that hj(d0) is a domain element whose
distance from a0 exceeds n (otherwise the previous case would
apply). We can use this fact to construct a sequence h′0, h

′
1, . . .

with h′i a Σ-homomorphism from I|d0

i to IT1,A|a0
. It is easy

to verify that this implies I →fin
Σ IT1,A|a0

; in fact, h′0, h
′
1, . . .

can again be found by skipping homomorphisms.
If we now fix an arbitrary (tree-shaped, finitely branch-

ing) model I1 |= (T1,A), by Lemma 19 (2) and (3) we
have tpIT1,A(a0) ⊆ tpI1

(a0) and thus IT1,tpIT1,A
(a0) →Σ

IT1,tpI1 (a0). Hence I →fin
Σ IT1,tpI1 (a0) as required.

stCQs. We need to show that the following three conditions
are equivalent.

(i) T1 |=stCQ
Γ,Σ T2

(ii) IT2,A|con
Σ �Σ I1 for all tree-shaped Γ-ABoxes A con-

sistent with T1 and T2, and for all tree-shaped, finitely
branching models I1 of (T1,A).

(iii) IT2,A|con
Σ �Σ IT1,A for all A as above.

(ii) ⇔ (iii). The “only if” direction follows from
Lemma 19 (1); the “if” direction follows from IT1,A �Σ I1,
which is a direct consequence of Lemma 19 (2).
(ii) ⇒ (i). This implication is analogous to the “if” direction
of the case for unrestricted CQs above, except that the witness
stCQ is rooted and connected, which rules out Case (2′) and
thus Condition (2).

(i) ⇒ (ii). Assume that T1 |=stCQ
Γ,Σ T2 and letA be a tree-shaped

Σ-ABox consistent with both Ti. We first show the following:

Claim. For all models I1 of (T1,A) : IT2,A|con
Σ �fin

Σ I1.

Proof of claim: Assume to the contrary that IT2,A|con
Σ �fin

Σ

I1. Then IT2,A|con
Σ �nΣ I1 for some n, that is, there is a

subinterpretation I of IT2,A with |∆I | ≤ n such that I �Σ I1.
We can assume w.l.o.g. that I is connected and contains at least
one ABox individual (otherwise we just extend I and increase
n accordingly). Let a be the ABox individuals in I and let qI
be I viewed as a tree-shaped CQ whose variables correspond
to the domain elements of I and the ABox individuals are
represented by answer variables. Clearly I |= q(a) and thus
IT2,A |= q(a); let π be a match of q in I. To transform q into
an stCQ, perform the following operations.

• Remove all binary atoms involving only answer variables
(see Condition (b) in the proof of Lemma 8).

• Restrict the resulting CQ to one connected component,
with exactly one answer variable x (see Condition (d) in
the proof of Lemma 8); then x is the root of the tree q.
Let a = π(x).

• “Split” multi-edges along the tree structure of q: if there
are n binary atoms involving variables z1, z2 of q with z2

being a child of z1 in the tree q, introduce n copies of z2



and its subtree, and redirect each of the n original atoms
to its corresponding copy. Apply this step exhaustively.

The result of this transformation is an stCQ q′, which still
satisfies IT2,A |= q′(a). On the other hand, I1 6|= q′(a) be-
cause, otherwise, a match π′ of q′(x) in I1 would give rise to
a simulation of I in I1.

Having established the claim, we proceed as follows: Let
a be an ABox individual in IT2,A|con

Σ . By the claim and
Fact 26, there is a sequence h0, h1, . . . such that hi is a Σ-
homomorphism from IT2,A|ai to I1. Obviously hi(a) = a for
all i. From Lemma 27 we obtain IT2,A|con

Σ �Σ I1 as desired.
o

C Proofs for Section 4
C.1 Proof of Theorem 12
Theorem 12 Given two Horn-ALCHIF TBoxes T1 and T2

and types ti for Ti, i ∈ {1, 2}, it can be decided in time
22p(|T2|log|T1|) whether IT2,t2 |con

Σ →fin
Σ IT1,t1 , p a polynomial.

Proof. By Lemma 13, we can decide IT2,t2 |con
Σ →fin

Σ IT1,t1

by checking whether there is a J ∈ canω(T1, t1) with
IT2,t2 |con

Σ →Σ J . By Lemma 14, this can be done by con-
structing the corresponding setM of mosaics for t1, removing
all mosaics that are not good, and checking whether the re-
maining setMp contains a mosaic M with t2 ∈ TM .

The desired upper time bound is now a consequence of the
following observations:

• The size of each 1-neighborhood in IT1,t1 is bounded by
q(|T1|), for a polynomial q.

• The number of mosaics for t1 is bounded by 2q
′(|T1|)2|T2|

for a polynomial q′: there are at most 2|T1|2 many 1-
neighborhoods in IT1,t1 , and each such neighborhood
admits at most 2|T1|q(|T1|)2|T2| many decorations with sets
of types.
• Given a tuple (t−, ρ, t, S, `), one can decide in time

2q̂(|T1|), q̂ a polynomial, whether (t−, ρ, t, S) is a 1-
neighborhood. Moreover, we can decide in time
2q̂
′(|T1|·|T2|), q̂′ a polynomial, whether (M) is satisfied.

• Conditions 1 and 2 of a mosaic being good can be
checked in the desired time.

o

C.2 Proof of Lemma 13
Lemma 13 Let T be a Horn-ALCHIF TBox, t0 ∈ tp(T ),
and I a tree-shaped interpretation. Then I →fin

Σ IT ,t0 iff there
is a J ∈ canω(T , t0) with I →Σ J .

Proof. “⇒”. Let d0 be the root of I. By Fact 26, there
is a sequence h0, h1, . . . such that hi is a Σ-homomorphism
from I|d0

i to IT ,t0 . Note that the set tp(T ) is finite, and that
IT ,t0 is finitely branching. By skipping homomorphisms, we
can thus construct a new sequence h′0, h

′
1, . . . such that h′i is

a Σ-homomorphism from I|d0

i to IT ,t0 and, additionally, for
every 0 ≤ i ≤ j and d ∈ ∆I|

d0
i the following properties hold:

(i) nIT ,t01 (h′i(d)) = n
IT ,t0
1 (h′j(d)), and

(ii) If e is a successor of d in I, then h′i(e) is a successor of
h′i(d) in IT ,t0 iff h′j(e) is a successor of h′j(d).

Guided by h′i, we construct a sequence of interpreta-
tions J0,J1, . . . and a sequence g0, g1, . . . with gi a Σ-
homomorphism from I|d0

i toJi such that for all 0 ≤ i ≤ j and
d in the domain of I|d0

i , we have gi(d) = gj(d). Throughout
the construction, we maintain the invariant

nJi1 (gi(d)) v nIT ,t01 (h′i(d)) (∗)

for all i, d such that gi(d) is defined.
We start with J0 = ({e0}, ·J0) such that tpJ0

(e0) =
tpIT ,t0 (h′0(d0)) and g0(d0) = e0. Clearly (∗) is satisfied.
Assuming that Ji and gi are already defined, we extend them
to Ji+1 and gi+1 by doing the following for every (d, d′) ∈ ρI

with d ∈ ∆I|
d0
i and d′ /∈ ∆I|

d0
i . By invariant (∗) and Item (i),

we have nJi1 (gi(d)) v n
IT ,t0
1 (h′j(d)) for all j ≥ i; thus, we

can apply (R) to gi(d) and h′i(d). More precisely, we obtain
Ji+1 by adding a predecessor and/or successors to achieve

n
Ji+1

1 (gi(d)) = n
IT ,t0
1 (h′i(d)). (∗∗)

To define gi+1(d′), we distinguish two cases according to
Item (ii):

• h′j(d′) is a successor of h′j(d) for all j ≥ i. Then
there is some (ρ′, t′) in component S of nIT ,t01 (h′i(d))
such that (h′i(d), h′i(d

′)) ∈ ρIT ,t0 (ρ maximal) and
tpIT ,t0 (hi(d

′)) = t′. By (∗∗) that pair is also in com-

ponent S of nJi+1

1 (gi(d)). Take a corresponding ρ′-
successor e′ of e in Ji+1 and set gi+1(d′) = e′. Clearly
(∗) is satisfied.

• h′j(d) is a successor of h′j(d
′) for all j ≥ i. Then t− =

tpIT ,t0 (hi(d
′)) and ρ is maximal with (h′i(d

′), h′i(d)) ∈
ρIT ,t0 . By (∗∗), the t−- and ρ-component in nJi+1

1 (gi(d))
are identical. Take a corresponding ρ-predecessor e′ of e
in Ji+1 and set gi+1(d′) = e′. Clearly (∗) is satisfied.

The construction ofJ and h is finished by setting h =
⋃
i>0 gi

and J ′ =
⋃
i>0 Ji, and defining J as the result of exhaustive

application of rule (R) to J ′.

