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Abstract. Relation-changing modal logics are extensions of the basic
modal logic that allow to change the accessibility relation of a model
during the evaluation of a formula. In particular, they are equipped with
dynamic modalities that are able to delete, add and swap edges in the
model, both locally and globally. We investigate the satisfiability problem
of these logics. We define satisfiability-preserving translations from an
undecidable memory logic to relation-changing modal logics. This way
we show that their satisfiability problems are undecidable.
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1 Introduction

Modal logics [12,14] were originally conceived as logics of necessary and possible
truths. They are now viewed, more broadly, as logics that explore a wide range
of modalities, or modes of truth: epistemic (“it is known that”), doxastic (“it is
believed that”), deontic (“it ought to be the case that”), or temporal (“it has
been the case that”), among others. From a model theoretic perspective, the
field evolved into a discipline that deals with languages interpreted on various
kinds of relational structures or graphs. Nowadays, modal logics are actively used
in areas as diverse as software verification, artificial intelligence, semantics and
pragmatics of natural language, law, philosophy, etc.

From an abstract point of view, modal logics can be seen as formal languages
to navigate and explore properties of a given relational structure. But if we
want to describe and reason about dynamic aspects of a given situation, e.g.,
how the relations between a set of elements evolve through time or through
the application of certain operations, the use of modal logics (or actually, any
kind of logic with classical semantics) becomes less clear. We can always resort
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to modeling the whole space of possible evolutions as a graph, but this soon
becomes unwieldy. It would be more elegant to use truly dynamic modal logics
with operators that can mimic the changes the structure will undergo.

There exist several dynamic modal operators that fit in this approach. A
clear example are the dynamic operators introduced in dynamic epistemic logics
(see, e.g. [22]). Less obvious examples are given by hybrid logics [8,13] equipped
with the down arrow operator ↓ which is used to ‘rebind’ names for states to the
current point of evaluation, and memory logics [19], a kind of restricted form
of hybrid logics that come equipped with a memory and operators to store and
retrieve states from it. Finally, a classical example which can arguably be taken
as the origin of the studies of logics in this approach is Sabotage Logic introduced
by van Benthem in [21], which provides an operator that deletes individual edges
in the model.

Generalizing this last logic, we study operators that do various kinds of
change to the accessibility relation of a model: deleting, adding, and swapping
edges, both locally (near the state of evaluation) and globally (anywhere). We
call these operators relation-changing. In [2], the operators are introduced, and
it is shown that the model checking problem is PSPACE-complete for the basic
modal logic enriched with any of these operators. In this article, we consider
the satisfiability problem of these logics. Previous results on this topic are the
undecidability of (multimodal) global sabotage logic, via encoding of the Post
Correspondence Problem [16] the undecidability of local swap logic with a sin-
gle relation, by reduction from memory logic [4]; and non-terminating tableau
methods for all six logics [3]. Here we present undecidability proofs for all six
logics using reductions from memory logic.

The undecidability results can be surprising, considering for instance that
dynamic epistemic logics are decidable [11,17,22]. However, other very expres-
sive dynamic operators are undecidable, such as the hybrid logic with the ↓
operator [8]. As we mentioned before, ↓ binds states of the model to some par-
ticular names. We will show in this article that relation-changing operators can
take advantage of adding, deleting or swapping around edges, to perform some
sort of binding in the model, turning them undecidable.

Contributions

– We sketch the undecidability proof for the memory logic ML( r , k ), by adapt-
ing the undecidability argument introduced in [18] for the description logic
ALCself.

– We introduce undecidability proofs for the satisfiability problem of six relation-
changing modal logics via satisfiability of memory logic. In this way, we com-
plete the picture of the computational aspects of the family of languages
defined in this framework.

– Our proofs improve previous ones for local swap [4] and global sabotage [16],
by exploiting undecidability of memory logics. This allows for shorter proofs
and avoid redundant encodings of the tiling problem.

The article is organized as follows. In Sect. 2 we introduce the syntax and
semantics of relation-changing modal logics. In Sect. 3 we introduce the memory
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logic ML( r , k ) and a sketch of the proof of its undecidability. We dedicate
Sect. 4 to the translations from memory to global and local relation-changing
modal logics. Finally we draw our conclusions in Sect. 5.

2 Relation-Changing Modal Logics

In this section, we formally introduce relation-changing modal logics. For more
details and motivations, we direct the reader to [15].

Definition 1 (Syntax). Let PROP be a countable, infinite set of propositional
symbols. The set FORM of formulas over PROP is defined as:

FORM ::= p | ¬ϕ | ϕ ∧ ψ | ♦ϕ | �ϕ,

where p ∈ PROP, � ∈ {〈sb〉, 〈br〉, 〈sw〉, 〈gsb〉, 〈gbr〉, 〈gsw〉} and ϕ,ψ ∈ FORM.
Other operators are defined as usual. In particular, �ϕ is defined as ¬�¬ϕ.

