
From Conjunctive Queries to Instance Queries in Ontology-Mediated Querying

Cristina Feier1, Carsten Lutz1, Frank Wolter2,
1 Unversity of Bremen, Germany
2 University of Liverpool, UK

feier@uni-bremen.de, clu@uni-bremen.de, wolter@liverpool.ac.uk

Abstract
We consider ontology-mediated queries (OMQs)
based on expressive description logics of the ALC
family and (unions) of conjunctive queries, study-
ing the rewritability into OMQs based on instance
queries (IQs). Our results include exact character-
izations of when such a rewriting is possible and
tight complexity bounds for deciding rewritability.
We also give a tight complexity bound for the re-
lated problem of deciding whether a given MMSNP
sentence is equivalent to a CSP.

1 Introduction
An ontology-mediated query (OMQ) is a database-style
query enriched with an ontology that contains domain knowl-
edge, aiming to deliver more complete answers [Calvanese et
al., 2009; Bienvenu et al., 2014; Bienvenu and Ortiz, 2015].
In OMQs, ontologies are often formulated in a description
logic (DL) and query languages of interest include conjunc-
tive queries (CQs), unions of conjunctive queries (UCQs),
and instance queries (IQs). While CQs and UCQs are widely
known query languages that play a fundamental role also in
database systems and theory, IQs are more closely linked
to DLs. In fact, an IQ takes the form C(x) with C a con-
cept formulated in the DL that is also used for the ontology,
and thus the expressive power of IQs depends on the ontol-
ogy language. OMQs based on (U)CQs are more powerful
than OMQs based on IQs as the latter only serve to return all
objects from the data that are instances of a given class.

It is easy to see that IQs can express tree-shaped CQs with
a single answer variable as well as unions thereof. In fact,
this observation has been used in many technical construc-
tions in the area, see for example [Calvanese et al., 1998;
Glimm et al., 2008; Lutz, 2008; Eiter et al., 2012a]. In-
triguingly, though, it was observed by Zolin [2007] that tree-
shaped CQs are not the limit of IQ-rewritability when we
have an expressive DL such as ALC or ALCI at our dis-
posal. For example, the CQ r(x, x), which asks to return all
objects from the data that are involved in a reflexive r-loop,
can be rewritten into the equivalent ALC-IQ P → ∃r.P (x).
Here, P behaves like a monadic second-order variable due to
the open-world assumption made for OMQs: we are free to
interpret P in any possible way and when making P true at

an object we are forced to make also ∃r.P true if and only if
the object is involved in a reflexive r-loop. It is an interest-
ing question, raised in [Zolin, 2007; Kikot and Zolin, 2013;
Kikot et al., 2013], to precisely characterize the class of CQs
that are rewritable into IQs. An important step into this di-
rection has been made by Kikot and Zolin [2013] who iden-
tify a large class of CQs that are rewritable into IQs: a CQ is
rewritable into anALCI-IQ if it is connected and every cycle
passes through the (only) answer variable; for rewritability
into an ALC-IQ, one additionally requires that all variables
are reachable from the answer variable in a directed sense.
It remained open whether these classes are depleting, that is,
whether they capture all CQs that are IQ-rewritable.

There are two additional motivations to study the stated
question. The first one comes from concerns about the prac-
tical implementation of OMQs. When the ontology is for-
mulated in a more inexpressive ‘Horn DL’, OMQ evalua-
tion is possible in PTIME data complexity and a host of
techniques for practically efficient OMQ evaluation is avail-
able, see for example [Pérez-Urbina et al., 2010; Eiter et
al., 2012b; Trivela et al., 2015; Lutz et al., 2009]. In the
case of expressive DLs such as ALC and ALCI, OMQ
evaluation is CONP-complete in data complexity and effi-
cient implementation is much more challenging. In partic-
ular, there are hardly any systems that fully support such
OMQs when the actual queries are (U)CQs. In contrast,
the evaluation of OMQs based on (expressive DLs and)
IQs is supported by several systems such as Pellet, Her-
mit, and PAGOdA [Sirin et al., 2007; Glimm et al., 2014;
Zhou et al., 2015]. For this reason, rewriting (U)CQs into IQs
has been advocated in [Zolin, 2007; Kikot and Zolin, 2013;
Kikot et al., 2013] as an approach towards efficient OMQ
evaluation with expressive DLs and (U)CQs. The experi-
ments and optimizations reported in [Kikot et al., 2013] show
the potential (and challenges) of this approach.

The second motivation stems from the connection between
OMQs and constraint satisfaction problems (CSPs) [Bien-
venu et al., 2014; Lutz and Wolter, 2017]. Let (L,Q) de-
note the class of OMQs based on ontologies formulated in
the DL L and the query language Q. It was observed in [Bi-
envenu et al., 2014] that (ALCI, IQ) is closely related to the
complement of CSPs while (ALCI,UCQ) is closely related
to the complement of the logical generalization MMSNP of
CSP; we further remark that MMSNP is a notational variant

of the complement of (Boolean) monadic disjunctive Data-
log. Thus, characterizing OMQs from (ALCI,UCQ) that are
rewritable into (ALCI, IQ) is related to characterizing MM-
SNP sentences that are equivalent to a CSP, and we also study
the latter problem. In fact, the main differences to the OMQ
case are that unary queries are replaced with Boolean ones
and that predicates can have unrestricted arity.

The main aim of this paper is to study the rewritability of
OMQs from (L, (U)CQ) into OMQs from (L, IQ), consider-
ing as L the basic expressive DL ALC as well as extensions
ofALC with inverse roles, role hierarchies, the universal role,
and functional roles. We provide precise characterizations,
tight complexity bounds for deciding whether a given OMQ
is rewritable, and show how to construct the rewritten query
when it exists. In fact, we prove that the classes of CQs from
[Kikot and Zolin, 2013] are depleting, but we go significantly
beyond that: while [Zolin, 2007; Kikot and Zolin, 2013;
Kikot et al., 2013] aim to find IQ-rewritings that work for
any ontology, we consider the more fine-grained question
of rewriting into an IQ an OMQ (T ,Σ, q(x)) where T is a
DL TBox formalizing the ontology, Σ is an ABox signature,
and q(x) is the actual query. The ‘any ontology’ setup then
corresponds to the special case where T is empty and Σ is
full. However, gaving a non-empty TBox or a non-full ABox
signature results in additional (U)CQs to become rewritable.
While we admit modification of the TBox during rewriting,
it turns out that this is mostly unnecessary: only in some
rather special cases, a moderate extension of the TBox pays
off. All this requires non-trivial generalizations of the query
classes and IQ-constructions from [Kikot and Zolin, 2013].
Our completeness proofs involve techniques that stem from
the connection between OMQs and CSP such as a lemma
about ABoxes of high girth due to Feder and Vardi [1998].
The rewritings we construct are of polynomial size when we
work with the empty TBox, but can otherwise become expo-
nential in size.

Regarding IQ-rewritability as a decision problem, we show
NP-completeness for the case of the empty TBox. This
can be viewed as an underapproximation for the case with
non-empty TBox and ABox signature. With non-empty
TBoxes, complexities are higher. When the ABox signature
is full, we obtain 2EXPTIME-completeness for DLs with in-
verse roles and an EXPTIME lower bound and a CONEX-
PTIME upper bound for DLs without inverse roles. With
unrestricted ABox signature, the problem is 2NEXPTIME-
complete for DLs with inverse roles and NEXPTIME-hard
(and in 2NEXPTIME) for DLs without inverse roles. All
lower bounds hold for CQs and all upper bounds capture
UCQs. We also prove that it is 2NEXPTIME-complete to
decide whether a given MMSNP sentence is equivalent to a
CSP. This problem was known to be decidable [Madelaine
and Stewart, 2007], but the complexity was open.

We also consider ALCIF , the extension of ALCI with
functional roles, for which IQ-rewritability turns out to be un-
decidable and much harder to characterize. We give a rather
subtle characterization for the case of the empty TBox and
full ABox signature and show that the decision problem is
then decidable and NP-complete. Since it is not clear how to
apply CSP techniques, we use an approach based on ultrafil-

ters, starting from what was done forALC without functional
roles in [Kikot and Zolin, 2013].

Full proofs are in the appendix.

2 Preliminaries
We use standard description logic notation and refer to
[Baader et al., 2017] for full details. In contrast to the stan-
dard DL literature, we carefully distinguish between the con-
cept language and the TBox language. We consider four con-
cept languages. Recall that ALC-concepts are formed ac-
cording to the syntax rule

C,D ::= A | ¬C | C uD | C tD | ∃r.C | ∀r.C

where A ranges over concept names and r over role names.
As usual, we use C → D as an abbreviation for ¬C t D.
ALCI-concepts additionally admit the use of inverse roles
r− in concept constructors ∃r−.C and ∀r−.C. With a role,
we mean a role name or an inverse role. ALCu-concepts ad-
ditionally admit the use of the universal role u in concept
constructors ∃u.C and ∀u.C. In ALCIu-concepts, both in-
verse roles and the universal role are admitted.

We now introduce several TBox languages. For L one of
the four concept languages introduced above, an L-TBox is
a finite set of concept inclusions C v D where C and D
are L concepts. So each concept language also serves as a
TBox language, but there are additional TBox languages of
interest. We include the letter H in the name of a TBox lan-
guage to indicate that role inclusions r v s are also admitted
in the TBox and likewise for the letter F and functionality
assertions func(r) where in both cases r, s are role names or
inverse roles in case that the concept language used admits
inverse roles. So it should be understood, for example, what
we mean with an ALCHIu-TBox and an ALCFI-TBox.
As usual, the semantics is defined in terms of interpretations,
which take the form I = (∆I , ·I) with ∆I a non-empty do-
main and ·I an interpretation function. An interpretation is a
model of a TBox T if it satisfies all inclusions and assertions
in T , defined in the usual way. We write T |= r v s if every
model of T also satisfies the role inclusion r v s.

An ABox is a set of concept assertionsA(a) and role asser-
tions r(a, b) where A is a concept name, r a role name, and
a, b are individual names. We use ind(A) to denote the set of
all individual names that occur in A. An interpretation is a
model of an ABox A if it satisfies all concept and role asser-
tions inA, that is, a ∈ AI when A(a) is inA and (a, b) ∈ rI
when r(a, b) is in A. An ABox is consistent with a TBox T
if A and T have a common model. A signature Σ is a set of
concept and role names. We use sig(T) to denote the set of
concept and role names that occur in the TBox T , and like-
wise for other syntactic objects such as ABoxes. A Σ-ABox
is an ABox A such that sig(A) ⊆ Σ.

A conjunctive query (CQ) is of the form q(x) =
∃yϕ(x,y),where x and y are tuples of variables and ϕ(x,y)
is a conjunction of atoms of the form A(x) or r(x, y) with A
a concept name, r a role name, and x, y ∈ x ∪ y. We call
x the answer variables of q(x) and y quantified variables.
For purposes of uniformity, we use r−(x, y) as an alterna-
tive notation to denote an atom r(y, x) in a CQ. In fact, when

speaking about an atom r(x, y) in a CQ q(x), we generally
also include the case that r = s− and s(y, x) is the actual
atom in q(x), unless explicitly noted otherwise. Every CQ
q(x) = ∃yϕ(x,y) gives raise to a directed graph Gq whose
nodes are the elements of x ∪ y and that contains an edge
from x to y if ϕ(x,y) contains an atom r(x, y). The cor-
responding undirected graph is denoted Gu

q (it might contain
self loops). We can thus use standard terminology from graph
theory to CQs, saying for example that a CQ is connected. A
homomorphism from q(x) to an interpretation I is a function
h : x∪y→ ∆I such that h(x) ∈ AI for every atom A(x) of
q(x) and (h(x), h(y)) ∈ rI for every atom r(x, y) of q(x).
We write I |= q(a) and call a an answer to q(x) on I if there
is a homomorphism from q(x) to I with h(x) = a.

A union of conjunctive queries (UCQ) q(x) is a disjunction
of one or more CQs that all have the same answer variables x.
We say that a UCQ is connected if every CQ in it is. The
arity of a (U)CQ is the number of answer variables in it. For
L ∈ {ALC,ALCI,ALCu,ALCIu}, an L-instance query
(L-IQ) takes the form C(x) where C is an L concept and x a
variable. We write I |= C(a) if a ∈ CI . All instance queries
have arity 1.

An ontology-mediated query (OMQ) takes the form Q =
(T ,Σ, q(x)) with T a TBox, Σ ⊆ sig(T) ∪ sig(q) an ABox
signature, and q(x) a query.1 The arity of Q is the arity of
q(x) andQ is Boolean if it has arity zero. When Σ is sig(T)∪
sig(q), then for brevity we denote it with Σfull and speak of the
full ABox signature. LetA be a Σ-ABox. A tuple a ∈ ind(A)
is an answer to Q on A if I |= q(a) for all models I of
A and T . We say that Q is empty if for all Σ-ABoxes A,
there is no answer to Q on A. Let Q1, Q2 be OMQs, Qi =
(Ti,Σ, qi(x)) for i ∈ {1, 2}. Then Q1 is contained in Q2,
written Q1 ⊆ Q2, if for all Σ-ABoxesA, every answer to Q1

on A is also an answer to Q2 on A. Further, Q1 and Q2 are
equivalent, written Q1 ≡ Q2, if Q1 ⊆ Q2 and Q2 ⊆ Q1.

We use (L,Q) to refer to the OMQ language in which the
TBox is formulated in the language L and where the actual
queries are from the language Q, such as in (ALCF ,UCQ).
For brevity, we generally write (L, IQ) instead of (L,L′-IQ)
when L′ is the concept language underlying the TBox
language L, so for example (ALCHI, IQ) is short for
(ALCHI,ALCI-IQ).
Definition 1. Let (L,Q) be an OMQ language. An OMQ
Q = (T ,Σ, q(x)) is (L,Q)-rewritable if there is an OMQQ′

from (L,Q) such that the answers toQ and toQ′ are identical
on any Σ-ABox that is consistent with T . In this case, we say
that Q is rewritable into Q′ and call Q′ a rewriting of Q.

Let (L,Q) be an OMQ-language. IQ-rewritability in
(L,Q) is the problem to decide whether a given (unary) OMQ
Q = (T ,Σ, q(x)) from (L,Q) is (L, IQ)-rewritable; for
brevity, we simply speak of IQ-rewritability ofQwhen this is
the case. The following examples show that IQ-rewritability
of Q depends on several factors. All claims made are sanc-
tioned by results established in this paper.
Example 2. (1) IQ-rewritability depends on the topology
of the actual query. Let q1(x) = r(x, x). The OMQ

1The requirement Σ ⊆ sig(T)∪sig(q) is harmless since symbols
in the ABox that are not from sig(T)∪ sig(q) do not affect answers.

(∅,Σfull, q1(x)) is rewritable into the OMQ (∅,Σfull, C(x))
from (ALC, IQ) where C is P → ∃r.P. In contrast, let
q2(x) = ∃y s(x, y) ∧ r(y, y). The OMQ (∅,Σfull, q2(x)) is
not rewritable into an OMQ from (ALCI, IQ).

(2) If we are not allowed to extend the TBox, IQ-
rewritability depends on whether or not inverse roles are
available. Let Σ = {r, s} and q(x) = ∃y r(y, x) ∧ s(y, x).
The OMQ Q = (∅,Σ, q(x)) is rewritable into the OMQ
(∅,Σ, C(x)) from (ALCI, IQ) where C is P → ∃r−.∃s.P.
Q is also rewritable into the OMQ (T ,Σ, C ′(x)) from
(ALC, IQ) where T = {∃s.P v ∀r.P ′}, and C is P → P ′,
but it is not rewritable into any OMQ (T ,Σ, C ′′(x)) from
(ALC, IQ) with T = ∅.

(3) IQ-rewritability depends on the TBox. Let q(x) =
∃x1∃y1∃y2∃z A(x) ∧ r(x, x1) ∧ r(x1, y1) ∧ r(x1, y2) ∧
r(y1, z) ∧ r(y2, z) ∧ B1(y1) ∧ B2(y2). The OMQ
(∅,Σfull, q(x)) is not rewritable into an OMQ from
(ALCI, IQ). Let T = {A v ∃r.∃r.(B1 u B2 u
∃r.>)}. The OMQ (T ,Σfull, q(x)) is rewritable into the
OMQ (T ,Σfull, A(x)) from (ALC, IQ).

(4) IQ-rewritability depends on the ABox signature. Let
q(x) be the CQ from (3) without the atom A(x) and let T be
as in (3). The OMQ (T ,Σfull, q(x)) is not rewritable into
an OMQ from (ALCI, IQ). Let Σ = {A}. The OMQ
(T ,Σ, q(x)) is rewritable into the OMQ (T ,Σ, A(x)) from
(ALC, IQ).

Note that we are allowed to completely rewrite the TBox
when constructing IQ-rewritings, which might seem ques-
tionable from a practical perspective. Fortunately, though, it
turns out the TBox can always be left untouched or, in some
rare cases, only needs to be slightly extended. Also note that
an alternative definition of IQ-rewritability obtained by drop-
ping the restriction to ABoxes consistent with T in Defini-
tion 1. All results obtained in this paper hold under both def-
initions. We comment on this throughout the paper and refer
to the alternative version as unrestricted IQ-rewritability.

3 Characterizations
We aim to provide characterizations of OMQs that are IQ-
rewritable. On the one hand, these characterizations clarify
which OMQs are IQ-rewritable and which are not. On the
other hand, they form the basis for deciding IQ-rewritability.
We first concentrate on the case of DLs (and IQs) with inverse
roles and then move on to DLs without inverse roles. In the
final part of this section, we consider the case where the TBox
is empty, both with and without inverse roles.

