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Abstract
In ontology-mediated querying with an expressive
description logic (DL) L, two desirable properties
of a TBox T are (1) being able to replace T with a
TBox formulated in the Horn-fragment of L without
affecting the answers to conjunctive queries (CQs)
and (2) that every CQ can be evaluated in PTIME
w.r.t. T . We investigate in which cases (1) and
(2) are equivalent, finding that the answer depends
on whether the unique name assumption (UNA) is
made, on the DL under consideration, and on the
nesting depth of quantifiers in the TBox. We also
clarify the relation between query evaluation with
and without UNA and consider natural variations of
property (1).

1 Introduction
In ontology-mediated querying, description logic (DL)
TBoxes are used to enrich incomplete data with domain knowl-
edge, enabling more complete answers to queries [Poggi et
al., 2008; Bienvenu and Ortiz, 2015; Kontchakov and Za-
kharyaschev, 2014]. For expressive DLs such as ALC or
SHIQ, this results in query evaluation to be CONP-hard
(in data complexity) [Schaerf, 1993; Hustadt et al., 2007;
Krisnadhi and Lutz, 2007]. Consequently, identifying com-
putationally more well-behaved setups has been an impor-
tant goal of research [Calvanese et al., 2013]. In particu-
lar, this has led to the introduction of Horn-DLs, syntacti-
cally defined fragments of expressive DLs that fall within the
Horn-fragment of first-order logic and enable polynomial time
ontology-mediated querying, examples include Horn-ALC
and Horn-SHIQ [Hustadt et al., 2007; Eiter et al., 2008;
Ortiz et al., 2010; 2011]. On top of enjoying lower data com-
plexity, Horn DLs come with several techniques that facilitate
efficient query evaluation in practice such as the chase, query
rewriting, and deterministic materialization [Bienvenu and
Ortiz, 2015; Kontchakov and Zakharyaschev, 2014].

In this paper, we ask the converse question: Assume that
a TBox T is formulated in an expressive DL L and ad-
mits PTIME query evaluation. Does it follow that T can
be replaced by a TBox T ′ formulated in the corresponding
Horn-DL without affecting the answers to queries? Let us
make this more precise. We concentrate on queries that

are conjunctive queries (CQ) since these are widely used
in ontology-mediated querying and require T and T ′ to
be CQ-inseparable, that is, to give exactly the same an-
swers to any CQ on any ABox, see [Lutz and Wolter, 2010;
Botoeva et al., 2016a; 2016b]. We say that an L TBox T
is CQ-Horn-rewritable if there is a TBox T ′ formulated in
Horn-L that is CQ-inseparable from T . The main property of
an expressive DL L that we are interested in is then whether
CQ-Horn-rewritability captures PTIME query evaluation, that
is, whether every L TBox that enjoys PTIME CQ-evaluation is
CQ-Horn-rewritable. Note that when L satisfies this property,
then for any L TBox T that enjoys PTIME CQ-evaluation
one can take advantage of the algorithms available for CQ-
evaluation w.r.t. Horn-L TBoxes, via the CQ-inseparable Horn
TBox.

Seemingly natural variations of the above are obtained by
requiring that T ′ is logically equivalent to T rather than CQ-
inseparable or that it is a model-theoretic conservative exten-
sion of T . Then, however, rewritability into a Horn TBox fails
already for very simple TBoxes that admit CQ-evaluation in
PTIME. For example, it can be shown that the TBox T1 which
states that every author is the author of a novel or a short story
or of non fiction, in symbols

∃author.> v ∃author.Novel t
∃author.Short Story t ∃author.¬Fiction,

has no conservative extension that is a Horn TBox, but nev-
ertheless enjoys CQ-evaluation in PTIME. In fact, T1 is CQ-
inseparable from the empty TBox, which is a Horn TBox.

It turns out that whether CQ-Horn-rewritability captures
PTIME query evaluation depends on various factors, in par-
ticular on whether or not the unique name assumption (UNA)
is made, on the DL under consideration, and on the nesting
depth of quantifiers in TBoxes. Regarding the UNA, recall
that answers to ontology-mediated queries depend on whether
the UNA is made whenever a DL is used that admits a form
of counting such as number restrictions and functional roles.
To illustrate this, consider the following TBox T2 stating that
everybody who authored at least 200 publications is a prolific
author:

T2 = {(> 200 author>) v ProlificAuthor}
Consider the ABox

A2 = {author(bob, booki) | 1 ≤ i ≤ 200}.



Then, with the UNA, it clearly follows that Bob is a prolific
author. Without the UNA, however, some of the individual
names booki might denote the same individual, and so it does
not follow that Bob is a prolific author.

Regarding the impact of the UNA on CQ-Horn-rewritability
and PTIME CQ-evaluation, we first make the following funda-
mental observations for the expressive DL ALCHIQ, which
is the main DL considered in this paper:

1. PTIME CQ-evaluation without UNA implies PTIME CQ-
evaluation with UNA; the converse does not hold with
T2 being a counterexample: one can show that CQ-
evaluation w.r.t. T2 is in PTIME with UNA, but CONP-
hard without UNA.

2. CQ-Horn-rewritability (and, in fact, whether a given
TBox is a CQ-Horn-rewriting) does not depend on the
UNA; we can thus speak about CQ-Horn-rewritability
independently from the UNA.

As stated in Point 1, T2 admits PTIME CQ-evaluation with
the UNA while it is CONP-hard without. Unless PTIME =
NP, T2 is thus not CQ-Horn-rewritable without the UNA.
Consequently, with the UNA CQ-Horn-rewritability does
not capture PTIME CQ-evaluation for ALCQ-TBoxes with-
out quantifier nesting (depth 1 TBoxes, for short). Inter-
estingly, concept inclusions (CIs) of the form used in T2

are very common in real-world ontologies: we analyzed
the Bioportal and ORE repositories [Whetzel et al., 2011;
Parsia et al., 2017] and found a total of 5081 (respectively,
6958) CIs of depth 1 that contain number restrictions of
which 2066 (respectively, 1720) are provably not CQ-Horn-
rewritable but enjoy PTIME CQ-evaluation with the UNA.
Such CIs occur in 41 (from a total of 97) and 186 (from a total
of 414) ontologies with number restrictions in the Bioportal
and ORE repositories.

The situation is very different without the UNA: in this case,
we prove that CQ-Horn-rewritability captures PTIME query
evaluation for all ALCHIQ TBoxes of depth 1. We show
this by constructing from a TBox T of depth 1 a canonical
Horn-TBox Thorn such that Thorn is a CQ-inseparable rewriting
of T if and only if CQ-evaluation w.r.t. T without UNA is in
PTIME. We also show that deciding whether an ALCHIQ
TBox of depth 1 is CQ-Horn-rewritable is EXPTIME-complete.
Observe that in practice the restriction to TBoxes of depth 1
is a rather minor one (more than 95% of all ontologies on
the Bioportal and ORE repositories have depth 1, sometimes
modulo a straightforward reformulation). In theory, however,
the restriction is crucial: we show that for ALC TBoxes of
depth 3, CQ-Horn-rewritability does not capture PTIME query
evaluation and that for ALCF TBoxes of depth 3 CQ-Horn-
rewritability is undecidable.

Finally, we return to CQ-evaluation with the UNA and show
that TBoxes in the fragment ALCHIFvf of ALCHIF in
which no functional role includes another role enjoy PTIME
CQ-evaluation with the UNA iff they enjoy PTIME CQ-
evaluation without the UNA and that without this condition
the equivalence fails already for TBoxes of depth 1. We thus
determine a ‘maximal’ fragment of ALCHIF in which CQ-
Horn-rewritability captures PTIME query evaluation with the
UNA for TBoxes of depth 1.