Let ML (the basic modal logic) be the logic without the {〈sb〉, 〈br〉, 〈sw〉, 〈gsb〉,
〈gbr〉, 〈gsw〉} operators, and ML(�) the extension of ML allowing also �, for
� ∈ {〈sb〉, 〈br〉, 〈sw〉, 〈gsb〉, 〈gbr〉, 〈gsw〉}.

Semantically, formulas are evaluated in standard relational models, and the
meaning of the operators of the basic modal logic remains unchanged (see [12]
for details). When we evaluate formulas containing relation-changing operators,
we will need to keep track of the edges that have been modified. To that end, let
us define precisely the models that we will use.

Definition 2 (Models and model updates). A model M is a triple M =
〈W,R, V 〉, where W is a non-empty set whose elements are called points or states,
R ⊆ W×W is the accessibility relation, and V : PROP → P(W ) is a valuation.
We define the following notation:

(sabotaging) M−
S = 〈W,R−

S , V 〉, with R−
S = R\S, S ⊆ R.

(bridging) M+
S = 〈W,R+

S , V 〉, with R+
S = R ∪ S, S ⊆ (W×W )\R.

(swapping) M∗
S = 〈W,R∗

S , V 〉, with R∗
S = (R\S−1)∪S, S ⊆ R−1.

Intuitively, M−
S is obtained from M by deleting the edges in S, and similarly

M+
S adds the edges in S to the accessibility relation, and M∗

S adds the edges in
S as inverses of edges previously in the accessibility relation.

Let w be a state in M, the pair (M, w) is called a pointed model (we will
usually drop parentheses). In the rest of this article, we will use wv as a shorthand
for {(w, v)} or (w, v); context will always disambiguate the intended use.
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Definition 3 (Semantics). Given a pointed model M, w and a formula ϕ, we
say that M, w satisfies ϕ, and write M, w |= ϕ, when

M, w |= p iff w ∈ V (p)
M, w |= ¬ϕ iff M, w 
|=ϕ
M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ
M, w |= ♦ϕ iff for some v ∈ W s.t. (w, v) ∈ R,M, v |= ϕ
M, w |= 〈sb〉ϕ iff for some v ∈ W s.t. (w, v) ∈ R,M−

wv, v |= ϕ
M, w |= 〈br〉ϕ iff for some v ∈ W s.t. (w, v) 
∈ R,M+

wv, v |= ϕ
M, w |= 〈sw〉ϕ iff for some v ∈ W s.t. (w, v) ∈ R,M∗

vw, v |= ϕ
M, w |= 〈gsb〉ϕ iff for some v, u ∈ W, s.t. (v, u) ∈ R,M−

vu, w |= ϕ
M, w |= 〈gbr〉ϕ iff for some v, u ∈ W, s.t. (v, u) 
∈ R,M+

vu, w |= ϕ
M, w |= 〈gsw〉ϕ iff for some v, u ∈ W, s.t. (v, u) ∈ R,M∗

uv, w |= ϕ.

We say ϕ is satisfiable if for some pointed model M, w, we have M, w |= ϕ.

Notice that 〈br〉 and 〈gbr〉 always add new edges in the model, and fail in case
no new edge can be created. Other versions in which such edge is not necessarily
new could be considered, but in that case the operators would behave sometimes
as a ♦ or as a “do nothing”, respectively. However, we conjecture that similar
results could be proved for those and other versions of the operations.

Relation-changing operators can modify the accessibility relation and check
for such changes in the model, and therefore can be used to mark and check
for marked states, simulating some sort of binding. Adequately, marking and
checking states are the basic dynamic operations remember and known that can
be performed by memory logics, a formalism that we present in the next section.

3 Undecidability of Monomodal Memory Logic

Memory logics [1,19] are modal logics that can store the current state of evalua-
tion into a memory and check whether the current state belongs to this memory.
The memory is a subset of the domain of the model. We call ML( r , k ) the
memory logic that extends ML with the operators r and k , which stand for
“remember” and “known”, respectively.

Definition 4 (Syntax). Let PROP be a countable, infinite set of propositional
symbols. The set FORM of formulas over PROP is defined as:

FORM ::= p | k | ¬ϕ | ϕ ∧ ψ | ♦ϕ | r ϕ,

where p ∈ PROP and ϕ,ψ ∈ FORM. Other operators are defined as usual.

Definition 5 (Semantics). A model M = 〈W,R, V, S〉 is a relational model
equipped with a set S ⊆ W called the memory. Let w be a state in W . The
inductive definition of satisfiability for the cases specific to memory logic is:

〈W,R, V, S〉, w |= r ϕ iff 〈W,R, V, S ∪ {w}〉, w |= ϕ
〈W,R, V, S〉, w |= k iff w ∈ S.
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The remaining cases coincide with the semantics of ML, and do not involve the
memory.

An ML( r , k )-formula ϕ is satisfiable if there are a model M = 〈W,R, V, ∅〉
and w ∈ W such that M, w |= ϕ. The empty initial memory ensures that no state
of the model satisfies the unary predicate k unless a formula r ψ has previously
been evaluated there.

Multimodal memory logic is shown to be undecidable in [7]. We strengthen
this result, showing that undecidability holds also in the monomodal case.