3.1 The Case With Inverse Roles
To state the characterization, we need some preliminar-
ies. Let q(x) be a CQ. A cycle in q(x) is a sequence of
non-identical atoms r0(x0, x1), . . . , rn−1(xn−1, xn) in q(x),
n ≥ 1, where2

1. r0, . . . , rn−1 are (potentially inverse) roles,

2. xi 6= xj for 0 ≤ i < j < n, and x0 = xn.

2We require the atoms be non-identical to prevent r(x0, x1),
r−(x1, x0) from being a cycle (both atoms are identical).

The length of this cycle is n. We say that q(x) is x-acyclic
if every cycle in it passes through x and use qcon(x) to de-
note the result of restricting q(x) to those atoms that only use
variables reachable in Gu

q from x. Both notions are lifted to
UCQs by applying them to every CQ in the UCQ. A con-
traction of q(x) is a CQ obtained from q(x) by zero or more
variable identifications, where the identification of xwith any
other variable yields x.

Let T be an ALCHIu-TBox and q(x) a UCQ. We use
qacyc(x) to denote the UCQ that consists of all x-acyclic CQs
obtained by starting with a contraction of a CQ from q(x) and
then replacing zero or more atoms r(y, z) with s(y, z) when
T |= s v r. We write qconacyc(x) to denote (qacyc)

con(x).

Theorem 3. Let L ∈ {ALCI,ALCHI} and let Q =
(T ,Σ, q(x)) be a unary OMQ from (L,UCQ) that is non-
empty. Then the following are equivalent:

1. Q is IQ-rewritable, that is, it is rewritable into an OMQ
Q′ = (T ′,Σ, C(x)) from (L, IQ);

2. Q is rewritable into an OMQ Q′ = (T ,Σ, C(x))
from (L, IQ);

3. Q ≡ (T ,Σ, qconacyc(x)).

When L is replaced with Lu, then the same equivalences hold
except that qconacyc is replaced with qacyc.

Note that Theorem 3 excludes empty OMQs, but these
are trivially IQ-rewritable. It implies that, in the considered
cases, it is never necessary to modify the TBox when con-
structing an IQ-rewriting. Further, it emerges from the proof
that it is never necessary to introduce fresh role names in
the rewriting (while fresh concept names are crucial). Theo-
rem 3 also applies to unrestricted IQ-rewritability (where also
ABoxes are admitted that are inconsistent with the TBox from
the OMQ): unrestricted IQ-rewritability trivially implies IQ-
rewritability and the converse is an easy consequence of the
fact that every OMQ that is IQ-rewritable has an IQ-rewriting
based on the same TBox.

We now give some ideas about the proof of Theorem 3.
The most interesting implication is “1 ⇒ 3”. A central step
is to show that if Q = (T ,Σ, q(x)) is IQ-rewritable into an
OMQ Q′, then Q ⊆ Qacyc := (T ,Σ, qacyc(x)), that is, when
A |= Q(a) for some Σ-ABox A, then A |= Qacyc(a). To
this end, we first construct from A a Σ-ABox Ag of high
girth (that is, without small cycles) in a way such that (a) Ag

homomorphically maps to A and (b) from A |= Q′(a) it fol-
lows that Ag |= Q′(a), thus Ag |= Q(a). Due to the high
girth of Ag and exploiting (a variation of the) tree model
property for ALCHI, we can then show that Ag |= Q(a)
implies Ag |= Qacyc(a). Because of (a), it follows that
A |= Qacyc(a). In the direction “3 ⇒ 2”, we construct ac-
tual rewritings, based on the following lemma, an extension
of a result of Kikot and Zolin [Kikot and Zolin, 2013] with
TBoxes and ABox signatures (and UCQs instead of CQs).

Lemma 4. Let Q = (T ,Σ, q(x)) be an OMQ from
(ALCHIu,UCQ). Then

1. if q(x) is x-acyclic and connected, then Q is rewritable
into an OMQ (T ,Σ, C(x)) with C(x) anALCI-IQ and

2. if q(x) is x-acyclic, then Q is rewritable into an OMQ
(T ,Σ, C(x)) with C(x) an ALCIu-IQ.

The size of the IQs C(x) is polynomial in the size of q(x).

We give the construction of the ALCI-IQ q′(x) in Point 1
of Lemma 4. Let Q = (T ,Σ, q(x)) be an OMQ from
(ALCHIu,UCQ) with q(x) x-acyclic and connected. To
construct q′(x), we first construct for each CQ p(x) in q(x)
an ELI-concept Cp, that is, an ALCI-concept that uses only
the constructors u, ∃r.C, and ∃r−.C. In fact, since p(x) is x-
acyclic and connected, we can repeatedly choose and remove
atoms of the form r(x, y) that occur in a cycle in p(x) and will
eventually end up with a tree-shaped CQ p′(x).3 Here, tree-
shaped means that the undirected graph Gu

p′ is a tree and that
there are no multi-edges, that is, if r(y, z) is an atom, then
there is no atom s(y, z) with s 6= r. Next, extend p′(x) to
obtain another tree-shaped CQ p′′(x) by taking a fresh con-
cept name P /∈ Σ, and adding r(x′, y) and P (x′) for each
removed atom r(x, y), x′ a fresh variable. We can now view
p′′(x) as an ELI-concept Cp in the obvious way. The desired
ALCI-IQ q′(x) is (P → t

p(x) a CQ in q(x)
Cp)(x).

3.2 The Case Without Inverse Roles
We consider OMQs whose TBoxes are formulated in a DL L
that does not admit inverse roles. Note that inverse roles are
then also not admitted in the IQ used in the rewriting. We
first observe that this has less impact than one might expect:
inverse roles in the IQ-rewriting can be eliminated and in fact
Points 1 and 3 from Theorem 3 are still equivalent. However,
there is also a crucial difference: unless the universal role is
present, the elimination of inverse roles requires an extension
of the TBox and thus the equivalence of Points 1 and 2 of
Theorem 3 fails. In fact, this is illustrated by Point (2) of Ex-
ample 2. We thus additionally characterize IQ-rewritability
without modifying the TBox. We also show that, with the
universal role, it is not necessary to extend the TBox.

We start with some preliminaries. An extended conjunc-
tive query (eCQ) is a CQ that also admits atoms of the form
C(x), C a (potentially compound) concept, and UeCQs and
extended ABoxes (eABoxes) are defined analogously. The se-
mantics is defined in the expected way. Every eCQ q(x) gives
rise to an eABoxAq by viewing the variables in q(x) as indi-
vidual names and the atoms as assertions.

Let q(x) be an eCQ. We use dreach(q) to denote the set of
all variables reachable from x in the directed graph Gq and
say that q(x) is x-accessible if dreach(q) contains all vari-
ables. For V a set of variables from q(x) that includes x,
q(x)|V denotes the restriction of q(x) to the atoms that use
only variables from V .

Let T be an ALC-TBox. An eCQ p(x) is a T -decoration
of a CQ q(x) if

1. p(x) is obtained from q(x) by adding, for each y ∈
dreach(q) and each subconcept C of T , the atom C(y)
or the atom ¬C(y);

2. the eABox Ap is consistent with T .

3Note that x is the answer variable and recall that we might have
r = s− and thus also choose atoms s(y, x).

For a UCQ q(x), we use qdeco(x) to denote the UeCQ that
consists of all eCQs p(x)|dreach(p)(x), where p(x) is a T -
decoration of a CQ from q(x). We write qdecoacyc (x) to denote
(qacyc)

deco(x). We now give the results announced above.
Theorem 5. Let L ∈ {ALC,ALCH} and let Q =
(T ,Σ, q(x)) be a unary OMQ from (L,UCQ) that is non-
empty. Then the following are equivalent:

1. Q is rewritable into an OMQ from (L, IQ);

2. Q is rewritable into an OMQ (T ∪ T ′,Σ, C(x)) from
(L, IQ);

3. Q is rewritable into an OMQ from (LI, IQ);
If Σ = Σfull, then the following are equivalent:

4. Q is rewritable into an OMQQ′ = (T ,Σfull, C(x)) from
(L, IQ);

5. Q ≡ (T ,Σfull, q
deco
acyc (x)).

If, furthermore, L is replaced with Lu and LI with LIu, then
Conditions 1 to 3 are further equivalent to:

6. Q is rewritable into an OMQ Q′ = (T ,Σ, C(x)) from
(Lu, IQ).

Characterizing IQ-rewritability in the case where L ∈
{ALC,ALCH}, the TBox (is non-empty and) cannot be ex-
tended, and Σ 6= Σfull remains an open problem.

In the directions “3⇒ 2”, “5⇒ 4”, and “3⇒ 6”, we have
to construct IQ-rewritings. This is done by starting with the
rewriting from the proof of Lemma 4 and then modifying it
appropriately. As in the case of Theorem 3, it is straightfor-
ward to see that all results stated in Theorem 5 also apply to
unrestricted IQ-rewritability.

3.3 The Case of Empty TBoxes
We consider OMQs in which the TBox is empty as an im-
portant special case. Since it is then not interesting to have
an ABox signature, this corresponds to the rewritability of
(U)CQs intoL-instance queries, for some concept languageL
(and thus no OMQs are involved). The importance of this
case is due to the fact that it provides an ‘underapproxima-
tion’ of the IQ-rewritability of OMQs, while also being easier
to characterize and computationally simpler.

We say that an UCQ q(x) is L-IQ-rewritable if there is
an L-IQ q′(x) that is equivalent to q(x) in the sense that the
OMQs (∅,Σfull, q(x)) and (∅,Σfull, q

′(x)) are equivalent (and
in passing, we define the equivalence between two UCQs in
exactly the same way). The following proposition makes pre-
cise what we mean by underapproximation.
Proposition 6. Let L ∈ {ALC,ALCI,ALCu,ALCIu}.
If a UCQ q(x) is L-IQ-rewritable, then so is any OMQ
(T ,Σ, q(x)) from (LH,UCQ).

Proposition 6 is essentially a corollary of Theorem 7 below.
As illustrated by Case (3) of Example 2, its converse fails.

We now characterize IQ-rewritability in the case of the
empty TBox. A subquery of a CQ q(x) is a CQ q′(x) ob-
tained from q(x) by dropping atoms. A subquery of a UCQ
q(x) is a UCQ obtained by including as a CQ at most one
subquery of each CQ in q(x).

Theorem 7. Let q(x) be a UCQ. Then
1. q(x) is rewritable into an ALCI-IQ iff there is a sub-

query q′(x) of q(x) that is x-acyclic, connected, and
equivalent to q(x);

2. q(x) is rewritable into anALC-IQ iff there is a subquery
q′(x) of q(x) that is x-acyclic, x-accessible, and equiv-
alent to q(x).

When L-IQs are replaced with Lu-IQs, then the same equiv-
alences hold except that connectedness/x-accessibility is
dropped.

Note that Theorem 7 also characterizes rewritability of
CQs; the query q′(x) is then also a CQ rather than a UCQ.
This is in contrast to Theorems 3 and 5 where the queries
qconacyc(x) and qdecoacyc (x) are UCQs even when the query q(x)
from the OMQ that we start with is a CQ. Another crucial
difference is that qconacyc(x) and qdecoacyc (x) can be of size expo-
nential in the size of the original OMQ while the query q′(x)
in Theorem 7 is of size polynomial in the size of q(x).

4 Complexity
We determine the complexity of deciding IQ-rewritability in
various OMQ languages, based on the established characteri-
zations and starting with the case of empty TBoxes.
Theorem 8. For every Q ∈ {CQ,UCQ} and L ∈
{ALC,ALCI,ALCu,ALCIu}, it is NP-complete to decide
whether a given query from Q is L-IQ-rewritable.

The upper bound in Theorem 8 is by guessing the query
q′(x) from Theorem 7 and verifying that it satisfies the prop-
erties stated there. The lower bound is by a reduction from
3-colorability.

We next consider the case where TBoxes can be non-
empty, starting with the assumption that the ABox signature
is full since this results in (slightly) lower complexity.
Theorem 9. Let Q ∈ {CQ,UCQ}. For OMQs based on the
full ABox signature, IQ-rewritability is

1. EXPTIME-hard in (ALC,Q) and in CONEXPTIME in
(ALCH,Q) and

2. 2EXPTIME-complete in (ALCI,Q) and (ALCHI,Q).
The lower bounds are by reduction from OMQ evaluation

on ABoxes of the form {A(a)}, A a concept name, which
is EXPTIME-complete in (ALCH,CQ) and 2EXPTIME-
complete in (ALCHI,CQ) [Lutz, 2008]. The upper bounds
are derived from the OMQ containment checks suggested
by Condition 3 of Theorem 3 and Condition 4 of Theo-
rem 5. Since we work with the full ABox signature, the non-
emptiness condition from these theorems is void (there are
no empty OMQs) and OMQ containment is closely related to
OMQ evaluation, which allows us to derive upper bounds for
the former from the latter; in fact, these bounds are exactly
the ones stated in Theorem 9. We have to exercise some care,
for two reasons: first, we admit UCQs as the actual query and
thus the trivial reduction of OMQ containment to OMQ eval-
uation that is possible for CQs (which can be viewed as an
ABox) does not apply. And second, we aim for upper bounds
that exactly match the complexity of OMQ containment while

the UCQs qconacyc(x) and qdecoacyc (x) involved in the containment
checks are of exponential size. What rescues us is that each
of the CQs in these UCQs is only of polynomial size.

We finally consider the case where the ABox signature is
unrestricted.

Theorem 10. IQ-rewritability is

1. NEXPTIME-hard in (ALC,CQ) and

2. 2NEXPTIME-complete in all of (ALCI,CQ),
(ALCI,UCQ), (ALCHI,CQ), (ALCHI,UCQ).

The lower bound in Point 1 is by reduction from OMQ
emptiness in (ALC,CQ), which is NEXPTIME-complete
[Baader et al., 2016]. For the one in Point 2, we use a
reduction from OMQ containment, which is 2NEXPTIME-
complete in (ALCI,CQ) [Bourhis and Lutz, 2016]. The up-
per bounds are obtained by appropriate containment checks
as suggested by our characterizations, and we again have to
deal with UCQs with exponentially many CQs. Note that
Theorem 10 leaves open the complexity of IQ-rewritability
in (ALC,CQ), between NEXPTIME and 2NEXPTIME. The
same gap exists for OMQ containment [Bourhis and Lutz,
2016] as well as in the related problems of FO-rewritability
and Datalog-rewritability [Feier et al., 2017].

5 Functional Roles
We consider DLs with functional roles. A fundamental obser-
vation is that for the basic such DL ALCF , IQ-rewritability
is undecidable. This can be proved by a reduction from OMQ
emptiness in (ALCF , IQ) [Baader et al., 2016].

Theorem 11. In (ALCF ,CQ), IQ-rewritability is undecid-
able.

In the following, we show that decidability is regained in
the case where the TBox is empty (apart from functionality
assertions). This is challenging because functionality asser-
tions have a strong and subtle impact on rewritability. As
before, the only interesting ABox signature to be combined
with ‘empty’ TBoxes is the full ABox signature. We use F to
denote the TBox language in which TBoxes are sets of func-
tionality assertions and concentrate on rewriting into IQs that
may use inverse roles.

Example 12. Consider the CQ p(x) = ∃y(s(x, y) ∧ r(y, y))
from Point 1 of Example 2. Then Qs = (Ts,Σfull, p(x))
and Qr = (Tr,Σfull, p(x)) with Tw = {func(w)} for w ∈
{r, s} are both rewritable into an OMQ (Tw,Σfull, qw(x))
with qw(x) an ALCI-IQ. The rewritings are neither trivial
to find nor entirely easy to understand. In fact, for qs(x) we
can use ∀s.P → ∃s.(P → ∃r.P). For qr(x), we introduce
three fresh concept names rather than a single one and use
them in a way inspired by graph colorings:

qr(x) = (∀s. t
1≤i≤3

Pi)→ (∃s.(u
1≤i≤3

(Pi → ∃r.Pi)).

Before giving a characterization of rewritable queries, we
introduce some preliminaries. Let q(x) be a CQ and T an
ALCIF-TBox. A sequence x0, . . . , xn of variables in q(x)
is a functional path in q(x) from x0 to xn w.r.t. T if for all i <
n there is a role r such that func(r) ∈ T and r(xi, xi+1) is in

q(x). We say that q(x) is f-acyclic w.r.t. T if for every cycle
r0(x0, x1), . . . , rn−1(xn−1, xn) in q(x), one of the following
holds:
• there is a functional path in q(x) from x to some xi;

• func(ri) ∈ T or func(r−i) ∈ T for all i < n and there is
a functional path y0, . . . , ym in q(x) with x0 = y0 = ym
such that {x0, . . . , xn−1} ⊆ {y0, . . . , ym}.

We are now ready to state the characterization.
Theorem 13. An OMQ Q = (T ,Σfull, q(x)) from (F ,UCQ)
is rewritable into an OMQ from (F ,ALCI-IQ) iff there is a
subquery q′(x) of q(x) that is f-acyclic, connected, and equiv-
alent to q(x).

When ALCI-IQ is replaced with ALCIu-IQ, the same
equivalence holds except that connectedness is dropped.

The proof of Theorem 13 extends the ultrafilter construc-
tion from [Kikot and Zolin, 2013]. We remark that the
“if” direction in Theorem 13 even holds for OMQs Q =
(T ,Σ, q(x)) from (ALCIF ,UCQ). Thus, the case of the
‘empty’ TBox can again be seen as an underapproximation
of the general case. We further remark that T remains un-
changed in the construction of the IQ-rewritings and that the
constructed rewritings are of polynomial size.
Theorem 14. For OMQs from (F ,UCQ), rewritability into
(F ,ALCI-IQ) is NP-complete.

