
One-Dimensional Logic over Trees∗

Emanuel Kieroński1 and Antti Kuusisto2

1 University of Wrocław, Poland
kiero@cs.uni.wroc.pl

2 University of Bremen, Germany
kuusisto@uni-bremen.de

Abstract
A one-dimensional fragment of first-order logic is obtained by restricting quantification to blocks
of existential quantifiers that leave at most one variable free. This fragment contains two-variable
logic, and it is known that over words both formalisms have the same complexity and expressive
power. Here we investigate the one-dimensional fragment over trees. We consider unranked un-
ordered trees accessible by one or both of the descendant and child relations, as well as ordered
trees equipped additionally with sibling relations. We show that over unordered trees the sat-
isfiability problem is ExpSpace-complete when only the descendant relation is available and
2-ExpTime-complete with both the descendant and child or with only the child relation. Over
ordered trees the problem remains 2-ExpTime-complete. Regarding expressivity, we show that
over ordered trees and over unordered trees accessible by both the descendant and child the
one-dimensional fragment is equivalent to the two-variable fragment with counting quantifiers.

1998 ACM Subject Classification F.4 Mathematical Logic and Formal Languages

Keywords and phrases satisfiability, expressivity, trees, fragments of first-order logic

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.64

1 Introduction

One-dimensional fragment of first-order logic, F1, is obtained by restricting quantification to
blocks of existential quantifiers that leave at most one variable free (as the logic is closed
under negation and boolean operations one may also use blocks of universal quantifiers). It
is not difficult to show that over general relational structures the satisfiability problem for F1
is undecidable [8]. In such situations, there are two standard ways of regaining decidability.
One can either try to impose some additional restrictions on the syntax of the considered
logic or to restrict attention to some specific classes of structures. Both approaches have
been tried in the context of F1.

A nice syntactic restriction of F1 which turns out to be decidable over general structures is
called a uniform one-dimensional fragment, UF1. It was introduced in [8] as a generalization
of the two-variable fragment of first-order logic, FO2, to contexts with relations of arity
higher than two, e.g., databases. The readers interested in this variant are referred to [8],
[11], [12] and a survey [14] which also reveals some connections with description logics.

Let us turn to the restricted classes of structures. There are two important first-choice
options, well motivated in various areas of computer science, namely the class of words
and the class of trees. F1 over words and ω-words is investigated in [10]. The satisfiability

∗ E.K. was supported by the Polish National Science Centre grant No. 2016/21/B/ST6/01444. A.K. was
supported by the ERC grant 647289 CODA.

© Emanuel Kieroński and Antti Kuusisto;
licensed under Creative Commons License CC-BY

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 64; pp. 64:1–64:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.64
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

64:2 One-Dimensional Logic over Trees

problem is shown to be NExpTime-complete, exactly as in the case of FO2 [7]. Moreover,
over words F1 and FO2 turn out to share the same expressive power. The advantage of
F1 over FO2 is that the former allows us to express some properties in a more natural
way (and seems to be more succinct, which is however not formally proved). There are a
few other related formalisms over words, worth mentioning here. In [7] it is shown that
FO2 is expressively equivalent to unary temporal logic, UTL, i.e., temporal logic with four
navigational operators: next state, somewhere in the future, previous state, somewhere in the
past. FO2, however, is exponentially more succinct than UTL. The satisfiability problem
for UTL is PSpace-complete. An extension of FO2 by counting quantifiers, C2, is shown
to be NExpTime-complete over words in [5]. In fact, it is not difficult to observe that
over words C2 has the same expressive power as plain FO2 (but, again, the former is more
succinct). Another interesting extension of FO2 over words, this time significantly increasing
its expressive power, is an extension by the between predicate recently studied by in [13]. Its
satisfiability problem is ExpSpace-complete.

Turning now to the class of trees, both FO2 and C2 retain a reasonable complexity, namely
their satisfiability problems over trees are ExpSpace-complete. See [2] for the analysis of
FO2 over trees and [1] for its extension covering C2. Regarding the expressive power, the
situation depends on the type of the trees considered. In the case of unordered trees FO2

cannot count and is less expressive than C2. Over ordered trees both formalisms are equally
expressive [1] and share the expressiveness with the navigational core of XPath temporal
logic (cf. [15]). The importance of FO2 and C2 over trees is also justified by the fact that
they are located close to the border between elementary and non-elementary, e.g., adding
the third variable makes the satisfiability problem very hard: still decidable, but as shown in
[18] necessarily with a non-elementary complexity.

In this paper we investigate the computational complexity and the expressive power of
F1 over trees. We consider finite unranked trees accessible by a few navigational signatures:
just the descendant relation; just the child relation; both the descendant and the child
relations; and, finally, the descendant relation, the child relation plus the next-sibling and
following-sibling relations. Concerning the complexity of satisfiability, it depends on whether
the child relation is present or not. With the child relation the satisfiability problem is
2-ExpTime-complete, and without it is ExpSpace-complete. To show the complexity results
we perform some surgery on models leading to small model properties, and then design
algorithms searching for such appropriate small models. Technically, we extend the approach
from [4] used there in the context of FO2. Roughly speaking we appropriately abstract
the information about a node by its profile (an analogous notion is called a full type in
[4]) and then we either contract nodes with the same profiles, or delete some nodes whose
sufficiently many profiles are realized in a (fragment) of a model. Worth mentioning is that
an orthogonal extension of the method from [4] is used in [1] in the context of C2. In both
cases the challenge is to carefully tune the notion of a profile (full type) in order to get the
optimal complexity. Regarding expressivity, we argue that over ordered trees with all of the
four navigational relations we consider, F1 is expressively equivalent to C2 and FO2. We also
show that over unordered trees equipped with both the descendant and the child relation F1
is still equivalent to C2 (but this time the latter is known to be more expressive than FO2).
While the former equivalence is rather easy to see (though slightly awkward to formally
show), the latter is less obvious and more difficult to prove. In our expressivity studies we
do not consider the cases of unordered trees accessible by only one of the descendant and the
child relations. However, we conjecture that also under these scenarios F1 is equivalent to
C2. We leave the related investigations for the full version of this paper.