Detailed proofs are at https://anon.to/XwVG7c.
Related Work. Rewritability into tractable languages has
been studied extensively in description logic. A large body of
work investigates rewritability of ontology-mediated queries
(OMQs) into FO or Datalog queries giving the same answers
on all ABoxes [Bienvenu et al., 2014; 2016; Feier et al., 2017].
The main difference to the work presented in this paper is that
both the TBox and the CQ are given as input whereas in this
paper we quantify over all CQs. In [Kaminski et al., 2016;
Kaminski and Grau, 2015; Carral et al., 2014], the authors
consider Horn-DL and EL rewritability of OMQs with atomic
queries. Rewritability of TBoxes in an expressive DL into
logically equivalent TBoxes or conservative extensions in a
weaker DLs has been investigated in [Lutz et al., 2011; Konev
et al., 2016].

2 Preliminaries
We use standard notation for DLs [Baader et al., 2017]. Let
NC, NR, and NI be countably infinite sets of concept, role, and
individual names. A role is a role name or the inverse r− of a
role name r. ALCIQ-concepts are formed according to the
rule
C,D := > | A | ¬C | CuD | CtD | (> n r C) | (6 n r C)

where A ∈ NC, r is a role, and n is a non-negative integer.
Concepts of the form (> n r C) and (6 n r C) are called qual-
ified number restrictions. An ALCIQ concept inclusion (CI)
takes the form C v D, where C and D areALCIQ-concepts.
An ALCIQ TBox is a finite set of ALCIQ CIs. A role inclu-
sion (RI) takes the form r v s, where r and s are roles. An
ALCHIQ TBox T is a finite set of ALCIQ CIs and RIs. We
also consider various DLs contained in ALCHIQ. ALCHI
is obtained from ALCHIQ by restricting the qualified num-
ber restrictions to concepts of the form (> 1 r C) (also written
∃r.C) and (6 0 r C) (also written ∀r.¬C), and ALCHIF is
the extension of ALCHI with functionality assertion taking
the form > v (6 1 r>). We also use ELI concepts which
are constructed using >, concept names, u, and ∃r.C with r a
role. For any concept, CI, or TBox T , we use |T | to denote the
number of symbols needed to write T assuming that numbers
in number restrictions are coded in unary.

An ABox A is a non-empty finite set of assertions of the
form A(a) and r(a, b) with A ∈ NC, r ∈ NR, and a, b ∈ NI.
We denote by ind(A) the set of individual names occurring
in A.

Interpretations I take the form (∆I , ·I), where ∆I is the
non-empty domain of I and ·I interprets every concept name
A as a subset AI of ∆I , role name r as a binary relation rI
in ∆I , and individual name a as an element aI of ∆I . The
extension CI of a concept C in I is defined as usual. An
interpretation I satisfies a CI C v D if CI ⊆ DI , an RI
r v s if rI ⊆ sI , an assertion A(a) if aI ∈ AI , and an
assertion r(a, b) if (aI , bI) ∈ rI . We say that I satisfies the
unique name assumption (UNA) if aI 6= bI for all individual
names a 6= b. An interpretation I is a model of a TBox T if it
satisfies all CIs and RIs in T and I is a model of an ABoxA if
it satisfies all assertions in A. We call an ABox A satisfiable
w.r.t. a TBox T (with UNA) if A and T have a common model
(satisfying the UNA).



The depth of an ALCIQ concept is the maximal number
of nestings of the qualified number restrictions in it; thus
(≥ 5r.A) has depth 1 and (> 5 r (> 4 r A)) has depth 2. The
depth of a TBox, which will play an important role in this pa-
per, is the maximal depth of the concepts that occur in it. For
deciding satisfiability and subsumption, TBoxes are often nor-
malized to depth 1 in a pre-processing step [Kazakov, 2009;
Kaminski et al., 2016]. This does not work for the ques-
tions studied in this paper since normalization can change
the complexity of the TBox, see [Lutz and Wolter, 2017;
Hernich et al., 2017].

A Horn-ALCIQ CI takes the form L v R, where L and R
are built according to the following syntax rules

R,R′ ::=> | ⊥ | A | ¬A | R uR′ | ¬L tR | (> n r R) |
∀r.R | (6 1 r L)

L,L′ ::=> | ⊥ | A | L u L′ | L t L′ | ∃r.L
A Horn-ALCHIQ TBox is a finite set of Horn-ALCIQ CIs
and RIs. Note that there are several alternative ways to define
Horn-DLs [Hustadt et al., 2007; Krötzsch et al., 2007; Eiter et
al., 2008; Kazakov, 2009]. The results in this paper apply to
all these definitions: whenever we claim that a sentence cannot
be expressed using a Horn-TBox, the proof establishes failure
of preservation under direct products which shows that the
sentence cannot be expressed in FO-Horn [Chang and Keisler,
1990; Lutz et al., 2011], and if we rewrite into a Horn-TBox
we always rewrite into a TBox of depth 1 in which case all
definitions of Horn-TBoxes coincide.

A conjunctive query (CQ) q(~x) is an FO-formula of the
form ∃~y ϕ(~x, ~y), where ϕ(~x, ~y) is a conjunction of atoms of
the form A(x), r(x, y), and x = y. Every ELI concept C
defines in the natural way a tree-shaped CQ with one free
variable, written C(x) [Lutz and Wolter, 2017]. Let ELIQ
denote the class of all such CQs, and let ELIQ= denote the
union of ELIQ and the set of all equalities x = y. We say that
a tuple ~a of individuals in an ABox A is a certain answer to
the CQ q(~x) over A w.r.t. a TBox T , in symbols T ,A |= q(~a)
if I |= q(~a) holds for all models I of T and A. The query
evaluation problem for T and CQ q is the problem to decide
for a given ABoxA and tuple~a of individuals fromA, whether
T ,A |= q(~a). We say that the CQ-evaluation problem for T
is in PTIME if the query evaluation problem for T and q is
in PTIME for every CQ q. Note that our default assumption
when speaking about query evaluation is that we do not make
the UNA. If we do, then we shall always explicitly say so.
We write T ,A |=UNA q(~a) if I |= q(~a) holds for all models
I of T and A satisfying the UNA and the query evaluation
problem for T and CQ q with the UNA is the problem to
decide T ,A |=UNA q(~a). If we want to emphasize that we
do not make the UNA, we write T ,A |=nUNA q(~a) instead of
T ,A |= q(~a). The relationship between certain answers with
and without the UNA can be expressed using the following
equivalence:

T ,A |=nUNA q(~a) ∨
∨

a 6=b∈ind(A)

(a = b) ⇔ T ,A |=UNA q(~a). (1)

It is well known that for DLs that do not admit any forms
of counting the UNA does not affect the certain answers to

CQs. Thus, if T is an ALCHI TBox, then T ,A |=UNA q(~a)
iff T ,A |=nUNA q(~a).

In this paper, we aim to understand whether and when a
TBox formulated in an expressive DL can be replaced with
a TBox formulated in the corresponding Horn-DL without
changing the answers to CQs. Following [Lutz and Wolter,
2010; Botoeva et al., 2016a; 2016b], TBoxes T1 and T2 are
CQ-inseparable if for all CQs q, all ABoxes A, and all tuples
~a of individual names in A, the following equivalence holds:

T1,A |=nUNA q(~a) ⇔ T2,A |=nUNA q(~a).

If T2 is a Horn TBox, then we call T2 a CQ-Horn-rewriting of
T1. A TBox T in a DL L is CQ-Horn-rewritable if there exists
a CQ-Horn-rewriting of T in Horn-L. We further say that CQ-
Horn-rewritability captures PTIME query evaluation for L
if every TBox in L is CQ-Horn-rewritable. Thus, as before,
by default we do not make the UNA. The notions introduced
above are modified in the obvious way if one makes the UNA
and we will always make this explicit.

3 Transfer between UNA and non-UNA
We investigate the influence of the UNA on CQ-Horn-
rewritability and the complexity of CQ-evaluation. We show
that for ALCHIQ TBoxes CQ-Horn-rewritability does not
depend on the UNA, but that for PTIME CQ-evaluation only
one direction holds: if CQ-evaluation is in PTIME without
UNA, then it is in PTIME with UNA. In the proof we use a
disjunction property of TBoxes and show that it is a necessary
condition for CQ-evaluation to be in PTIME, with and without
UNA (unless PTIME equals CONP).