6 MMSNP and CSP
Recall from the introduction that the OMQ languages stud-
ied in this paper are closely related to CSPs and their logical
generalization MMSNP. In fact, the techniques used to estab-
lish the results in Sections 3 and 4 can be adapted to deter-
mine the complexity of deciding whether a given MMSNP
sentence is equivalent to a CSP. In a nutshell, we prove that
an MMSNP-sentence is equivalent to a CSP iff it is preserved
under disjoint union and equivalent to a generalized CSP (a
CSP with multiple templates), and that both properties can be
reduced to containment between MMSNP sentences which is
2NEXPTIME-complete [Bourhis and Lutz, 2016]. The latter
reduction involves constructing an MMSNP sentence ϕacyc

that is reminiscent of the query qacyc in Theorem 3. Full de-
tails are given in the appendix.
Theorem 15. It is 2NEXPTIME-complete to decide whether
a given MMSNP-sentence is equivalent to a CSP.

7 Conclusion
We have made a leap forward in understanding the relation
between (U)CQs and IQs in ontology-mediated querying. In-
teresting open problems include a characterization of IQ-
rewritability for DLs with functional roles when the TBox
is non-empty and characterizations for DLs with transitive
roles. The remarks after Theorem 4 and 10 mention further
problems left open. In addition, it would be worthwhile to
continue the effort from [Kikot et al., 2013] to understand the
value of IQ-rewritings for the purposes of efficient practical
implementation.
Acknowledgements. Cristina Feier and Carsten Lutz were
supported by ERC Consolidator Grant 647289 CODA. Frank
Wolter was supported by EPSRC UK grant EP/M012646/1.

References
[Baader et al., 2016] Franz Baader, Meghyn Bienvenu,

Carsten Lutz, and Frank Wolter. Query and predicate
emptiness in ontology-based data access. J. Artif. Intell.
Res., 56:1–59, 2016.

[Baader et al., 2017] Franz Baader, Ian Horrocks, Carsten
Lutz, and Ulrike Sattler. An Introduction to Description
Logic. Cambridge University Press, 2017.

[Bienvenu and Ortiz, 2015] Meghyn Bienvenu and Mag-
dalena Ortiz. Ontology-mediated query answering with
data-tractable description logics. In Proc. of Reasoning
Web, volume 9203 of LNCS, pages 218–307. Springer,
2015.

[Bienvenu et al., 2012] Meghyn Bienvenu, Carsten Lutz,
and Frank Wolter. Query containment in description logics
reconsidered. In Proc. of KR2012, 2012.

[Bienvenu et al., 2014] Meghyn Bienvenu, Balder ten Cate,
Carsten Lutz, and Frank Wolter. Ontology-based data ac-
cess: A study through disjunctive Datalog, CSP, and MM-
SNP. ACM Trans. Database Syst., 39(4):33:1–33:44, 2014.

[Blackburn et al., 2002] Patrick Blackburn, Marten de Rijke,
and Yde Venema. Modal Logic. Cambridge University
Press, 2002.

[Bourhis and Lutz, 2016] Pierre Bourhis and Carsten Lutz.
Containment in monadic disjunctive datalog, MMSNP,
and expressive description logics. In Proc. of KR, pages
207–216. AAAI Press, 2016.

[Calvanese et al., 1998] Diego Calvanese, Giuseppe De Gi-
acomo, and Maurizio Lenzerini. On the decidability
of query containment under constraints. In Proc. of
PODS1998, pages 149–158. ACM Press, 1998.

[Calvanese et al., 2009] Diego Calvanese, Giuseppe De Gia-
como, Domenico Lembo, Maurizio Lenzerini, Antonella
Poggi, Mariano Rodriguez-Muro, and Riccardo Rosati.
Ontologies and databases: The DL-Lite approach. In Proc.
of Reasoning Web 2009, volume 5689 of LNCS, pages
255–356. Springer, 2009.

[Eiter et al., 2012a] Thomas Eiter, Magdalena Ortiz, and
Mantas Simkus. Conjunctive query answering in the de-
scription logic SH using knots. J. Comput. Syst. Sci.,
78(1):47–85, 2012.

[Eiter et al., 2012b] Thomas Eiter, Magdalena Ortiz, Man-
tas Simkus, Trung-Kien Tran, and Guohui Xiao. Query
rewriting for Horn-SHIQ plus rules. In Proc. of AAAI.
AAAI Press, 2012.

[Feder and Vardi, 1998] Tomás Feder and Moshe Y. Vardi.
The computational structure of monotone monadic SNP
and constraint satisfaction: A study through datalog and
group theory. SIAM J. Comput., 28(1):57–104, 1998.

[Feier et al., 2017] Cristina Feier, Antti Kuusisto, and
Carsten Lutz. Rewritability in monadic disjunctive dat-
alog, MMSNP, and expressive description logics (invited
talk). In Proc. ICDT, volume 68 of LIPIcs, pages 1:1–
1:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2017.

[Glimm et al., 2008] Birte Glimm, Carsten Lutz, Ian Hor-
rocks, and Ulrike Sattler. Conjunctive query answering for
the description logic SHIQ. J. Artif. Intell. Res., 31:157–
204, 2008.

[Glimm et al., 2014] Birte Glimm, Ian Horrocks, Boris
Motik, Giorgos Stoilos, and Zhe Wang. Hermit: An OWL
2 reasoner. J. of Autom. Reasoning, 53(3):245–269, 2014.

[Kikot and Zolin, 2013] Stanislav Kikot and Evgeny Zolin.
Modal definability of first-order formulas with free vari-
ables and query answering. J. Applied Logic, 11(2):190–
216, 2013.

[Kikot et al., 2013] Stanislav Kikot, Dmitry Tsarkov,
Michael Zakharyaschev, and Evgeny Zolin. Query
answering via modal definability with FaCT++: First
blood. In Proc. DL, volume 1014 of CEUR Workshop
Proceedings, pages 328–340. CEUR-WS.org, 2013.

[Lutz and Wolter, 2017] Carsten Lutz and Frank Wolter. The
data complexity of description logic ontologies. Logical
Methods in Computer Science, 13(4), 2017.

[Lutz et al., 2009] Carsten Lutz, David Toman, and Frank
Wolter. Conjunctive query answering in the description
logic EL using a relational database system. In Proc. IJ-
CAI, pages 2070–2075, 2009.

[Lutz, 2008] Carsten Lutz. The complexity of conjunc-
tive query answering in expressive description logics. In
Proc. of IJCAR, volume 5195 of LNCS, pages 179–193.
Springer, 2008.

[Madelaine and Stewart, 2007] Florent R. Madelaine and
Iain A. Stewart. Constraint satisfaction, logic and forbid-
den patterns. SIAM J. Comput., 37(1):132–163, 2007.

[Pérez-Urbina et al., 2010] Héctor Pérez-Urbina, Boris
Motik, and Ian Horrocks. Tractable query answering
and rewriting under description logic constraints. JAL,
8(2):186–209, 2010.

[Schild, 1991] Klaus Schild. A correspondence theory for
terminological logics: Preliminary report. In Proc. IJCAI,
pages 466–471, 1991.

[Sirin et al., 2007] Evren Sirin, Bijan Parsia,
Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden
Katz. Pellet: A practical OWL-DL reasoner. J. Web Sem.,
5(2):51 – 53, 2007.

[Trivela et al., 2015] Despoina Trivela, Giorgos Stoilos,
Alexandros Chortaras, and Giorgos B. Stamou. Optimis-
ing resolution-based rewriting algorithms for OWL on-
tologies. J. Web Sem., 33:30–49, 2015.

[Zhou et al., 2015] Yujiao Zhou, Bernardo Cuenca Grau, Ya-
vor Nenov, Mark Kaminski, and Ian Horrocks. Pagoda:
Pay-as-you-go ontology query answering using a datalog
reasoner. J. Artif. Intell. Res., 54:309–367, 2015.

[Zolin, 2007] Evgeny Zolin. Modal logic applied to query
answering and the case for variable modalities. In Proc. of
DL, volume 250 of CEUR Workshop Proceedings. CEUR-
WS.org, 2007.

Appendices

A Some Technical Preliminaries
Every interpretation I can be viewed as an undirected graph
Gu
I , analogously to the definition of the undirected graph Gu

q
of a CQ q. The universal role does not give rise to edges
in Gu

I .
An interpretation is tree-shaped or a tree interpretation if

Gu
I is a tree and there are no multi-edges, that is, (d, e) ∈ rI

implies (d, e) /∈ sI for all (potentially inverse) roles s 6= r.
Let T be an ALCHIu-TBox and A an ABox. An interpre-
tation I is a forest model of A if there are tree interpretations
(Ia)a∈ind(A)∪D, where D is a (potentially empty) set of indi-
viduals, with mutually disjoint domains, and

∆Ia ∩ ind(A) =

{
{a}, if a ∈ ind(A)

∅, if a ∈ D,

such that I is the (non-disjoint) union of IA and
(Ia)a∈ind(A)∪D where IA is A viewed as an interpretation.
An extended forest model I of A and T is a model of A and
T that can be obtained from a forest model J of A by clos-
ing under role inclusions from T , that is, adding (d, e) to rI
when (d, e) ∈ sJ and T |= s v r ∈ T . We also say that J
underlies I.

Lemmas of the following kind have been widely used in
the literature on ontology-mediated querying. The proof of
the “if” direction uses a standard unraveling argument and is
omitted, see for example [Lutz, 2008].

Lemma 16. Let Q = (T ,Σ, q(x) be an OMQ from
(ALCHIu,UCQ), A a Σ-ABox, and a ⊆ ind(A). Then
A |= Q(a) iff for all extended forest models I of A and T ,
I |= Q(a).

We introduce some more helping lemmas. An ABoxA can
be seen as a directed graph GA and as an undirected graph
Gu
A in the expected way, analogously to the definition of Gq

and Gu
q for a CQ q. For an ABox A and a ∈ ind(A), we use

Acon
a to denote the restriction of A to the individuals reach-

able in Gu
A from a. We also denote with CONA the set of

ABoxes induced by the maximal connected components of
Gu
A.

Lemma 17. Let Q = (T ,Σ, q(x)) be an OMQ from
(ALCHI, IQ). Then A |= Q(a) implies Acon

a |= Q(a).

A homomorphism from an ABox A to an ABox B is a
function h : ind(A) → ind(B) such that A(a) ∈ A implies
A(h(a)) ∈ B and r(a, b) ∈ A implies r(h(a), h(b)) ∈ B.
We write A → B to indicate that there is a homomorphism
from A to B. For a ∈ ind(A) and b ∈ ind(B), we further
write (A, a) → (B, b) to indicate that there is a homomor-
phism h fromA to B with h(a) = b. The following lemma is
well-known, see for example [Bienvenu et al., 2014].

Lemma 18. Let Q = (T ,Σ, q) be a unary OMQ from
(ALCHIu,Q), with Q ∈ {UCQ, IQ}, A and B be Σ-
ABoxes, a ∈ ind(A), and b ∈ ind(B). Then (A, a) → (B, b)
and A |= Q(a) implies B |= Q(b).

B Proofs for Section 3
We start with introducing several lemmas concerned with cer-
tain constructions on ABoxes. These lemmas are closely re-
lated to the connection between ontology-mediated querying
and constraint satisfaction problems (CSPs), see for example
[Bienvenu et al., 2014; Lutz and Wolter, 2017].

Note that in assertions r(x, y) in an ABox, r must be a role
name but cannot be an inverse role. For purposes of unifor-
mity, we use r−(x, y) as an alternative notation to denote an
assertion r(y, x) in an ABox. A cycle in an ABox is defined
exactly like a cycle in a CQ, repeated here for convenience. A
cycle in an ABox A is a sequence of non-identical assertions
r0(a0, a1), . . . , rn−1(an−1, an) in A, n ≥ 1, where

1. r0, . . . , rn−1 are (potentially inverse) roles,
2. ai 6= aj for 0 ≤ i < j < n, and a0 = an.

The length of this cycle is n. The girth of A is the length of
the shortest cycle in it and∞ if A has no cycle.

The following is a DL formulation of what is often known
as the sparse incomparability lemma in CSP [Feder and Vardi,
1998].
Lemma 19. For every ABox A and all g, s ≥ 0, there is an
ABox Ag of girth exceeding g such that

1. Ag → A and

2. for every ABoxB with |ind(B)| ≤ s,A → B iffAg → B.

We next establish a ‘pointed’ version of Lemma 19 that is
crucial for the subsequent proofs. The a-girth of A is defined
exactly like the girth except that we only consider cycles that
do no pass through a.
Lemma 20. For all ABoxes A, a ∈ ind(A), and g, s ≥ 0,
there is an ABox Ag of a-girth exceeding g such that

1. (Ag, a)→ (A, a)

2. for every ABox B with |ind(B)| ≤ s and every b ∈
ind(B), (A, a)→ (B, b) iff (Ag, a)→ (B, b).

Proof. LetA be an ABox, a ∈ ind(A), and g, s ≥ 0. Further,
let A+ be the ABox obtained from A by adding the assertion
P (a), P a fresh concept name, let Ag

+ the ABox obtained
from A+ by applying Lemma 19 for g and s, and let h be
a homomorphism from Ag

+ to A+. Assume w.l.o.g. that the
individual name a does not occur inAg

+. We useAg to denote
the ABox obtained fromAg

+ by dropping all facts of the form
P (b) and identifying all individual names b with h(b) = a,
replacing them with a. We show that Ag is as required:
(a) Ag has a-girth higher than g.

Every cycle inAg that does not pass through a is also in
Ag

+, thus is of length exceeding g.
(b) Point 1 of Lemma 20 is satisfied.

Let h′ : ind(Ag) → ind(A) be such that h′(a) = a
and h′(b) = h(b) if a 6= b. It can be verified that h′
is a homomorphism from Ag to A. It clearly witnesses
(Ag, a)→ (A, a), as required.

(c) Point 2 of Lemma 20 is satisfied.
LetB be an ABox with |ind(B)| ≤ s and b ∈ ind(B). We
have to show that (A, a)→ (B, b) iff (Ag, a)→ (B, b).

The “only if” direction is immediate by (b). For the “if”
direction, assume that (Ag, a) → (B, b). Then Ag ∪
{P (a)} → B∪{P (b)}. This impliesAg

+ → B∪{P (b)}
and by Point 2 of Lemma 19 alsoA+ → B∪{P (b)}. As
P (a) is the only assertion of this form in A+, it follows
that (A+, a)→ (B ∪ {P (b)}, b), thus (A, a)→ (B, b).

o

The following lemma is a straightforward variation of sim-
ilar lemmas from [Bienvenu et al., 2014]. The constructed
ABoxes are called CSP templates in [Bienvenu et al., 2014].
Lemma 21. Let Q = (T ,Σ, q(x)) be an OMQ from
(ALCHIu, IQ). Then one can find a set Γ of pairs (B, b)
with B a Σ-ABox and b ∈ ind(B) such that for every Σ-ABox
A and all a ∈ ind(A),

1. A |= Q(a) iff (A, a) 6→ (B, b) for all (B, b) ∈ Γ;
2. A is consistent with T iff A → B for some (B, b) ∈ Γ.

When Q is from (ALCHI, IQ), then Γ can be chosen so that
all ABoxes in it are identical.

An ELIu-concept is an ALCI-concept that uses only the
constructors u, ∃r.C, ∃r−.C, and ∃u.C where u is the uni-
versal role.
Lemma 4. Let Q = (T ,Σ, q(x)) be an OMQ from
(ALCHIu,UCQ). Then

1. if q(x) is x-acyclic and connected, then Q is rewritable
into an OMQ (T ,Σ, C(x)) with C(x) anALCI-IQ and

2. if q(x) is x-acyclic, then Q is rewritable into an OMQ
(T ,Σ, C(x)) with C(x) an ALCIu-IQ.

The size of the IQs C(x) is polynomial in the size of q(x).
Proof. For Point 1, let Q = (T ,Σ, q(x)) be an OMQ from
(ALCHIu,UCQ) where q(x) is x-acyclic and connected.
Further, let Q′ = (T ,Σ, (P → t

p(x) a CQ in q(x)
Cp)(x)) be as

constructed in the main part of the paper. We have to show
the following:
• “Q ⊆ Q′”: Let A be a Σ-ABox with A |= Q(a). Then,

for every model I of T and A, I |= p(a), for some CQ
p(x) in q(x), and thus I |= ¬P (a) or I |= P (a)∧ p(a).
As Ap′′ → Ap ∪ {P (x)}, the latter is the same as I |=
p′′(a) or I |= Cp(a). Thus I |= (P → Cp)(a), or
I |= Q′(a).
• “Q′ ⊆ Q”: Let A be a Σ-ABox with A |= Q′(a). Then,

for every model I = (∆, ·I) of T and A, I |= (P →
t

p(x) a CQ in q(x)
Cp)(a). Then, there must be a model

I ′ = (∆, ·I′) of T and A (possibly the same as I) such
that P I

′
= {aI′} and ·I and ·I′ coincide on all other

symbols. We have I ′ |= (P → t
p(x) a CQ in q(x)

Cp)(a),

thus I ′ |= Cp(a), for some CQ p(x) in q(x). From
the construction of Cp: I ′ |= p′′(a), and from the fact
that P is interpreted as a singleton in I ′, I ′ |= p(a), or
I ′ |=

∨
p(x) a CQ in q(x) p(a). As P is fresh, and in partic-

ular does not occur in q, and I and I ′ might differ only
w.r.t. the interpretation of P : I |=

∨
p(x) a CQ in q(x) p(a).