Theorem 1. The satisfiability problem of ML( r , k ) is undecidable.

Proof. The problem of concept consistency in the description logic ALCself is
undecidable [18]. Let us name Tiling(t) the concept defined in [18] that encodes
an instance t of the (undecidable) problem of tiling the plane. A reduction of
Tiling to the satisfiability problem of ML( r , k ) can be done by replacing the
ALCself operator ∀R by �, ∃R by ♦, I by r and me by k .

We previously suggested that relation-changing operators could, each one in
its own way, simulate remember and known operators. However, there is one
important difference between the r operator and relation-changing operators
like 〈sb〉. While 〈sb〉ϕ always results in a change in the model, r ϕ can leave the
memory unchanged if the current state of evaluation is already memorized. We
ignore this difference by observing that any ML( r , k )-formula can be rewritten
into an equivalent formula where every occurrence of r is “proper”, in the sense
that it actually modifies the memory.

Definition 6 (PNF). An ML( r , k )-formula is in proper normal form (PNF)
if every occurrence of a sub-formula r ψ occurs within the following sub-formula:

(¬ k ∧ r ψ) ∨ ( k ∧ ψ)

Finally, we define the notion of modal depth of an ML( r , k )-formula.

Definition 7. Given ϕ in ML( r , k ), we define the modal depth of ϕ (notation
mdϕ) as

md( k ) = 0
md(p) = 0 for p ∈ PROP

md( r ϕ) = md(ϕ)
md(¬ϕ) = md(ϕ)

md(ϕ ∧ ψ) = max{md(ϕ),md(ψ)}
md(♦ϕ) = 1 + md(ϕ).

In the next section we prove that the satisfiability problem of relation-
changing modal logics is undecidable via reductions from monomodal memory
logic. We assume that memory logic formulas are always in PNF. This is impor-
tant for structural inductive proofs.
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4 Undecidability of Relation-Changing Logics

In this section, we present satisfiability-preserving translations from ML( r , k )
to relation-changing modal logics. Combining these translations with the unde-
cidability result of Theorem 1, we can claim:

Theorem 2. The satisfiability problem of ML(�) is undecidable, for � ∈ {〈sb〉,
〈br〉, 〈sw〉, 〈gsb〉, 〈gbr〉, 〈gsw〉}.

The main idea of these translations is to simulate the behavior of ML( r , k )
without having an external memory in the model. We simulate the ability to
store states in a memory by changing the accessibility relation of a model. Check-
ing for membership in the memory is simulated by checking for changes in the
accessibility relation.

Every translation τ� from ML( r , k )-formulas to ML(�)-formulas proceeds
in two steps. For a given target logic, the translation includes a fixed part called
Struct�, that enforces constraints on the structure of the model. The second part,
called Tr�, is defined inductively on ML( r , k )-formulas, and uses the structure
provided by Struct� to simulate the r and k operators.

Sabotage Logic

Local Sabotage. In the translation to local sabotage logic, the Struct〈sb〉 sub-
formula should ensure that every state of the model can be memorized using the
expressivity of 〈sb〉. This operator changes the point of evaluation after deleting
an edge. To compensate for this, the Struct〈sb〉 formula guarantees that every
state has an edge that is deleted when the state is memorized, and a second edge
back to the original state to ensure that evaluation can continue at the correct
state. We use a spy point s to ensure this structure. The idea is illustrated in
the following image.

ϕ
. . .

s

We need to ensure that every satisfiable formula of ML( r , k ) is translated
into a satisfiable formula (and vice-versa, if the translated formula is satisfiable,
then the original formula is satisfiable, too). The image above shows an intended
model for the translated formula τ〈sb〉(ϕ). Intuitively, bold edges and arrows
correspond to the model of ϕ. The complete translation is given in Definition 8.
Here we discuss in detail how it works.

Struct〈sb〉 adds a spy state with symmetric edges between itself and all other
states. In particular, (1) in Definition 8 ensures that the evaluation state satisfies
s and that it is irreflexive, and (2) guarantees that its immediate successors
reach a state where s holds. Formulas (3) and (4) ensure that this state is the
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original s state. They work together as follows: (3) makes �♦s true in any s-
state reachable in two steps, and by deleting the traversed edges we avoid a cycle
of size two between this s-state and an immediate successor of the evaluation
state, distinguishing the original s-state from any other s-state reachable in two
steps. (4) then traverses one edge, deletes the next one, and reaches a state where
s implies ♦�¬s. This contradicts (3), unless we have arrived in the original s
state. Formulas (5), (6) and (7) mimic (2), (3) and (4), but for edges which are
removed twice. Observe that (6) now avoids a cycle of size three between any
other s-state reachable in two steps and an immediate successor of the evaluation
state. Finally, (8) and (9) ensure that the evaluation state is indeed a spy state,
i.e., that it is linked to every other state of the input model.