For an ABox A, CQs q1(~x1), . . . , qn(~xn), and tuples
~a1, . . . ,~an in A, we write T ,A |=nUNA

∨
1≤i≤n qi(~ai) if

for every model I of T and A there is i ∈ {1, . . . , n} with
I |= qi(~ai), and we define T ,A |=UNA

∨
1≤i≤n qi(~ai) ac-

cordingly based on models that satisfy the UNA. Let Q be a
class of CQs. A TBox T has the Q-disjunction property with-
out UNA if for all ABoxes A, CQs q1(~x1), . . . , qn(~xn) ∈ Q
and tuples ~a1, . . . ,~an in A with T ,A |=nUNA

∨
1≤i≤n qi(~ai)

there exists i ∈ {1, . . . , n} such that T ,A |= qi(~ai). The
Q-disjunction property with UNA is defined accordingly.
Example 1. The TBox T2 from the introduction does not en-
joy the ELIQ=-disjunction property without UNA, but enjoys
it with UNA. To show the first claim note that for the ABox
A2 from the introduction

T2,A2 |=nUNA

∨
i6=j

(booki = bookj) ∨ ProlificAuthor(bob)

but no disjunct is entailed without UNA. To show the second
claim observe that T2,A |=UNA q(~a) iff ∅,A′ |= q(~a) holds
for every ABox A, any CQ q, and for A′ obtained from A
by adding the assertions ProlificAuthor(b) for any b such that
author(b, c) ∈ A for at least 200 distinct c. It follows immedi-
ately that T2 has the ELIQ=-disjunction property with UNA
and enjoys PTIME CQ-evaluation with UNA.

We need the following technical lemma.
Lemma 1. If T is an ALCHIQ TBox, then T has the ELIQ-
disjunction property iff T has the ELIQ=-disjunction property



iff T has the CQ-disjunction property. The equivalences hold
both with and without UNA.

Proof (sketch). We prove the case without UNA of which the
case with UNA is a special case. The direction from CQ to
ELIQ is trivial. For the direction from ELIQ to ELIQ=, we
simulate equalities between distinct individual names in an
ABox A by ELIQs as follows. Given an equality (a = b) with
a 6= b ∈ ind(A), we first extend A by a new assertion Aa(a),
whereAa is a fresh concept name, and then replace (a = b) by
Aa(b). Note that the corresponding query Aa(x) is an ELIQ.
The direction from ELIQ= to CQ is similar to the proof of
Theorem 16 in [Lutz and Wolter, 2017].

For an ABox A and an equivalence relation ∼ on ind(A),
the quotient ABox A/∼ of A is defined by replacing each
individual a in A with the equivalence class a/∼ of a w.r.t. ∼.
Given a tuple ~a = (a1, . . . , ak) in A we denote by ~a/∼ the
tuple (a1/∼, . . . , ak/∼).
Theorem 1. A Horn-ALCHIQ TBox T ′ is a CQ-Horn-re-
writing of an ALCHIQ TBox T without UNA iff it is a CQ-
Horn-rewriting of T with UNA.

Proof (sketch). For the direction from left to right, letA be an
ABox. We first establish that for all CQs q1(~x1), . . . , qn(~xn)
and tuples ~a1, . . . ,~an in A:

T ,A |=nUNA

∨
1≤i≤n

qi(~ai) ⇔ T ′,A |=nUNA

∨
1≤i≤n

qi(~ai). (2)

For the proof, we may assume that the qi(~xi) are ELIQs (by
Lemma 1). We then simulate disjunctions of ELIQs by single
ELIQs (see Theorem 18 in [Lutz and Wolter, 2017] for a
similar construction) and use that T ′ is a CQ-Horn-rewriting
of T without UNA.

Now let q(~x) be a CQ and ~a a tuple in A. Then, (1) and (2)
imply T ,A |=UNA q(~a) iff T ′,A |=UNA q(~a).

For the converse, we first establish that T ,A |=nUNA q(~a)
iff T ,A/∼ |=UNA q(~a/∼) for all equivalence relations ∼ on
ind(A), where A, q(~x), and ~a are as above. The same holds
if we substitute T ′ for T . Since the right hand side of this
equivalence holds for T iff it holds for T ′, it follows that
T ,A |=nUNA q(~a) iff T ′,A |=nUNA q(~a).

We now turn to CQ-evaluation w.r.t. ALCHIQ TBoxes.
As shown in [Hernich et al., 2017], the ELIQ=-disjunction
property implies that CQ-evaluation with UNA is in PTIME.
The proof can be generalized to the case without UNA.
Lemma 2. Let T be a ALCHIQ TBox. If T does not have
the ELIQ=-disjunction property, then ELIQ=-evaluation for
T is CONP-hard. This holds both with and without UNA.
Example 2. As the TBox T2 from Example 1 does not enjoy
the ELIQ=-disjunction property without UNA, CQ-evaluation
w.r.t. T2 is CONP-hard without UNA.

As a consequence of Lemma 2 we obtain that tractability
of CQ-evaluation without UNA implies tractability of CQ-
evaluation with UNA.
Theorem 2. Let T be an ALCHIQ TBox and suppose that
CQ-evaluation w.r.t. T without UNA is in PTIME. Then, CQ-
evaluation w.r.t. T with UNA is in PTIME.

Proof. We reduce the UNA case to the non-UNA case. Let A
be an ABox, q(~x) a CQ, and ~a a tuple in A. By Lemma 2 and
Lemma 1, T has the CQ-disjunction property (unless we are
in the trivial case where PTIME = CONP). Now, (1) implies
that T ,A |=UNA q(~a) iff either T ,A |=nUNA q(~a) or there
exist a 6= b ∈ ind(A) with T ,A |=nUNA (a = b).

4 CQ-Horn-Rewritability vs PTIME w/o UNA
We show that, without the UNA, CQ-Horn-rewritability cap-
tures PTIME query evaluation for ALCHIQ TBoxes of
depth 1. We also show that the meta problem of deciding
CQ-Horn-rewritability is EXPTIME complete for such TBoxes.
To prove these results, we first show how to equivalently trans-
form a TBox of depth 1 into a certain normal form. From
the resulting TBox T we construct a Horn TBox Thorn which
we show to be a CQ-Horn-rewriting of T if and only if CQ-
evaluation for T is in PTIME.

We start with the normal form. A literal is a concept name
or a negation thereof. A CI C v D is in normal form if

1. C is a conjunction of concept names and concepts of the
form (> n r E) with E a conjunction of concept names;

2. D is a disjunction of

• concept names;
• concepts (> n r E) with E a conjunction of literals;
• concepts (6 n r E) with E a conjunction of literals

that contains at least one negative literal.

We set C = > if C is the empty conjunction and D = ⊥ :=
¬> if D is the empty disjunction. An ALCHIQ TBox T is
in normal form if all CIs in T are in normal form.

Lemma 3. Every ALCHIQ TBox T of depth 1 can be con-
verted into a logically equivalent ALCHIQ TBox T ′ in nor-
mal form.

In the worst case, T ′ is of size double exponential in the
size T . From now on, we assume that T is fixed and in
normal form. Using T , we define a Horn TBox Thorn. For
any conjunction or disjunction of literals E, we use pos(E)
to denote the conjunction of all concept names A in E and
neg(E) to denote the conjunction of all concept names A such
that ¬A is in E. We use LT to denote the set of

• concept names or concepts of the form (> n r E) occur-
ring as top-level conjuncts in C in some CI C v D ∈ T ;

• concepts (> n + 1 r pos(E)) such that there is a CI
C v D ∈ T such that (6 n r E) is a disjunct of D.

A set S ⊆ LT is a trigger for a CI C v D ∈ T if S contains
all top-level conjuncts ofC and all (> n+1 r pos(E)) with (6
n r E) a disjunct of D. For a trigger S, we denote by CS the
conjunction of all concepts in S and by C≤1

S the ELI concept
obtained fromCS by replacing every (> n r E) with n ≥ 2 by
(> 1 r E). For a concept (6 n r E) with E a conjunction of
literals that contains at least one negative literal, we call ∀r.E′
a Horn specialization of (6 n r E) if E′ is obtained from E
by dropping all but one negative literal. We sometimes write
Horn specializations in the form ∀r.(A1 u · · · u An → A)
where C → D stands for ¬C tD.