E. Kieroński and A. Kuusisto 64:3

In the case of trees, as in the case of F1 over words, the advantage of F1 over FO2 and C2

is that it allows to specify some properties in a more natural and elegant way. If we want to
say that a tree contains some (especially not fully specified) pattern, consisting of more than
two elements, we can just quantify an appropriate number of positions, and say how they
should be labelled and related to each other. Expressing the same in FO2 (if possible), and
usually also in C2, will very likely require some heavy recycling of the two available variables
and a careful navigation over trees. Let us just recall a simple example from [10], which in fact
does not even use the navigational relations. The formula ∃xyz

∧n
i=1(Pi(x) ∨ Pi(y) ∧ Pi(z))

says that there are three points which together ensure that each unary properties P1, . . . , Pn
appears in a model. A reader is asked to check that complicated and long formulas arise
when we try to express the same in FO2 or even in C2 over (ordered or unordered) trees.

The rest of the paper is organized as follows. In Section 2 we define the logic and
structures we are interested in and introduce some tools which will be then used in the
following sections. In Section 3 we perform some surgery on trees, which then, in Section
4, allows us to establish the exact complexity bounds under all the considered navigational
scenarios. In Section 5 we consider expressivity issues, relating F1 over trees with C2, FO2

and GF2, and finally in Section 6 we conclude the paper.

2 Preliminaries

2.1 Trees and logics
We work with signatures of the form τ = τ0 ∪ τbin, where τ0 is a set of unary symbols and
τbin ⊆ {↓, ↓+,→,→+} is a set of navigational binary symbols. Over such signatures we
consider the one-dimensional fragment of first-order logic F1, that is the relational fragment
in which quantification is restricted to blocks of existential quantifiers that leave at most
one variable free. Formally, F1 over relational signature τ and some countably infinite set of
variables V ar is the smallest set such that:

Rx̄ ∈ F1 for all R ∈ τ and all tuples x̄ of variables from V ar of the appropriate length,
x = y ∈ F1 for all variables x, y ∈ V ar,
F1 is closed under ∨ and ¬,
if ϕ is an F1 formula with free variables x0, . . . , xk then formulas ∃x0, . . . , xkϕ and
∃x1, . . . , xkϕ belong to F1.

As usually, we can use standard abbreviations for other Boolean operations, like ∧,→,>,
etc., as well as for universal quantification. The length of a formula ϕ is measured in a
natural way, and denoted ‖ϕ‖. The width of a formula is the maximum of the numbers of
free variables in its subformulas.

For a given formula ϕ we denote by τ0(ϕ) the set of unary symbols that appear in ϕ. We
write F1[τbin] to denote that the only binary symbols that are allowed are those from τbin.

We are interested in finite unranked tree structures, in which the interpretation of symbols
from τbin is fixed: if available in the signature, ↓ is interpreted as the child relation, → as the
right sibling relation, and ↓+ and →+ as their respective transitive closures. If at least one of
→, →+ is interpreted in a tree then we say that this tree is ordered; in the opposite case we
say that the tree is unordered. In this paper we investigate the four navigational signatures,
namely, in the case of unordered trees, we consider accessing them only by the descendant
relation (F1[↓+]), only by the child relation (F1[↓]), and by both of them (F1[↓+, ↓]); in the
case of ordered trees we consider just the full signature (F1[↓, ↓+,→,→+]).

We use symbol T (possibly with sub- or superscripts) to denote tree structures. For a
given tree T we denote by T its universe. If a is a node of T then we denote by T↓a the subtree

MFCS 2017

64:4 One-Dimensional Logic over Trees

of T rooted at a, by T↑a the tree obtained from T by removing all subtrees rooted at the
children of a. Additionally, in the case of ordered trees we denote by T←a the substructure
(which usually is not a tree) of T generated by the nodes of subtrees rooted at a and all
its left siblings (nodes a′ such that T |= a′→+a), and, symmetrically, we denote by T→a the
substructure of T generated by the nodes of subtrees rooted at a and all its right siblings.

2.2 Normal form
We adapt here the well known Scott normal form for FO2 [16] to our purposes. We say that
an F1[τbin] formula ϕ is in normal form if ϕ has the following shape:∧

1≤i≤m∃

∀y0∃y1 . . . yki
ϕ∃
i ∧

∧
1≤i≤m∀

∀x1 . . . xliϕ
∀
i , (1)

where ϕ∃
i = ϕ∃

i (y0, y1, . . . , yki
) and ϕ∀

i = ϕ∀
i (x1, . . . , xli) are quantifier-free. Please note that

the width of ϕ is the maximum of the set {ki + 1}1≤i≤m∃ ∪ {lj}1≤j≤m∀ . The following
fact can be proved in a standard fashion, see, e.g., [6] for a more detailed exposition of the
technique.

I Lemma 1. For every F1[τbin] formula ϕ, one can compute in polynomial time an F1[τbin]
formula ϕ′ in normal form (over the signature extended by some fresh unary symbols) such
that for trees of size (number of nodes) equal at least to the width of ϕ: (i) any model of ϕ
can be expanded to a model of ϕ′ by appropriately interpreting fresh unary symbols; (ii) any
model of ϕ′ restricted to the signature of ϕ is a model of ϕ.