Tr〈sb〉 starts by placing the translation ( )′ of ϕ in a successor of the evaluation
state. Boolean cases are obvious. For the diamond case, ♦ψ is satisfied if there
is a successor v where ψ holds, but we must ensure that v is not the spy state.
For ( r ψ)′, we do a round-trip of sabotaging from the current state to the spy
state. Note that after reaching the spy state an edge does come back to the same
state where it came from, since the only accessible state where ¬♦s holds is the
one we are memorizing. For ( k )′, we check whether there is an edge pointing to
some s-state.

Definition 8. Define τ〈sb〉(ϕ) = Struct〈sb〉 ∧ Tr〈sb〉(ϕ), where:

Struct〈sb〉= s ∧ �¬s (1)

∧ �♦s (2)

∧ [sb][sb](s → �♦s) (3)

∧ �[sb](s → ♦�¬s) (4)

∧ ��(¬s → ♦s) (5)

∧ �[sb](s→[sb](�¬s→��(s→�♦s))) (6)

∧ �[sb](s→�(�¬s→��(s→♦�¬s))) (7)

∧ ���(s → �♦s) (8)

∧ ��[sb](s → ♦�¬s) (9)

Tr〈sb〉(ϕ) = ♦(ϕ)′, with:

(p)′ = p for p ∈ PROP appearing in ϕ
( k )′ = ¬♦s
(¬ψ)′ = ¬(ψ)′

(ψ ∧ χ)′ = (ψ)′ ∧ (χ)′

(♦ψ)′ = ♦(¬s ∧ (ψ)′)
( r ψ)′ = 〈sb〉(s ∧ 〈sb〉(¬♦s ∧ (ψ)′))

Proposition 1. If 〈W,R, V 〉, w |= Struct〈sb〉, then for every state v ∈ W \ {w}
there exists exactly one state v′ such that (v, v′), (v′, v) ∈ R and v′ ∈ V (s).

Lemma 1. Let ϕ be an ML( r , k )-formula in PNF that does not contain the
propositional symbol s. Then, ϕ is satisfiable iff τ〈sb〉(ϕ) is satisfiable.



8 C. Areces et al.

Proof. (⇐) Suppose 〈W,R, V 〉, s |= τ〈sb〉(ϕ). Let W ′ = W\V (s), R′ = R∩ (W ′ ×
W ′) and V ′(p) = V (p) ∩ W ′ for all p ∈ PROP. By definition of Tr〈sb〉 there is
w′ ∈ W ′ such that (s, w′) ∈ R and 〈W,R, V 〉, w′ |= (ϕ)′.

Now, let ψ be a sub-formula of ϕ, v ∈ W ′, S ⊆ W ′ and RS = R\{(v, s), (s, v) |
v ∈ S}. We prove by structural induction on ψ that 〈W ′, R′, V ′, S〉, v |=
ψ if, and only if, 〈W,RS , V 〉, v |= (ψ)′. In particular, this will prove that
〈W ′, R′, V ′, ∅〉, w′ |= ϕ if, and only if, 〈W,R, V 〉, w′ |= (ϕ)′.

The propositional, Boolean and modal cases are trivial. For ψ = k , we
should prove that 〈W ′, R′, V ′, S〉, v |= k if, and only if, 〈W,RS , V 〉, v |= ¬♦s.
However this is immediate by definition of S and RS and Proposition 1.

For the last case, consider ψ = ¬ k ∧ r χ (remember that formulas are
in PNP), so we should prove that 〈W ′, R′, V ′, S〉, v |= ¬ k ∧ r χ if, and only if,
〈W,RS , V 〉, v |= ♦s∧〈sb〉(s∧〈sb〉(¬♦s∧(χ)′. Again, the equivalence is immediate
by Proposition 1.

(⇒) Suppose 〈W,R, V, ∅〉, w |= ϕ. We build a model for τ〈sb〉(ϕ) by adding
the necessary parts to this model, that are, the spy state and the round-trip
paths. Define 〈W ′, R′, V ′〉 as follows. Let s /∈ W some state, W ′ = W ∪{s}, R′ =
R∪{(x, s), (s, x) | x ∈ W}, V ′(s) = {s} and V ′(p) = V (p) for p ∈ PROP\{s}. By
construction, 〈W ′, R′, V ′〉, s |= Struct〈sb〉, so Proposition 1 holds. We prove that
for all ψ sub-formula of ϕ, v ∈ W , S ⊆ W and R′

S = R′\{(x, s), (s, x) | x ∈ S},
〈W,R, V, S〉, v |= ψ iff 〈W ′, R′

S , V ′〉, v |= (ψ)′. This can be done by structural
induction on ψ using Proposition 1. This proves that 〈W,R, V, ∅〉, w |= ϕ iff
〈W ′, R′, V ′〉, s |= τ〈sb〉(ϕ), so τ〈sb〉(ϕ) is satisfiable.

Global Sabotage. In [16] it is shown that multimodal sabotage logic is undecidable
via a reduction of the Post Correspondence Problem. The present proof extends
this result to the monomodal case via a reduction of the satisfiability problem
of the memory logic ML( r , k ). The notation �iϕ is defined as �0ϕ = ϕ and
�n+1ϕ = ��nϕ.