For each CI C v D ∈ T and trigger S for it we define
a set Horn(C v D,S) of Horn-ALCIQ-CIs. In the special
case that T |= C≤1

S v ⊥ we set Horn(C v D,S) = {C≤1
S v

⊥}. Otherwise Horn(C v D,S) contains the following CIs
whenever they are a consequence of T :

• C≤1
S v (6 1 r E) if (> n r E) ∈ S for some n ≥ 2;

• C≤1
S v A if A ∈ NC is a top-level disjunct of D;

• C≤1
S v R if R = ∀r.(A1 u · · · u An → A) is a Horn

specialization of some disjunct (6 n r E) of D;

• C≤1
S v (> 1 r pos(E)) if (> mrE) is a disjunct of D

such that T 6|= C≤1
S v ¬(> mrE).

Now the Horn-ALCHIQ TBox Thorn is defined as the union
of all RIs in T and ⋃

CvD∈T , S trigger for CvD

Horn(C v D,S)

It can be verified that, by construction, T |= Thorn. The fol-
lowing lemma is the main step towards the capturing result.

Lemma 4. Let T be an ALCHIQ TBox in normal form.
Then the following conditions are equivalent:

1. T has the ELIQ=-disjunction property without UNA;

2. for every C v D ∈ T and trigger S for C v D,
Horn(C v D,S) 6= ∅;

3. T and Thorn are CQ-inseparable without UNA.

The following examples illustrate this lemma.

Example 3. (1) Reconsider the TBox T1 from the introduc-
tion, which contains the only CI

∃author.> v ∃author.Novel t
∃author.Short Story t ∃author.¬Fiction

that we abbreviate by α. Then S = {∃author.>} is the only
trigger for α. We have T1horn = Horn(α, S) = {∃author.> v
∃author.>} since pos(¬Fiction) = >. Thus, Horn(α, S) 6=
∅ and, by Lemma 4, T1horn is a CQ-Horn-rewriting of T1 (equiv-
alent to the empty TBox) .

Define T ′ by adding to T1 the CI Novelist v
∀author.Fiction. Then S = {∃author.>,Novelist} is a trig-
ger for α and now Horn(α, S) = ∅. Thus, by Point 2, T ′horn is
not a CQ-Horn-rewriting of T ′.

(2) Consider the TBox T2 from the introduction containing

β = (> 200 author>) v ProlificAuthor

Then S = {(> 200 author>)} is the only trigger for β. We
have C≤1

S = ∃author.> and it is readily checked that T2horn =
Horn(β, S) = ∅. By Point 2, T2horn is not a CQ-Horn-rewriting
of T2.

(3) Observe that for any TBox T , 0, 1 are the only
numbers used in Thorn. Consider, for example, T =
{ProlificScientist v (> 200 author¬Fiction)}. Then
Thorn = {ProlificScientist v (> 1 author>)} is a CQ-Horn-
rewriting of T .

We give a brief description of the proof of Lemma 4. For
the proof of (1)⇒ (2) one constructs under the assumption
that (2) does not hold for C v D and trigger S the tree-shaped
ABox AS corresponding to the concept CS and a disjunction
of queries in ELIQ= which refutes the ELIQ=-disjunction
property if Horn(C v D,S) = ∅. For (2)⇒ (3) one defines a
chase procedure which constructs, if (2) holds, for every ABox
A satisfiable w.r.t. Thorn a universal model ofA and Thorn which
is also a model of T . For (3)⇒ (1) assume that (3) holds and
let A be an ABox, q1(~x1), . . . , qn(~xn) CQs, and ~a1, . . . ,~an
tuples in A with T ,A |=nUNA

∨
1≤i≤nqi(~ai). By (2) from the

proof of Theorem 1, Thorn,A |=nUNA
∨

1≤i≤nqi(~ai). But then
there exists i such that Thorn,A |=nUNAqi(~ai) and by Point 3,
T ,A |=nUNAqi(~ai), as required.

The following main result of this section now follows from
Lemmas 4 and 2.

Theorem 3. CQ-Horn-rewritability captures PTIME CQ-
evaluation without UNA for ALCHIQ TBoxes of depth 1
(unless PTIME equals CONP).

Observe that we also obtain a PTIME/CONP dichotomy for
CQ-evaluation w.r.t. ALCHIQ TBoxes of depth 1, without
the UNA: for any such TBox T , CQ-evaluation is in PTIME
for all CQs or there exists a CQ for which query evaluation is
CONP-hard w.r.t. T . Results of this form have so far only been
obtained for query evaluation with UNA [Lutz and Wolter,
2017; Hernich et al., 2017].

Point 2 of Lemma 4 provides an effective algorithm for
checking CQ-Horn-rewritability. Note, however, that be-
cause of the exponential blow-up in the normalization step for
TBoxes and the potentially exponential number of triggers, its
worst-case complexity is triple exponential. Using a model-
theoretic approach, we improve this to a single-exponential
upper bound, and thus deciding CQ-Horn-rewritability is not
harder than satisfiability.

Theorem 4. Deciding CQ-Horn-rewritability of ALCHIQ
TBoxes of depth 1 is EXPTIME-complete.

The lower bound is proved by a polynomial reduction of the
satisfiability of ALCHIQ TBoxes. For the upper bound, one
decides the ELIQ=-disjunction property without UNA. Using
a model-theoretic reformulation one can show that a TBox T
has the ELIQ=-disjunction property without UNA iff it has the
Q-disjunction property without UNA for ABoxes that have
the shape of a tree of depth 1 and of outdegree bounded by |T |,
where Q is the class of ELIQ=s of depth 1 and of outdegree
bounded by |T |, and where both the ABox and the queries use
concept and role names from T only. The latter condition can
be reduced to satisfiability in ALCHIQ.

5 CQ-Horn-Rewritability vs PTIME with UNA
As shown in Examples 1 and 2, CQ-Horn-rewritability does
not capture PTIME query evaluation with UNA for very simple
ALCQ-TBoxes of depth 1 (unless PTIME equals CONP). The
experiments reported in the introduction further show that the
CIs occurring in these TBoxes are very common in practice.
The following example shows that when number restrictions
are restricted to global functionality assertions, then there are



still TBoxes of depth 1 for which CQ-evaluation is in PTIME
with UNA but which are not CQ-Horn-rewritable.

Example 4. Let T be the ALCHIF TBox stating that role
names s1 and s2 are functional and containing the RIs r v s1

and r v s2 and the CIs

∃s1.(B1 uB2) v ∃r.>
∃s1.> u ∃s2.> v ∀s1.B1 u ∀s2.B2

∃s1.> u ∃s2.> v B t ∃r.>

One can show that T has the CQ-disjunction property with
UNA but not without UNA. Thus, CQ-evaluation w.r.t. T
with UNA is in PTIME [Hernich et al., 2017] and T is
not CQ-Horn-rewritable. To refute the CQ-disjunction prop-
erty without UNA, let A = {s1(a, b1), s2(a, b2)}. Then
T ,A |=nUNA B(a)∨∃r.>(a) but T ,A 6|=nUNA B(a) since by
identifying b1 and b2 and adding (a, bi) to the extension of r
and bi toB1 andB2 one can define a model I of T andA such
that aI 6∈ BI ; and T ,A 6|=nUNA ∃r.>(a) since by adding a
to the extension of B, b1 to B1, and b2 to B2 one can define
a model I of T and A such that aI 6∈ (∃r.>)I . To show the
CQ-disjunction property with UNA, one can construct for any
ABox A satisfiable w.r.t. T with UNA a model I which maps
homomorphically into any model of A and T with UNA.

We now show that the interaction between functionality as-
sertions and RIs exploited in Example 4 is needed to construct
TBoxes in ALCHIF which are not CQ-Horn-rewritable
but for which CQ-evaluation is in PTIME with UNA. An
ALCHIFvf TBox is anALCHIF TBox T such that when-
ever r v s ∈ T , then neither s nor s− are functional in T .

Theorem 5. Let T be a ALCHIFvf TBox. Then CQ-
evaluation w.r.t. T without UNA is in PTIME iff CQ-evaluation
w.r.t. T with UNA is in PTIME.