Thus, A |= Q(a).

For Point 2, let Q = (T ,Σ, q(x)) be an OMQ
from (ALCHIu,UCQ) where q(x) is x-acyclic. Let
p0(x), p1(), . . . , pm() be the maximal connected components
of q(x). Note that p0(x) is x-acyclic and each pi() is acyclic
in the sense that it contains no cycles at all. We can view
p0(x) as an ELI-concept and each pi() as an ELIu-concept
Cpi

of the form ∃u.C with u the universal role and C an
ELI-concept. Let Cp = Cp,0 u Cp,1 u . . . u Cp,m and
Q′ = (T ,Σ, (P → t

p(x) a CQ in q(x)
Cp)(x)). One can show

that Q ≡ Q′. o

Example 22. Let Q be an OMQ (T ,Σ, q(x)) with T =
∅, Σ = {r, s, t, v}, and q(x) = ∃y1∃y2∃y3 r(x, y1) ∧
s(x, y2) ∧ t(y2, y1) ∧ v(y2, y3). It is easy to see that
q(x) is x-acyclic and connected. Towards obtaining an
ALCI-IQ rewriting, we construct a tree-shaped CQ p′′(x)
from q(x) by first removing the atom s−(y2, x) and then
adding atoms s−(y2, x

′) and P (x′), with x′ a fresh vari-
able: p′′(x) = ∃y1∃y2∃y3∃x′ P (x′)∧r(x, y1)∧s−(y2, x

′)∧
t(y2, y1)∧v(y2, y3). The concept Cq corresponding to p′′(x)
is ∃r.∃t−.(∃v.> u ∃s−.P), and thus the desired rewriting
is the OMQ Q′ = (T ,Σ, q′(x)) with q′(x) the ALCI-IQ:
(P → Cq)(x).
Theorem 3. Let L ∈ {ALCI,ALCHI} and let Q =
(T ,Σ, q(x)) be a unary OMQ from (L,UCQ) that is non-
empty. Then the following are equivalent:

1. Q is IQ-rewritable, that is, it is rewritable into an OMQ
Q′ = (T ′,Σ, C(x)) from (L, IQ);

2. Q is rewritable into an OMQ Q′ = (T ,Σ, C(x))
from (L, IQ);

3. Q ≡ (T ,Σ, qconacyc(x)).
When L is replaced with Lu, then the same equivalences hold
except that qconacyc is replaced with qacyc.
Proof. The implication “2 ⇒ 1” is trivial. For “3 ⇒ 2”,
assume that Q ≡ (T ,Σ, qconacyc(x)). Since qconacyc is connected
and x-acyclic, we can apply Lemma 4.

For “1 ⇒ 3”, we show that whenever an OMQ Q from
(L,UCQ) is IQ-rewritable, then (a) Q ≡ Qacyc where
Qacyc = (T ,Σ, qacyc(x)) and (b) Q ≡ Qcon where Qcon :=
(T ,Σ, qcon(x)). This yields Q ≡ (T ,Σ, qconacyc(x)) as desired:
if Q is IQ-rewritable, then (a) yields Q ≡ Qacyc, thus Qacyc is
IQ-rewritable and we can apply (b).

Thus, let Q from (L,UCQ) be IQ-rewritable. Thus there
is an OMQ Q′ = (T ′,Σ, C(x)) from (L, IQ) that is equiv-
alent to Q. By Lemma 21, one can find a Σ-ABox B and
b1, . . . , bk ∈ ind(B) such that for every Σ-ABox A and
a ∈ ind(A),

1. A |= Q′(a) iff (A, a) 6→ (B, bi) for 1 ≤ i ≤ k;
2. A is consistent with T ∪ T ′ iff A → B.

We show Points (a) and (b) from above.

(a) We have Qacyc ⊆ Q by definition of Qacyc, no matter
whetherQ is IQ-rewritable or not, and thus it remains to show
that Q ⊆ Qacyc. If all CQs in q(x) are x-acyclic, the result
clearly holds. In the following we assume that at least one
CQ in q(x) is not x-acyclic.

Let A be a Σ-ABox with A |= Q(a). Thus (A, a) 6→
(B, bi) for 1 ≤ i ≤ k. We apply Lemma 20 with g the
maximum between 2 and the girths of CQs from q(x) which
are not x-acyclic, obtaining a Σ-ABox Ag of a-girth exceed-
ing g such that (Ag, a) → (A, a) and (Ag, a) 6→ (B, bi) for
1 ≤ i ≤ k. The latter yields Ag |= Q(a). We aim to show
that Ag |= Qacyc(a). Since (Ag, a) → (A, a), it follows by
Lemma 18 that A |= Qacyc(a), as desired.

By Lemma 16, it suffices to show that for every extended
forest model I of Ag and T , we have I |= qacyc(a). Thus let
I be such a model. Since Ag |= Q(a), we have I |= q(a)
and thus there is a CQ p(x) in q(x) such that I |= p(a). Con-
sequently, there is a homomorphism h from p(x) to I with
h(x) = a. Let p′(x) be the contraction of p(x) obtained by
identifying all variables y1 and y2 such that h(y1) = h(y2).
As witnessed by h, I |= p′(a). Note that the x-girth of p′(x)
is either∞ or it is bounded from above by g since the x-girth
of p(x) is. Also note that h is an injective homomorphism
from p′(x) to I. By definition of extended forest models, all
cycles in I are either cyles from Ag , or they are cycles of
the form r(y, z), s(z, y). This together with the fact that the
girth ofAg exceeds g implies that every cycle in p′(x) passes
through x or is of the latter kind. In fact, p′(x) is x-acyclic
when T contains no role inclusions since then I is a forest
model of Ag . Since p′(x) is a CQ in qacyc(x), we are done in
that case.

Now for the case where T contains role inclusions. Let
J be the forest model of Ag underlying I. Construct a CQ
p′′(x) from p′(x) as follows: for all distinct variables y, z,
with y 6= x and z 6= x, whenever r1(y, z), . . . , rk(y, z),
s1(z, y), . . . , s`(z, y) are all atoms of this form in p′(x), then
replace them with r(x, y) if (h(x), h(y)) ∈ rJ and with
r(y, x) if (h(y), h(x)) ∈ rJ . Note that by definition of ex-
tended forest models and due to the fact that g, the girth of
Ag , is greater than 2, such an r always exists. As witnessed
by h, I |= p′′(a). Moreover, p′′(x) is x-acyclic and a CQ in
qacyc(x), thus we are again done.

(b) It is immediate by definition of Qcon that Q ⊆ Qcon.
We thus have to show that Qcon ⊆ Q. Assume the contrary.
Then, there is a Σ-ABox A and an a ∈ ind(A) such that
A |= Qcon(a) andA 6|= Q(a). Note thatAmust be consistent
with T . Since Q is non-empty, there is a Σ-ABox AQ such
that AQ |= Q(b) for some b ∈ ind(AQ). Let A′ be the dis-
joint union ofA andAQ. We getA′ |= Q(a) from Lemma 18
and thus A′ |= Q′(a). Since Q′ is from (ALCI, IQ) and
A′cona = A, the latter and Lemma 17 implies A |= Q′(a),
thus A |= Q(a), a contradiction.

When the OMQ language L is replaced by Lu, we can
show that Q ≡ Qacyc exactly as above. The second part of
the proof showing that Q ≡ Qcon (does not go through and)
is no longer needed. o

Lemma 23. Let Q = (T ,Σ, q(x)) be an OMQ from
(ALCH,UCQ) such that q(x) is x-acyclic and connected.
Then Q is rewritable into an OMQ (T ∪ T ′,Σ, q(x)) from
(ALCH, IQ) whose size is polynomial in the size of Q.
Proof. Let Q = (T ,Σ, q(x)) be an OMQ from
(ALCH,UCQ) such that q(x) is x-acyclic and connected.

From Lemma 4, we know that there is an OMQ Q′ =
(T ,Σ, C(x)) that is equivalent to Q, with C(x) an ALCI-
IQ. From the proof of the lemma, we further know that C has
the form P → t

p(x) a CQ in q(x)
Cp where each Cp is an ELI-

concept. We show how to transform Q′ into an equivalent
OMQ (T ′,Σ, C ′(x)) from (ALCH, IQ).

We start with setting T ′ := T and C ′ := C and apply
the following modification step until no further changes are
possible: ifD is a subconcept of C ′ that is of the form ∃r−.E
with E an EL-concept, then let PD be a fresh concept name
that is not in Σ and
• set T ′ = T ′ ∪ {E v ∀r.PD} and
• replace ∃r−.E in C ′ with PD.

At the end of the transformation, C ′ will contain no inverse
roles anymore, so the constructed OMQ is from (ALCH, IQ).
Moreover, it is straightforward to show that the described
modification step preserves equivalence of the OMQ.

In fact, assume that Q2 = (T2,Σ, C2(x)) was obtained by
a single modification step from Q1 = (T1,Σ, C1(x)). Let A
be a Σ-ABox and a ∈ Ind(A). First assume thatA 6|= Q1(a).
Then there is a model I of A and T1 with a /∈ CI1 . Extend I
to the concept name PD by setting P ID = (∃r−.E)I . Clearly,
I is then a model of T2. Moreover, by construction of C2 we
have a /∈ CI2 . Conversely, assume that A 6|= Q1(a). Then
there is a model I of A and T2 with a /∈ CI2 . Clearly, I is a
model of T1. Since I is a model of T2, we have (∃r−.E)I ⊆
P ID. We can modify I by setting P ID = (∃r−.E)I and the
resulting I will still be a model of T1 and still satify a /∈ CI2
since all occurrences of PD in C2 are positive. Moreover, by
construction of C2 it also satisfies a /∈ CI1 . o

The proof of the following lemma is a much simplified and
slightly extended version of a construction from [Kikot and
Zolin, 2013].
Lemma 24.

1. Every OMQ Q = (T ,Σ, q(x)) from (ALCH,UeCQ)
with q(x) x-acyclic and x-accessible is rewritable into
an OMQ Q = (T ,Σ, C(x)) with C(x) an ALC-IQ and

2. Every OMQ Q = (T ,Σ, q(x)) from (ALCHu,UeCQ)
with q(x) x-acyclic is rewritable into an OMQ Q =
(T ,Σ, C(x)) with C(x) an ALCu-IQ.

The size of the IQs C(x) is polynomial in the size of q(x).
Proof. We first observe that Lemma 4 extends to the case
where the actual query is a UeCQ rather than a UCQ. One
simply “carries through” atoms C(x) with C a compound
concept in the construction of the IQ.

We start with Point 2 since its proof is simpler and pre-
pares for the proof of Point 1. Thus, let Q = (T ,Σ, q(x))
be an OMQ from (ALCHu,UeCQ) with q(x) x-acyclic.
By (the extended) Lemma 4, there is an equivalent OMQ
Q′ = (T ,Σ, C(x)) with C(x) an ALCIu-IQ. In fact, the
IQ C(x) constructed in the proof of Lemma 4 is of the
form P → t

p(x) a CQ in q(x)
Cp(x) where each Cp is an ELIu-

concept decorated withALCu-concepts, that is, built accord-
ing to the syntax rule

C,D ::= > | A | C uD | ∃r.D | ∃u.D | E

where A ranges over all concept names, r over all (poten-
tially inverse) roles, and E over all ALCu-concepts. Note
that every ELIu-concept decorated with ALCu-concepts is
an ALCIu-concept, but that the converse is false.

We construct from Q′ an (ALCHu, IQ)-rewriting
(T ,Σ, C ′(x)) of Q where C ′ has the form Cpre → Ccon. To
start, let D1 = ∃r−1 .P, . . . , D` = ∃r−` .P be all subconcepts
of C that are of this form and let

• Ccon be obtained from C by replacing each concept Di

with a fresh concept name PDi
/∈ Σ and

• Cpre = ∀r1.PD1
u · · · u ∀r`.PD`

.

Next, exhaustively apply the following transformation step:
if D = ∃r−.E is a subconcept of Ccon where E is an ALCu-
concept (that is, does not contain any inverse roles), then

• replace D in Ccon with a fresh concept name PD /∈ Σ
and

• set Cpre = Cpre u ∀u.(E → ∀r.PD).

We end up withCcon being anALCu-concept because if there
is a subconcept ∃r−.E ofCcon left, then in the innermost such
subconcept E must be an ALCu-concept and thus the trans-
formation rule applies. It can be proved that the initial IQ
Cpre → Ccon(x) is equivalent to C(x) and that the transfor-
mation step is equivalence preserving. We omit details, please
see the proof of Lemma 23 for very similar arguments.

We now turn to Point 1. Let Q = (T ,Σ, q(x)) be an OMQ
from (ALCH,UeCQ) with q(x) x-acyclic and x-accessible.
Then q(x) is also connected. By (the extended) Lemma 4,
there is an equivalent OMQ Q′ = (T ,Σ, C(x)) with C(x)
an ALCI-IQ. In fact, the IQ C(x) constructed in the proof
of Lemma 4 is of the form P → t

p(x) a CQ in q(x)
Cp(x) where

each Cp is an ELI-concept decorated with ALC-concepts,
that is, an ELIu-concept decorated withALCu-concepts that
does not mention the universal role. However, the syntactic
structure of C is even more restricted.

Claim. In each subconcept ∃r−.D of C, D = P or D has
the form D0 u ∃r−1 .(D1 u ∃r−2 .(. . . u ∃r−n .P)) . . .), n ≥ 1.

Proof of claim. Let p(x) be a CQ in q(x). Recall that, when
constructing C(x) in the proof of Lemma 4, we first remove
atoms of the form r(x, y) from p(x) to obtain a tree-shaped
CQ p′(x), then add back r−(y, u) and P (u) for each removed
r(x, y) where u is a fresh variable producing a CQ p′′(x),
and finally view p′′(x) as an ELI-concept Cp decorated with
ALC-concepts.4

Let ∃r−.D be a subconcept of Cp. Then there is a variable
y in p′′(x) and an atom r−(y, z) such that D describes the
subtree of p′′(x) rooted at z and z is a successor of z in the
tree-shaped p′′(x), that is, y is on the path from the root x of
p′′(x) to z. First assume that r−(y, z) was one of the atoms
added back in the construction of p′′(x). ThenD = P and we
are done. Now assume that r−(y, z) was already in p′(x) and
thus in p(x). Since p(x) is x-accessible, z is reachable from
x in the directed graph Gp. Since z is not reachable from x

4The first two steps can together be viewed as an unfolding con-
struction.

in the directed graph Gp′′ it follows from the construction of
p′(x) and p′′(x) that z is reachable in Gp′′ from a leaf node
labeled with P . Consequently, D must have the stated form.
This finishes the proof of the claim.

We construct from Q′ an (ALCH, IQ)-rewriting
(T ,Σ, C ′(x)) of Q where C ′ has the form Cpre → Ccon. To
start, let D1 = ∃r−1 .P, . . . , D` = ∃r−` .P be all subconcepts
of C that are of this form and let

• Ccon be obtained from C by replacing each concept Di

with a fresh concept name PDi and

• Cpre = ∀r1.PD1
u · · · u ∀r`.PD`

.

It is easy to see that the following condition is satisfied:

(∗) in every subconcept D = ∃r−.E of Ccon with E an
ALC-concept, E is of the form F u PD′ .

Next, exhaustively apply the following transformation step,
which preserves (∗): if D = ∃r−.(F u PD′) is a subconcept
of Ccon where F is an ALC-concept, then

• replace D in Ccon with a fresh concept name PD and

• replace PD′ in Cpre with F → ∀R.PD.

It can be verified that, because of the claim, the transforma-
tion step indeed preserves (∗). It can also be seen that all sub-
concepts of the form ∃r−.E will eventually be eliminated.
Finally, it can be shown that the initial IQ Cpre → Ccon(x) is
equivalent to C(x) and that the transformation step is equiv-
alence preserving. We omit details. o

Example 25. Let Q be the OMQ from Example 22. Towards
obtaining an ALC-IQ rewriting, we start with the ALCI-
IQ rewriting Q′ described in the same example. The only
subconcept of the form ∃r−i .P in Cq is D = ∃s−.P . We
thus introduce a fresh concept name PD and initialize Cpre

and Ccon with ∀s.PD and ∃r.∃t−.(∃v.> u PD). We next
consider concepts of the form ∃r−.(F u PD′), with F an
ALC concept and PD′ previously introduced. The only such
concept is E = ∃t−.(∃v.> u PD). We replace E in Ccon

with PE and PD in Cpre with ¬∃v.> t ∀t.PE . At this point
both Cpre = ∀s.(∀t.(¬∃v.> t PE)) and Ccon = ∃r.PE

are ALC concepts, thus no further transformation is pos-
sible (and neither needed): Q can can be rewritten into
an OMQ Q′′ = (T ,Σ, C ′(x)) with C ′ the ALC concept
∀s.(∀t.(¬∃v.> t PE))→ ∃r.PE .

Theorem 5. Let L ∈ {ALC,ALCH} and let Q =
(T ,Σ, q(x)) be a unary OMQ from (L,UCQ) that is non-
empty. Then the following are equivalent:

1. Q is rewritable into an OMQ from (L, IQ);

2. Q is rewritable into an OMQ (T ∪ T ′,Σ, C(x)) from
(L, IQ);

3. Q is rewritable into an OMQ from (LI, IQ);

If Σ = Σfull, then the following are equivalent:

4. Q is rewritable into an OMQQ′ = (T ,Σfull, C(x)) from
(L, IQ);

5. Q ≡ (T ,Σfull, q
deco
acyc (x)).

If, furthermore, L is replaced with Lu and LI with LIu, then
Conditions 1 to 3 are further equivalent to:

6. Q is rewritable into an OMQ Q′ = (T ,Σ, C(x)) from
(Lu, IQ).

Proof. “2⇒ 1” and “1⇒ 3” are trivial.
“3 ⇒ 2”. We know from Theorem 3 that (LI, IQ)-

rewritability of Q implies that q(x) is x-acyclic and con-
nected. By Lemma 23, Q is rewritable into an OMQ from
(L, IQ) that is of the desired shape.