Proof. (Sketch) We successively replace innermost subformulas ψ of ϕ of the form ∃y1, . . . , yk
ϕ(y0, y1, . . . , yk) by atoms Pψ(y0), where Pψ is a fresh unary symbol, and axiomatize Pψ using
two normal form conjuncts: ∀y0∃y1, . . . , yk(Pψ(y0) → ϕ(y0, y1, . . . , yk)) and ∀y0, y1, . . . , yk
(¬ϕ(y0, y1, . . . , yk) ∨ Pψ(y0)). J

Lemma 1 allows us, when dealing with satisfiability or when analysing the size and shape
of models, to restrict attention to normal form formulas (models of size smaller than the
width of the considered formula can be easily treated separately).

2.3 Types and profiles
In this subsection we prepare some notions useful in the rest of this paper.

2.3.1 Types
For k ∈ N\{0} a k-type (or a type of size k) π over a signature τ = τ0∪ τbin is a set of literals
over variables x1, . . . , xk (often identified with a conjunction of its elements) such that

for each P ∈ τ0 and 1 ≤ i ≤ k either Pxi or ¬Pxi belongs to π
for each
∈ τbin and 1 ≤ i, j,≤ k, i 6= j either xi
 xj or ¬xi
 xj belongs to π
for each 1 ≤ i < j ≤ k the inequality xi 6= xj belongs to π
π is satisfiable in a tree, i.e., there exists a tree T containing nodes a1, . . . , ak such that
T |= π(a1, . . . , ak)

In this paper we will only be interested in k-types over signatures containing ↓+. If for some
variable xi and all j 6= i we have that xi↓+xj ∈ π then we call xi the root of π. If for some
variable xi and all j 6= i either xj↓+xi ∈ π or xi↓+xj 6∈ π and xj↓+xi 6∈ π then we call xi a
leaf of π. Additionally for signatures containing horizontal relations: If for some variable xi

E. Kieroński and A. Kuusisto 64:5

and all j 6= i either xi→+xj ∈ π or there is h such that xi→+xh, xh↓+xj ∈ π then we call xi
the leftmost element of π. Analogously we define the rightmost element of π.

Note that a k-type may have at most one root, one leftmost element and one rightmost
element, but many leaves. A type is a k-type for some k ≥ 1.

We say that a tuple of distinct nodes a1 . . . , ak of a tree T realizes a k-type π if T |=
π[a1, . . . , ak]. In this case we write typeT(a1, . . . , ak) = π.

For a given k-type π and a sequence of variables xi1 , . . . , xik we denote by π(xi1 , . . . , xxk
)

the result of the simultaneous substitution xj ← xij in π. Note that in this operation
i1, . . . , ik is not required to be a permutation of 1, . . . , k.

2.3.2 Subtypes
Observe that a 1-type is completely determined by a subset of τ0. We denote by π�xi the
1-type obtained by restricting π to literals over xi and then replacing in them xi by x1. More
generally, for distinct indices i1, . . . , il ∈ {1, . . . , k} we denote by π�[xi1 . . . xil] the l-type
obtained by restricting π to literals over xi1 , . . . , xil , and then replacing in them xij by xj
(for j = 1, . . . , l). We say that π�[xi1 . . . xil] is a subtype of π; if i1 = 1 then such a subtype
is called an initial subtype of π. Initial subtypes may be formed with l = k and are called
rearrangement of π in this case. We say that a set C of types is closed under initial subtypes if
for any k-type π ∈ C and any distinct i2, . . . , il ∈ {2, . . . , k}, we have π�[x1, xi2 , . . . , xil] ∈ C.

2.3.3 Profiles
Profiles are intended to abstract the information about a node in a tree. Namely, they
say what are the types of tuples (of some bounded size) containing the given element. For
convenience we will separately store the types of tuples built of the nodes above and below
the given element.

A k-profile over a signature τ (containing ↓+) is a tuple (α,A,B) such that:
α is a 1-type,
A is a set of types closed under initial subtypes, such that for all π ∈ A: (i) π is of size
at most k; (ii) π�x1 = α and (iii) x1 is a leaf of π,
B is a set of types closed under initial subtypes, such that for all π ∈ B: (i) π is of size at
most k; (ii) π�x1 = α and (iii) x1 is the root of π.

Given a profile θ we will sometimes refer to its components as θ.α, θ.A and θ.B.
In the case of the signature {↓, ↓+,→,→+} we also consider horizontal k-profiles, i.e.,

tuples of the form (α,A,B,AL,AR), extending k-profiles in such a way that:
AL is a set of types closed under the initial subtypes, such that for all π ∈ AL: (i) π is of
size at most k, (ii) π�x1 = α and (iii) x1 is the leftmost element of π,
AR is a set of types closed under the initial subtypes, such that for all π ∈ AL: (i) π is of
size at most k, (ii) π�x1 = α and (iii) x1 is the rightmost element of π,

By simple calculations we get:

I Claim 2. For any navigational signature τbin we have:
(i) The number of k-types over τ = τ0 ∪ τbin is bounded exponentially in |τ0| and k. In

particular, there are 2|τ0| 1-types.
(ii) The number of k-profiles and horizontal k-profiles over τ0 ∪ τbin are bounded doubly

exponentially in |τ0| and k.

MFCS 2017

64:6 One-Dimensional Logic over Trees

We denote by profTk (a) the k-profile realized by a in T, i.e., the profile (α,A,B) such that:
α is the 1-type of a,
A is the set of types of size at most k realized by tuples a1, a2, . . . , al ∈ T ↑a such that
a1 = a,
B is the set of types of size at most k realized by tuples a1, a2, . . . , al ∈ T ↓a such that
a1 = a.