One piece of data needed to build τ〈gsb〉(ϕ) is the modal depth of the input
formula (md(ϕ)). Up to the depth indicated by this value, Struct〈gsb〉(ϕ) adds
to every state a transition to some state where s holds (In fact, this latter state
can be shared among several states of the input model.) It is as if each state
of the input model had a flag that could be turned on to identify the state.
Thus, remembering some state is simulated with Tr〈gsb〉( r ) by deleting the edge
between the state and its s-successor. For Tr〈gsb〉( k ), we check whether the
current state has an s-successor. The idea is illustrated in the following image.

ϕ
. . .

s s

s

Definition 9. Define τ〈gsb〉(ϕ) = Struct〈gsb〉(ϕ) ∧ Tr〈gsb〉(ϕ), where:

Struct〈gsb〉(ϕ) = ¬s ∧ ∧

0≤i≤md(ϕ)

�i(¬s → ♦s)



Undecidability of Relation-Changing Modal Logics 9

Tr〈gsb〉(p) = p for p ∈ PROP appearing in ϕ
Tr〈gsb〉( k ) = ¬♦s
Tr〈gsb〉(¬ψ) = ¬Tr〈gsb〉(ψ)
Tr〈gsb〉(ψ ∧ χ) = Tr〈gsb〉(ψ) ∧ Tr〈gsb〉(χ)
Tr〈gsb〉(♦ψ) = ♦(¬s ∧ Tr〈gsb〉(ψ))
Tr〈gsb〉( r ψ) = 〈gsb〉(¬♦s ∧ Tr〈gsb〉(ψ))

Proposition 2. Let dist(a, b) the minimal number of R-steps to reach some
state b from some state a. Let ϕ some memory logic formula. If 〈W,R, V 〉, w |=
Struct〈gsb〉(ϕ), then for all x ∈ W such that dist(w, x) ≤ md(ϕ), x has a succes-
sor where s holds.

Proposition 3. If 〈W,R, V 〉, w |= ♦s ∧ 〈gsb〉¬♦s, then w has one and only one
successor where s holds.

Lemma 2. Let ϕ be an ML( r , k )-formula in PNF that does not contain the
propositional symbol s. Then, ϕ is satisfiable iff τ〈gsb〉(ϕ) is satisfiable.

Proof. (⇐) Suppose 〈W,R, V 〉, w |= τ〈gsb〉(ϕ). Let W ′ = W\V (s), R′ = R∩(W ′×
W ′), and V ′(p) = V (p) ∩ W ′ for p ∈ PROP \ {s}. We should prove that for all ψ
sub-formula of ϕ of modal depth md(ψ) ≤ md(ϕ)−dist(w, v), v ∈ W ′ accessible
from w within md(ϕ) steps, S ⊆ W ′, and RS = R \ {(x, y) | |x ∈ S, y ∈ V (s)},
then 〈W ′, R′, V ′, S〉, v |= ψ iff 〈W,RS , V 〉, v |= Tr〈gsb〉(ψ).

The proof is by structural induction on ψ. The non-memory cases are easy.
For the k case, we should show that 〈W ′, R′, V ′, S〉, v |= k iff 〈W,RS , V 〉, v |=
¬♦s, this is immediate by Proposition 2 and the definitions of S and RS .

Then for the remaining case, we have to show that 〈W ′, R′, V ′, S〉, v |= ¬ k ∧
r χ iff 〈W,RS , V 〉, v |= ♦s ∧ 〈gsb〉(¬♦s ∧ Tr〈gsb〉(χ)), which can be proved using

the definition of |=, IH and Proposition 3.
(⇒) Suppose 〈W,R, V, ∅〉, w |= ϕ. Let s /∈ W . Define 〈W ′, R′, V ′〉, where

W ′ = W ∪{s}, R′ = R∪{(v, s) | v ∈ W}, V ′(s) = {s}, and V ′(p) = V (p), for p ∈
PROP appearing in ϕ. It is easy to check that 〈W ′, R′, V ′〉, w |= Struct〈gsb〉(ϕ),
hence Proposition 2 holds. Then, let us prove that for all ψ sub-formula of ϕ
of modal depth md(ψ) ≤ md(ϕ) − dist(w, v), v ∈ W accessible from w within
md(ϕ) steps, S ⊆ W and R′

S = R′ \ {(x, s) | x ∈ S}, we have the equivalence
〈W,R, V, S〉, v |= ψ iff 〈W ′, R′

S , V ′〉, v |= Tr〈gsb〉(ψ). This is done by structural
induction on ψ. For the case k the equivalence is immediate, and for the case
¬ k ∧ r χ, Proposition 3 provides the equivalence needed.

Bridge Logic

Local Bridge. For local bridge logic, we use a spy state that is initially discon-
nected from the input model. When some state should be memorized, the spy
state gets connected (in both directions) to it. This construction is quite special
since we do not have pre-built gadgets in the input model, as they get built on
demand.
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Let us first show the following result, that enables us to force the evaluation
state to be the only one in the model to satisfy s:

Lemma 3. Let ϕ = s ∧ �⊥ ∧ [br](s→[br]¬s). If M, w |= ϕ, then w is the only
state in the model M where s holds.