“⇐”. It suffices to show J →fin IT ,t0 .3 To this end, denote
with Ji, i ≥ 0, the finite submodel of J obtained after i
rule applications, and with di the root of Ji. We verify the
following claim, which implies J →fin IT ,t0 .

Claim. For all i ≥ 0, we have:

(i) there is an e0 ∈ ∆IT ,t0 with tpIT ,t0 (e0) = tpJi(di);

(ii) for all e0 ∈ ∆IT ,t0 with tpIT ,t0 (e0) ⊇ tpJi(di), we
have (Ji, di)→ (IT ,t0 , e0).

3We write I →fin J to denote that, for every n ≥ 0, there are
n-bounded homomorphisms from I to J , without restricting the
signature.



We prove the claim by induction on i. For i = 0, Points (i)
and (ii) are clear by definition of J0. For the inductive step,
consider Ji+1 and suppose (R) has been applied to some d ∈
∆Ji and e ∈ ∆IT ,t0 .

Observe that Point (i) is trivially preserved when d is not
the root of Ji. In case d = di, it is preserved by the condition
on the choice of e in (R): e has the same type as di and, by
construction, the predecessor e′ of e (if it exists) has the same
type as di+1.

For Point (ii), we distinguish two cases:

• The extension of Ji to Ji+1 has not added any predeces-
sors to d. In particular, we then have di+1 = di. Let e0

be as in (ii), i.e., tpIT ,t0 (e0) ⊇ tpJi(di+1) = tpJi(di).
By induction hypothesis, there is a homomorphism h :
(Ji, di+1) → (IT ,t0 , e0). We extend h to the domain
of Ji+1 by doing the following for each newly added
successor d′ of d.
Let tpJi+1

(d) = t and tpJi+1
(d′) = t′ and ρ maximal

with (d, d′) ∈ ρJi+1 . By the choice of e in (R), e is of
type t and has a ρ-successor of type t′. By construc-
tion of the universal model, there is some r ∈ ρ with
t  Tr t′ and ρ = {s | T |= r v s}. Denote with
t̂ = tpIT ,t0 (h(d)). The definition of a homomorphism
yields t ⊆ t̂. Thus, there is t̂′ ⊇ t′ such that t̂ Tr t̂

′. By
definition of the universal model, h(d) has a ρ-successor
of type t̂′ or a ρ-predecessor of type t̂′′, for t̂′′ ⊇ t̂′. We
extend h by setting h(d′) to that predecessor or successor,
respectively.

• The extension of Ji to Ji+1 has added a ρ-predecessor d′
to d. Then d = di and d′ = di+1. Let tpJi+1

(d) = t and
tpJi+1

(d′) = t′. By construction of the universal model,
there is r ∈ ρ with t′  Tr t and ρ = {s | T |= r v s}.
Let e0 be as in (ii), that is, t̂′ := tpIT ,t0 (e0) ⊇ t′. We
then have that t̂′  r t̂ for some t̂ ⊇ t. By definition
of the universal model, e0 has a ρ-successor of type t̂
or a ρ-predecessor of type t̂′′ ⊇ t. Let this element be
e0. By induction hypothesis, there is a homomorphism
h : (Ji, d) → (IT ,t0 , e0). We extend h by first setting
h(d′) = e0 and then extending h to all successors of d as
in the previous case.

It should be clear that h, updated as above, witnesses
(Ji+1, di+1)→ (IT ,t0 , e0). o

C.3 Proof of Lemma 14
Lemma 14 Let ti ∈ tp(Ti) for i ∈ {1, 2}. Then there is a
J ∈ canω(T1, t1) such that IT2,t2 |con

Σ →Σ J iffMp contains
a mosaic M with t2 ∈ `M (tM ).

Proof. “⇒”. Let h be a Σ-homomorphism from IT2,t2 |con
Σ

to some J ∈ canω(T1, t1). For every d ∈ ∆J , denote with
Th(d) the set of all types mapped to d by h, that is,

Th(d) =
{
tpIT2,t2 (e) | h(e) = d, e ∈ ∆IT2,t2 |

con
Σ
}
.

For every element d ∈ ∆J , we define a tuple M(d) =
(t−, ρ, t, S, `) by taking:

• (t−, ρ, t, S) = nJ1 (d);

• `(t) = Th(d);

• If there is a predecessor d′ of d, then `(t−) = Th(d′);
otherwise, set `(t−) = ∅ (not important);

• For every successor d′ of d with tpJ (d′) = t′ and ρ′ =
{r | (d, d′) ∈ rJ } add (ρ′, t′) ∈ S and set `(ρ′, t′) =
Th(d′);

It is easy to verify that every M(d) = (t−, ρ, t, S, `) obtained
in this way is actually a mosaic: By definition of J , we
know that (t−, ρ, t, S) = n

IT1,t1
1 (d′) for some d′ ∈ ∆IT1,t1 .

Moreover, by definition of the universal model IT2,t2 and the
fact that h is a homomorphism, Condition (M) is satisfied.

Let M(J ) = {M(d) | d ∈ ∆J }. It follows from the
construction that all mosaics inM(J ) are good inM(J );
henceM(J ) ⊆Mp. Finally, let d0 be the root of IT2,t2 . By
definition of M := M(h(d0)), we have t2 ∈ `M (tM ).

“⇐”. AssumeMp contains a mosaic M with t2 ∈ `M (tM ).
We define the interpretation J as the limit of the following
process. We maintain a partial function q : ∆J → Mp,
intuitively mapping each domain element of J to the mosaic
that gave rise to it. Throughout the construction, the following
invariant is preserved:

If q(d) = (t−, ρ, t, S, `), then nJ1 (d) = (t−, ρ, t, S). (∗)

We start with defining J as the interpretation corresponding to
the 1-neighborhood represented by M , and define q(e0) = M ,
where e0 is the “center” of that 1-neighborhood. By definition,
the invariant (∗) is satisfied. Then extend J by applying the
following step exhaustively in a fair way: Choose some d ∈ J
such that q(d) is undefined, and:

• If d has a predecessor d′ such that q(d′) = M ′ then, due
to (∗), there is (ρ, t) ∈ SM ′ such that (d′, d) ∈ ρJ and
tpJ (d) = t. Let N ∈ Mp be the mosaic that exists
according to Condition 1 of being good for (ρ, t) ∈ SM ′ .
Then extend J such that nJ1 (d) = (t−N , ρN , tN , SN ) and
set q(d) = N .

• If d has a successor d′ such that q(d′) = M ′ then,
due to (∗), we know that t−M ′ = tpJ (d) 6= ⊥. Let
N ∈ Mp be the mosaic that exists according to Con-
dition 2 of being good. Then extend J such that
nJ1 (d) = (t−N , ρN , tN , SN ) and set q(d) = N .

It is immediate from the construction that these steps pre-
serve (∗), and that always one of the cases applies. Moreover,
by construction, any interpretation J obtained in the limit of
such a process is an element of canω(T1, t1). It thus remains to
construct a Σ-homomorphism h witnessing IT2,t2 |con

Σ →Σ J .
We proceed again inductively, maintaining the invariant:

If h(d) is defined, then tpIT2,t2 (d) ∈ `q(h(d))(tq(h(d))). (†)

Let d0 be the root of IT2,t2 . We start with setting h(d0) = e0,
where e0 is as above. By the assumption that t2 ∈ `M (tM ),
invariant (†) is satisfied. Now, exhaustively apply the follow-
ing step. Choose d ∈ ∆IT2,t2 |

con
Σ such that h(d) is not defined

but h(d′) = e is defined for the predecessor d′ of d. Let



t = tpIT2,t2 (d), t′ = tpIT2,t2 (d′), and M ′ = q(d′). By defi-
nition of IT2,t2 , we know that t′  T2

r t for some r ∈ rol(T2).
Let σ = {s | T |= r v s}. By invariant (†), we know that
t′ ∈ `M ′(tM ′). Thus, one of (a)–(c) in Condition (M) applies.
Since d, d′ ∈ ∆IT2,t2 |

con
Σ , we know that σ|Σ 6= ∅, thus only (b)

or (c) are possible. In case of (b), we extend h by setting h(d)
to the predecessor of h(d′). In case of (c), we extend h by
setting h(d) to the according successor of h(d′). Note that h
extended like this satisfies the homomorphism conditions and
preserves (†) due to the conditions in (b) and (c). o

C.4 Proof of Theorem 15
We first make precise the semantics of 2ATAc. Let (T, L) be a
Θ-labeled tree and A = (Q,Θ, q0, δ,Ω) a 2ATAc. A run of A
over (T, L) is a T ×Q-labeled tree (Tr, r) such that ε ∈ Tr,
r(ε) = (ε, q0), and for all y ∈ Tr with r(y) = (x, q) and
δ(q, V (x)) = θ, there is an assignment v of truth values to the
transition atoms in θ such that v satisfies θ and:
• if v(q′) = 1, then r(y′) = (x, q′) for some successor y′

of y in Tr;
• if v(〈−〉q′) = 1, then x 6= ε and r(y′) = (x · −1, q′) for

some successor y′ of y in Tr;
• if v([−]q′) = 1, then x = ε or r(y′) = (x · −1, q′) for

some successor y′ of y in Tr;
• if v(3nq

′) = 1, then there are pairwise different
i1, . . . , in such that, for each j, there is some successor
y′ of y in Tr with r(y′) = (x · ij , q′);
• if v(2nq

′) = 1, then for all but n successors x′ of x,
there is a successor y′ of y in Tr with r(y′) = (x′, q′).