An element a ∈ T realizes a horizontal k-profile (α,A,B,AL,AR) if it realizes (α,A,B) and
AL is the set of types of size at most k realized by tuples a1, a2, . . . , al ∈ T←a such that
a1 = a,
AR is the set of types of size at most k realized by tuples a1, a2, . . . , al ∈ T→a such that
a1 = a.

Note that in realized horizontal profiles it is also the case that both AL and AR are subsets
of A. Also all of A,B,AL,AR are closed under initial subsets.

In the sequel, whenever a formula ϕ ∈ F1[τbin] is fixed we silently assume that all k-
types, k-profiles, horizontal-k-profiles and all structures considered are over the signature
τbin ∪ τ0(ϕ).

Let us consider a k-profile θ = (α,A,B). We say that an l-type π (1 ≤ l ≤ k) is implicit
in θ if π is a member of A or B or if there are l1-type π1 ∈ A, l2-type π2 ∈ B, l1 + l2 − 1 = k,
such that π is the unique l-type containing π1 ∪ π2(x1, xl1+1, xl1+2, . . . , xl1+l2−1), Note that
if for some 2 ≤ i ≤ l1 we have xi↓+x1 ∈ π1 then xi↓+xj ∈ π for all j ≥ l1 and if xi↓+x1 6∈ π
then also xj↓+x1 6∈ π for all j ≥ l1. Intuitively, an l-type π is implicit in θ if in any tree in
which θ is realized by a node a there is a tuple of nodes starting with a realizing π.

Let ϕ be a normal form formula of width n. Given an n-profile θ one can easily see if its
any realization in any tree T have all the witnesses required by ∀∃...∃ conjuncts of ϕ, and if
each tuple of nodes of T containing a cannot violate any universal conjunct of ϕ. Formally,
we say that an n-profile θ is ϕ-admissible if
1. for every conjunct of ϕ of the form ∀y0∃y1 . . . yki

ϕ∃
i (y0, . . . , yki

) there is a k-type π
(k ≤ ki) implicit in θ and a function h : {y1, . . . , yki

} → {x1, . . . , xli}, such that π |=
ϕ∃i [y0/x1, y1/h(y1), . . . , yli/h(yki

)].
2. for every conjunct of ϕ of the form ∀y1 . . . yliϕ

∀
i (y1, . . . , yli) any k-type (k ≤ li) implicit

in θ and any function h : {y1, . . . , yli} → {x1, . . . , xk} having x1 in its image we have
π |= ϕ∀i [y1/h(y1), . . . , y1/h(y1), . . . , yli/h(yki

)]

It is then straightforward to see the following.

I Lemma 3. Let ϕ be a normal form formula of width n. Then T |= ϕ iff all n-profiles
realized in T are ϕ-admissible.

In our decision procedures we will sometimes check admissibility of profiles. Since the
number of types implicit in a profile is bounded polynomially this can be done (relatively)
easily.

I Claim 4. Given a normal form F1 formula ϕ of width n and an n-profile θ it can be
checked in nondeterministic polynomial time (in ‖ϕ‖ and |θ|) whether θ is ϕ-admissible.

In the next section we perform some surgery on models of a normal form formula ϕ.
Namely, we remove some nodes and sometimes change the connections among the remaining
nodes. Observing that the n-profiles of the surviving nodes are not changed we will then be
able to conclude (thanks to Lemma 3) that the resulting trees are still models of ϕ.

E. Kieroński and A. Kuusisto 64:7

3 Pruning trees

We now show that when looking for models of a formula ϕ one can restrict attention to
models with bounded depth and degree. We obtain an exponential bound on the depth in the
case of signatures not containing ↓, and a doubly exponential bound when ↓ is present. The
bound on the degree is exponential for unordered trees and doubly exponential for ordered
trees. We remark that all the above bounds are essentially optimal.

3.1 Bounded paths
The crucial observation here is that one can remove the fragment of a model between two
nodes having the same profile.

I Lemma 5. Let τbin be any of the navigational signatures {↓}, {↓+}, {↓, ↓+}, {↓, ↓+,→,→+}.
Let ϕ be a normal form F1[τbin] formula of width n. Let T |= ϕ and let a, b ∈ T be two
nodes such that T |= a↓+b and profTn(a) = profTn(b). Let T′ be the tree obtained from T by
replacing the subtree rooted at a by the subtree rooted at b. Then for any c ∈ T ′ we have that
profT

′

n (c) = profTn(c). In consequence T′ |= ϕ.

Proof. Consider the case when c belongs to T′↓b (possibly c = b). Since T′↓b = T↓b then in
particular T′↓c = T↓c and it is clear that profT

′

n (c).B = profTn(c).B.
To see that profT

′

n (c).A ⊆ profTn(c).A consider any π ∈ profT
′

n (c).A. Take a realization of
π in T′ starting with c. Let c, b1, . . . , bk, a1, . . . , al be a list of all nodes of this realization,
such that b1, . . . , bk ∈ T ′↓b and a1, . . . , al 6∈ T ′↓b . Let π0 = typeT′(c, b1, . . . , bk, a1, . . . , al).
Note that π0 is a rearrangement of π. Let π′0 = typeT′(b, a1, . . . , al). Note that π′0 =
typeT(a, a1, . . . , al) and thus π′0 ∈ profTn(a).A = profTn(b).A. It follows that π′0 is realized in
T by b, a′1, . . . , a′l for some a′1, . . . , a′l ∈ T