Proof (sketch). The direction (⇒) is Theorem 2. Conversely,
assume that CQ-evaluation with UNA is in PTIME. Let A
be an ABox. Let ∼ be the smallest equivalence relation on
ind(A) such that if a ∼ b and r(a, a′), r(b, b′) ∈ A and
> v (6 1 r>) ∈ T , then a′ ∼ b′. Then one can show that
T ,A |=nUNA q(~a) iff T ,A/∼ |=UNA q(~a/∼), for every CQ q
and tuple ~a in ind(A). It follows that CQ-evaluation without
UNA is in PTIME since ∼ can be computed in polynomial
time.

The following is now a consequence of Theorems 5 and 3.

Theorem 6. CQ-Horn-rewritability captures PTIME query
evaluation with UNA for all ALCHIFvf TBoxes of depth 1
(unless PTIME equals CONP).

So far, we have investigated the relationship between
PTIME CQ-evaluation and CQ-Horn-rewritability mainly for
TBoxes of depth 1. In fact, our results for depth 1 TBoxes do
not generalize to arbitrary depth.

Theorem 7. CQ-Horn-rewritability does not capture PTIME
query evaluation forALC TBoxes of depth 3 (with and without
UNA).

Proof. According to Theorem 6.8 in [Lutz and Wolter, 2017]
there are ALC TBoxes T of depth 3 such that CQ-evaluation

w.r.t. T is in PTIME but such that some CQs q are not
Datalog-rewritable w.r.t. T . Such a TBox cannot be CO-Horn-
rewritable since every CQ is Datalog-rewritable w.r.t. any
Horn-ALC TBox [Lutz and Wolter, 2017].

The question whether CQ-Horn-rewritability captures
PTIME query evaluation for ALC TBoxes of depth 2 is open.
Decidability of CQ-Horn-rewritability for ALC TBoxes of
arbitrary depth is also open. For ALCF , however, one can
easily extend Theorem 7.3 in [Lutz and Wolter, 2017] and
show that CQ-Horn-rewritability ofALCF TBoxes of depth 3
is undecidable.

6 Discussion
We briefly discuss alternative approaches to rewritability into
Horn TBoxes. From a logical viewpoint, it is natural to de-
mand that the rewriting T ′ should not only give the same
answers to CQs as T , but be logically equivalent to T , or at
least a conservative extension. Here, T ′ is called a conserva-
tive extension of T if T ′ |= α for every α ∈ T and for every
model of T there exists a model of T ′ which coincides with
T regarding its domain and the interpretation of the concept
and role names from T . Unfortunately, this approach is ex-
tremely restrictive. We have seen that the TBox T1 from the
introduction is trivial from the viewpoint of answering CQs
(it is CQ-inseparable from the empty TBox), but nevertheless
there is no conservative extension of T1 which is also a Horn
TBox. One can show this by proving that no conservative
extension of T1 is preserved under direct products.

In some applications of ontology-mediated querying the
user knows in advance signatures (finite sets of concept and
role names) Σ1 and Σ2 such that all relevant ABoxes and CQs
use symbols from Σ1 and, respectively, Σ2 only. Then, rather
than admitting arbitrary ABoxes and CQs in the definition
of CQ-Horn-rewritings, it is natural to consider CQ-Horn-
rewritings w.r.t (Σ1,Σ2) in the sense that T and T ′ give ex-
actly the same answers to all CQs in Σ1 on all ABoxes in Σ2.
The corresponding notion of (Σ1,Σ2)-inseparability has been
considered in [Botoeva et al., 2016b]. This relaxation leads to
undecidability of CQ-Horn-rewritability as one can reduce the
corresponding undecidable CQ-inseparability problem.

Theorem 8. ForALC TBoxes of depth 1 there is no algorithm
that decides CQ-Horn-rewritability w.r.t. (Σ1,Σ2) and outputs
such a rewriting in case it exists.

7 Conclusion
We have investigated whether CQ-Horn-rewritability captures
PTIME query evaluation, with particular focus on the influence
of the UNA and the depth of TBoxes. From a practical view-
point it would be of interest to investigate query answering
algorithms covering the CIs which are in PTIME but cannot
be captured using Horn-CIs discussed in the introduction. It
would also be of interest to investigate the succinctness of
CQ-Horn-rewritings. The normal form of a given TBox is
of double exponential size (in the worst case) and our CQ-
inseparable rewritings are of exponential size in the size of the
TBox in normal form. It is open whether this is optimal.
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Rafael S. Gonçalves, Birte Glimm, and Andreas Steigmiller.
The OWL reasoner evaluation (ORE) 2015 competition re-
port. J. Autom. Reasoning, 59(4):455–482, 2017.

[Poggi et al., 2008] Antonella Poggi, Domenico Lembo,
Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenz-
erini, and Riccardo Rosati. Linking data to ontologies. J.
Data Semantics, 10:133–173, 2008.

[Schaerf, 1993] Andrea Schaerf. On the complexity of the
instance checking problem in concept languages with exis-
tential quantification. J. of Intel. Inf. Systems, 2:265–278,
1993.



[Whetzel et al., 2011] Patricia L Whetzel, Natalya F Noy,
Nigam H Shah, Paul R Alexander, Csongor Nyulas, Tania
Tudorache, and Mark A Musen. Bioportal. Nucleic acids
research, 39(suppl 2):W541–W545, 2011.

A Basic Results and Notation
We have introduced the disjunction property of TBoxes. For
some proofs it will be more convenient to work with the equiv-
alent notion of materializability.

Definition 1 (Materializability). Let T be a TBox, Q a class
of CQs, andM a class of ABoxes. Then

• an interpretation I is a Q-materialization of T and an
ABox A if it is a model of T and A and for all q(~x) ∈ Q
and ~a in ind(A), I |= q(~a) iff T ,A |=nUNA q(~a).

• T is Q-materializable forM if for every ABox A ∈M
that is satisfiable w.r.t. T there is a Q-materialization of
T and A.

If M is the class of all ABoxes, we simply speak of Q-
materializability of T .

In the definition above, we define materializations and ma-
terializability without UNA. If we require materializations I
to be models of A and T with UNA such that I |= q(~a) iff
T ,A |=UNA q(~a), then we speak about Q-materializations
with UNA and Q-materializability for M with UNA. The
equivalence ofQ-materializability and theQ-disjunction prop-
erty with and without UNA can be proved in a straightforward
way. It has been shown with UNA for ALCIF in [Lutz and
Wolter, 2017].

Lemma 5. Let Q be a class of CQs and T an ALCHIQ
TBox. Then T isQ-materializable iff T has theQ-disjunction
property. This equivalence holds with and without the UNA.

An interpretation I is a tree interpretation if the undirected
graph GI = (∆I ,

⋃
r∈NR

(rI ∪ (r−)I)) is a tree without self-
loops. An interpretation I is a closed model of an ABox A
if it is a model of A and ∆I = {aI | a ∈ ind(A)}. Let
J be an interpretation and I be a tree interpretation with
∆I ∩ ∆J = {d}. Then we say that the interpretation J ′
defined by setting

• ∆J
′

= ∆J ∪∆I ;

• AJ ′ = AJ ∪AI for all concept names A;

• rJ ′ = rJ ∪ rI for all role names r;

• aJ ′ = aJ for all individual names a

is obtained from J by hooking I to J at d. Call a model I of
A a forest model of A if I is obtained from a closed model J
of A by hooking tree interpretations to J for every d ∈ ∆J .

A homomorphism h between interpretations I1 and I2 is a
mapping from ∆I1 to ∆I2 such that

• if d ∈ AI1 , then h(d) ∈ AI2 for all concept names A;

• if (d, d′) ∈ rI1 , then (h(d), h(d′)) ∈ rI2 for all role
names r;

• h(aI1) = aI2 for all individual names a.

The following result is folklore [Hernich et al., 2017].

Lemma 6. Let T be an ALCHIQ TBox and A an ABox
satisfiable w.r.t. T . Then T ,A |= q(~a) for a CQ q(~x) and
tuple ~a in ind(A) if I |= q(~a) for all forest models I ofA and
T . This holds with and without the UNA.