Let γ = i0i1 · · · be an infinite path in Tr and denote, for all
j ≥ 0, with qj the state such that r(ij) = (x, qj). The path
γ is accepting if the largest number m such that Ω(qj) = m
for infinitely many j is even. A run (Tr, r) is accepting, if all
infinite paths in Tr are accepting. A accepts a tree if A has an
accepting run over it.

Theorem 15 The emptiness problem for 2ATAc can be solved
in time exponential in the number of states.

The proof is by reduction to the emptiness problem of stan-
dard two-way alternating tree automata on trees of some fixed
outdegree [Vardi, 1998]. We need to introduce strategy trees
similar to [Vardi, 1998, Section 4]. A strategy tree for A is
a tree (T, τ) where τ labels every node in T with a subset
τ(x) ⊆ 2Q×N∪{−1}×Q, that is, with a graph with nodes from
Q and edges labeled with natural numbers or −1. Intuitively,
(q, i, p) ∈ τ(x) expresses that, if we reached node x in state q,
then we should send a copy of the automaton in state p to x · i.
For each label ζ, we define state(ζ) = {q | (q, i, q′) ∈ ζ},
that is, the set of sources in the graph ζ. A strategy tree is
on an input tree (T ′, L) if T = T ′, q0 ∈ state(τ(ε)), and for
every x ∈ T , the following conditions are satisfied:

(i) if (q, i, p) ∈ τ(x), then x · i ∈ T ;
(ii) if (q, i, p) ∈ τ(x), then p ∈ state(τ(x · i));

(iii) if q ∈ state(τ(x)), then the truth assignment vq,x de-
fined below satisfies δ(q, L(x)):

• vq,x(p) = 1 iff (q, 0, p) ∈ τ(x);
• vq,x(〈−〉p) = 1 iff (q,−1, p) ∈ τ(x);
• vq,x([−]p) = 1 iff x = ε or (q,−1, p) ∈ τ(x);
• vq,x(3np) = 1 iff (q, i, p) ∈ τ(x) for n pairwise

distinct i ≥ 1;
• v(2np) = 1 iff for all but at most n values i ≥ 1

with x · i ∈ T , we have (q, i, p) ∈ τ(x).

A path β in a strategy tree (T, τ) is a sequence β =
(u1, q1)(u2, q2) · · · of pairs from T × Q such that for all
i > 0, there is some ci such that (qi, ci, qi+1) ∈ τ(ui) and
ui+1 = ui · ci. Thus, β is obtained by moves prescribed in the
strategy tree. We say that β is accepting if the largest number
m such that Ω(qi) = m, for infinitely many i, is even. A
strategy tree (T, τ) is accepting if all infinite paths in (T, τ)
are accepting.
Lemma 28 A 2ATAc accepts an input tree iff there is an ac-
cepting strategy tree on the input tree.
Proof. The “if”-direction is immediate: just read off an ac-
cepting run from the accepting strategy tree.

For the “only if”-direction, we observe that acceptance of
an input tree can be defined in terms of a parity game between
Player 1 (trying to show that the input is accepted) and Player
2 (trying to challenge that). The initial configuration is (ε, q0)
and Player 1 begins. Consider a configuration (x, q). Player 1
chooses a satisfying truth assignment v of δ(q, L(x)). Player 2
chooses an atom α with vq,x(α) = 1 and determines the next
configuration as follows:
• if α = p, then the next configuration is (x, p),
• if α = 〈−〉p, then the next configuration is (x · −1, p)

unless x = ε; in this case, Player 1 loses immediately;
• if α = [−]p, then the next configuration is (x · −1, p)

unless x = ε; in this case, Player 2 loses immediately;
• if α = 3np, then Player 1 selects pairwise distinct
i1, . . . , in with x · ij ∈ T , for all j (and loses if she
cannot); Player 2 then chooses some ij and the next con-
figuration is (x · ij , p);
• if α = 2np, then Player 1 selects n values i1, . . . , in;

Player 2 then chooses some ` /∈ {i1, . . . , in} such that x ·
` ∈ T (and loses if he cannot) and the next configuration
is (x · `, p).

Player 1 wins an infinite play (x0, q0)(x1, q1) · · · if the largest
number m such that Ω(qi) = m, for infinitely many i, is even.
It is not difficult to see that Player 1 has a winning strategy on
an input tree iff A accepts the input tree.

Observe now that the defined game is a parity game and thus
Player 1 has a winning strategy iff she is has a memoryless
winning strategy [Emerson and Jutla, 1991]. It remains to
observe that a memoryless winning strategy is nothing else
than an accepting strategy tree. o

Lemma 29 If L(A) 6= ∅, then there is some (T, L) ∈ L(A)
such that T has outdegree at most n ·C, where n is the number
of states in A and C is the largest number in (some transition
3mp or 2mp in) δ.



Proof. Let (T, L) be an input tree and τ an accepting strategy
tree on T , and let C be the largest number appearing in δ.
We inductively construct a tree (T ′, L′) with T ′ ⊆ T and L′
the restriction of L to T ′ and an accepting strategy tree τ ′ on
(T ′, L′). For the induction base, we start with T ′ = {ε} and τ ′
the empty mapping. For the inductive step, assume that τ ′(x)
is still undefined for some x ∈ T ′, and proceed as follows:

1. For every (q, i, p) ∈ τ(x) with i ∈ {−1, 0}, add
(q, i, p) ∈ τ ′(x).

2. For every p ∈ Q, define Np = {i ≥ 1 | (q, i, p) ∈
τ(x), x · i ∈ T} and let N ′p ⊆ Np be a subset of Np with
precisely min(C, |Np|) elements. Then:

(a) for all i ∈ N ′p, add x · i ∈ T ′;
(b) for all (q, i, p) ∈ τ(x) with i ∈ N ′p, add (q, i, p) ∈

τ ′(x);
(c) for all q ∈ state(x) and i ∈ N ′p, add (q, i, p) ∈

τ ′(x).

By Step 2 above, T ′ has outdegree bounded by |Q| · C. It
remains to show that τ ′ is an accepting strategy tree on T ′.
Observe first that, by construction, q0 ∈ state(τ ′(ε)).

We verify Conditions (i)–(iii) of a strategy tree being on an
input tree. Conditions 1 follows directly from the construction.
For (ii), assume that (q, i, p) ∈ τ ′(x). By construction, there
is some q′ with (q′, i, p) ∈ τ(x), and, by Condition (ii) p ∈
state(τ(x·i)). Hence, there is some (p, j, p′) ∈ state(τ(x·i)).
By construction, there is also some (p, j′, p′) ∈ state(τ ′(x · i),
thus p ∈ state(x · i). For Condition (iii), take any x ∈ T ′

and q ∈ state(τ ′(x)). As q ∈ state(τ(x)), we know that the
truth assignment vq,x defined for τ in Condition (iii) satisfies
δ(q, L(x)). We show that for all transitions α with vq,x(α) =
1, we also have v′q,x(α) = 1, where v′q,x is the truth assignment
defined for τ ′. By Step 1 of the construction, this is true for all
α of the shape p, 〈−〉p, and [−]p. Let now be α = 3kp, that
is, there are k pairwise distinct i ≥ 1 such that (q, i, p) ∈ τ(x).
By the choice ofC, we have |N ′P | ≥ k. By Step 2(c), we know
that there are k pairwise distinct i such that (q, i, p) ∈ τ ′(x),
hence v′q,x(α) = 1. Consider now α = 2kp, that is, for all but
at most k values i ≥ 1 with x · i ∈ T , we have (q, i, p) ∈ τ(x).
By Step 2(b), this remains true for τ ′, hence v′q,x(α) = 1.

We finally argue that τ ′ is also accepting. Let β =
(u1, q1)(u2, q2) · · · be an infinite path in (T ′, τ ′). We con-
struct an infinite path β′ = (u′1, q1)(u′2, q2)(u′3, q3) · · · in
(T, τ) as follows:

– u′1 = u1;
– Let ui+1 = ui · ` for some ` with (qi, `, qi+1) ∈ τ ′(x). If
` ∈ {0, 1}, we have (qi, `, qi+1) ∈ τ(x), by Step 1. We
set u′i+1 = u′i · `. If ` ≥ 0 then, by Step 2(c), there is
some `′ with (qi, `

′, qi+1) ∈ τ(x) and x · `′ ∈ T ′. Set
u′i+1 = u′i · `′.