Proof. First, w obviously satisfies s and does not have any successor. Now, we
have M, w |= [br](s→[br]¬s). In particular this means that M+

ww, w |= s→[br]¬s,
hence M+

ww, w |= [br]¬s. Since in M+
ww, the state w is only connected to itself,

this means that for all v 
= w, we have M+
ww,wv, v |= ¬s, this also means that

M, v 
|= s for all v 
= w.

For Bridge Logics, Struct〈br〉 adds to the input model a spy state in which s
holds. By Lemma 3, (1) in Definition 10 ensures that the evaluation state has
no successor and is the only state in the model where s holds. And (2) ensures
that there are no edges from ¬s-states (anywhere in the model) to the spy state.
The idea is illustrated in the following image, where t is a propositional symbol
used in Tr〈br〉(ϕ) and dotted lines represent edges created with the 〈br〉 operator.

ϕ
. . .t

s

Definition 10. Define τ〈br〉(ϕ) = Struct〈br〉 ∧ Tr〈br〉(ϕ), where:

Struct〈br〉= s ∧ �⊥ ∧ [br](s→[br]¬s) (1)

∧ [br](¬s → �¬s) (2)

Tr〈br〉(ϕ) = 〈br〉(¬s ∧ t ∧ 〈br〉(¬s ∧ ¬t ∧ (ϕ)′)), with:

(p)′ = p for p ∈ PROP appearing in ϕ
( k )′ = ♦s
(¬ψ)′ = ¬(ψ)′

(ψ ∧ χ)′ = (ψ)′ ∧ (χ)′

(♦ψ)′ = ♦(¬s ∧ ¬t ∧ (ψ)′)
( r ψ)′ = 〈br〉(s ∧ 〈br〉(¬s ∧ ♦s ∧ (ψ)′))

Tr〈br〉(ϕ) first creates two edges until a ¬s-state, where the translation of ϕ
holds. For Tr〈br〉( r ) we do a round-trip of bridging from the current state to
the spy state. Note that the second part of this round-trip has to be from the
spy state to the remembered state, since it is the only way to satisfy 〈br〉(♦s).
Also note that this would not work if the s state was directly connected to the
input model; this is why we use the intermediate t-state. For Tr〈br〉( k ) we check
whether there is an edge to a state where s holds.

Proposition 4. Let 〈W,R, V 〉 a model such that there is a unique state s where
s holds, there is no state x ∈ W such that (x, s) ∈ R, and there is a component
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C ⊆ W such that s /∈ C and for all y ∈ C, (s, y) /∈ R. Let S ⊆ C and RS =
R ∪ {(x, s), (s, x) | x ∈ S}.

Then in the model 〈W,RS , V 〉, evaluating the formula 〈br〉(s∧〈br〉♦s) at some
state y ∈ C \ S changes the evaluation state to s, then again to the same state
y adding the edges (y, s) and (s, y) to the relation.

Lemma 4. Let ϕ be an ML( r , k )-formula in PNF that does not contain the
propositional symbols s and t. Then, ϕ is satisfiable iff τ〈br〉(ϕ) is satisfiable.

Proof. (⇐) Suppose 〈W,R, V 〉, s |= τ〈br〉(ϕ). Define M′ = 〈W ′, R′, V ′, ∅〉 with
W ′ = (W \ V (s)) \ V (t), R′ = R ∩ (W ′ × W ′), and V ′(p) = V (p) ∩ W ′ for
all p ∈ PROP. By definition of Tr〈br〉 there is w′ ∈ W ′ such that s 
= w′ and
〈W,R, V 〉, w′ |= (ϕ)′.

Let ψ a sub-formula of ϕ, v ∈ W ′, S ⊆ W ′, and RS = R ∪{(x, s), (x, v) | x ∈
S}, then we will prove that 〈W ′, R′, V ′, S〉, v |= ψ iff 〈W,RS , V 〉, v |= (ψ)′.

We prove it by structural induction on ψ. For the ¬ k ∧ r χ case, suppose
〈W ′, R′, V ′, S〉, v |= ¬ k ∧ r χ. By definition, this is equivalent to 〈W ′, R′, V ′, S∪
{v}〉, v |= χ with v /∈ S, Then, by definition of RS and inductive hypothesis
we get 〈W, (RS)+{(v,s),(s,v)}, V 〉, s |= (χ)′, with (v, s) /∈ RS and (s, v) /∈ RS . By
Proposition 4, this is equivalent to 〈W,RS , V 〉, v |= ¬♦s∧〈br〉(s∧〈br〉(♦s∧(χ)′)).
thus we have 〈W,RS , V 〉, v |= (¬ k ∧ r χ)′.

(⇒) Suppose 〈W,R, V, ∅〉, w |= ϕ. Let s, t /∈ W . Define M′ = 〈W ′, R, V ′〉
such that W ′ = W ∪ {s, t}, V ′(s) = {s}, V ′(t) = {t} and V ′(p) = V (p) for
p ∈ PROP appearing in ϕ. We can easily check that 〈W ′, R, V ′〉, s |= Struct〈br〉,
and we can also check by structural induction on ϕ that 〈W,R, V, S〉, w |= ϕ iff
〈W ′, RS , V ′〉, s |= Tr〈br〉(ϕ), where RS = R ∪ {(v, s), (s, v) | v ∈ S}.