“4 ⇒ 5”. Let Q = (T ,Σfull, q(x)) be an OMQ from
(ALCH,UCQ) and assume that Q is rewritable into an
OMQ Q′ = (T ,Σfull, C(x)) with C(x) an ALC-IQ. Let
Qacyc = (T ,Σfull, q

con
acyc(x)). It is established in the proof of

the “1⇒ 3” direction of Theorem 3 that, sinceQ is rewritable
into (ALCHI, IQ), Q ≡ Qacyc. It thus suffices to show that
Qacyc ≡ Qdeco

acyc .
Using the definition of Qdeco

acyc , it can be shown that Qacyc ⊆
Qdeco

acyc . To establish the converse direction, assume towards
a contradiction that there is a Σfull-ABox A such that A |=
Qdeco

acyc(a) butA 6|= Qacyc(a). ThenA 6|= Q′(a). Take a model
I of A and T such that I 6|= C(a). We have I |= qdecoacyc (a),
thus I |= p(x)|dreach(p(a) for some T -decoration p(x) of a
CQ in qacyc(x). Let h be a homomorphism from p(x)|dreach(p)

to I with h(x) = a.
To finish the proof, it suffices to show that we can con-

struct from I a model I ′ of T such that I ′ 6|= C(a) and
I ′ |= qacyc(a). In fact, we can then take a homomorphism
h′ from a CQ in qacyc(x) to I ′ with h′(x) = a and let A′ be
I ′ restricted to the range of h′, viewed as an ABox. Clearly,
A′ |= Qacyc(a) since already A′ |= (∅,Σfull, qacyc(x))(a).
Moreover, I ′ is a model of A′ and thus A′ 6|= Q′(a), in con-
tradiction to Q′ being equivalent to Qacyc.

It thus remains to construct I ′. Informally, we do this by
adding to I the part of p(x) that is not reachable from the an-
swer variable along a directed path. By the second condition
of T -decorations, there is a model J of T and a homomor-
phism h′ from p(x) to J . We can assume that I and J have
disjoint domains.

Let I ′ be the disjoint union of I and J , extended as fol-
lows: for every atom r(y1, y2) in p(x) with y1 /∈ dreach(p)

and y2 ∈ dreach(p), add (h′(y1), h(y2)) to rI
′
. It can be ver-

ified that the map h′′ defined by setting h′′(y) = h(y) for all
y ∈ dreach(p) and h′′(y) = h′(y) for all variables y in p that
are not in dreach(p) is a homomorphism from p(x) to I ′ with
h′′(x) = a. Thus, I ′ |= qacyc(a) as desired. It thus remains
to show that I ′ is a model of T and that I ′ 6|= C(a). This is a
consequence of the following:

(a) for all ALC-concepts C and all d ∈ ∆I , d ∈ CI iff
d ∈ CI′ ;

(b) for all subconcepts C of a concept in T and all d ∈ ∆J ,
d ∈ CJ iff d ∈ CI′ .

Both points are proved by induction on the structure of C.
This is straightforward for (a) since for every element d ∈
∆I , the subinterpretation of I induced by the set of ele-
ments reachable from d in I by traveling roles in the for-

wards direction is identical to the corresponding subinterpre-
tation of I ′ (and since ALC-concepts do not admit inverse
roles). For (b), it is important to observe that if we have
added (h′(y1), h(y2)) to rI

′
in the construction of I ′, then

then h′(y1) has an r-successor d in J such that for all sub-
concepts C of a concept in T , d ∈ CJ iff h(y2) ∈ CI . In
fact, this is a consequence of the decoration of every variable
in p(x) with such concepts: when choosing d = h′(y2), the
stated condition must be satisfied.

“5 ⇒ 4”. We have that Q ≡ (T ,Σ, q′(x)), where each q′i
is an x-acyclic, accessible eCQ. We can apply Lemma 24 to
obtain an (L, IQ)-rewriting.

For the case with the universal role, it is enough to show
that 3⇒ 6. Again, we can apply Lemma 24. o

Theorem 7. Let q(x) be a UCQ. Then

1. q(x) is rewritable into an ALCI-IQ iff there is a sub-
query q′(x) of q(x) that is x-acyclic, connected, and
equivalent to q(x);

2. q(x) is rewritable into anALC-IQ iff there is a subquery
q′(x) of q(x) that is x-acyclic, x-accessible, and equiv-
alent to q(x).

When L-IQs are replaced with Lu-IQs, then the same equiv-
alences hold except that connectedness/x-accessibility is
dropped.

Proof. For the statement at Point 1, the “if” direction is a
consequence of Lemma 4, while for the statement at Point 2,
the same direction is a consequence of Lemma 24 (and sim-
ilarly for the cases where the universal role is present). We
will thus show the “only if” direction in each case. We
first show that L-IQ rewritability of a UCQ q(x), for every
L ∈ {ALCI,ALC,ALCIu,ALCu}, implies the existence
of a subquery q′(x) of q(x) that is x-acyclic and equivalent to
q(x).

A homomorphism minimal CQ (also hom-minimal) is a CQ
which does not admit any equivalent strict subquery.
Claim 1. Let q and q′ be two CQs such that q ≡ q′ and q′ is
hom-minimal. Then:

1. q′ is a subquery of q;

2. q′ is a contraction of q.

Proof of claim. Consider any homomorphisms h1 and h2

from q′ to q and from q to q′, respectively. Then h1 must
be injective and h2 must be surjective (otherwise h1 ◦ h2 is
a non-injective homomorphism from q′ to itself, and thus q′
is not hom-minimal). The existence of h1 implies that q′ is a
subquery of q, while the existence of h2 implies that q′ is a
contraction of q.
Claim 2. Let p(x) be a CQ in qacyc(x). Then, there exists a
hom-minimal CQ p′(x) in qacyc(x) such that p(x) ≡ p′(x).

Proof of claim. We show that, in fact, every hom-minimal
subquery p′(x) of p(x) which is equivalent to p(x) is a CQ in
qacyc(x). From Claim 1, p′(x) ≡ p(x) and p′(x) being hom-
minimal, implies that p′(x) is a contraction of p(x). As p(x)
is a contraction of a CQ in q(x), it follows that p′(x) is itself
a contraction of some CQ in q(x). As p(x) is x-acyclic and

p′(x) is a subquery of p(x), it follows that p′(x) is x-acyclic.
Thus, p′(x) is an x-acyclic contraction of some CQ in q(x),
or, in other words, p′(x) is a CQ in qacyc(x).

Assume now L-IQ rewritability of q(x). By inspecting
Point (a) in the proof of direction “1 ⇒ 3” of Theorem 3,
we observe that q(x) ≡ qacyc(x).

For didactic purposes, we first consider the case where
q(x) is a CQ. Then, there must be a CQ p(x) in the UCQ
qacyc(x) such that q(x) ≡ p(x). From Claim 2, there must be
some CQ p′(x) in qacyc(x) which is hom-minimal and equiv-
alent to p(x), and thus also to q(x). From Claim 1, it follows
that p′(x) is a subquery of q(x), and from the fact that p′(x)
is a CQ in qacyc(x), it follows that p′(x) is x-acyclic.

We now consider the case where q(x) is a UCQ. Let
q1(x), . . . , qk(x) be the CQs in q(x) that are minimal in q(x)
in the following sense: for all CQs p(x) in q(x), qi(x) ⊆ p(x)
implies qi(x) ≡ p(x). Take such a minimal CQ qi(x).
Since q(x) ≡ qacyc(x), there must be a CQ pi(x) in qacyc(x)
such that qi(x) ⊆ pi(x). By construction of qacyc(x), pi(x)
must be the contraction of some CQ q̂i(x) in q(x) and thus
pi(x) ⊆ q̂i(x). We obtain qi(x) ⊆ q̂i(x) and thus q̂i(x) ≡
qi(x) and consequently qi(x) ≡ pi(x). From Claim 2, there
must be some hom-minimal query p′i(x) ∈ qacyc(x) such
that p′i(x) ≡ p(x). Then, qi(x) ≡ p′i(x) and from Claim
1, p′i(x) is a sub-query of qi(x). Let q−acyc(x) be the restric-
tion of qacyc(x) to the chosen CQs p′1(x), . . . , p′k(x). Clearly,
q−acyc(x) is equivalent to q(x).

Now we concentrate on the “only if” direction for Point 1,
i.e. the case where L is ALCI, and thus q(x) is ALCI-
IQ rewritable. We already know that q−acyc(x) is equivalent
to q(x), thus q−acyc(x) is also ALCI-IQ rewritable. From
the proof of direction “1 ⇒ 3” Point (b) in Theorem 3 ,
ALCI-IQ rewritability implies q(x) ≡ qcon(x), and thus also
qcon(x) ≡ (q−acyc)

con(x) and q(x) ≡ (q−acyc)
con(x). It is easy

to see that (q−acyc)
con(x) is an x-acyclic connected subquery

of q(x). Point 2 and the cases with universal roles are treated
similarly.

o

Proposition 6. Let L ∈ {ALC,ALCI,ALCu,ALCIu}.
If a UCQ q(x) is L-IQ-rewritable, then so is any OMQ
(T ,Σ, q(x)) from (LH,UCQ).

Proof. We show the result in the case where L = ALCI. All
other cases follow similarly.

Assume that q(x) is ALCI-IQ-rewritable and let Q =
(T ,Σ, q(x)) be an OMQ from (LH,UCQ). As a conse-
quence of Theorem 7, there is a subquery q′(x) of q(x)
that is x-acyclic, connected and equivalent to q(x). Let
Q′ = (T ,Σ, q′(x)). Then, Q ≡ Q′ and according to
Lemma 4, Q′ (and thus also Q) is rewritable into an OMQ
from (ALCI, IQ). o

C Proofs for Section 4
For the proofs in this section, we recall that every CQ q can be
viewed in a straightforward way as an ABox Aq by viewing
the atoms as assertions and the variables as individual names.

Theorem 8. For every Q ∈ {CQ,UCQ} and L ∈
{ALC,ALCI,ALCu,ALCIu}, it is NP-complete to decide
whether a given query from Q is L-IQ-rewritable.

Proof. Let L ∈ {ALC,ALCI,ALCu,ALCIu}. We start
with the upper bound, that is, given a UCQ q(x), it is in NP
to decide whether q(x) is L-IQ-rewritable.

We guess a subquery q′(x) of the original query q(x) and
check whether q′(x) ≡ q(x). This is the case when for ev-
ery CQ p(x) in q(x) there exists a CQ p′(x) in q′(x) such
that p(x) ⊆ p′(x) and vice versa. We guess for every CQ
p(x) in q(x) a target CQ p′(x) in q′(x) and a potential ho-
momorphism hp : ind(Ap) → ind(Ap′). We also guess
for every CQ p′(x) in q′(x) a target CQ p(x) in q(x) and
a potential homomorphism hp′ : ind(Ap′) → ind(Ap). We
then check that every hp and every h′p is an actual homomor-
phism. If this is the case, q′(x) ≡ q(x) and, provided that
q′(x) fulfills the additional conditions in the L-IQ character-
isation from Theorem 8 (x-acyclicity, connectedness and/or
x-accesibility), q(x) is L-IQ rewritable. As the size of our
guess is polynomial in the size of q(x) and all checks can be
performed in polynomial time, we obtain the desired upper
bound.

To show NP-hardness of whether a given CQ is L-IQ-
rewritable, we employ a reduction from the 3-colorability
problem (3COL). Let G = (V,E) be an undirected
graph, let qG be G viewed as a conjunctive query
where every {v1, v2} ∈ E is represented by two atoms
r(v1, v2), r(v2, v1), and choose a v ∈ V . Let

q(x0) = ∃y qG ∧ r(x0, v) ∧ r(v, x0)∧∧
{r(xi, xj) | i, j ≤ 2 with i 6= j}

where y contains all elements of V (as variables) as well as
the fresh variables x1 and x2.

Claim. q(x0) is L-IQ-rewritable iff G is 3-colorable.

Proof of claim. For the “if” direction, assume that G is 3-
colorable. Then G admits a homomorphism into the 3-clique
(without reflexive loops). Consequently, q0(x) is homomor-
phically equivalent to the restriction q3C(x0) of q(x0) to the
variables x0, x1, x2. In particular, q(x0) and q3C(x0) are then
equivalent in the sense of query containment. Since q3C(x0)
is x0-acyclic and x0-accessible, by Lemma 24 it is rewritable
into an ALC-IQ.

Conversely, assume that G is not 3-colorable. By
Lemma 24, it suffices to show that any subquery p(x0) of
q(x0) that is equivalent to q(x0) is not x0-acyclic. Thus let
p(x0) be such a subquery. There is no homomorphism h from
p(x0) to q3C(x0) since the equivalence of p(x0) and q(x0)
implies the existence of a homomorphism h′ from q(x0) to
p(x0) and composing h′ with hwould establish 3-colorability
of G. It is easy to verify, though, that when p(x0) contains no
cycle that does not pass through any of x0, x1, x2, then there
is such a homomorphism h. Consequently, p(x0) is not x0-
acyclic. o

Theorem 9. Let Q ∈ {CQ,UCQ}. For OMQs based on the
full ABox signature, IQ-rewritability is

1. EXPTIME-hard in (ALC,Q) and in CONEXPTIME in
(ALCH,Q) and

2. 2EXPTIME-complete in (ALCI,Q) and (ALCHI,Q).
Proof. We start with the lower bounds. Points 1 and 2 are
treated uniformly. In fact, for L ∈ {ALC,ALCI}, we re-
duce a special case of OMQ evaluation in (L,CQ) to IQ-
rewritability in (L,CQ) where OMQ evaluation in (L,Q)
means to decide, given an OMQ Q = (T ,Σfull, q(x)) from
(L,Q), an ABox A, and a tuple a whether A |= Q(a). The
mentioned special case is that OMQs are Boolean andA takes
the form {A(a)} and we refer to this as singleton BOMQ
evaluation.

Singleton BOMQ evaluation is 2EXPTIME-hard in ALCI
[Lutz, 2008]. We observe that it is EXPTIME-hard in ALC
since concept (un)satisfiability w.r.t. ALC-TBoxes is EXP-
TIME-hard [Schild, 1991] and an ALC-concept C is unsat-
isfiable w.r.t. an ALC-TBox T iff {A(a)} |= (T ∪ {A v
C},Σfull,∃y D(y)) where A and D are fresh concept names.

Now for the reduction to IQ-rewritability. Let
Q = (T ,Σfull, q()) be an OMQ from (L,CQ), L ∈
{ALC,ALCI}, and let A = {A(a)} be an ABox. Further,
let q′(x) is the extension of q() with the atom A(x), x a fresh
answer variable. It is important to note that q′(x) is a discon-
nected CQ.

Claim. A |= Q iff Q′ = (T ,Σfull, q
′(x)) is IQ-rewritable.

Proof of claim. If A |= Q, then Q′ is equivalent to
(T ,Σfull, A(x)) which is from (L, IQ). Conversely, assume
that A 6|= Q. The query Qcon from Point (b) in the proof of
the “1⇒ 3” direction of Theorem 3, applied to Q′, is exactly
(T ,Σfull, A(x)). As shown there, IQ-rewritability of Q im-
plies Q ≡ Qcon, in contradiction to A 6|= Q. This finishes the
proof of the claim.

For the upper bounds, we use the characterizations from
Theorem 3 and Theorem 5: deciding IQ-rewritability in
(ALCHI,UCQ) amounts to checking containment between
Q and (T ,Σfull, q

con
acyc(x)) while deciding IQ-rewritability in

(ALCH,UCQ) amounts to checking containment between
Q and respectively (T ,Σfull, q

deco
acyc (x)). Note that the two in-

volved OMQs share the same TBox and are based on the full
ABox signature. There is also an initial emptiness check,
which however is just another containment check. We thus
have to argue that these containment checks can be carried
out in 2EXPTIME and NEXPTIME, respectively.

We start with the case of (ALCHI,UCQ) and first ob-
serve that containment in (ALCHI,UCQ) is in 2EXPTIME.
In fact, it is shown in [Lutz, 2008] that OMQ evaluation
in (ALCHI,CQ) is in 2EXPTIME and the algorithm given
there is straightforwardly extended to (ALCHI,UCQ).
It follows that containment between an OMQ Q1 =
(T ,Σfull, q1(x1)) from (ALCHI,CQ) in an OMQ Q2 =
(T ,Σfull, q2(x2)) from (ALCHI,UCQ) is in 2EXPTIME
since Q1 ⊆ Q2 iff Aq1 |= Q2(x1).

We next observe how this can be lifted to containment in
(ALCHI,UCQ). In fact, it suffices to show that for Qi =
(T ,Σfull, qi) from (ALCHI,UCQ), i ∈ {1, 2}, and q1 =
p1∨· · ·∨pk, we have Q1 ⊆ Q2 iff (T ,Σfull, pi) ⊆ Q2 for all
i ∈ {1, . . . , k}. The “if” direction is trivial. For the “only if”

direction, we argue as follows. Assume that (T ,Σfull, pi) ⊆
Q2 for all i ∈ {1, . . . , k}. LetA be an ABox and a ∈ ind(A)
such that A |= Q1(a). It suffices to show that I |= q2(a)
for every finite model I of A and T . Let I be such a model
and let AI be I viewed as an ABox. Since A |= Q1(a),
we must have I |= pj(a) for some j ∈ {1, . . . , k}. Then
clearly also AI |= pj(a). Since (T ,Σ, pj) ⊆ Q2, this yields
AI |= Q2(a). Since I is a model of AI and T , from this we
obtain I |= q2(a), as required.