Since every infinite path in (T, τ) is accepting, so is β′, and
thus β. o

We now reduce to reduce the emptiness problem of 2ATAc

to the emptiness of alternating automata running on trees of
fixed outdegree [Vardi, 1998], which we recall here. A tree T
is k-ary if every node has exactly k. A two-way alternating

tree automaton over k-ary trees (2ATAk) that are Θ-labeled is
a tuple A = (Q,Θ, q0, δ,Ω) where Q is a finite set of states,
Θ is the input alphabet, q0 ∈ Q is an initial state, δ is the
transition function, and Ω : Q → N is a priority function.
The transition function maps a state q and some input letter θ
to a transition condition δ(q, θ), which is a positive Boolean
formula over the truth constants true, false, and transitions of
the form (i, q) ∈ [k]×Q where [k] = {−1, 0, . . . , k}. A run
ofA on a Θ-labeled tree (T, L) is a T ×Q-labeled tree (Tr, r)
such that

1. r(ε) = (ε, q0);

2. for all x ∈ Tr with r(x) = (w, q) and
δ(q, τ(w)) = ϕ, there is a (possibly empty) set S =
{(m1, q1), . . . , (mn, qn)} ⊆ [k] × Q such that S satis-
fies ϕ and for 1 ≤ i ≤ n, we have x · i ∈ Tr, w ·mi is
defined, and τr(x · i) = (w ·mi, qi).

Accepting runs and accepted trees are defined as for 2ATAcs.
The emptiness problem for 2ATAks can be solved in time
exponential in the number of states [Vardi, 1998].

Theorem 15 The emptiness problem for 2ATAc can be solved
in time exponential in the number of states.

Proof. Let A = (Q,Θ, q0, δ,Ω) be an 2ATAc with n states
and C the largest number in δ. We translate A to a to a
2ATAk A′ = (Q′,Θ′, q′0, δ

′,Ω) with k = n · C, the bound
from Lemma 29. Set Q′ = Q ∪ {q′0, q1, qr, q⊥} and Θ′ =
(Θ ∪ {d⊥}) × {0, 1}. The extended alphabet and the extra
states are used to simulate transitions of the form [−]p and to
allow for input trees of outdegree less than k.

We obtain δ′ from δ by replacing q with (0, 1), 〈−〉q with
(−1, q) and [−]q with (0, qr)∨ (−1, q). Moreover, we replace

– 3nq with
∨
X∈({1,...N}n )

∧
i∈X(i, q), and

– 2nq with
∨
X∈({1,...N}n )

∧
i∈{1,...,N}\X(i, q),

where, as usual,
(
M
m

)
denotes the set of all m-elementary

subsets of a set M . To deal with the case of smaller outdegree,
we use the fresh symbol d⊥ as follows:

– For all q ∈ Q′: δ(q, (d⊥, b)) =

{
true if b = 0
false if b = 1

To enforce the intended labeling in the second component and
the correct behaviour for qr, we set:

δ′(q′0, (θ, b)) =

{
false if b = 0

q0 ∧
∧k
i=1(i, q1) otherwise

δ′(q1, (θ, b)) =

{ ∧k
i=1(i, q1) if b = 0

false otherwise

δ′(qr, (θ, b)) =

{
true if b = 1
false otherwise

Using Lemma 29, it is easy to verify that L(A) is empty iff
L(A′) is empty. Moreover, since emptiness of 2ATAks can
be checked in exponential time in the number of states, this
finishes the proof of Theorem 15. o



C.5 Proof of Theorem 16
Theorem 16 In Horn-ALCHIF , the following problems can
be decided in time 22p(|T2|log|T1|), p a polynomial: (Γ,Σ)-CQ
entailment, inseparability, and conservative extensions. The
same holds for Σ-deductive entailment in ELHIF⊥.

We show the following lemma which, together with Theo-
rem 15 and Lemma 7, implies Theorem 16.

Lemma 30 There are 2ATAc A1,A2,A3,A4,A
′
4 such that:

– A1 accepts (T, L) iff A is finite, tree-shaped, and con-
tains ε;

– A2 accepts (T, L) iff I1 is a model of A and T1;

– A3 accepts (T, L) iff A is consistent with T2, and I2 is
IT2,A restricted to ind(A);

– A4 accepts (T, L) iff either (1) or (2) from Theorem 11
is not satisfied, when IT2,A is replaced with I2.

– A′4 accepts (T, L) iff I2|con
Σ 6�Σ I1.

The number of states of A1 and A2 is polynomial in |T1| (and
independent of T2); the number of states of A3 is polynomial
in |T2| (and independent of T1), and the number of states of
A4,A

′
4 is exponential in |T2| (and independent of T1). All

automata can be constructed in time polynomial in |T1| and
double-exponential in |T2|.
The construction of the automaton A1 is straightforward, so
we concentrate on A2, A3, and A4.

In what follows, we use 3q and 2q to abbreviate 31q and
20q, respectively. We define A2 = (Q2,Θ, q0, δ2,Ω2) where

Q2 = {q0, qA} ∪ {qα | α ∈ T1} ∪ {qρ, qρ | ρ ∈ Θ1} ∪
{qr,B, q↓r,B, qr,B, q

↓
r,B | ∃r.B ∈ cl(T1)},

and Ω2 assigns 0 to all states. The idea of A2 is to check
that the ABox is satisfied, realized in state qA, and that every
axiom TBox axiom in T1 is satisfied everywhere, realized
using states qα below. Formally, the transition function δ2 is
given as follows, for σ = (L0, L1, L2):

δ2(q0, σ) = 2q0 ∧ qA ∧
∧
α∈T1

qα

δ2(qA, σ) =
∧
ρ∈L0

qρ

δ2(qfunc(r), σ) = (qr− ∧2qr) ∨ (qr− ∧21qr)

δ2(qrvs, σ) = qr ∨ qs
δ2(qA1uA2vB, σ) = qA1

∨ qA2
∨ qB

δ2(qAv⊥, σ) = qA
δ2(q>vA, σ) = qA

δ2(qAv∃r.B, σ) = qA ∨ qr,B
δ2(q∃r.AvB, σ) = qr,A ∨ qB

δ2(qr,B, σ) = 3q↓r,B ∨ (qr− ∧ 〈−〉qB)

δ2(qr,B, σ) = 2q↓r,B ∧ (qr− ∨ [−]qB)

δ2(q↓r,B, σ) = qr ∧ qB
δ2(q↓r,B, σ) = qr ∨ qB

Finally, we set for all ρ ∈ Θ1:

δ2(qρ, σ) =

{
true if ρ ∈ L1

false if ρ /∈ L1

δ2(qρ, σ) =

{
true if ρ /∈ L1

false if ρ ∈ L1

Automaton A3 relies on a syntactic characterization of
ABox entailment [Bienvenu et al., 2013], which we introduce
first.

Let T be a Horn-ALCHIF TBox and A a tree-shaped
ABox. A derivation tree for an assertion A0(a0) in A w.r.t. T
with A0 ∈ NC is a finite ind(A)×NC-labeled tree (T, V ) that
satisfies the following conditions:

1. V (ε) = (a0, A0);

2. if V (x) = (a,A) and neitherA(a) /∈ A nor> v A ∈ T ,
then one of the following holds:

(i) x has successors y1, . . . , yk, k ≥ 1 with V (yi) =
(a,Ai) for 1 ≤ i ≤ k and T |= A1u· · ·uAk v A;

(ii) x has a single successor y with V (y) = (b, B) and
there is an ∃r.B v A ∈ T and an s(a, b) ∈ A such
that T |= s v r;

(iii) x has a single successor y with V (y) = (b, B) and
there is a B v ∃r.A ∈ T such that r(b, a) ∈ A and
func(r) ∈ T .

Note that the first item of Point 2 above requires T |= A1 u
· · · u An v A instead of A1 u A2 v A ∈ T to ‘shortcut’
anonymous parts of the universal model. In fact, the derivation
of A from A1 u · · · uAn by T can involve the introduction of
anonymous elements.

The main property of derivation trees is the following.

Lemma 31 Let T be a Horn-ALCHIF TBox and A an
ABox consistent with T . Then for all assertions A(a) with
A ∈ NC, and a ∈ ind(A) we have T ,A |= A(a) iff there is a
derivation tree for A(a) in A w.r.t. T .