↑
b . Observe that typeT(c, b1, . . . , bk, a

′
1, . . . , a

′
l) = π0

and thus π0 ∈ profTn(c).A. As profTn(c).A is closed under initial subtypes (and thus also
rearrangements) it follows that π ∈ profTn(c).A

For the opposite direction, consider now any π ∈ profTn(c).A. Take a realization of π in
T starting with c. Let c, b1, . . . , bk, a1, . . . , al be a list of all nodes of this realization such
that b1, . . . , bk ∈ T ↓b and a1, . . . , al 6∈ T ↓b . Let π0 = typeT(c, b1, . . . , bk, a1, . . . , al) Let π′0 =
typeT(b, a1, . . . , al). Note that π′0 ∈ profTn(b).A = profTn(a).A and thus a, a′1, . . . , a′l realize π′0
in T′ for some a′1, . . . , a′l. Now typeT′(b, a′1, . . . , a′l) = π′0 and typeT′(c, b1, . . . , bk, a

′
1, . . . , a

′
l) =

π0. Thus π0 ∈ profTn(c).A and since π is a rearrangement of π0 then also π ∈ profTn(c).A.
The case when c ∈ T ′↑b can be analysed analogously. Since we have shown that all profiles

of nodes in T′ are realized in T it follows by Lemma 3 that T′ |= ϕ. J

Having proved Lemma 5 we can now obtain the desired bounds.

I Corollary 6.
(i) Every satisfiable F1[↓], F1[↓, ↓+] or F1[↓, ↓+,→,→+] normal form formula ϕ has a model

whose vertical root-to-leaf paths are bounded doubly exponentially in ‖ϕ‖ by a fixed
function fd.

(ii) Every satisfiable F1[↓+] normal form formula ϕ has a model whose vertical root-to-leaf
paths are bounded exponentially in ‖ϕ‖ by a fixed function fs.

Proof. Take a model T |= ϕ. If there are nodes a, b meeting conditions of Lemma 5 then
replace the subtree rooted at a by the subtree rooted at b. Repeat this operation until all
root-to-leaf paths realize only distinct n-profiles. Let T∗ be the eventually obtained tree. By
Lemma 5 we have T∗ |= ϕ. To see (i) just recall that by Claim 2 (ii) the number of distinct

MFCS 2017

64:8 One-Dimensional Logic over Trees

N

N

N

N

P
2n

Figure 1 Enforcing doubly exponential path in F1[↓].

n-profiles over {↓}, {↓, ↓+} or {↓, ↓+,→,→+} is bounded doubly exponentially in τ0(ϕ) and
n and thus also in ‖ϕ‖. For (ii) take any vertical root-to-leaf path p of T∗ and consider
any 1-type α realized on this path. Let a1, . . . , ak be the list of all nodes of p realizing α,
T∗ |= ai↓+aj for i < j. Let (α,Ai,Bi) be the n-profile (over {↓+}) of ai for 1 ≤ i ≤ k. We
observe that for i < j we have Ai ⊆ Aj and, Bi ⊇ Bj . Let us explain the former of these
two inclusions. Take any k-type π ∈ Ai and let ai, b2, . . . , bk be its realization. Note that
the nodes b2, . . . , bk are related by ↓+ to aj precisely as to ai. Thus aj , b2, . . . , bk realizes π
and thus π ∈ Aj . The latter inclusion can be shown analogously. Recall that by Claim 2
(i) |Ai| and |Bi| are bounded exponentially. Thus when moving along a1, . . . , ak each of the
components Ai and Bi can change at most exponentially many times, and in consequence,
k is bounded exponentially. Finally, noting that the number of 1-types is also bounded
exponentially we get the desired bound. J

The bounds in the both parts of the above corollary are essentially optimal. Exponentially
long paths over {↓+} can be easily enforced even in FO2 by organizing, by means of unary
predicates P0, . . . , Pn−1, a binary counter counting from 0 to 2n − 1 and requiring each node
storing a value smaller than 2n − 1 to have a descendant storing the value greater by one.
Let us see that the presence of ↓ allows to simply enforce doubly-exponential paths. We use
unary predicates N,P, P0, . . . , Pn−1, Q. See Fig. 1. The intended long path is the path of
elements in N . Every element in N is going to have 2n children marked by P , each of which
has a local position in the range [0, 2n − 1] encoded by means of P0, . . . , Pn−1. Reading the
truth-values of Q as binary digits we can assume that the collection of the P -children of a
node in N encodes its global position in the tree in the range [0, 22n − 1] (the i-th bit of this
global position is 1 iff at the element at local position i the value of Q is true). It is then
possible to say that each node in n whose global position is smaller than 22n − 1 has a child
in N with the global position greater by 1. We skip here the details.

3.2 Bounded degree
Our next aim is to show that also the degree of nodes can be bounded.

I Lemma 7.
(i) Let ϕ be a normal form F1[↓, ↓+,→,→+] formula. Let T |= ϕ. Then there exists a tree

T∗ |= ϕ obtained by removing some subtrees from T (and appropriately repairing the
sibling relations), in which the degree of every node is bounded doubly exponentially in
‖ϕ‖ by a fixed function f′d.

(ii) Let ϕ be a normal form F1[↓], F1[↓+] or F1[↓, ↓+]. Let T |= ϕ. Then there exists a tree
T∗ |= ϕ obtained by removing some subtrees from T, in which the degree of every node
is bounded exponentially in ‖ϕ‖ by a fixed function f′s.