The argument is not yet complete since the UCQs qconacyc(x)
can be exponentially large. In fact, it may contain expo-
nentially many CQs, but each CQ is only of polynomial
size. For checking (T ,Σfull, q

con
acyc(x)) ⊆ Q, using the

above argument we can use exponentially many containment
checks between an OMQ from (ALCHI,CQ) and an OMQ
from (ALCHI,UCQ), both of polynomial size. The over-
all complexity is thus 2EXPTIME, as required. For check-
ing Q ⊆ (T ,Σfull, q

con
acyc(x)), we observe that, by Lemma 4,

(T ,Σfull, q
con
acyc(x)) is rewritable into an equivalent OMQ

(T ,Σfull, C(x)) with C(x) anALCHI-IQ (independently of
the properties of Q) and such that the size of C(x) is poly-
nomial in the size of qconacyc(x), which in turn is single ex-
ponential in the size of Q. We can thus replace the check
Q ⊆ (T ,Σfull, q

con
acyc(x)) with Q ⊆ (T ,Σfull, C(x)). This

boils down to deciding OMQ entailment in (ALCHI, IQ),
which is in EXPTIME. So despite C(x) being of (single) ex-
ponential size, we achieve 2EXPTIME overall complexity.

For the case of (ALCH,UCQ), the argument is essen-
tially the same. However, as also shown in [Lutz, 2008]
OMQ evaluation in (ALCH,UCQ) is in EXPTIME and thus
so is our basic containment check between an OMQ from
(ALCH,CQ) and an OMQ from (ALCHI,UCQ). There-
fore, the check (T ,Σfull, q

deco
acyc (x)) ⊆ Q can be implemented

in EXPTIME despite the exponential number of CQs in qdecoacyc .
It is not clear, however, how to implement the containment
check Q ⊆ (T ,Σfull, q

deco
acyc (x)) in EXPTIME. We give a

sketch of how it can be implemented in CONEXPTIME. In
fact, what we have to implement in CONEXPTIME is the eval-
uation of an OMQ Q = (T ,Σfull, q(x)) where q(x) is a UCQ
with exponentially many connected CQs, each of polynomial
size. Let A be an ABox and a ∈ Ind(A). By Lemma 16,
A 6|= Q(a) iff there is an extended forest model I of A and
T such that I 6|= q(a). It is easy to see that we can fur-
ther demand that (the tree-shaped parts of) I be of outdegree
polynomial in the size of T . Our NEXPTIME algorithm for
the complement of OMQ evaluation is as follows. Let m be
the maximum number of variables of a CQ in q(x). We guess
an initial piece of the extended forest model I that consists
of the ‘ABox part’ of A together with the tree-shaped parts
restricted to depth m + 1, along with a type adornment, that
is, a function µ that assigns a T -type to every element of the
guessed initial part in a way that is consistent with the initial
part. Note that we guess an object of single exponential size
here. Since the CQ in q(x) are connected and thus are inde-
pendent of the part of I that lies beyond the guessed initial
part, we can verify that I can be extended to a full model by
considering the type µ(d) for every leaf d in the initial part
on level m + 1 and verifying that µ(d) is satisfiable with T .

This can be implemented in EXPTIME. o

We introduce a preparatory lemma and notation for the
proof of Theorem 5. An atomic query (AQ) is an IQ of the
form A(x), with A a concept name. A Boolean atomic query
(BAQ) is a query of the form ∃xA(x), withA a concept name,
and a Boolean conjunctive query (BCQ) is a CQ of arity zero.
Lemma 26. Let Q = (T ,Σ,∃xC(x)) be an OMQ
from (ALCI,BAQ). Then, there exists an OMQ Q′ =
(T ′,Σ,M(x)) from (ALCI,AQ), such that for all Σ-
ABoxes A, A |= Q iff there is an a ∈ ind(A) such that
A |= Q′(a).

Proof. We first observe that A |= Q iff A′ |= Q, for some
A′ ∈ CONA. Thus, it is enough to show the statement of the
lemma for connected Σ-ABoxes.

Let A′ be a connected Σ-ABox and M a fresh concept
name. Let T ′ be the TBox obtained from T by adding C v
M and ∃r.M vM for every role r such that r or the inverse
of r occurs in T . It can be verified that Q′ = (T ′,Σ,M(x))
is as required. o

We also introduce a more fine-grained version of a com-
plexity result from [Bourhis and Lutz, 2016] which highlights
that the complexity of containment is double exponential only
in the maximum size of CQs in the input OMQs, but not in
their number. This only requires a careful analysis of the con-
structions in [Bourhis and Lutz, 2016].
Theorem 27. Containment between OMQs from
(ALCHI,UCQ) is in 2NEXPTIME. More precisely,
for OMQs Q1 = (T1,Σ, q1) and Q2 = (T2,Σ, q2) with
arity a and where ni is the number of CQs in q1 and ni the
maximum size of a CQ in qi, i ∈ {1, 2}, it can be decided in
time 22p(logn1+s1+logn2+s2+log|T |+logloga)

, p a polynomial.
Theorem 10. IQ-rewritability is

1. NEXPTIME-hard in (ALC,CQ) and
2. 2NEXPTIME-complete in all of (ALCI,CQ),

(ALCI,UCQ), (ALCHI,CQ), (ALCHI,UCQ).
Proof. We start with the lower bound for Point 1, using a re-
duction from OMQ emptiness in (ALC,AQ) which is known
to be NEXPTIME-hard. Let Q0 = (T ,Σ, A(x)) be an OMQ
from this language. Also let

q(x) = ∃y A(x) ∧ r(x, y) ∧ r(y, y),

where r is a role name that does not occur in T and let Q =
(T ,Σ∪ {r}, q(x)). It suffices to show that Q0 is empty iff Q
is IQ-rewritable.

In fact, emptiness of Q0 implies emptiness of Q and thus
(ALC,AQ)-rewritability. Conversely, assume thatQ0 is non-
empty. To show that Q is not IQ-rewritable, by Theorem 5 it
suffices to show that Q 6≡ Qdeco

acyc := (T ,Σ ∪ {r}, qdecoacyc (x))

where qdecoacyc (x) is a UCQ in which every CQ contains the sub-
query r(x, x). Since Q0 is non-empty, there is a Σ-ABox A
and an a ∈ ind(A) such that A |= Q0(a). Since r does not
occur in T , we can assume w.l.o.g. that it does not occur in
A as well. Let A′ = A ∪ {r(a, b), r(b, b)}. By definition
of Q(a), clearly A′ |= Q(a). Moreover, A′ 6|= Qdeco

acyc(a) be-
cause A′ does not contain the assertion r(a, a).

To establish the lower bound for Point 2, we use a reduction
from containment between an OMQ from (ALCI,BAQ) and
an OMQ from (ALCI,BCQ). This problem has been shown
to be 2NEXPTIME-hard in [Bourhis and Lutz, 2016]. The
reduction presented there uses different TBoxes in the two
involved OMQs. However, by Theorem 3 in [Bienvenu et al.,
2012], we can assume w.l.o.g. that they both share the same
TBox.

Now for the reduction to IQ-rewritability. Let Q1 =
(T ,Σ,∃xA(x)) be an OMQ from (ALCI,BAQ) and Q2 =
(T ,Σ, q()) an OMQ from (ALCI,BCQ). We first show
that Q1 and Q2, which are Boolean, can be replaced with
unary OMQs. By Lemma 26, we find an OMQ Q′1 =
(T ′,Σ,M(x)) from (ALCI,AQ) such that for all Σ-ABoxes
A, A |= Q1 iff A |= Q′1(a) for some a ∈ ind(A). Clearly,
the construction from the proof of Lemma 26 is such that Q1

is equivalent to (T ′,Σ,∃xA(x)) and by choosing the fresh
concept M to also not occur in q() we can further ensure
that Q2 is equivalent to (T ′,Σ, q()). Thus, we can assume
that Q1, Q2, and Q′1 all use the same TBox T and we can
further assume T contains a CI > v N where N is a con-
cept name not occurring anywhere else, including Σ. Set
Q′2 = (T ,Σ, q′(x)) where q′(x) is q() extended with the
atom N(x), x a fresh (answer) variable. It can be verified
that Q1 ⊆ Q2 iff Q′1 ⊆ Q′2.

Now let q0(x) be q() extended with the atom M(x), x a
fresh (answer) variable. It is important to note that q0(x) is a
disconnected CQ.

Claim. Q′1 ⊆ Q′2 iff Q = (T ,Σ, q0(x)) is IQ-rewritable.

Proof of claim. If Q′1 ⊆ Q′2, then Q is equivalent to
Q′1, which is from (ALCI, IQ). Conversely, assume that
Q′1 6⊆ Q′2. The query Qcon from Point (b) in the proof of
the “1 ⇒ 3” direction of Theorem 3, applied to Q, is exactly
Q′1. As shown there, IQ-rewritability ofQ impliesQ ≡ Qcon,
in contradiction to Q′1 6⊆ Q′2.

The upper bounds are a consequence of the character-
ization of IQ-rewritability in (ALCHI,UCQ) from The-
orem 5 in terms of query containment. Contaiment in
(ALCHI,UCQ) is in 2NEXPTIME [Bourhis and Lutz,
2016]. Note that our characterizations use UCQs with expo-
nentially many CQs, each of which is of polynomial size so
we cannot apply the contaiment complexity result as a black
box. However, by perusing the refined OMQ containment
complexity result from Theorem 27, we observe that contain-
ment checking for OMQs is double exponential only in the
size of the CQs in the UCQs while it is only exponential in
the number of CQs.

Note that we also need an emptiness check beforehand:
if the check succeeds and the OMQ is empty, it is also
rewritable and so we answer ‘yes’, if not we proceed to per-
form the containment check. Emptiness is simply a special
case of containment, so we end up in the right complexity
class. o

D Proofs for Section 5
We postpone the proof of Theorem 11 as we need the ultra-
filter technique introduced in the proof of Theorem 13. We

start by discussing the rewritings given in Example 12 in
more detail and present an additional example. Recall that
p(x) = ∃y(s(x, y) ∧ r(y, y)) and that we consider the OMQ
Q = (Tr,Σfull, p(x)) with Tr = {func(r)}. We claim that
Qr = (Tr,Σfull, qr(x)) with

qr(x) = (∀s. t
1≤i≤3

Pi)→ (∃s.(u
1≤i≤3

(Pi → ∃r.Pi))

is a rewriting of Q. To prove this claim one can use the fol-
lowing straightforward three colorability argument: for every
set X of individual names in an ABoxA which does not con-
tain an atom of the form r(c, c) with c ∈ X and in which r
is functional (in the sense that for any a there is at most one
b with r(a, b) ∈ A) one can color the individual names in
X with three different colors P1, P2, P3 without having dis-
tinct c1, c2 with r(c1, c2) ∈ A such that Pi(c1) and Pi(c2)
for some 1 ≤ i ≤ 3. We give an additional example illustrat-
ing this technique which is fundamental for our approach to
rewritability for ALCIF TBoxes.
Example 28. Let T = {func(s1), func(s2)} and

p(x) = ∃y, z(r(x, y) ∧ s1(y, z) ∧ s2(y, z))

and obtain p′(x) from p(x) by adding the atom s1(z, y).
Then (T ,Σfull, p(x)) is not rewritable into an OMQ in
(T ,Σfull, q(x)) with q(x) a CI but (T , ∅,Σfull, p

′(x)) is
rewritable into the OMQ (T ,Σfull, q(x)), where

q(x) = ∀r.((t
1≤i≤3

Pi) u (∀r.∀s1. t
1≤i≤3

Qi)

→ (∃r.(u
1≤i≤3

(Pi → ∃s1.(C u ∃s1.Pi))

where
C = u

1≤i≤3
(Qi → ∃s1.∃s2.Qi)

We split the proof of Theorem 13 into two parts and state
the claims in such a way that they cover the extensions dis-
cussed in the main text. Call a role r functional w.r.t. T if
func(r) ∈ T . The functional closure FCp(x0) of a variable
x0 in a CQ p(x) is the set of all variables xn in p(x) such that
there is a functional path from x0 to xn in p(x). Let var(p(x))
denote the set of all variables in p(x) and set

nFCp(x) = var(p(x)) \ FCp(x)

Lemma 29. Let Q = (T ,Σfull, q(x)) be an OMQ from
(ALCIF ,UCQ). Then Q is rewritable into an OMQ
(T ,Σfull, q

′(x)) with q′(x) anALCI-IQ if there is a subquery
q′(x) of q(x) that is f-acyclic, connected, and equivalent to
q(x).

When ALCIF is replaced with ALCIFu, then the impli-
cation holds without the connectedness assumption.

Proof. Fix an f-acyclic and connected UCQ q(x) and
let T be a ALCIF TBox. Let Q = (T ,Σfull, q(x)). We
construct an ALCI-IQ C(x) such that Q ≡ Q′ for Q′ =
(T ,Σfull, C(x)). Let p(x) be a CQ in q(x). A cluster in p(x)
is any maximal subsetX of nFCp(x) such that there is a func-
tional path from any y ∈ X to any y′ ∈ X . Denote the set
of clusters in p(x) by C. For any two clusters X1, X2 we set

(X1, X2) ∈ E if there exist y1 ∈ X1 and y2 ∈ X2 such
that there is an atom r(y1, y2) in p(x). We obtain an undi-
rected graph (C, E) without self-loops. As p(x) is f-acyclic,
we obtain that

• (C, E) is acyclic;

• for any (X1, X2) ∈ E there is exactly one atom
r(y1, y2) in p(x) with y1 ∈ X1 and y2 ∈ X2;

• there does not exist an atom r(y, y′) in p(x) such that
neither r nor r− are functional w.r.t. T and y, y′ ∈ X
for a single cluster X in p(x).

It follows that we obtain from p(x) a new CQ p′(x) by re-
peatedly choosing and removing

• atoms r(x′, y′) with x′ ∈ FCp(x) and y′ ∈ nFCp(x) and

• atoms r(y′, y′′) with y′, y′′ contained in the same cluster
X and

• atoms r(x′, x′′) with x′, x′′ ∈ FCp(x)

such that p′(x) is a tree-shaped CQ with answer variable x
still containing all variables in p(x) and

• every x′ in FCp(x) is still reachable in p′(x)|FCq(x) from
x along a functional path;

• for every cluster X there exists a yX ∈ X such that
every y ∈ X can be reached in p′(x)|X from yX along
a functional path.

Now obtain a CQ pplain(x) from p′(x) by adding for every y
in p′(x) a fresh atomAy(y) to p′(x). Obtain an eCQ pdeco(x)
from pplain(x) by adding

• for every atom r(x1, x2) ∈ p(x) \ p′(x) with x1, x2 ∈
FCp(x) the compound ‘atom’ ∃r.Ax2

(x1) and

• for every atom r(y1, x1) ∈ p(x) \ p′(x) with y1 ∈
nFCp(x) and x1 ∈ FCp(x) the compound atom
∃r.Ax1

(y1).

Replace in the ELI concept corresponding to pplain(x) all
occurrences of the symbol ‘∃’ by the symbol ‘∀’ and de-
note the resulting ALCI concept by Cplain. Take the ELI
concept Ddeco corresponding to pdeco(x). Consider the
ALCI concept Cplain → Ddeco. It should be clear that
(T ,Σfull, Cplain → Ddeco(x)) is a rewriting of (T ,Σfull, p(x))
if all clusters in p(x) are degenerate in the sense that they
consist of a single variable y such that there is no atom of
the form r(y, y) in p(x). More generally, (T ,Σfull, Cplain →
Ddeco(x)) is a rewriting of (T ,Σfull, p

∗(x)) for the CQ p∗(x)
obtained from p(x) by removing all atoms r(y1, y2) with vari-
ables y1, y2 from a single cluster which are not in p′(x). To
obtain the rewriting we are after we thus still have to take care
of those atoms.

Consider a non-degenerate cluster X . We find an order-
ing r1(x1

1, x
1
2), . . . rn(xn1 , x

n
2) of the atoms in p(x)|X \ p′|X

such that all ri are functional (recall that no atoms r(y, y′)
with neither r nor r− functional and y, y′ ∈ X exist) and for
inductively defined sets of atoms

p0|X = p′|X
pi+1|X = pi|X ∪ {ri+1(xi+1

1 , xi+1
2)}

the following holds: for all 0 ≤ i < n, there is a functional
path yi0, . . . , y

i
k in pi|X such that yi0 = yik, yik−1 = xi+1

1 and
yik = xi+1

2 . Now take for every 0 ≤ i < n fresh concept
names P 1

X,i, P
2
X,i, P

3
X,i and obtain pXplain(x) from pplain(x) by

adding the compound atoms

P 1
X,i t P 2

X,i t P 3
X,i(y

i
0)

Take functional roles si0, . . . , s
i
k−2 and consider the query

si0(yi0, y
i
1), . . . , sik−2(yik−2, y

i
k−1) ∈ pi|X

and consider the CQ piX(yi0) defined by taking the conjunc-
tion of the atoms si0(yi0, y

i
1), . . . , sik−2(yik−2, y

i
k−1) and tak-

ing yi0 as the answer variable. Define for 1 ≤ j ≤ 3 an eCQ
pi,jX (yi0) by adding to piX(yi0) the compound atom

∃ri+1.P
j
X,i(y

i
k−1)).