Proof. The “if”-direction is immediate, so we concentrate on
the “only if”-direction. We construct a sequence of interpre-
tations I0, I1, . . . by the following procedure. We start with
setting:

∆I0 = ind(A)

AI0 = {a | A(a) ∈ A}
rI0 = {(a, b) | r(a, b) ∈ A}

For every i ≥ 0, we obtain Ii+1 from Ii by setting Ii+1 = Ii
and applying the following rules to all d, e ∈ ∆Ii :

1. If d ∈ (A1 u A2)Ii , but d /∈ AIi for some A1 u A2 v
A ∈ T , then add d ∈ AIi+1 ;

2. If d ∈ (∃r.B)Ii , but d /∈ AIi for some ∃r.B v A ∈ T ,
then add d ∈ AIi+1 ;

3. If (d, e) ∈ rIi but (d, e) /∈ sIi , for some s with T |=
r v s, then add (d, e) ∈ sIi+1 ;

4. If d ∈ AIi , but d /∈ (∃r.B)Ii for some A v ∃r.B ∈ T ,
then:



(a) if there is e with (d, e) ∈ rIi and func(r) ∈ T then
add e ∈ BIi+1 ;

(b) otherwise add a fresh domain element e with
(d, e) ∈ rIi+1 and e ∈ BIi+1 .

Let I be defined as ∆I =
⋃
i≥0 Ii, AIi =

⋃
i≥0 A

Ii , and
rI =

⋃
i≥0 r

Ii . It is standard to verify the following:
Claim 1. I → J for all models J of T and A.

By definition of I0, we have I |= A. Moreover, we have
I |= T ′ where T ′ ⊆ T is obtained from T by dropping all
CIs of the form A v ⊥ and all FAs. Since A is consistent
with T , there is a model J of A and T ; in particular, AJ = ∅
for all A v ⊥ ∈ T . By Claim 1, we have I → J , and thus
AI = ∅. For the FAs func(s), observe that they are obeyed by
A (because of consistency with T ) and that they are preserved,
by rule 4(a). Thus, I is a model of T .
Claim 2. For all i ≥ 0, we have:
(a) For all a ∈ ind(A): if a ∈ AIi , then there is a derivation

tree for A(a) in A w.r.t. T .
(b) If e was created because of d in Rule 4(b), then we have
T |=

d
{A | d ∈ AIi} v ∃r.

d
{A | e ∈ AIi} for all r

with (d, e) ∈ rIi .

Proof of Claim 2. It is standard to show Part (b) of the Claim.
We show Part (a) by induction on i. By construction of I0,
it is true for i = 0. Consider Ii+1. If a ∈ AIi+1 because
of Rule 1, construct a derivation tree of type (i) from the
derivation trees for A1(a) and A2(a) which exist due to the
induction hypothesis. If a ∈ AIi+1 because of Rule 2, there
is some d ∈ BIi with (a, d) ∈ rIi and ∃r.B v A ∈ T . If
d ∈ ind(A), then there is some s(a, d) ∈ A with T |= s v r,
by Rule 3. We can thus construct a derivation of type (ii)
from the derivation tree ofB(d), which exists due to induction
hypothesis. If d /∈ ind(A), then d was created because of a
in Rule 4(b). By Part (b) of the Claim, we have T |=

d
{A′ |

a ∈ A′I} v ∃r.B. Hence, T |=
d
{A′ | a ∈ A′I} v A, and

we can construct a derivation tree of type (i) for A(a). If a ∈
AIi+1 because of Rule 4(a), there is (d, a) ∈ rIi and d ∈ BIi ,
and B v ∃r.A, func(r) ∈ T . If d ∈ ind(A), we can construct
a derivation tree of type (iii) for A(a) from the derivation
tree of B(d) which exists by induction. If d /∈ ind(A), then
d was created because of a in Rule 4(b). By Part (b) of the
Claim, we have T |=

d
{A′ | a ∈ A′I} v ∃r−.B. Hence,

T |=
d
{A′ | a ∈ A′I} v A, and construct a derivation tree

of type (i) for A(a) based on this. This finishes the proof of
Claim 2 and the Lemma. o

In the following Lemma, we characterize consistency of
ABoxes with TBoxes.
Lemma 32 Let T be a Horn-ALCHIF TBox and A an
ABox. Then A is consistent with T iff the following points are
satisfied for all a ∈ ind(A):

1. the following ABox Aa is consistent with T :

Aa = {B(a) |B(a) has a derivation tree in A w.r.t. T }

2. for all func(s) ∈ T , there is at most one b ∈ ind(A) with
s(a, b) ∈ A.

Proof. The “only if”-direction is immediate, so we concentrate
on the “if”-direction. Assume that all a ∈ ind(A) satisfy both
items above. By the first item, there is a model Ia of Aa and
T . Since we are considering Horn-ALCHIF , there is also a
tree-model Ia with root da ∈ ∆Ia satisfying, for all concept
names B ∈ NC:

(∗) da ∈ BIa iff T ,Aa |= B(a).

We construct an interpretation I as follows. Start with I0

by taking

∆I0 = ind(A)

AI0 = {a | A(a) has a derivation tree in A w.r.t. T }
rI0 = {(a, b) | s(a, b) ∈ A, T |= s v r}

Now, obtain I from I0 by performing the following operation
for every a ∈ ind(A) and b ∈ ∆Ia such that (da, b) ∈ ρI

for some set of roles ρ which contains no role r such that
there is a′ with r(a, a′) ∈ A. Extend I by adding the sub-
interpretation of Ia rooted at b as a ρ-successor of a.

Based on (∗) and the assumptions, it is straightforward to
show that I is a model of A and T . o

We are now ready to give the automaton A3. We take A3 =
(Q3,Θ, q0, δ3,Ω3) where

Q3 = {q0, q0r} ∪ {qA, qA | A ∈ Θ2 ∩ NC} ∪
{qr, qr, qAr , qAr , qfr , q¬r | r ∈ Θ2 \ NC} ∪
{qr,B, qr,B | r ∈ Θ2 ∩ NR, B ∈ Θ2 ∩ NC}

and Ω3 assigns zero to all states, except for states of the form
qA, to which it assigns 1. The automaton A3 ensures that, for
all n ∈ ind(A) we have:

(i) A ∈ L2(n) iff there is a derivation tree for A(n) in A,
(ii) for all n 6= ε, r ∈ L2(n) iff there is some s such that

s(n · −1, n) ∈ A and T2 |= s v r.
Intuitively, these points ensure that the represented interpre-
tation I2 is the universal model of T2 and A, in case A is
consistent with T2. Having (i) and (ii), we can check inconsis-
tency of A with T2 based on Lemma 32, that is, we verify the
following conditions for all n ∈ ind(A):
(iii) the set L2(n) ∩ NC is consistent with T2;
(iv) for each s with func(s) ∈ T , there are no n1 6= n2 such

that both s(n, n1) ∈ A and s(n, n2) ∈ A.
For Point (i), we use states qA for the “if” part, and states qA
for the “only if” part; for Point (ii), we use states qr and qr,
respectively. Intuitively, a state qA assigned to some node n
is an obligation to verify the existence of a derivation tree
for A(n). Conversely, qA is the obligation that there is no
such derivation tree. Similar obligations hold for qr and qr.
For Point (iii), we precompute the set of consistent types and
check (iii) while visiting all n ∈ ind(A). Point (iv) can be
checked directly on A, that is, independent from T2. The
automaton starts with the following transitions, where we
assume σ = (L0, L1, L2):

– δ3(q0, σ) = true if L0 = ∅;
– δ3(q0, σ) = false if L0 6= ∅ and L2 ∩ Nc inconsistent

with T2, c.f. Point (iii);



– if L0 6= ∅ and L2 ∩ NC consistent with T2, then

δ3(q0, σ) = 2q0 ∧2q0r ∧
∧

A∈L2∩NC

qA ∧
∧

A∈(Θ2∩NC)\L2

qA.

– δ3(q0r, σ) = true if L0 = ∅;
– if L0 6= ∅, then

δ3(qr, σ) =
∧

func(r)∈T2

qfr ∧
∧

r∈L2∩NR

qr ∧
∧

r∈(Θ2∩NR)\L2

qr

– δ3(qfr , σ) =

{
2q¬r if r− ∈ L0

21q¬r if r− /∈ L0

– δ3(q¬r, σ) =

{
true if r /∈ L0

false otherwise

Now, for states qA, we directly implement the conditions of a
derivation tree. Finiteness of the derivation is ensured by the
priority of states of the form qA. The relevant transitions are
as follows:

– δ3(qA, σ) = false if L0 = ∅;
– δ3(qA, σ) = true if A ∈ L0;
– if A /∈ L0 and L0 6= ∅, then

δ3(qA, σ) =
∨

T2|=A1u···uAnvA

(
qA1
∧ · · · ∧ qAn

)
∨

∨
∃r.BvA∈T2,T2|=svr

(qAs− ∧ 〈−〉qB) ∨3qs,B ∨

∨
Bv∃r.A∈T2,func(r)∈T2

(qAs ∧ 〈−〉qB) ∨3qs−,B

– δ3(qAr , σ) =

{
true if r ∈ L0;
false otherwise;

– δ3(qs,B, σ) = qAs ∧ qB .
The transitions for qA are obtained by taking the “complement”
of the ones for qA. More precisely, we define δ3(q, σ) =

δ3(q, σ), where ϕ is obtained from ϕ by exchanging ∧ and ∨,
3 and 2, 〈−〉 and [−], and true and false, and replacing every
state p with p; see the following set of transitions.