E. Kieroński and A. Kuusisto 64:9

Proof. Let n be the width of ϕ.
(i) Consider any node a ∈ T . Let a1, . . . , ak be all the the children of a, listed from left

to right. If for some i < j the horizontal n-profiles of ai and aj are equal (note that i > 1
in this case) then we remove all the subtrees rooted at ai, . . . , aj−1 and join ai−1 with aj
by →. By arguments similar to those from the proof of Lemma 5 we can show that the
profiles of the surviving elements of T do not change. Repeating this process as long as
possible we eventually obtain a tree in which the number of children of a is bounded doubly
exponentially (by the number of distinct horizontal n-profiles). We then repeat the process
successively for all the nodes of T.

(ii) The B components of profiles do not behave monotonically along horizontal paths
(as they do along vertical paths), thus we cannot use horizontal k-profiles to get the desired
exponential bound on their length. We proceed in a slightly different manner. Consider any
node a ∈ T . Let ā = a1, . . . , ak be the list of the children of a. For 1 ≤ i ≤ k let types(ai) be
the set of types of size at most n realized in T↓ai

by tuples whose first element is ai. For each
type π ∈

⋃k
i=1 types(ai) mark n nodes in ā such that π ∈ types(ai) (or all such nodes if there

are less than n of them). This way we mark at most exponentially many children of a. Let
us remove all the subtrees rooted at unmarked nodes from ā and denote the obtained tree T′.
We claim the the n-profiles of all the elements surviving the surgery do not change. Consider
any c ∈ T ′. Noting that the elements of T′ are related to each other by the navigational
predicates ↓+, ↓ exactly as they are related in T we see that profT

′

n (c).A ⊆ profTn(c).A and
profT

′

n (c).B ⊆ profTn(c).B.
For ⊇ we distinguish two case: the one in which c is in T′

↑
a, and the other in which it is not.

Let us sketch the arguments for the latter (the former is similar). Since c retains its subtree
from T it is clear that profTn(c).B ⊆ profT

′

n (c).B. To see that profTn(c).A ⊆ profT
′

n (c).A
take any π ∈ profTn(c).A and its any realization c, b1, . . . , bl ∈ T . Split b1, . . . , bl into the
disjoint tuples of nodes: let the first tuple b̄0 contain the nodes from T↑a and the other tuples
b̄1, . . . , b̄s the nodes from the subtrees rooted at distinct nodes from ā (note that s < n).
The tuple b̄0 is retained in T′; the other tuples may be deleted, but due to our strategy of
marking important nodes in ā there exists a 1−1 function returning for a tuple b̄i a node
in ā surviving the surgery in whose subtree a tuple b̄′i of type equal to the type of b̄i exists.
Using the elements c, b̄0, b̄

′
1, . . . , b̄

′
s we can now form a realization of π in T′ (starting from c).

Thus π ∈ profT
′

n (c).A, which finishes the argument.
Again, repeating the described process for all nodes we eventually obtain a tree T∗ in

which the degree of every node is bounded exponentially and the n-profiles of all nodes
remain as in T, and thus are ϕ-admissible. In effect T∗ |= ϕ. J

The bounds on the degree of nodes in Lemma 7 are essentially optimal. In particular a
doubly exponential chain of siblings can be enforced by means of → and ↓ (or → and ↓+)
similarly to a doubly exponential vertical root-to-leaf path: every element of the chain is
required to have 2n children storing the binary digits of a doubly exponential counter; the
next sibling of a node a is forced to store the counter value greater by one than the value
stored at a.

4 Complexity of satisfiability

In this section, using the results from Section 3 we establish the precise complexity of the
satisfiability problem in all of the scenarios we consider.

MFCS 2017

64:10 One-Dimensional Logic over Trees

4.1 Only descendant relation
Let us start with the observation that in the case when only the descendant relation is present
in the navigational signature the complexity of F1 is equal to the complexity of FO2 and C2.

I Theorem 8. The satisfiability problem for F1[↓+] is ExpSpace-complete.

The lower bound is inherited from FO2[↓+], [2], which in turn refers to ExpSpace-
hardness of the so-called one-way two-variable guarded fragment, [9]. For the upper bound
we design an alternating exponential time procedure. The result then follows from the well
known fact that AExpTime=ExpSpace, [3]. The procedure first guesses the profile of the
root and then guesses the profiles of its children, checking if the information recorded in the
profiles is locally consistent, and if each guessed profile is ϕ-admissible. Further, it works
in a loop, universally moving to one of the children, guessing profiles of its children and
proceeding similarly.
Algorithm 1: Procedure F1[↓+]-sat-test

Input: an F1[↓+] normal form formula ϕ
let n be the width of ϕ
let maxdepth := fs(‖ϕ‖); let maxdegree := f′s(‖ϕ‖); % cf. Cor. 6 and Lem. 7
let level := 0;
guess an n-profile θ such that θ.A = {α}; % root
while level < maxdepth do

if θ is not ϕ-admissible then reject
guess an integer 0 ≤ k ≤ maxdegree; % the number of children
for 1 ≤ i ≤ k guess a profile θi;
if not locally-consistent(θ, θ1, . . . , θk) then reject;
if θ.B = {α} then accept % a leaf reached; it must be k = 0
level := level + 1;
universally choose 1 ≤ i ≤ k; let θ := θi;

endwhile
reject
endprocedure

The function locally-consistent checks whether, from a local point of view, a tree may
have a node realizing an n-profile θ whose children realize n-profiles θ1, . . . , θk. It checks if
θ.B is the set of types which can be obtained, informally speaking, by putting θ.α on top of
a disjoint union of types taken from distinct θi.B (possibly with their roots removed); and,
analogously, verifies some natural conditions on the A-components of θ and θi-s. We skip
the details of this function.

I Lemma 9. Procedure F1[↓+]-sat-test accepts its input ϕ iff ϕ is satisfiable.