Global Bridge. The global bridge operator is able to add edges in the model.
This is why, to mark some state, we use this operator to add an edge to some
s-state. Then, we enforce that the initial model does not have any reachable
s-state.

Here Struct〈gbr〉(ϕ) ensures that no state of the input model has s-successors.
Storing a state in the memory is simulated by creating an edge to an s-state, and
checking whether the current state of evaluation is in the memory is simulated
by checking the presence of an s-successor. Observe that we could have either
one state where s holds or (possibly) different s-states for each state of the input
model.

ϕ
. . .

s
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Definition 11. Define τ〈gbr〉(ϕ) = Struct〈gbr〉(ϕ) ∧ Tr〈gbr〉(ϕ), where:

Struct〈gbr〉(ϕ) =
∧

0≤i≤md(ϕ)+1

�i¬s

Tr〈gbr〉(p) = p for p ∈ PROP appearing in ϕ
Tr〈gbr〉( k ) = ♦s
Tr〈gbr〉(¬ψ) = ¬Tr〈gbr〉(ψ)
Tr〈gbr〉(ψ ∧ χ) = Tr〈gbr〉(ψ) ∧ Tr〈gbr〉(χ)
Tr〈gbr〉(♦ψ) = ♦(¬s ∧ Tr〈gbr〉(ψ))
Tr〈gbr〉( r ψ) = 〈gbr〉(♦s ∧ Tr〈gbr〉(ψ))

Lemma 5. Let ϕ be an ML( r , k )-formula in PNF that does not contain the
propositional symbol s. Then, ϕ is satisfiable iff τ〈gbr〉(ϕ) is satisfiable.

Swap Logic

Local Swap. We introduce a new version of the translation given in [4] that uses
only one propositional symbol. The idea is that we have each state pointing
to some states called switch states, and memorizing a state is represented by
swapping such edges. Then, no edge pointing to a switch means that the state
has been memorized. We use the notation �(n)ϕ for

∧

1≤i≤n

�iϕ.

In this case Struct〈sw〉 adds “switch states”, which are in one-to-one corre-
spondence with the states of the input model, together with a spy state. By (2)
in Definition 12, each ¬s-state at one, two and three steps from the evaluation
state, has a unique dead-end successor where s holds (switch state). By (3) and
(4), switch states (corresponding to states at distance 1, 2 and 3) can be reached
from the evaluation state by a unique path. (5) makes the evaluation state a spy
state. All these conjuncts together ensure that switch states are independent one
from another. The idea is illustrated in the following image.

ϕ
. . .

s

s s

s

Definition 12. Define τ〈sw〉 = Struct〈sw〉 ∧ Tr〈sw〉(ϕ), where:

Struct〈sw〉=
s ∧ �¬s (1)

∧ �(3)(¬s → Uniq) (2)

∧ �[sw](s → ���(s → �⊥) (3)

∧ ��[sw](s → ���(s → �⊥) (4)

∧ [sw][sw](¬s→〈sw〉(s ∧ ♦((�¬s)→♦♦(s ∧ ♦¬♦s)))) (5)

Uniq = ♦(s ∧ �⊥) ∧ [sw](s → �¬♦s)
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Tr〈sw〉(ϕ) = ♦(ϕ)′, with:

(p)′ = p for p ∈ PROP appearing in ϕ
( k )′ = ¬♦s
(¬ψ)′ = ¬(ψ)′

(ψ ∧ χ)′ = (ψ)′ ∧ (χ)′

(♦ψ)′ = ♦(¬s ∧ (ψ)′)
( r ψ)′ = 〈sw〉(s ∧ ♦(ψ)′)

For Tr〈sw〉( r ϕ) we traverse and swap the edge between the current state
and its switch state, and come back to the same state. For Tr〈sw〉( k ), we check
whether the current state has not an edge to its switch state.

Proposition 5. Let 〈W,R, V 〉, s |= Struct〈sw〉, W ′ = W \ V (s) and S ⊆ W ′.
Then T = {(v′, v) | v ∈ S ∧ (v, v′) ∈ R ∧ v′ ∈ V (s)} is a bijection.

Lemma 6. Let ϕ be an ML( r , k )-formula in PNF that does not contain the
propositional symbol s. Then, ϕ is satisfiable iff τ〈sw〉(ϕ) is satisfiable.

Proof. (⇐) From a pointed model 〈W,R, V 〉, w of τ〈sw〉(ϕ) we can extract a
pointed model 〈W ′, R′, V ′, ∅〉, w′ satisfying ϕ following the same definition as in
the proof of Lemma 1.

For all ψ sub-formula of ϕ, v ∈ W ′, S ⊆ W ′, T = {(v′, v) | v ∈ S ∧ (v, v′) ∈
R∧v′ ∈ V (s)} and RS = (R\T−1)∪T , we will prove that 〈W ′, R′, V ′, S〉, v |= ψ
if, and only if, 〈W,RS , V 〉, v |= (ψ)′.