– δ3(qA, σ) = true if L1 = ∅;
– δ3(qA, σ) = false if A ∈ L1;
– if A /∈ L1 and L1 6= ∅, then

δ3(A, σ) =
∧

T2|=A1u···uAnvA

(
qA1
∨ · · · ∨ qAn

)
∧

∧
∃r.BvA∈T2,T2|=svr

(qAs− ∧ [−]qB) ∧2qs,B ∧

∧
Bv∃r.A∈T2,func(r)∈T2

(qAs ∨ [−]qB) ∧2qs−,B

– δ3(qAr , σ) =

{
false if r ∈ L0;
true otherwise;

– δ3(qs,B, σ) = qAs ∨ qB .

Finally, states qr and qr at some node n represent the obli-
gation to verify that the role atom r(n · −1, n) follows, respec-
tively does not follow, from T and A2. This is realized by the
following transitions which implement Point (ii) above.

δ3(qr, σ) =
∨

T2|=svr

qAs δ3(qr, σ) =
∧

T2|=svr

qAs

For the automaton A4, we take A4 = (Q4,Θ, q0, δ4,Ω4)
where

Q4 = {q0, q1, qr} ∪ {qt, q3
t , q

3b
t | t ∈ tp(T2)} ∪

{qρ,t, q↓ρ,t | t ∈ tp(T2), ρ set of sig(T2)-roles},

and Ω4 assigns zero to all states, except for states of the form
qt, t ∈ tp(T2), to which it assigns one. For some n ∈ ind(A),
denote with Jn the universal model of the type {A(n) | A ∈
L2(n)} and T2. The automaton ensures that indeed (1) or (2)
from Theorem 11 is not satisfied, by verifying that there is
some n ∈ ind(A) such that one of the following conditions
holds:

1. there is r ∈ Σ and n′ ∈ ind(A) such that (n, n′) ∈ rI2 ,
but (n, n′) /∈ rI1 ;

2. Jn 6→Σ I1;

3. there is a Σ-subtree J of Jn such that

(a) J 6→Σ I1, and

(b) J 6→fin
Σ IT1,tpI1 (m), for all m with L0(m) 6= ∅.

Condition 1 is straightforward (realized in state qr). For Con-
dition 2, we use states qt with t ∈ tp(T2). A state qt assigned
to a node n represents the obligation to verify that there is no
Σ-homomorphism from the universal model of t and T2 to I1

that maps the root to n. This is the case if either the root can-
not be mapped to n, or, recursively, there is some ρ-successor
t′ of t in the universal model such that the universal model
of t′ and T2 cannot be mapped to any ρ-neighbor of n. This
process is finite because of priority 1 for all qt with t ∈ tp(T2).
For Condition 3, we precompute the set RΣ(t) of all types of
roots of Σ-subtrees which appear in the universal model of t
and T2, and the relation→fin

Σ according to Theorem 12. Thus,
the sets RΣ(t) and the test for finite homomorphisms can be
used directly in the transition condition, see states q1 and q3b

t ,
respectively. Using states q3

t , the automaton ensures that a
given root t of a Σ-subtree satisfies 3(a) and 3(b).

Let t|Σ and ρ|Σ denote the restriction of t and ρ, respec-
tively, to symbols from Σ. For σ = (L1, L2, L3), we take the



following transitions:

δ3(q0, σ) =

{
3q0 ∨ q1 if L0 6= ∅
false otherwise

δ3(q1, σ) = qr ∨ qt ∨
∨
t′∈RΣ(t) q

3
t′ for t = L2 ∩ NC

δ3(qt, σ) =

{
true if t|Σ 6⊆ L1∨
t′|t T2ρ t′

qρ,t′ otherwise

δ3(qρ,t, σ) =

{
2q↓ρ,t if ρ−|Σ 6⊆ L1

2q↓ρ,t ∧ 〈−〉qt if ρ−|Σ ⊆ L1

δ3(q↓ρ,t, σ) =

{
true if ρ|Σ 6⊆ L1

qt if ρ|Σ ⊆ L1

δ3(q3
t , σ) = 2q3

t ∧ [−]q3
t ∧ qt ∧ q3b

t

δ3(q3b
t , σ) =

{
true if L0 = ∅ or IT2,t|con

Σ 6→fin
Σ IT1,L1∩NC

false otherwise

δ3(qr, σ) =

{
true if there is Σ-role s ∈ L2 \ L1

false otherwise

The automaton A′4 is a variant of A4 which drops states q3
t , q3b

t ,
and all qρ,t, q

↓
ρ,t with |ρ| > 1 (and all according transitions),

and replaces the transitions for q1 and qt as follows:

δ3(q1, σ) = qr ∨ qt for t = L2 ∩ NC

δ3(qt, σ) =


true if t|Σ 6⊆ L1∨
t′|t T2ρ t′

∨
r∈ρ

q{r},t′ otherwise

In this way it verifies that either Condition 1 above is satisfied
or the variant 2’ of Condition 2 is satisfied, for some n ∈
ind(A):

1. there is r ∈ Σ and n′ ∈ ind(A) such that (n, n′) ∈ rI2 ,
but (n, n′) /∈ rI1 ;

2.’ Jn 6�Σ I1.

This finishes the proof of Lemma 30.

C.6 Proof of Theorem 18
Theorem 18 In any DL between ELI and ELHIF⊥, de-
ductive conservative extensions, deductive Σ-entailment, and
deductive Σ-inseparability are CONEXPTIME-hard.

The proof is by reduction of a NEXPTIME-complete tiling
problem, where the aim is to tile a 2n × 2n-grid, to the
complement of stCQ-conservative extensions. This tiling
problem was introduced as a special case of the origin con-
strained domino problem by Grädel [1989], and its NEXP-
TIME-hardness follows from Grädel’s Theorem 3.3. An in-
stance is given by a tuple P = (T,T0, H, V ), where T is a
finite set of tile types, T0 ⊆ T is a set of distinguished tiles
to be placed on position (0, 0) of the grid, and H and V are
horizontal and vertical matching conditions. Let |T| = n. A
solution to P is a function τ : 2n × 2n → T such that

• if τ(i, j) = t and τ(i + 1, j) = t′ then (t, t′) ∈ H , for
all i < 2n − 1, j < 2n,

• if τ(i, j) = t and τ(i, j+ 1) = t′ then (t, t′) ∈ V , for all
i < 2n, j < 2n − 1,
• τ(0, 0) ∈ T0.

We can assume w.l.o.g. that for every tile t ∈ T, there is a t′
with (t′, t) ∈ V .

Let P = (T,T0, H, V ). We show how to construct ELI
TBoxes T1 and T2 such that T1 ∪ T2 is a (sig(T1), sig(T1))-
stCQ-conservative extension of T1 iff there is no solution for P .
Hence, stCQ-conservative extensions, (Γ,Σ)-stCQ entailment,
and (Γ,Σ)-stCQ inseparability are CONEXPTIME-hard in
ELI (and any DL that contains it as a fragment). Since T1 and
T2 are formulated in ELI , we trivially have T1 |=⊥sig(T1) T1∪T2.
Thus, hardness of deductive conservative extensions follows
from Lemma 24, in all DLs between ELI and ELHIF⊥ since
T1 and T2 are formulated in ELI and Lemma 24 covers de-
ductive conservative extensions in ELHIF⊥. This also im-
plies hardness of deductive Σ-entailment and of deductive
Σ-inseparability in the mentioned DLs.

The intuitions and correctness proofs are based on the fol-
lowing characterization of stCQ-conservative extensions.
Lemma 33 Let T1 and T2 be ELI TBoxes such that all role
names in T2 are in sig(T1). Then T1∪T2 is a (sig(T1), sig(T1))-
stCQ-conservative extension of T1 iff IT1∪T2,A →sig(T1) IT1,A
for all tree-shaped sig(T1)-ABoxes A.
Proof. An interpretation is strongly tree-shaped if it is tree-
shaped and does not contain multi-edges, that is, any d, d′ ∈
∆I are involved in at most one role edge. Since T1 and T2 are
formulated in ELI (and thus do not contain role inclusions),
for any tree-shaped ABox A the universal models IT1∪T2,A
and IT1,A are strongly tree-shaped. The assumption on role
names in T2 made in the lemma implies that every element in
IT1∪T2,A can be reached from an ABox individual by traveling
only along sig(T1)-roles. Together, this implies the following:
(∗) there is a sig(T1)-simulation from IT1∪T2,A to IT1,A

iff there is a sig(T1)-homomorphism from IT1∪T2,A to
IT1,A.