Proof. Assume that ϕ is satisfiable. By Corollary 6 (ii) and Lemma 7 (ii) there exists a
small model T |= ϕ. The procedure accepts ϕ by making all its guesses in accordance to T,
i.e., in the first step it sets θ to be equal to the n-profile of the root of T and then in each
step it sets θi to be the n-profile of the i-th child of the previously considered element.

In the opposite direction, from an accepting (tree-)run t of the procedure we can naturally
construct a tree structure Tt, with 1-types of elements as guessed during the execution.
Our procedure guesses actually not only 1-types but full n-profiles of nodes. The function
locally-consistent guarantees that the n-profiles of nodes Tt are indeed as guessed. To see
this, we first prove by induction on the height of nodes that the B components of profiles are

E. Kieroński and A. Kuusisto 64:11

as required: the base step for leaves holds due to the acceptance condition of the procedure;
then we move towards the root using the conditions of the function locally-consistent. For
the A-components we proceed by induction on the depth of nodes: the base case holds for
the root by the requirement on the first profile from the procedure; then we move down the
tree using the conditions of the function locally-consistent and the already proved fact that
the B-component are as required.

Since the procedure checks if each of the guessed n-profiles is ϕ-admissible, then by
Lemma 3 we have that Tt |= ϕ. J

To finish the proof of Thm. 8 it remains to note that the values of maxdepth and
maxdegree ensure that the algorithm works indeed in (alternating) exponential time.

4.2 Descendant and child
We first note that when the child relation ↓ is available in the signature then, in contrast
to the case of FO2 and C2 the satisfiability problem becomes 2-ExpTime-hard. This can
be shown by a simple adaptation of the 2-ExpTime-hardness proof for the unary negation
fragment, UNFO, [17], which works in particular for UNFO[↓] over trees. Actually some
two-dimensional formulas appear in that proof, but their usage is not crucial and can be
easily avoided.

I Theorem 10. The satisfiability problem for F1[↓] is 2 -ExpTime-hard.

A matching upper bound for F1[↓, ↓+] is easy to obtain using the tools we have already
developed.

I Theorem 11. The satisfiability problem for F1[↓, ↓+] is 2 -ExpTime-complete.

Proof. The lower bound follows from Thm. 10. For the upper bound we just modify the
procedure F1[↓+]-sat-test from Section 4.1 in a natural way. By Corollary 6 (i) and
Lemma 7 (i) we know that satisfiable formulas have models with doubly exponentially
bounded paths and exponentially bounded degree of nodes. Thus we just change the initial
value of maxdepth to fd(‖ϕ‖) and adjust the function locally-consistent by taking into
account the presence of ↓ relation. The obtained procedure works in alternating exponential
space. Since AExpSpace = 2-ExpTime [3] we get the desired result. J

4.3 Ordered trees
We conclude this section observing that the satisfiability problem of F1 over ordered trees
remains in 2-ExpTime.

I Theorem 12. The satisfiability problem for F1[↓, ↓+,→,→+] is 2 -ExpTime-complete.

Proof. The lower bound follows from Thm. 10. For the upper bound we need another
modification of the procedure F1[↓+]-sat-test. As we want to fit in alternating exponential
space we cannot this time allow ourselves for guessing at once all the children of a node (as
there may be doubly exponentially many of them). Instead we start by guessing the leftmost
one, and then move to the right until we reach the rightmost one. During this horizontal
walk, at each node a we actually make a universal choice between continuing the walk to the
right and moving down to the first child of a. Further, instead of n-profiles of nodes we guess
horizontal-n-profiles of the form (α,A,B,AL,AR). The function locally-consistent takes
this into account; it can be naturally designed to ensure that the the nodes guessed in an

MFCS 2017

64:12 One-Dimensional Logic over Trees

accepting tree-run of the procedure indeed have the declared horizontal profiles. Note in
particular that knowing the components AL, AR and B of the horizontal profile of any child
of a one can compute the B component of the profile of a. We leave the technical details of
the required adaptation for the full version of the paper. J

5 Expressivity

We show that the expressive power of F1[τbin] is equal to the expressive power of C2[τbin] in
the case of ordered trees, τbin = {↓, ↓+,→,→+}, and in the case of unordered trees accessible
by both the descendant and the child relations, τbin = {↓, ↓+}. Translation from C2 to F1 is
easy. Consider, e.g., a subformula of the form ∃≥kyψ(x, y) and note that it can be written
as ∃y1, . . . , yk(

∧
i 6=j yi 6= yj ∧

∧
i ψ(x, yi)). Regarding the opposite direction, in the case of

the ordered trees the equivalence is not very surprising: the power of the full navigational
signature allows scanning trees in an ordered way and express the existence of patterns
described by F1 subformulas by a reuse of two variables. Actually, one can even directly
translate F1 to FO2 without counting in this case. The equivalence over unordered trees is
slightly harder and less obvious. The proof of the following theorem will be given in the full
version of this paper.

I Theorem 13. For any F1[↓, ↓+] (F1[↓, ↓+,→,→+]) sentence ϕ there is a C2[↓, ↓+] (C2[↓, ↓+,

→, →+]) sentence ϕ∗ such that for any tree T we have T |= ϕ iff T |= ϕ∗, and vice versa.

Let us also collect here the results comparing the expressive power over trees of F1, C2

and two other two-variable logics: the two-variable guarded fragment, GF2, and plain FO2.
By A ≺ B we denote that A is strictly less expressive than B (on the level of sentences), and
by A ≡ B we denote that A and B have the same expressive power.