If T is CQ-materializable, then there exists a forest model I
of T and A such that for every model J of T and A there ex-
ists a homomorphism from I to J . I is a CQ-materialization
of T and A. This holds with and without the UNA.

We give a more detailed definition of the quotient ABox
and also the quotient interpretation. For an ABox A and
an equivalence relation ∼ on ind(A), we obtain the quotient
ABox A/∼ of A as follows: we regard the equivalence classes
a/∼ of individual names a w.r.t. ∼ as individual names and
include in A/∼ the assertion

• A(a/∼) if there exists b ∼ a such that A(b) ∈ A;

• r(a/∼, b/∼) if there exist a′ ∼ a and b′ ∼ b such that
r(a′, b′) ∈ A.

Let I be an interpretation and ∼ an equivalence relation on
∆I . Then we define the quotient interpretation J = I/∼ as
follows:

• ∆J = {d/∼ | d ∈ ∆I};
• for every individual name a: aJ = aI/∼;

• for every concept name A: AJ = {d/∼ | d ∈ AI};
• for every role name r: rJ = {(d/∼, d′/∼) | (d, d′) ∈
rI}.

For an ABox A, we denote by IA the interpretation obtained
from A in the obvious way by setting

• ∆IA = ind(A);

• a ∈ AIA if A(a) ∈ A;

• (a, b) ∈ rIA if r(a, b) ∈ A;

• aIA = a for all individual names a.

Let C be a concept of depth 1 constructed from concept names
and the concept > using the constructors u and (≥ nr.C).
Then the ABox AC corresponding to C with root a0 contains

• A(a0), for every top-level conjunct A ∈ NC of C;

• r(a0, ai) and A(ai) for 1 ≤ i ≤ n, for every top-level
conjunct (≥ nr.C) of C and conjunct A of C, where we
assume that the sets {a1, . . . , an} of individual names
have cardinality n and are mutually disjoint for every
concept (> n r C).

Here and in what follows we use r(a0, ai) as a shorthand for
s(ai, a0) if r is an inverse role with r = s−.

B Experiments Reported in Section 1
We ran experiments to understand how many CIs αwith proper
number restrictions (i.e., not equivalent to existential or uni-
versal restrictions) and of depth 1 from real life ontologies can
be easily classified according to whether

• CQ-evaluation w.r.t. the TBox Tα = {α} is in PTIME
with UNA;

• Tα is CQ-Horn-rewritable.

We devised seven schemata of CIs such that for all CIs α
belonging to any of the schemata CQ-evaluation w.r.t. Tα is
in PTIME with UNA and for all except the schema Horn,
the TBox Tα is not CQ-Horn-rewritable. The schemata are as

Schemata BioPortal ORE
Horn 2911 5156

A exact 1390 1446
A max 6 15

equiv exact 642 234
equiv min 23 20
exact A 2 2
min A 3 3

unknown 104 82
Total 5081 6958

Table 1: CI classification

follows, whereE is a potentially empty (i.e.,>) conjunction of
concept names, F a potentially empty conjunction of the form
E uu(> ni riEi), and for any role r and any two distinct
restrictions (Q ni r Ei) and (Q′ nj r Ej) with Q,Q′ ∈ {≥
,=,≤} neither Ei ⊆ Ej nor Ej ⊆ Ei.
• Horn: the CI is a Horn-CI;

• A exact: CIs of the form A v F uu(= nj rj Ej);

• A max: CIs of the form A v F uu(6 nj rj Ej);

• equiv exact: CIs of the form A ≡ F uu(= nj rj Ej);

• equiv min: CIs of the form A ≡ F with F containing at
least one number restriction;

• exact A: CIs of the form F uu(= nj rj Ej) v A;

• min A: CIs of the form F v A with F containing at
least one number restriction;

The dataset is composed of a snapshot of BioPortal1 and the
corpus used for the ORE 2015 competition2. For each parsable
ontology in the dataset, all CIs with at least one number re-
striction not equivalent to either an existential or a universal
restriction were collected, and a simple normalization was
performed in order to avoid tautological CIs and false neg-
atives. The resulting dataset is composed of 97 ontologies
(5081 axioms) from BioPortal and 447 ontologies (6958 ax-
ioms) from the ORE corpus. All the experiments were ran
on a machine equipped with an Intel Core i7-2600 CPU with
3.40GHz and 16GB of RAM. Each CI is classified in one
of the seven schemata or as ‘unknown’ if it does not belong
to any of them. Note that for a CI α classified as unknown
the CQ-evaluation with UNA might still be in PTIME, but it
simply cannot be classified according to our schemata. Ta-
bles 1 summarizes the classifications of the CIs, and Table 2
summarizes the occurrence of CI schemata in the ontologies
under consideration without counting those containing only
Horn-CIs.

From Table 1, only 104 out of 5081 (2.05%) of the CIs from
BioPortal, and 82 out of 6958 (1.18%) of the CIs from the
ORE corpus are not classifiable. Many ontologies, however,
contain only Horn CIs. Specifically, 55 out of 97 ontologies
from BioPortal, and 259 out of 447 ontologies from the ORE
corpus. After removing such ontologies the total number of

1https://zenodo.org/record/439510
2https://zenodo.org/record/18578



Schemata BioPortal ORE
Horn 33 155

A exact 22 139
A max 6 13

equiv exact 20 52
equiv min 11 16
exact A 1 1
min A 1 1

unknown 22 20
# Ontologies 42 188

Table 2: Occurrence of CI schemata

axioms drops to 3420 and 4243 respectively, but the non-
classifiable CIs are still just 3.04% and 1.93%, respectively.
Table 2 shows the distribution of occurrences of schemata in
the ontologies without counting those containing only Horn
CIs. For Table 2, it is worth pointing out that only one ontology
in the BioPortal dataset and only two ontologies in the ORE
dataset contain only CIs classified as ‘unknown’, resulting in
41 out of 42 ontologies with at least one non-Horn CI classified
as not CQ-Horn-rewritable for BioPortal, and 186 out of 188
for ORE.

From the tables it is evident that two of the patterns do not
occur often, namely, the “exact A” and “min A” schemata.
The reason being that common ontology editors (e.g., Protégé)
discourage the creation of this form of CIs, while encouraging
CIs of the form A v C or A ≡ C.

C Proofs for Section 3
Lemma 1 (restated). If T is an ALCHIQ TBox, then the
following are equivalent:

1. T has the ELIQ-disjunction property;
2. T has the ELIQ=-disjunction property;
3. T has the CQ-disjunction property.

These equivalences hold both with and without UNA.

Proof. We prove the case without UNA of which the case with
UNA is a special case. The implication 3 ⇒ 1 is trivial. In
what follows, we prove 1⇒ 2 and 2⇒ 3.

To prove the implication 1 ⇒ 2, assume that T has the
ELIQ-disjunction property without UNA. Suppose there is an
ABox A, queries q1(~x1), . . . , qn(~xn) in ELIQ=, and tuples
~a1, . . . ,~an in A such that T ,A |=nUNA

∨
1≤i≤n qi(~ai) and

T ,A 6|=nUNA qi(~ai) for all 1 ≤ i ≤ n. Let A′ be a new
ABox obtained from A by adding an assertion Aa(a) for
every individual a that occurs in some of the tuples ~ai, where
Aa is a fresh concept name. For every i ∈ {1, . . . , n}, let
q′i(~ai) denote qi(~ai) if qi(~ai) is an ELIQ, and let q′i(~ai) :=
Aa1(a1) ∧ Aa2(a1) if qi(a1, a2) is an equality (a1 = a2).
Then T ,A′ |=nUNA

∨
1≤i≤n q

′
i(~ai) but T ,A′ 6|=nUNA q′i(~ai)

for all 1 ≤ i ≤ n, which contradicts the fact that T has the
ELIQ-disjunction property without UNA.

For the implication 2⇒ 3, it suffices to prove, by Lemma 5,
that if T is ELIQ=-materializable, then T is CQ-material-
izable. A similar statement, that ELIQ-materializability im-
plies CQ-materializability for ALCIF TBoxes, was proved

in [Lutz and Wolter, 2017, Theorem 16]. In the following, we
generalize this result.