Take the ELI concept Dj
X,i corresponding to pi,jX (yi0), for

j = 1, 2, 3. Obtain the CQ pXdeco(x) from pdeco(x) by adding
the compound atoms

u
1≤j≤3

(P j
X,i → Dj

X,i)(y
i
0)

We do this for all non-degenerate clusters X and obtain
eCQs p∗plain(x) and p∗deco(x) by taking the conjunction of all
pXplain(x) and pXdeco(x), respectively. Now define the con-
cepts C∗plain and D∗deco in the obvious way. It is not diffi-
cult to prove that (T ,Σfull, C

∗
plain → D∗deco(x)) is a rewrit-

ing of (T ,Σfull, p(x)). By constructing C∗plain and D∗deco
for all CQs p(x) in q(x) and taking the disjunction of all
C∗plain → D∗deco(x) we obtain a rewriting of q(x). The ex-
tension to ALCIFu without the connectedness assumption
is straightforward. o

For the proof of the other direction of Theorem 13, we require
some preparation. We use standard notation and results for ul-
trafilter extensions of interpretations [Blackburn et al., 2002].
For U ⊆ ∆I for an interpretation I we set U = ∆I \ U .

Definition 30. Let I be an interpretation. A set U ⊆ 2∆I
is

an ultrafilter over ∆I if the following conditions hold for all
U, V ⊆ ∆I :
• if U, V ∈ U, then U ∩ V ∈ U;
• if U ∈ U and U ⊆ V , then V ∈ U;
• U ∈ U iff U 6∈ U.
For every d ∈ ∆I , the set

Ud = {X ⊆ ∆I | d ∈ X}
is an ultrafilter, called the principal ultrafilter generated by d
in ∆I . An ultrafilter U for which there exists no d ∈ ∆I with
U = Ud is called a non-principal ultrafilter. It is known that
for every set V ⊆ 2∆I

with the finite intersection property
(if U1, . . . , Un ∈ V, then U1 ∩ · · · ∩ Un 6= ∅) there exists an
ultrafilter U ⊇ V. For a set U ⊆ ∆I and role r we set

(∃r.U)I = {d ∈ ∆I | there exists d′ ∈ U with (d, d′) ∈ rI}
We are in the position now to define ultrafilter extensions of
interpretations.

Definition 31. Let I be an interpretation. The ultrafilter ex-
tension Iue of I is defined as follows:

• ∆I
ue

is the set of ultrafilters over ∆I ;

• U ∈ AIue
iff AI ∈ U, for all concept names A;

• (U1,U2) ∈ rIue
iff (∃r.U)I ∈ U1 for all U ∈ U2, for all

role names r.

Observe the following equivalence for all principal ultrafil-
ters Ud,Ue and all roles r:

(d, e) ∈ rI ⇔ (Ud,Ue) ∈ rI
ue

The fundamental property of ultrafilter extensions is the fol-
lowing anti-preservation result:

Lemma 32. For all interpretations I,ALCI concept C, and
roles r:

• if I |= C(a), then Iue |= C(Ua).

• if rI is functional, then rI
ue

is functional.

We are now in the position to prove the second part of The-
orem 13.

Lemma 33. If an OMQ Q = (T ,Σfull, q(x)) from (F ,UCQ)
is rewritable into an OMQ from (F ,ALCI-IQ), then there
is a subquery q′(x) of q(x) that is f-acyclic, connected, and
equivalent to q(x).

When ALCI-IQ is replaced with ALCIu-IQ, then
the same equivalence holds except that connectedness is
dropped.

Proof. Assume that T contains functionality assertions
only and q(x) is a UCQ such that there does not exist an
equivalent subquery q′(x) of q(x) which is f-acyclic and con-
nected. We may assume that

• there is no homomorphism from any disjunct p(x) of
q(x) to another disjunct p′(x) of q(x);

• every homomorphism from any disjunct p(x) into itself
is surjective.

Take a disjunct p(x) of q(x) which is not f-acyclic or not
connected. We consider the case that p(x) is not f-acyclic but
connected. The case that p(x) is not connected is straight-
forward. We have a cycle r0(x0, x1), . . . , rn−1(xn−1, xn) in
p(x) such that FCq(x) ∩ {x0, . . . , xn−1} = ∅ and

1. ri or r−i is not functional w.r.t. T for some i < n or

2. there exists no functional path y0, . . . , ym in p(x)
with x0 = y0 = ym such that {x0, . . . , xn−1} ⊆
{y0, . . . , ym}.

The basic idea of the proof for both Point 1 and Point 2 is as
follows. Assume there exists a a rewriting (T ,Σfull, C(x)) of
(T ,Σfull, q(x)).

(a) Using the CQ p(x) we construct an infinite ABoxA such
that T ,A 6|= q(a);

(b) By compactness of FO there exists a forest model I of
T and A with I |= ¬C(a);

(c) Then Iue |= ¬C(Ua) by Lemma 32;

(d) Moreover, Iue is a model of a finite ABox A′ with in-
dividual name Ua such that T ,A′ |= q(Ua). But this
contradicts Iue |= ¬C(Ua).

For Point 1, the construction of A is a variant of a con-
struction given in [Kikot and Zolin, 2013]. Consider the
cycle r0(x0, x1), . . . , rn−1(xn−1, xn) in p(x) such that for
some i neither r nor r− are functional w.r.t. T . We may
assume that i = 0. Let V be the connected component of
{x0, . . . , xn−1} in nFCp(x). Regard the variables of p(x) as
individual names. Define an ABox A with individuals

FCp(x) ∪ (nFCp(x) \ V) ∪ (V × N)

by setting:

• for all concept names A and variables y ∈ FCp(x) ∪
(nFCp(x) \ V): A(y) ∈ A iff A(y) is in p(x);

• for all concept names A, variables y ∈ V , and i ∈ N:
A(y, i) ∈ A iff A(y) ∈ q(x);

• for all roles r and variables y, z ∈ FCp(x)∪ (nFCp(x) \
V): r(y, z) ∈ A iff r(y, z) is in p(x);

• for all roles r, variables y ∈ FCp(x) ∪ (nFCp(x) \ V)
and z ∈ V , and i ∈ N: r(y, (z, i)) ∈ A iff r(y, z) is in
p(x);

• for all roles r, variables y, y′ ∈ V , and i ∈ N:
r((y, i), (y′, i)) ∈ A iff r(y, y′) is in p(x) and
r0(x0, x1) 6= r(y, y′);

• for all roles r, variables y, y′ ∈ V , and i 6= j ∈ N,
r((y, i), (y′, j)) ∈ A iff i < j and r0(x0, x1) = r(y, y′).

We now check that A satisfies Points (a) to (d).

Point (a). Clearly all r functional w.r.t. T are functional in
A. Thus, T ,A |= q(x) iff ∅,A |= p′(x) for some disjunct
p′(x) of q(x). It therefore suffices to show that there is no ho-
momorphism from any disjunct p′(x) of q(x) toAmapping x
to x. It has been observed in [Kikot and Zolin, 2013] already
that the mapping π from A to p(x) mapping every variable
to itself and every (y, i) ∈ V × N to y is a homomorphism.
Using this observation it has been shown that there is no ho-
momorphism from p(x) to A as the composition of π with
such a homomorphism would be a non-surjective homomor-
phism mapping x to x which contradicts our assumptions. It
also follows that there is no homomorphism from any disjunct
p′(x) of q(x) distinct from p(x) toA as the composition of π
with such a homomorphism would be a homomorphism from
p′(x) to p(x) mapping x to x.

Point (b). Assume there exists no model of T and A with
I |= ¬C(x). Then, by compactness, there exists a finite sub-
set A′ of A such that there exists no model of T and A′
with I |= ¬C(x). But then T ,A′ |= q(x) which contra-
dicts Point (a) and the assumption that (T ,Σfull, C(x)) is a
rewriting of (T ,Σfull, q(x)).

Point (c). This is by Lemma 32.

Point (d). It follows directly from [Kikot and Zolin, 2013]
that Iue contains a homomorphic image of p(x) under a ho-
momorphism mapping x to Ux. Regard this image as an

ABox A′. Then T ,A′ |= q(Ua). This finishes the proof if
Point 1 holds.

Now suppose that Point 2 does not hold. Thus, there ex-
ists no functional path y0, . . . , ym in p(x) with x0 = y0 =
ym such that {x0, . . . , xn−1} ⊆ {y0, . . . , ym}. Let pn =
p|nFCp(x). We observe the following

Claim 1. There exist V1 ⊆ nFCp(x) of the form V1 =
FCpn(x′) for some x′ in p(x) such that for V2 := nFCq(x) \
V1 there are y1, y2 ∈ V2 such that there is a path from y1

to y2 in V2 and z1, z2 ∈ V1 such that there are distinct
s1(y1, z1), s2(y2, z2) ∈ q(x) with s1, s2 functional w.r.t.T .

For the proof of Claim 1 take the cycle
r0(x0, x1), . . . , rn−1(xn−1, xn) in p(x). There must
exist xi such that some xj with xi 6= xj is not in FCp(xi).
Let V1 = FCpn(xi). Then we find xj ∈ FCpn(xi) such
that xj+1 6∈ FCpn(xi) and we find a path (possibly of
length 0) from xj+1 to some xj′ within V2 such that there
exist r′ and xj′′ ∈ V1 with r′(xj′ , xj′′) ∈ p(x). Then
s1(y1, z1) := r−j (xj+1, xj) and s2(y2, z2) := r′(xj′ , xj′′)
are as required.

We define an ABox A with individual names

FCp(x) ∪ (V1 × N) ∪ (V2 × I)

where

I = {(β,E) | E ⊆ N, |E| = |S|, β : E → S bijective }

and
S = {r(y, z) ∈ p(x) | z ∈ V1, y ∈ V2}

as follows:

• for all concept names A and variables y ∈ FCp(x):
A(y) ∈ A iff A(y) is in p(x);

• for all roles r and variables y, z ∈ FCp(x): r(y, z) ∈ A
iff r(y, z) is in p(x);

• for all concept names A, variables y ∈ V1, and i ∈ N:
A(y, i) ∈ A iff A(y) is in p(x);

• for all concept names A, variables y ∈ V2, and i ∈ I:
A(y, i) ∈ A iff A(y) is in p(x);

• for all roles r, variables y, z ∈ V1 and i ∈ N:
r((y, i), (z, i)) ∈ A iff r(y, z) is in p(x);

• for all roles r, variables y, z ∈ V2 and i ∈ I:
r((y, i), (z, i)) ∈ A iff r(y, z) is in p(x);

• for all roles r, variables y ∈ FCp(x) and z ∈ V1, and
i ∈ N: r(y, (z, i)) ∈ A iff r(y, z) is in p(x);

• for all roles r, variables y ∈ FCp(x) and z ∈ V2, and
i ∈ I: r(y, (z, i)) ∈ A iff r(y, z) is in p(x);

• for all roles r, (y, (β,E)) ∈ (V2×I) and (z, i) ∈ V1×N:
r((y, (β,E)), (z, i)) ∈ A iff i ∈ E and β(i) = r(y, z).

This construction of the ABox A achieves the following:

• for all copies V ′2 of V2 and any r(y, z) ∈ S , there is
a copy V ′1 of V1 such that r(y′, z′) ∈ A for the copies
y′, z′ of y and z in V ′2 and V ′1 , respectively;

• for all copies V ′2 of V2 and copies V ′1 of V1 there is at
most one atom r(y, z) ∈ A with y ∈ V2 and z ∈ V1;

• Let V 1
2 , . . . , V

n
2 be distinct copies of V2 and

r1(y1, z1), . . . , rn(yn, zn) be distinct atoms in
S. Then there is a single copy V ′1 of V1 such
that r1(y′1, z

1
1), . . . , rn(y′n, z

n
n) ∈ A for the copies

y′1, . . . , y
′
n of y1, . . . , yn in V 1

2 , . . . , V
n
2 , respectively,

and the copies z1
1 , . . . , z

n
n of z1, . . . , zn in V ′1 .

We first show Point (a) above.

Point (a). T ,A 6|= q(a).

Proof of Point (a). By construction, all r functional w.r.t. T
are functional in A. Thus, T ,A |= q(x) iff ∅,A |= p′(x) for
some disjunct p′(x) of q(x). It therefore suffices to show that
there is no homomorphism from any disjunct p′(x) of q(x) to
A mapping x to x. Consider the mapping

π : A → p(x)

mapping every variable in FCp(x) to itself and every (y, i) ∈
(V1 × N) ∪ (V2 × I) to y. It is easy to see that π is a ho-
momorphism. It also follows that there is no homomorphism
from any disjunct p′(x) of q(x) distinct from p(x) toA as the
composition of π with such a homomorphism would be a ho-
momorphism from p′(x) to p(x) mapping x to x. It remains
to prove that there is no homomorphism from p(x) toAmap-
ping x to x. Assume there is such a homomorphism h. Then
π ◦ h is a homomorphism from p(x) to p(x) mapping x to x.
We obtain a contradiction if we can show that π ◦h is not sur-
jective. To this end assume that π ◦h is surjective. As p(x) is
finite, it is an isomorphism. Let h[p(x)] = {h(y) | y ∈ p(x)}
be the image of h in A. Then h is an isomorphism from
p(x) onto the restriction A|h[p(x)] of p(x) to h[p(x)] and the
restriction π|h[p(x)] of π to h[p(x)] is an isomorphism onto
p(x). It follows that h[p(x)] contains for every y in p(x) ex-
actly one individual a with π(a) = y and

• h[p(x)] contains FCp(x);

• as V1 is connected, there exists i ∈ N such that
h([p(x)]) ⊇ V1 × {i} and h([p(x)]) ∩ V1 × {j} = ∅
for all j 6= i;

• for every connected component V of V2 of there exists
i ∈ I such that h([p(x)]) ⊇ V × {i} and h([p(x)]) ∩
V × {j} = ∅ for all j 6= i.

Now recall that there there are distinct atoms s1(y1, z1) ∈
p(x) and s2(y2, z2) ∈ p(x) such that y1, y2 are in the same
connected component in V2 and z1, z2 ∈ V1. Thus, there
exists i ∈ N such that (y1, i), (y2, i) ∈ h[p(x)] and for some
j ∈ I , s1((y1, i), (z1, j)) ∈ A and s2((y2, i), (z2, j)) ∈ A.
As observed above, no such two atoms exist inA and we have
derived a contradiction. This finishes the proof of Point (a).

Example 34. Let T = {func(s1), func(s2)} and consider the
CQ

q(x) = ∃y, z(r(x, y) ∧ s1(y, z) ∧ s2(y, z))

Then

FCq(x) = {x}, V1 = {z}, V2 = {y}

Thus,
S = {s1(y, z), s2(y, z)}

and so the individuals of A are

{x} ∪ ({z} × N) ∪ ({y} × I)

and the essential properties of A are:

• r(x, (y, i)) ∈ A for all i ∈ I;

• for every (y, i) ∈ I there are distinct (z, i1), (z, i2) with
s1((y, i), (z, i1)), s2((y, i), (z, i2)) ∈ A;

• for any two (z, i1), (z, i2) there exists (y, i) such that
s1((y, i), (z, i1)), s2((y, i), (z, i2)) ∈ A.

Observe that A 6|= q(x).

Points (b) and (c) are as before. It remains to show
Point (d). Let I be a model of T and A with I |= ¬C(a)
and consider the ultrafilter extension Iue. We define a ho-
momorphism h from p(x) to Iue mapping x to Ux. For every
y ∈ FCp(x), we set h(y) = Uy . To define h for the remaining
variables, fix a non-principal ultrafilter N over N. For every
variable z ∈ V1 we obtain an ultrafilter N(z) over ∆I by
setting U ∈ N(z) iff {i | (z, i) ∈ U ∩ (V1 × N)} ∈ N.
Observe that for z1, z2 ∈ V1, r(z1, z2) ∈ p(x) implies
(N(z1),N(z2)) ∈ rIue

. Observe as well that for y ∈ FCp(x)

and z ∈ V1, r(y, z) ∈ p(x) implies (Uy,N(z)) ∈ rIue
. We

set h(z) = N(z) for z ∈ V1. It remains to define h for vari-
ables in V2.

Let for y ∈ V2, and X ⊆ ∆I , ρy(X) = {i ∈ I | (y, i) ∈
X}. By construction, the set

X = {ρy(∃r.Z)I | r(y, z) ∈ S and Z ∈ N(z)}

has the finite intersection property. Thus, there exists an ul-
trafilter I over I containing X. For every variable y ∈ V2

we obtain an ultrafilter I(y) over ∆I by setting U ∈ I(y) iff
{i | (y, i) ∈ U ∩ (V2×I)} ∈ I. Observe that for y1, y2 ∈ V1,
r(y1, y2) ∈ p(x) implies (I(y1), I(y2)) ∈ rIue

. Observe as
well that for y ∈ FCp(x) and y′ ∈ V2, r(y, y′) ∈ p(x) im-
plies (Uy, I(y′)) ∈ rI

ue
. Finally, observe that by construc-

tion r(y, z) ∈ S implies that (I(y),N(z)) ∈ rI
ue

. We set
h(y) = I(y) for y ∈ V2. It follows that h is a homomor-
phism from p(x) to Iue, as required.

Now let A′ be the image of p(x) under h, regarded as an
ABox. Then T ,A′ |= q(Ux), as required.