We do it by structural induction on ψ. We prove the ¬ k ∧ r χ case. Suppose
〈W ′, R′, V ′, S〉, v |= ¬ k ∧ r χ. Then by definition, v /∈ S and 〈W ′, R′, V ′, S ∪
{v}〉, v |= χ, and by Proposition 5, we have (v, v′) ∈ RS for a unique v′ ∈ V (s).
Then, by definition of RS and inductive hypothesis we get 〈W, (RS)∗

v′v, V 〉, v |=
(χ)′. By definition of |= and by Proposition 5, 〈W, (RS)∗

v′v, V 〉, v′ |= s ∧ ♦(χ)′,
and again, 〈W,RS , V 〉, v |= ♦s ∧ 〈sw〉(s ∧ ♦(χ)′), thus we have, equivalently,
〈W,RS , V 〉, v |= (¬ k ∧ r χ)′.

(⇒) Suppose 〈W,R, V, ∅〉, w |= ϕ. Let sw be a bijective function between W
and a set U such that U ∩ W = ∅, and s /∈ U ∪ W . Define M′ = 〈W ′, R′, V ′〉
such that W ′ = W ∪ {s} ∪ U , R′ = R ∪ {(s, w) | w ∈ W} ∪ {(w, sw(w)) | w ∈
W}, V ′(s) = {s} ∪ U , and V ′(p) = V (p) for p ∈ PROP appearing in ϕ. It
is easy to check that 〈W ′, R′, V ′〉, s |= Struct〈sw〉, in particular, Proposition 5
is relevant. Then, we can easily prove that for all ψ sub-formula of ϕ, v ∈
W , S ⊆ W , T = {(sw(v), v) | v ∈ S} and R′

S = (R′\T−1) ∪ T , we have
the equivalence 〈W,R, V, S〉, v |= ψ iff 〈W ′, R′

S , V ′〉, v |= (ψ)′. This is done by
structural induction on ψ.

Global Swap. The global swap operator is able to change the direction of some
edge in the model. In particular, we are interested in the ability to swap, for
some state, an incoming edge (undetectable for the basic modal logic) into an
outgoing edge. This is why this translation is similar to the one of global bridge
logic. Initially, the model does not have any reachable state where s holds. As
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for global sabotage and global bridge, there may be many states where s holds
in the model with edges to states of the input model. The idea is illustrated in
the following image, where only one s state is shown.

ϕ
. . .

s

Definition 13. Define τ〈gsw〉(ϕ) = Struct〈gsw〉(ϕ) ∧ Tr〈gsw〉(ϕ), where:

Struct〈gsw〉(ϕ) =
∧

0≤i≤md(ϕ)+1

�i¬s

Tr〈gsw〉(p) = p for p ∈ PROP appearing in ϕ
Tr〈gsw〉( k ) = ♦s
Tr〈gsw〉(¬ψ) = ¬Tr〈gsw〉(ψ)
Tr〈gsw〉(ψ ∧ χ) = Tr〈gsw〉(ψ) ∧ Tr〈gsw〉(χ)
Tr〈gsw〉(♦ψ) = ♦(¬s ∧ Tr〈gsw〉(ψ))
Tr〈gsw〉( r ψ) = 〈gsw〉(♦s ∧ Tr〈gsw〉(ψ))

Proposition 6. Let 〈W,R, V 〉, w |= ¬♦s ∧ 〈gsw〉♦s. Then, by the semantics of
the global swap operator, there exists a state v ∈ W \ {w} such that (v, w) ∈ R
and v ∈ V (s).

Lemma 7. Let ϕ be an ML( r , k )-formula in PNF that does not contain the
propositional symbol s. Then, ϕ is satisfiable iff τ〈gsw〉(ϕ) is satisfiable.

5 Conclusions

We exploited the similarities between memory logic and relation-changing logics
to obtain simple and non-redundant undecidability proofs. We first presented an
undecidability result for memory logics in the monomodal case, by adapting the
proof introduced in [18] for ALCself. Then, we presented translations from the
satisfiability problem of monomodal memory logics to all six relation-changing
modal logics. Both results combined show undecidability of the satisfiability
problem for relation-changing modal logics in a very simple way. These results
complete the picture of the computational behaviour of relation-changing logics,
given that we already know that model checking for them is PSPACE-complete
[2,4,5,15].

This high complexity of the logics is a consequence of the degree of liberty
we give to the operators. By replacing arbitrary modifications with conditional
modifications (i.e., according to a pre- and a post-condition) it is possible to
decrease the complexity and get decidable logics (e.g., as in [9,10]).
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A related problem is the one of finite satisfiability. Indeed, for many applica-
tions of dynamic epistemic logic, we are only interested in looking for finite mod-
els. Finite satisfiability is known to be undecidable for multimodal global
sabotage logic [20], and decidable for monomodal local sabotage and local swap
logics [6]. It remains to see the status of this problem for all remaining cases.
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