From Theorem 11, we get that T1 ∪ T2 is a (sig(T1), sig(T1))-
stCQ-conservative extension of T1 iff IT1∪T2,A|con

sig(T1) �sig(T1)

IT1,A. But IT1∪T2,A|con
sig(T1) = IT1∪T2,A by the assumption on

role names in T2 made in the lemma and simulations can be
replaced with homorphisms by (∗). o

We will build T1 and T2 such that the same single role name r
is used in T1 and T2, thus the assumption in Lemma 33 will
be satisfied.

For a clearer presentation, we proceed in two steps. We first
define T1 and T2 to be an ELIU-TBox, i.e., on both sides of
CIs we allow concepts of the following form:

L,L′ ::= > | A | L u L′ | L t L′ | ∃r.L.

The only non-trivial use of disjunction will be on the right-
hand side of a CI in T2. In a second step, we show how to
remove disjunction.

We use S to abbreviate the role composition r; r−, writing
for example ∃S.C for ∃r.∃r−.C. Note that S behaves like



a reflexive-symmetric role.4 Ideally, we would like T1 to be
empty (except introducing the required symbols) and T2 to
verify the existence of an S-path in the input ABox whose
individuals represent the grid positions along with a tiling, row
by row from left to right, starting at the lower left corner and
ending at the upper right corner. The positions in the grid are
represented in binary by the concept namesX1, . . . , X2n in the
ABox where X1, . . . , Xn indicate the horizontal position and
Xn+1, . . . , X2n the vertical position. The tiling is represented
by concept names Tt, t ∈ T. The verification is done by
propagating a concept name as a marker bottom up and while
doing this, verifying the horizontal matching condition. Under
the assumption that an additional labeling with concept names
T ′t , t ∈ T, is such that
(∗) every point in the path is labeled with T ′t if its descendant

at distance exactly 2n (that is, the grid position immedi-
ately below it) is labeled with Tt,

the vertical matching condition is also verified.
For several reasons, this program cannot quite be imple-

mented in the desired way. First, we still have to make sure
that (∗) actually holds. This is done as follows. We install yet
another labeling with concept names T t, t ∈ T, such that a
node is labeled with T t if it is not labeled with Tt. Then T2

checks for a violation of (∗) in the following way: when the
propagation reaches the final individual the verified path, the
generation of a finite anonymous S-path is triggered. That
path homomorphically embeds into the S-path in the ABox in
many different ways since S is reflexiv-symmetric. In fact, for
any individual on the ABox path we can find a homomorphism
such that the endpoint of the anonymous path maps to that
individual because (a) the anonymous path is long enough to
reach the first individual on the ABox path and (b) the homo-
morphism can always ‘fold’ the reflexive-symmetric role S
in a suitable way. At the end of the anonymous path, we then
guess (using disjunction) a tile t, make T ′t true, continue build-
ing the anonymous path for another 2n steps (in a way such
that it cannot fold), and finally make T t true. Let us pretend
for a second that our TBoxes are formulated in ELI. If (∗) is
violated, then the guess can be made such that the anonymous
path homomorphically maps into the ABox path. Otherwise,
this is not the case. Clearly, the latter can occur only if P has
a solution.

The fact that S is reflexive-symmetric allows the mentioned
folding of the existential path. However, it poses some compli-
cations in the verification of the S-path in the ABox because
we must be careful not to confuse successors with predeces-
sors. To this end, every grid position is actually represented by
three consecutive individuals labeled with the concept names
B0, B1, B2, respectively. All these individuals are labeled
identically regarding the X-counter and the concept names Tt.
We are going to enforce (∗) for the B2-individuals and only
these individuals also receive T ′t and T t labels (any other Bi
would work as well). Another problem is that T2 cannot check
all possible kinds of defects. In particular, it cannot detect the
defect that an element is labeled with more than one tile or
that there are multiple successors in the ABox that have an

4We will make sure that all ‘relevant domain elements’ have an
r-successor, which guarantees reflexivity.

incompatible labeling with the counter concept names. We
thus use T1 to check for such defects. If found, it will generate
a defect of the kind that T2 can verify, that is, a violation of (∗).

We start with assembling T2, which uses a single role name
r via the abbreviation S introduced above and the following
concept names.
• jointly with T1:

– X1, . . . , X2n, X1, . . . , X2n for the binary represen-
tation of the horizontal and vertical grid positions
on the ABox path

– B0, B1, B2 for distinguishing successors and prede-
cessors on the ABox path (these concept names im-
plement a unary counter that counts modulo three)

– Tt, T t, t ∈ T, representing tile types present/not
present at individuals on the ABox path

– T ′t , t ∈ T, representing tile types present at the
descendant at distance exactly 3 · 2n from the given
individual on the ABox path

• additionally:
– L as a verification marker to be propagated along

the ABox path
– oki, 1 ≤ i ≤ 2n, to indicate that the incrementation

of the counter values at an ABox individual is cor-
rect regarding the i-th bit (the 1st bit being that of
least value)

– Y1, . . . , Y2n, Y 1, . . . , Y 2n for counting the length of
the anonymous path

– Y ′1 , . . . , Y
′
n, Y

′
1, . . . , Y

′
n implement another counter

on the anonymous path, used to continue extending
the path by exactly 3 · 2n positions to reach the grid
position immediately below

– B′0, B
′
1, B

′
2 for distinguishing successors and prede-

cessors on the anonymous path
– Mt, t ∈ T, for memorizing a tile type on the anony-

mous path.
T2 consists of the following CIs.

1. The initial grid position starts the propagation:

X1 u · · · uX2n uB0 u t
t∈T0

Tt v L

2. The verification proceeds upwards. We first verify that
the counter is incremented properly when moving up-
wards along the S-path in the ABox:

B0 uXi u ∃S.(B2 uXi) u t
1≤j<i

∃S.(B2 uXj) v oki

B0 uXi u ∃S.(B2 uXi) u t
1≤j<i

∃S.(B2 uXj) v oki

B0 uXi u ∃S.(B2uXi) u
d

1≤j<i ∃S.(B2uXj) v oki

B0 uXi u ∃S.(B2uXi) u
d

1≤j<i ∃S.(B2uXj) v oki

Bj+1 uXi u ∃S.(Bj uXi) v oki

Bj+1 uXi u ∃S.(Bj uXi) v oki

where i ranges over 1..2n and j over {0, 1}. These inclu-
sions only work under the assumption that no individual



has two S-neighbors that are labeled with the sameBi but
are labeled differently regarding Xj and Xj for some j.
We shall prevent this situation later using T1.

3. We next make a verification step inside a row of the grid:
B0 u ok1 u· · ·u okn uTt2 u

Xi u∃S.(B2 uLuTt1) v L
B1 u ok1 u· · ·u okn uTt2 u

Xi u∃S.(B0 uLuTt1) v L
B2 u ok1 u · · · u okn uTt2 u

d
t∈T\{t2} T t uT

′
t3
u

Xi u ∃S.(B1 u L u Tt2) v L
where t1, t2, t3 range over T such that (t1, t2) ∈ H and
(t3, t2) ∈ V and i ranges over 1..n. The use of Xi on the
left-hand sides ensures that we move inside a row. In the
first line, we make a move between horizontally neigh-
boring grid positions, verifying the horizontal matching
condition. In the other lines, we move along the three
points representing the same grid position, ensuring that
they are all labeled by the same tile.5

4. We also have to consider the case where we jump from
one grid row to the next, ignoring the tiling condition:

B0 u ok1 u· · ·u okn uTtu
Xi u ∃S.(B2 u L) v L

where t ranges over T and i ranges over n+ 1..2n. The
use of Xi on the left-hand side ensures that we are not
yet in the topmost row.

5. When the final individual of the ABox path is reached
(maximum counter value and B2-label), we make an
extra step in the ABox to a B0-labeled individual and
then generate the first object of an existential path:

B0 u ∃S.(B2 uX1 u · · · uX2n u L) v ∃S.C
where

C = Y1 u · · · u Y2n uB′2
The purpose of the extra step will be explained later on.