The proof whenALCI-IQ is replaced withALCIu-IQ and
connectedness is dropped is a straightforward variation of the
proof above. o

Theorem 11. In (ALCF ,CQ), IQ-rewritability is undecid-
able.

Proof. We use a reduction from emptiness checking in
(ALCF ,AQ) which is known to be undecidable [Baader et
al., 2016]. Let Q = (T ,Σ, A(x)) be an OMQ from this lan-
guage and let q(x) = ∃y A(x) ∧ r(x, y) ∧ r(y, y), where
r is a role name that does not occur in T . We show that
Q is empty iff Q′ = (T ,Σ ∪ {r}, q(x)) is IQ-rewritable.
Clearly, if Q is empty, then Q′ is empty and, therefore, IQ-
rewritable. Conversely, if Q is not empty, then we show that

Q′ is not IQ-rewritable. To this end we take a Σ-ABox A0

and a ∈ ind(A) such that A0 |= Q(a) and A0 is consistent
with T . Assume for a proof by contradiction that there is a
rewriting Q′′ = (T ′,Σ ∪ {r}, C(x)) of Q′. We use a minor
modification of the construction in the proof of Theorem 13:
(a) Using the CQ q(x) andA0 we construct an infinite (Σ∪
{r})-ABox A ⊇ A0 such that A 6|= Q′(a);

(b) By compactness of FO there exists a forest model I of
T ′ and A with I |= ¬C(a);

(c) Then Iue |= ¬C(Ua) and I |= T ′ by Lemma 32;
(d) Moreover, Iue is a model of a finite (Σ∪ {r})-ABox A′

with individual name Ua such that A′ |= Q′(Ua). But
this contradicts Iue |= ¬C(Ua).

The construction ofA is the same as in Point 1 of the proof of
Theorem 13 above using the query q(x) and its cycle r(y, y)
except that we also attach A0 to the ABox constructed by
identifying x and a. Now the proof of Points (a) to (d) is
exactly as before. o

E Proofs for Section 6
We start with definitions of MMSNP and CSP together with
some preliminaries. We consider signatures S that consist of
predicate symbols with unrestricted arity, known as schemas.
An S-fact is an expression of the form S(a1, . . . , an) where
S ∈ S is an n-ary predicate symbol, and a1, . . . , an are ele-
ments of some fixed, countably infinite set const of constants.
An S-instance I is a set of S-facts. The domain of I , de-
noted dom(I), is the set of constants that occur in some fact
in I . The notions of cycles, girth, acyclicity, and connected-
ness can be lifted from ABoxes to S-instances, for details see
[Feier et al., 2017]. We use CONI to denote the set of S-
instances that are the maximal connected components of the
S-instance I .

An MMSNP sentence ϕ over schema S has the form

∃X1 · · · ∃Xn∀x1 · · · ∀xm ψ,

with X1, . . . Xn monadic second-order (SO) variables,
x1, . . . , xm first-order (FO) variables, and ψ a conjunction
of quantifier-free formulas of the form

α1 ∧ · · · ∧ αn → β1 ∨ · · · ∨ βm with n,m ≥ 0, (†)

where each αi is of the form Xi(xj) or R(x) with R from
S, and each βi is of the form Xi(xj). We refer to a formula
of the form (†) as a rule in ϕ, to the conjunction α1 ∧ · · · ∧
αn as its body, and to β1 ∨ · · · ∨ βm as its head. A rule
body can be seen as an S ∪ {X1, . . . , Xn}-instance in the
obvious way, which we shall sometimes do implicitly. An
MMSNP sentence ϕ is connected if the body of every rule in
ϕ is connected. The rule size of ϕ is the maximum size of a
rule in ϕ.

Every MMSNP sentence ϕ can be seen as a Boolean query
in the obvious way, that is, for an S-instance I , I |= ϕ when-
ever ϕ evaluates to true on I . We also consider disjunctions
of MMSNP sentences over schema S, that is, sentences of
the form

∨
i ϕi, where each ϕi is an MMSNP sentence over

S. For an S-instance I , I |=
∨

i ϕi, whenever there exists

some i such that ϕi evaluates to true on I . An MMSNP sen-
tence ϕ1 over S is contained in an MMSNP sentence ϕ2 over
S, written ϕ1 ⊆ ϕ2, if for every S-instance I , I |= ϕ1 implies
I |= ϕ2. We say that ϕ1 and ϕ2 are equivalent if ϕ1 ⊆ ϕ2

and ϕ2 ⊆ ϕ1. Containment and equivalence are defined in
the same way for disjunctions of MMSNP sentences.

A constraint satisfaction problem (CSP) is defined by an
S-instance T that is called the template. The problem as-
sociated with T is to decide whether an input S-instance I
admits a homomorphism to T , denoted I → T . An MM-
SNP sentence ϕ over schema S is said to be CSP-definable if
there exists an S-template T such that for every S-instance I ,
I |= ϕ iff I → T . A generalized CSP over schema S is de-
fined by a finite set T = {T1, . . . Tn} of S-templates. For an
S-instance I , we write I → T if I → Ti for some i. An MM-
SNP sentence ϕ over schema S is definable by a generalized
CSP T if for every S-instance I , I |= ϕ iff I → T.

For two S-instances I1 and I2 with disjoint domains, we
use I1] I2 to denote the disjoint union of I1 and I2.5 An
MMSNP sentence ϕ is preserved under disjoint union if for
all S-instances I1 and I2 (with disjoint domains), I1 |= ϕ and
I2 |= ϕ implies I1] I2 |= ϕ.
Lemma 35. An MMSNP sentence ϕ is CSP-definable iff it is
definable by a generalized CSP and preserved under disjoint
union.
Proof. “⇒”. Clear.

“⇐”. Assume that ϕ is definable by a generalized CSP
T = {T1, . . . , Tn} and preserved under disjoint union. For
every i, Ti → T and thus Ti |= ϕ. Assume w.l.o.g. that the
domains of all templates in T are mutually disjoint. As ϕ
is preserved under disjoint union,

⊎
1≤i≤n Ti |= ϕ. Thus,⊎

1≤i≤n Ti → T and consequently
⊎

1≤i≤n Ti → Tj for
some j. This implies that Ti → Tj for every i and thus the
generalized CSP T is equivalent to the CSP Tj , which finishes
the proof. o

We next determine the complexity of deciding preservation
under disjoint union for MMSNP sentences. For our final
aim, we only need the upper bound, but we also observe a
lower bound for the sake of completeness.
Theorem 36. Deciding whether an MMSNP sentence is pre-
served under disjoint union is 2NEXPTIME-complete.
Proof. For the upper bound, we reduce preservation under
disjoint union to a series of (exponentially many) containment
checks between MMSNP sentences (of polynomial size) and
then invoke the result from [Bourhis and Lutz, 2016] that
MMSNP containment can be decided in 2NEXPTIME.

Letϕ be an MMSNP sentence over schema S andN the set
of nullary predicate symbols in ϕ. We assume w.l.o.g. that the
number of first-order variables in ϕ is bounded from below by
the largest arity of a predicate in S. For all N1,N2 ⊆ N , we
construct an MMSNP sentence ϕN1,N2

as follows:
• ϕN1,N2

has the same quantifiers as ϕ except for two
new existentially quantified second-order variables C1

and C2;
5We do not assume here that I1 and I2 contain the same nullary

predicate symbols; I1]I2 contains the union of the nullary symbols
in I1 and I2.

• ϕN1,N2 has the following rules:

– true→ C1(x) ∨ C2(x);
– C1(x) ∧ C2(x)→ false;
– R(y1, . . . , yn) ∧ Ci(yj) → Ci(yk) whenever R ∈
S is n-ary, i ∈ {0, 1}, and j, k ∈ {1, . . . , n} and
where y1, . . . , yn are the first n FO variables in ϕ;

– Ci(x1) ∧ · · · ∧ Ci(xn) ∧ body → head whenever
body→ head is a rule in ϕ with no predicate sym-
bol from N \ Ni occuring in body and i ∈ {0, 1}
and where x1, . . . , xn are the FO variables in body.

Intuitively, an S-instance I satisfies ϕN1,N2 iff there is a
coloring of I with the two colors C1 and C2 such that ele-
ments from the same maximal connected components receive
the same color and each of the resulting two monochromatic
subinstances of I satisfies ϕ. Note that I is the disjoint union
of I1 and I2. The sets N1,N2 help to disentangle the nullary
predicate symbols: N1 contains the predicates true in the
monochromatic subinstance colored C1 and likewise for N2

and C2.
Claim. ϕ is preserved under disjoint union iff ϕ ≡∨
N1,N2⊆N ϕN1,N2

.

“⇒’. Assume that ϕ is preserved under disjoint union. We
have to show the following inclusions:
• ϕ ⊆

∨
N1,N2⊆N ϕN1,N2

. Let I |= ϕ. Further let I1
be the extension of I in which every element is colored
C1 and let N1 be the set of nullary predicates true in I
and N2 = ∅. Clearly, I1 |= ϕN1,N2 , witnessing I |=∨
N1,N2⊆N ϕN1,N2 .

•
∨
N1,N2⊆N ϕN1,N2

⊆ ϕ. Let I |=
∨
N1,N2⊆N ϕN1,N2

.
Then I |= ϕN1,N2

for some N1,N2 ⊆ N . By construc-
tion of ϕN1,N2

, there is thus a partition of dom(I) into
two sets S1, S2 such that I1 |= ϕ and I2 |= ϕ where Ii
is the restriction of I to domain Si and makes exactly
the nullary predicates in Ni true, i ∈ {1, 2}. As I is the
disjoint union of I1 and I2, I |= ϕ.

“⇐”. Assume that ϕ ≡
∨
N1,N2⊆N ϕN1,N2

. Let I1 and
I2 be S-instances with disjoint domain such that I1 |= ϕ
and I2 |= ϕ. Then I1] I2 |= ϕN1,N2

, where Ni is
the set of nullary predicates true in Ii, i ∈ {1, 2}. Thus,
I1] I2 |=

∨
N1,N2⊆N ϕN1,N2

and from the original assump-
tion I1] I2 |= ϕ. This finishes the proof of the claim.

It remains to note that the inclusion ϕ ⊆∨
N1,N2⊆N ϕN1,N2 holds even when ϕ is not preserved

under disjoint union (as shown by the proof above) and
thus deciding whether ϕ is preserved under disjoint union
amounts to checking that ϕ ⊇ ϕN1,N2

for all N1,N2 ⊆ N .
This gives the desired upper bound.

For the lower bound, we consider the (polynomial time) re-
duction from [Bourhis and Lutz, 2016] from a 2NEXPTIME-
hard torus tiling problem to OMQ containment: there, two
OMQs Q1 and Q2 are constructed, Q1 from (ALCI,BAQ)
andQ2 from (ALCI,BCQ), such that a double exponentially
large torus can be tiled iff Q1 ⊆ Q2. We sketch a polynomial
time reduction from the containment problem for two such

OMQs to the preservation under disjoint union of an MM-
SNP sentence ϕ. For the sake of proving the correctness of
our reduction, we note thatQ1 andQ2 are such thatQ2 6⊆ Q1.

It was shown in [Bienvenu et al., 2014] that every OMQ
from (ALCI,BAQ) such as Q1 is equivalent to the com-
plement of a CSP T in the sense that for every Σ-ABox A,
A |= Q iff A 6→ B where Σ is the signature of the OMQs Q1

andQ2. Note that this is a variation of Lemma 21 for the case
of BAQs. It has also been shown in [Bienvenu et al., 2014]
that for every OMQs from (ALCI,BCQ), one can construct
in polynomial time an MMSNP sentence whose complement
is equivalent to the OMQ and thus forQ1 andQ2 we find two
such sentences ϕ1 and ϕ2. The size of ϕ1 and ϕ2 is polyno-
mial in that of Q1 and Q2. Summing up, the 2-exp torus can
be tiled iff ϕ2 ⊆ ϕ1, ϕ1 is equivalent to a CSP, and ϕ1 6⊆ ϕ2.
We next construct an MMSNP sentence ϕ such that for all
S-instances I ,

I 6|= ϕ iff I 6|= ϕ1 and I 6|= ϕ2. (‡)
Towards constructing ϕ, we start by standardizing apart all
FO and SO variables from ϕ1 and ϕ2. For each i ∈ {1, 2}, let
ψ−i be the quantifier-free part of ϕi with all rules of the form
body → false removed. Then ϕ is the MMSNP sentence
which has as SO/FO variables the union of SO/FO variables
from ϕ1 and ϕ2 and the following rules:
• all rules from ψ−1 and from ψ−2 ,
• all rules of the form body1 ∧ body2 → false, where
body1 → false is a rule in ϕ1 and body2 → false a rule
in ϕ2.

It can be verified that ϕ satisfies (‡).
Claim. ϕ2 ⊆ ϕ1 iff ϕ is preserved under disjoint union.

“⇒”. Assume that ϕ2 ⊆ ϕ1. Then, ϕ is equivalent to ϕ1

and thus to a CSP, consequently it is preserved under disjoint
union.

“⇐”. Assume that ϕ2 6⊆ ϕ1. Thus there exist instances I1
and I2 such that I1 |= ϕ1, I1 6|= ϕ2, I2 |= ϕ2, I2 6|= ϕ1. From
(‡), we obtain I1 |= ϕ and I2 |= ϕ. We next observe that
I1 6|= ϕ1 and I2 6|= ϕ2 implies I1]I2 6|= ϕ1 and I1]I2 6|= ϕ2.
Thus I1] I2 6|= ϕ by (‡). Consequently, I1 and I2 witness
that ϕ is not preserved under disjoint union. o

We next characterize the equivalence of MMSNP sentences
to a generalized CSP and analyze the complexity of deciding
this property.

For an MMSNP sentence ϕ, let ϕacyc be the MMSNP sen-
tence with the same quantifier prefix that contains all rules
which have an acyclic body and can be obtained from a rule
in ϕ by zero or more identifications of variables.
Theorem 37. An MMSNP sentence ϕ is definable by a gen-
eralized CSP iff ϕ ≡ ϕacyc.
Proof. “only if”. Assume that ϕ is definable by a generalized
CSP T = {T1, . . . , Tn}. Using the construction of ϕacyc, it
can be verified that ϕ ⊆ ϕacyc. It thus remains to be shown
that ϕacyc ⊆ ϕ. If the body of each rule in ϕ is acyclic, then
this is clearly the case. Otherwise, let g be the maximum
girth of a cyclic rule body from ϕ. Take an S-instance I such
that I 6|= ϕ. We have to show that I 6|= ϕacyc. Since ϕ is

equivalent to T, I 6→ Ti for 1 ≤ i ≤ n. From Lemma 196,
we obtain an S-instance Ig of girth exceeding g such that
Ig → I and Ig 6→ Ti for 1 ≤ i ≤ n. Thus Ig 6|= ϕ. As the
girth of Ig is higher than the girth of every cyclic rule body
in ϕ, it follows that Ig 6|= ϕacyc. Since Ig → I , I 6|= ϕacyc.

“if”. Assume that ϕ ≡ ϕacyc. Since the rule bodies in
ϕacyc are acyclic, it is easy to convert ϕacyc into an equivalent
MMSNP sentence in which each rule body contains at most
one atom that uses a predicate symbol from S; see [Feder and
Vardi, 1998]. It is implicit in that paper (see also [Bienvenu et
al., 2014]) that MMSNP sentences of this kind have the same
expressive power as generalized CSPs. Thus, ϕ is equivalent
to a generalized CSP. o

Before showing the main complexity result of this section,
we state a slightly refined version of a theorem from [Bourhis
and Lutz, 2016] regarding the complexity of MMSNP con-
tainment. It emphasizes that the complexity of containment
is double exponential only in the size of the rules, but not
in their number. This only requires a careful analysis of the
constructions in [Bourhis and Lutz, 2016].
Theorem 38. Containment between MMSNP sentences is in
2NEXPTIME. More precisely, for MMSNP sentences ϕ1 and
ϕ2 where ϕi has ni rules and rule size ri, i ∈ {1, 2}, it can
be decided in time 22p(logn1+r1+loglogn2+logr2)

.

Theorem 15. It is 2NEXPTIME-complete to decide whether
a given MMSNP-sentence is equivalent to a CSP.

Proof. We start with the upper bound. Lemma 35 and Theo-
rem 37 suggest an algorithm for deciding CSP-definability of
an MMSNP sentence ϕ: check whether ϕ is preserved under
disjoint union and ϕ ≡ ϕacyc. The first condition can be de-
cided in 2NEXPTIME according to Theorem 36. As for the
second check, we note that the size of ϕacyc might be expo-
nential in the size of ϕ so we cannot apply the MMSNP con-
tainment result from [Bourhis and Lutz, 2016] straightaway.
However, the rule size of ϕacyc is polynomial in the size of ϕ
and thus by Theorem 38 the second condition can be decided
in 2NEXPTIME as well.

For showing that CSP-definability of MMSNP sentences is
2NEXPTIME-hard, we can apply the same reduction as in the
proof of Theorem 36: the MMSNP sentences ϕ1, ϕ2, and ϕ,
constructed in the reduction are such that ϕ2 ⊆ ϕ1 iff ϕ is
equivalent to a CSP. o

6Note that the lemma in its original formulation in [Feder and
Vardi, 1998] applies to instances over schemas of any arity, not just
to ABoxes.

	Introduction
	Preliminaries
	Characterizations
	The Case With Inverse Roles
	The Case Without Inverse Roles
	The Case of Empty TBoxes

	Complexity
	Functional Roles
	MMSNP and CSP
	Conclusion
	Appendices
	Some Technical Preliminaries
	Proofs for Section 3
	Proofs for Section 4
	Proofs for Section 5
	Proofs for Section 6