Assume that T is ELIQ=-materializable. To show that T is
CQ-materializable, let A be an ABox that is satisfiable w.r.t.
T and let I be an ELIQ=-materialization of T and A. By the
following claim, we can assume, without loss of generality,
that I is a forest model of T and A.

CLAIM 1. For every model I of T and A there exists a forest
model J of T and A and a homomorphism from J to I.

Proof. This was proved in [Hernich et al., 2017, Lemma 1]
with UNA in a more general context, and readily carries over
to the case without UNA. y

Since I is a forest model of T and A, it is obtained from a
closed model I0 of A by hooking tree interpretations Id to I0

for every d ∈ ∆I0 :

I = I0 ∪
⋃

d∈∆I0

Id.

Here, we have ∆Jd ∩∆J0 = {d} and ∆Jd ∩∆Jd′ = ∅ for
all d, d′ ∈ ∆J0 with d 6= d′.

We show that I is a CQ-materialization of T and A. To
this end, it suffices to show that for every finite subset Q ⊆ I
and every model J of T and A there exists a homomorphism
from Q to J .

Let Q be a finite subset of I and let J be a model of T and
A. Without loss of generality, we may assume that ∆I0 ⊆ ∆Q

and that Q∩Id is connected for every d ∈ ∆I0 . We will need
the following result:

CLAIM 2. For every d ∈ ∆I0 there exists I ′d ⊆ Id such that

• ∆Id = ∆I
′
d ;

• AId = AI
′
d for all concept names A;

• rId = {(e, e′) | (e, e′) ∈ sI′d , s is a role, T |= s v r}
for all role names r; and

• rI′d ∩ sI′d = ∅ for all distinct roles r and s.

Proof. We obtain I ′d from Id by repeatedly applying the
following procedure: if there is a role name r and a role s 6= r
with T |= s v r and rId ∩ sId 6= ∅, then remove from rId all
pairs in rId ∩ sId . y

Let d ∈ ∆I0 and let I ′d be as in Claim 2. We view Q ∩ I ′d
as an ELIQ Cd(x) with the property that for all interpretations
K with d ∈ ∆K we have K |= Cd(d) iff there exists a ho-
momorphism from Q ∩ I ′d to K. Since I |= Cd(d) and I is
an ELIQ=-materialization of T and A, we have J |= Cd(d).
Hence, there exists a homomorphism hd from Q ∩ I ′d to J ,
and by our choice of I ′d this homomorphism is also a homo-
morphism from Q ∩ Id to J .

To conclude the proof, we note that the union of all homo-
morphisms hd, for d ∈ ∆I0 , is a homomorphism from Q to
J , as desired.

The following lemma plays an important role in the proof
of Theorem 1. It holds with and without UNA, but we restrict
our attention to the variant that is used for Theorem 1.
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Figure 1: Illustration of the ABox A′ in the proof of Lemma 7.

Lemma 7. Let T be an ALCHIQ TBox, let T ′ be a CQ-
Horn-rewriting of T , and let q1(~x1), . . . , qn(~xn) be CQs.
Then for all ABoxes A and tuples ~a1, . . . ,~an in A:

T ,A |=nUNA

∨
1≤i≤n

qi(~ai) ⇔ T ′,A |=nUNA

∨
1≤i≤n

qi(~ai).

Proof. It suffices to focus on the case that each query qi(~xi) is
an ELIQ. Indeed, we know that T ′ has the ELIQ-disjunction
property (because it is a Horn-ALCHIQ TBox), so if the
lemma holds for ELIQs, then the ELIQ-disjunction property
carries over to T (because T ′ is a CQ-Horn-rewriting of T ).
By Lemma 1, T and T ′ have the CQ-disjunction property,
which implies the lemma.

To prove the lemma for ELIQs, we simulate disjunctions
of ELIQs by single ELIQs. To this end, let A be an ABox,
let C1(x), . . . , Cn(x) be ELIQs, and let a1, . . . , an ∈ ind(A).
For each i ∈ {1, . . . , n}, let Ai be an ABox that is satisfi-
able w.r.t. T and satisfies ind(Ai) ∩ ind(A) = ∅, ind(Ai) ∩
ind(Aj) = ∅ for all j 6= i, and Ai |= Ci(bi) for some individ-
ual bi. Define a new ABox A′ as follows:
• initialize A′ to A ∪A1 ∪ . . . ∪ An;
• pick fresh individuals c, c1, . . . , cn and a fresh role name
r and add the assertions r(c, c1), . . . , r(c, cn) to A′;
• pick fresh role names s1, . . . , sn and add the assertion
sj(ci, dj) to A′ for all 1 ≤ i, j ≤ n, where dj = ai if
j = i and dj = bj for all j 6= i.

See Figure 1 for an illustration. It is straightforward to check
that T ,A |=nUNA

∨
1≤i≤n Ci(ai) iff T ,A′ |=nUNA C(c),

where C(x) is the ELIQ defined by C = ∃r.u 1≤i≤n ∃si.Ci,
and accordingly for T ′. Since T ′ is a CQ-Horn-rewriting of
T , this equivalence implies that T ,A |=nUNA

∨
1≤i≤n Ci(ai)

iff T ′,A |=nUNA
∨

1≤i≤n Ci(ai).

Lemma 2 (restated). Let T be a ALCHIQ TBox. If T
does not have the ELIQ=-disjunction property, then ELIQ=-
evaluation for T is CONP-hard. This holds both with and
without UNA.

Proof. The result with UNA follows from Theorem 3 in [Her-
nich et al., 2017], and it remains to prove the result without
UNA. Assume that T does not have the ELIQ=-disjunction

property without UNA. By Lemma 1, T also does not have
the ELIQ-disjunction property without UNA. We show that
ELIQ-evaluation for T without UNA is CONP-hard. As ELIQ
is a subset of ELIQ=, this implies that ELIQ=-evaluation for
T without UNA is CONP-hard.

We use the same construction as in the proof of Theorem 18
in [Lutz and Wolter, 2017], where CONP-hardness of ELIQ-
evaluation with UNA was shown for ALCIF TBoxes that
lack the ELIQ-disjunction property with UNA, but we have to
argue more carefully that it works as intended. More precisely,
we give a reduction from 2+2 SAT. The input to 2+2 SAT is
a propositional formula in conjunctive normal form, where
each clause has the form (p1 ∨ p2 ∨ ¬n1 ∨ ¬n2) and each of
p1, p2, n1, n2 is a variable or one of the truth constants 0, 1.
Given such a formula, we want to decide if it is satisfiable. This
problem was shown to be NP-complete in [Schaerf, 1993].

Since T does not have the ELIQ-disjunction property with-
out UNA, there is an ABox A∨ and a minimal sequence
C0(x), . . . , Ck(x) of ELIQs and individual names a0, . . . , ak
in ind(A∨) such that:

T ,A∨ |=nUNA

∨
0≤i≤k

Ci(ai);

T ,A∨ 6|=nUNA Ci(ai) for all i ∈ {0, 1, . . . , k}.
We useA∨,C0(x), . . . , Ck(x), and a0, . . . , ak to encode truth
values for the variables in a given 2+2 SAT instance.

In what follows, we first consider the case that k = 1, and
then show how to generalize the construction to larger k.

Let ϕ = ϕ1∧· · ·∧ϕm be a 2+2 SAT instance with variables
x1, . . . , xn. We represent ϕ by an ABoxAϕ that we construct
as follows:
• We use an individual name f to represent ϕ, for each i ∈
{1, . . . ,m} we use an individual name ci to represent the
clause ϕi, for each j ∈ {1, . . . , n} we view the variable
xj as an individual name that represents xj itself, and
we use the truth constants 0 and 1 as individual names
representing themselves.
• We use role names c, p1, p2, n1, n2 that do not occur in
T or A∨ to connect the above individual names with
each other. More precisely, for each i ∈ {1, . . . ,m}
we add to Aϕ the assertion c(f, ci); and assuming that
ϕi = (pi1 ∨ pi2 ∨ ¬ni1 ∨ ¬ni2), we also add the assertions
p1(ci, p

i
1), p2(ci, p

i
2), n1(ci, n

i
1), and n2(ci, n

i
2).