6. Here and in the following, we use the abbreviation

∃S(3).(X1, X2, X3) := ∃S.(X1 u ∃S.(X2 u ∃S.X3))

for concept names X1, X2, X3.
We continue building the path, decrementing the Y -
counter:

Yi uB′2 v ∃S(3).(B′1, B
′
0, B

′
2)

B′j u ∃S.(B′j+1 u Yi) v Yi
B′j u ∃S.(B′j+1 u Y i) v Y i

B′2 u ∃S.(B′0 u
d

1≤j≤i Y i) v Yi
B′2 u ∃S.(B′0 u Yi u

d
1≤j<i Y i) v Y i

B′2 u ∃S.(B′0 u Yi u t
1≤j<i

Yi) v Yi
B′2 u ∃S.(B′0 u Y i u t

1≤j<i
Yi) v Y i

5Note that we expext to see T ′
t labels also in row 0; this is why

we assume that for every t ∈ T, there is a (t′, t) ∈ V ; we could
avoid the assumption at the cost of dealing with row 0 as a special
case.

where i ranges over 1..2n and j over {0, 1}. It is es-
sential to use different B′i and counter concepts Yi, Y i

than in the ABox; otherwise the anonymous path could
not homomorphically embed into the ABox path in a
folded way. It would actually suffice to build a path of
length 3 · (22n−1) because no violation of (∗) can start
in the bottommost row. However, overcounting does not
compromise correctness.

7. At the end of the anonymous path, we implement a viola-
tion of (∗) as described above: we guess a tile t involved
in the violation, make sure that T ′t holds at the current
point, start a new counter, travel exactly 3 · 2n steps
(without any folding), and verify that T t holds where we
arrive:

Y 1 u · · · u Y 2n uB′2 v Y ′1 u· · · u Y ′nu
t
t∈T

(T ′t uMt)

Y ′i uB2 v ∃S(3).(B0, B1, B2)

Bj+1 u ∃S.(Bj u Y ′i ) v Y ′i
Bj+1 u ∃S.(Bj u Y

′
i) v Y

′
i

B0 u ∃S.(B2 u
d

1≤j≤i Y
′
i) v Y ′i

B0 u∃S.(B2uY ′i u
d

1≤j<i Y
′
i) v Y

′
i

B0 u ∃S.(B2 u Y ′i u t
1≤j<i

Y ′i ) v Y ′i
B0 u ∃S.(B2 u Y

′
i u t

1≤j<i
Y ′i ) v Y ′i

Bj+1 u ∃S.(Bj uMt) vMt

B0 u ∃S.(B2 u Y ′i uMt) vMt

Y
′
1 u · · · u Y

′
n uMt v T t

where i ranges over 1..n and t over T. Here we use the
same Bi as in the ABox to avoid folding.

This finishes the definition of T2. We now define T1, which
uses the following additional concept names.

• D for indicating the occurrence of a defect

• Z1, . . . , Zn for an additional counter.

T1 consists of the following CIs.

1. Tiles are mutually exclusive: for all distinct t, t′ ∈ T:

Tt u Tt′ v D

where D starts a path that implements a violation of (∗),
to be implemented below;

2. The problematic situation described at the end of Item 2
in the definition of T2 cannot occur:

∃S.(Bk uXi) u ∃S.(Bk uXi) v D

where k ranges over {0, 1, 2} and i over 1..2n;



3. We next implement the path triggered by D:

B2 u (D t ∃S.D t ∃S.∃S.D) v Z1 u · · · uZn uT ′t
Zi uB2 v ∃S(3).(B0, B1, B2)

Bj+1 u ∃S.(Bj u Zi) v Zi
Bj+1 u ∃S.(Bj u Zi) v Zi

B0 u ∃S.(B2 u
d

1≤j≤i Zi) v Zi
B0 u∃S.(B2 uZi u

d
1≤j<i Zi) v Zi

B0 u ∃S.(B2 u Zi u t
1≤j<i

Zi) v Zi
B0 u ∃S.(B2 u Zi u t

1≤j<i
Zi) v Zi

Z1 u · · · u Zn v T t

where i ranges over 1..n and t ∈ T is fixed.

Before we eliminate the disjunction used in T2, let us mention
the central property of T1 and T2 that can be used to show
correctness of the reduction. Since T2 uses disjunction, a
universal model for T2 and an ABox A is not guaranteed to
exist. Instead, there is a set of models for T2 and A that is
universal in the sense that for every model I of T2 and A,
there is a model in the set that admits a homomorphism into I .
We refrain from giving a formal definition. Now, the central
property of T1 and T2 is as follows: P has a solution iff there
is a tree-shaped sig(T1)-ABox A consistent with T1 ∪ T2 such
that, for every I in the universal set of models for T1 ∪ T2 and
A, there is no sig(T1)-homomorphism from I to IT1,A.

We now show how to get rid of disjunction. The central
property of T1 and T2 will essentially be preserved, with a
single universal model playing the role of the universal set of
models. The disjunctions on the left-hand sides of CIs only
serve as abbreviations and can easily be removed with only
a polynomial blowup of TBox sizes. What remains is the
disjunction in Item 7 of the definition of T2. To get rid of it,
we need to modify both T1 and T2:

• In the first line of Point 7 of the definition of T2, the
disjunction is replaced with a conjunction, generating |T|
many defective chains at once:

Y 1u· · ·uY 2n v
l

t∈T

∃S.(Y ′1 u· · ·uY ′nuB2uT ′t uMt)

The resulting universal model is illustrated in Figure 1
where we assume T = {t1, t2, t3}, showing the final
individual on the ABox path, the extra step from Item 5
of the definition of T2, the anonymous path, and the
branching gadget attached to the end of it.

• We have now generated too many paths and thus the de-
sired homomorphism may not exist even if (∗) is violated
in the ABox. We compensate by enforcing in T1 that
when a B2-individual in the ABox path is labeled with
T ′t , then it’s B0-predecessor on that path roots |T| − 1
many additional paths, realizing every possible violation
of (∗) except the one induced by t ∈ T. This is illustrated
in Figure 2 where we again assume T = {t1, t2, t3},
showing a B2-individual labeled with T ′t1 and the extra
successors of it’s B0-predecessor generated by T1.

B0

B2, X1, . . . , X2n

S

ABox path

S

le
ng

th
3
· 2

n

T ′t1 T ′t2 T ′t3

SS S

T t1 T t2 T t3

length 3 · 2n

ABoxanonymous

Figure 1: Part of the universal model of T2.

Note that this explains the extra step in Item 5 of the
definition of T2 since also the final B2-element of the
ABox path must have a B0-predecessor.
We add the following to T1, using fresh concept names
M ′t , t ∈ T:

B0 u ∃S.(B2 u T ′t ) v
d
t′∈T\{t} ∃S.(

Y ′1 u · · · uY ′n uB2 uM ′t′)
Y ′i uB2 v ∃S(3).(B0, B1, B2)

Bj+1 u ∃S.(Bj u Y ′i ) v Y ′i
Bj+1 u ∃S.(Bj u Y

′
i) v Y

′
i

B0 u ∃S.(B2 u
d

1≤j≤i Y
′
i) v Y ′i

B0 u∃S.(B2 uY ′i u
d

1≤j<i Y
′
i) v Y

′
i

B0 u ∃S.(B2 u Y ′i u t
1≤j<i

Y ′i ) v Y ′i
B0 u ∃S.(B2 u Y

′
i u t

1≤j<i
Y ′i ) v Y ′i

Bj+1 u ∃S.(Bj uM ′t) v Y ′i uM ′t
B0 u ∃S.(B2 u Y ′i uM ′t) vM ′t

Y
′
1 u · · · u Y

′
n uM ′t v T t

where i ranges over 1..n and t over T.

Lemma 34 T1 ∪T2 is a (sig(T1), sig(T1))-stCQ-conservative
extension of T1 iff there is no solution for P .

Proof. By Lemma 33, it suffices to show the following.

Claim. P has a solution iff there is a tree-shaped sig(T1)-
ABox A such that there is no sig(T1)-homomorphism from
IT1∪T2,A to IT1,A.

We now sketch a proof of the claim.



B0

B2, T
′
t1

B1

S

S

ABox path

ABox path

T ′t2 T ′t3

T t2 T t3

length 3 · 2n

S S

ABoxanonymous

Figure 2: Extra successors to eliminate disjunction

“⇒”. Assume that P has a solution. Let A be the
ABox that contains a single S-path of length 3 · 2n which
correctly encodes the solution to P via the concept names
Xi, Xi, Bi, Tt, T t, T

′
t . Since A correctly encodes the tiling,

there is no sig(T1)-homomorphism from IT1∪T2,A to IT1,A; in
particular, the anonymous path described by T2 that ends in
|T| many violations of (∗), each represented via a path, cannot
be mapped to IT1,A.

“⇐”. Assume P has no solution and let A be a tree-
shaped sig(T1)-ABox. If A contains no path of length
3 · 2n that is labeled in the desired way with the concept
names Xi, Xi, Bi, Tt, T t, T

′
t (and which does not necessar-

ily satisfy (∗)), then the generation of the anonymous path
in IT1∪T2,A is not triggered and the identity is a sig(T1)-
homomorphism from IT1∪T2,A to IT1,A. If there is such a path,
then it violates (∗) since P has no solution. Consequently, the
anonymous path in IT1∪T2,A homomorphically maps to IT1,A,
which is sufficient to show that there is a homomorphism from
IT1∪T2,A to IT1,A. o
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