I Corollary 14.
(i) Over τ = {↓, ↓+,→,→+} we have GF2[τ] ≡ FO2[τ] ≡ C2[τ] ≡ F1[τ].
(ii) If τ = {↓, ↓+} then GF2[τ] ≺ FO2[τ] ≺ C2[τ] ≡ F1[τ].

Regarding (i): the translation of FO2 to GF2 can be done similarly to the translation
of FO2 to a variant of Core XPath in [15], equivalence of C2 and FO2 is shown in [1] and
of C2 and F1 in Thm. 13. Regarding (ii): Let us assume that the signature contains no
unary predicates and for i ∈ N let Ti denote the tree consisting just of a root and its i
children. The C2 formula ∃x∃≥3y x↓+y distinguishes T3 and T2, while the FO2 formula
∃xy(¬x↓+y ∧ ¬y↓+x ∧ x 6= y) distinguishes T2 and T1. It is not difficult to see that FO2

cannot distinguish between T3 and T2 (use a simple 2-pebble game argument, cf. [1]) and
that GF2 cannot distinguish between T2 and T1 (use bisimulations).

6 Conclusion

We established the computational complexity of F1 over unordered trees, showing its Ex-
pSpace-completeness over trees accessible only by the descendant relation and 2-ExpTime-
completeness in the presence of the child relation. The 2-ExpTime-upper bound holds also
for ordered trees equipped additionally with the next-sibling and following-sibling relations.
Deriving the complexities for the remaining combinations of the considered navigational
symbols (e.g., F1[↓+,→]) is not difficult, and we will do it in the full version of this paper.

We also proved that under two of the considered navigational scenarios F1 is expressively
equivalent to C2. Extending the expressive power comparison between F1 and C2 (and other
logics) to the signatures containing just one of ↓, ↓+ is left as a future work.

E. Kieroński and A. Kuusisto 64:13

Another interesting open problem is to formally compare the succinctness of F1 versus
FO2 and C2 over trees (and over words).

We worked with unranked trees, but it is not difficult to adapt all the results for the case
of ranked trees. In particular the counters in the 2-ExpTime-lower bound proof (Thm. 10)
can be organized as binary subtrees instead of horizontal chains of siblings.

References
1 Bartosz Bednarczyk, Witold Charatonik, and Emanuel Kieronski. Extending two-variable

logic on trees. In Computer Science Logic, pages 11:1–11:20, 2017.
2 Saguy Benaim, Michael Benedikt, Witold Charatonik, Emanuel Kieronski, Rastislav Len-

hardt, Filip Mazowiecki, and James Worrell. Complexity of two-variable logic on finite
trees. ACM Trans. Comput. Log., 17(4):32:1–32:38, 2016.

3 Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer. Alternation. J. ACM,
28(1):114–133, 1981. doi:10.1145/322234.322243.

4 Witold Charatonik, Emanuel Kieronski, and Filip Mazowiecki. Satisfiability of the two-
variable fragment of first-order logic over trees. CoRR, abs/1304.7204, 2013.

5 Witold Charatonik and Piotr Witkowski. Two-variable logic with counting and a linear
order. In Computer Science Logic, pages 631–647, 2015.

6 Heinz-Dieter Ebbinghaus and Jörg Flum. Finite model theory. Perspectives in Mathemat-
ical Logic. Springer, 1995.

7 Kousha Etessami, Moshe Y. Vardi, and Thomas Wilke. First-order logic with two variables
and unary temporal logic. Inf. Comput., 179(2):279–295, 2002. doi:10.1006/inco.2001.
2953.

8 Lauri Hella and Antti Kuusisto. One-dimensional fragment of first-order logic. In Advances
in Modal Logic 10, pages 274–293, 2014.

9 Emanuel Kieronski. On the complexity of the two-variable guarded fragment with transitive
guards. Inf. Comput., 204(11):1663–1703, 2006.

10 Emanuel Kieronski. One-dimensional logic over words. In Computer Science Logic, pages
38:1–38:15, 2016.

11 Emanuel Kieronski and Antti Kuusisto. Complexity and expressivity of uniform one-
dimensional fragment with equality. In Mathematical Foundations of Computer Science,
Part I, pages 365–376, 2014.

12 Emanuel Kieronski and Antti Kuusisto. Uniform one-dimensional fragments with one equi-
valence relation. In Computer Science Logic, pages 597–615, 2015.

13 Andreas Krebs, Kamal Lodaya, Paritosh Pandya, and Howard Straubing. Two-variable
logic with a between predicate. In Logic in Computer Science, 2016.

14 Antti Kuusisto. On the uniform one-dimensional fragment. In Proceedings of Description
Logic Workshop, 2016.

15 Maarten Marx. First order paths in ordered trees. In International Conference on Database
Theory, pages 114–128, 2005.

16 Dana Scott. A decision method for validity of sentences in two variables. Journal Symbolic
Logic, 27:477, 1962.

17 Luc Segoufin and Balder ten Cate. Unary negation. Logical Methods in Computer Science,
9(3), 2013.

18 Larry J. Stockmeyer. The Complexity of Decision Problems in Automata Theory and Logic.
PhD thesis, MIT, Cambridge, Massachusetts, USA, 1974.

MFCS 2017

http://dx.doi.org/10.1145/322234.322243
http://dx.doi.org/10.1006/inco.2001.2953
http://dx.doi.org/10.1006/inco.2001.2953

	Introduction
	Preliminaries
	Trees and logics
	Normal form
	Types and profiles
	Types
	Subtypes
	Profiles

	Pruning trees
	Bounded paths
	Bounded degree

	Complexity of satisfiability
	Only descendant relation
	Descendant and child
	Ordered trees

	Expressivity
	Conclusion