We further extend Aϕ to enforce a truth value for each of the
variables xi. We first add n disjoint copies A1, . . . ,An of A∨
to Aϕ. For all i ∈ {1, . . . , n} and j ∈ {0, . . . , k}, let ai,j
denote the name of the copy of aj ∈ ind(A∨) in Ai. We then
use fresh role names r0, . . . , rk to connect each variable xi to
Ai as follows:
• For all i ∈ {1, . . . , n} and j ∈ {0, . . . , k}, we add the

assertion rj(xi, ai,j). We will interpret the fact that

tt(x) = ∃y (r0(x, y) ∧ C0(y))

is true at xi as “xi is true” and the fact that

ff(x) = ∃y (r1(x, y) ∧ C1(y))

is true at xi as “xi is false”.



• To ensure that 0 and 1 have the expected truth values, we
also add a copy of C0 viewed as an ABox with root 0′

and a copy of C1 viewed as an ABox with root 1′. We
also add assertions r0(0, 0′) and r1(1, 1′).

Now, the ELIQ

q(x) = ∃y
(
c(x, y)∧

∧
i∈{1,2}

∃z(pi(y, z) ∧ ff(z))

∧
∧

i∈{1,2}

∃z(ni(y, z) ∧ tt(z))
)

states the existence of a clause in ϕ with only false literals and
thus captures falsity of ϕ.

CLAIM. ϕ is satisfiable iff T ,Aϕ 6|=nUNA q(f).

Proof. The “only if” direction can be dealt with as in the case
with UNA. Assume that ϕ is satisfiable. Then there exists a
truth assignment τ : {x1, . . . , xn} → {t, f} such that every
clause of ϕ is true under τ . For each i ∈ {1, . . . , n}, let Ii be
a model of T and Ai such that

• Ii |= C0(aIi,0) and Ii 6|= C1(aIi,1) if τ(xi) = t;

• Ii 6|= C0(aIi,0) and Ii |= C1(aIi,1) if τ(xi) = f .

Using I1, . . . , In it is now easy to construct a model I of T
and Aϕ with I 6|= q(fI).

For the converse, let ϕ be unsatisfiable and let I be a model
of T and Aϕ. We define a truth assignment τ for the variables
in ϕ as follows. For each j ∈ {1, . . . , n}, we set τ(xj) = t
if I |= C0(aIj,0), and we set τ(xj) = f otherwise. Note that
I |= C1(aIj,1) if τ(xj) = f . Since ϕ is unsatisfiable, there
exists a clause ϕi = (pi1 ∨ pi2 ∨ ¬ni1 ∨ ¬ni2) in ϕ such that
τ(pi1) = τ(pi2) = f and τ(ni1) = τ(ni2) = t. This implies
that the subquery

q0(y) =
∧

i∈{1,2}

∃z(pi(y, z) ∧ ff(z)) ∧
∧

i∈{1,2}

∃z(ni(y, z) ∧ tt(z))

of q(x) is true at cIi in I. This establishes that I |= q(fI). y

If k > 1, then we use

ff(x) =
∨

1≤j≤k

∃y (rj(x, y) ∧ Cj(y))

to express that “x is false”. By distributing disjunctions in
q(x) to the outside, we then obtain a union of ELIQs. Using a
simulation of disjunctions of ELIQs by single ELIQs similar
to the one in the proof of Lemma 7 we can transform Aϕ
into an ABox A′ϕ and q(x) into an ELIQ q′(x) such that ϕ is
unsatisfiable iff T ,A′ϕ |=nUNA q

′(f). Details can be found in
the proof of Theorem 18 in [Lutz and Wolter, 2017].

D Proofs for Section 4
We state the result to be proved again.

Lemma 3 (restated). Every ALCHIQ TBox T of depth 1
can be converted into a logically equivalent ALCHIQ TBox
T ′ in normal form.

Proof. The normalization is performed in two steps. First,
each concept of the form (Qn r C), with Q ∈ {≤, ≥} and
C a Boolean combination of concept names, is transformed
into an equivalent concept which is a Boolean combination
of concepts of the form (Qn r E) with E a conjunction of
literals. Second, each CI C v D is split into several CIs in
normal form. All steps are equivalence preserving steps. The
first normalization step is defined as follows.

1. For each concept C = (Qn r C ′) with Q ∈ {≤,≥} and
n > 1 if Q is ≥, and n > 0 otherwise
• let C1 t . . . t Cm = DNF(C ′), A1, . . . , Ah be the

concept names occurring in C ′, A′j := Aj | ¬Aj
with 1 ≤ j ≤ h;
• let SCi = {CiuuA′j | Aj 6∈ Ci} for each disjunct
Ci of DNF(C ′), and let S =

⋃m
i=1 SCi

;
• let k = |SC | ≤ 2h and l =

(
k+n−1
n

)
where h is

the number of concept names occurring in C ′. We
assume an enumeration of the k elements Di ∈ S.
Replace C with the equivalent concept

l

t
j=1

k

u
i=1

(Qnji r Di)

where nji ∈ {0, 1, . . . , n} and Σki=1n
j
i = n for each

j. The resulting disjunction represents all possible
combination for which C can be satisfiable.

2. for each concept C = (> 0 r C ′), replace C with >;
3. for each concept C = (> 1 r C ′) with C1 t . . . t Cm =

DNF(C ′), distribute the number restriction over the dis-
juncts (i.e., (> 1 r C1) t . . . t (> 1 r Cm));

4. for each concept C = (6 0 r C ′) with C1 t . . . t Cm =
DNF(C ′), distribute the number restriction over the dis-
juncts (i.e., (6 0 r C1) u . . . u (6 0 r Cm)).

The second normalization step is performed as follows. For
any CIs C v D ∈ T :
• convert the left-hand side to DNF, the right-hand side to

CNF, remove disjunctions on the left and conjunctions
on the right by splitting into multiple CIs; the left-hand
side is now a conjunction on top-level, and the right-hand
side is a disjunction on top-level;
• move negative literals left to right and vice versa (negat-

ing them), move any (> n r E) on the left-hand side with
at least one negative literal in E to the right-hand side
while computing its negation (i.e., (6 n− 1 r E)), move
any (6 n r E) on the right-hand side with no negative
literal inE to the left-hand side while computing its nega-
tion (i.e., (> n + 1 r E)), move any (6 n r E) on the
left-hand side to the right-hand side while computing its
negation.

As both normal form transformation steps can result in
an exponential blowup, and both perform only equivalence
preserving transformations; the resulting TBox is of size at
most double exponential in |T |, equivalent to T and in normal
form.

Lemma 4 (restated). Let T be anALCHIQ TBox in normal
form. Then the following conditions are equivalent:



1. T has the ELIQ=-disjunction property without UNA;

2. for every C v D ∈ T and trigger S for C v D,
Horn(C v D,S) 6= ∅;

3. T and Thorn are CQ-inseparable without UNA.

Proof. (3.) ⇒ (1.) was proved in detail in the main text.

(1.) ⇒ (2.). Assume T has the ELIQ=-disjunction property
and that there are C v D ∈ T and a trigger S for C v D
such that Horn(C v D,S) = ∅. We derive a contradiction.
Let

• A1, . . . , Ak be the disjuncts in D in NC,

• (> n1 r1E1), . . . , (> nn rnEn) be the disjuncts in D
with T 6|= C≤1

S v ¬(> ni riEi) for 1 ≤ i ≤ n, and

• let (6 m1 s1 F1), . . . , (6 mm sm Fm) be the remaining
disjuncts of D.

Let (> k1 t1G1), . . . , (> kk tkGk) be the number re-
strictions in S not introduced due to the disjuncts (6
m1 s1 F1), . . . , (6 mm sm Fm) of D. Let AS be the ABox
corresponding to CS with root a0. Thus, we have individual
names

• b11, . . . b
k1
1 , . . . , b

1
k, . . . , b

kk
k in AS introduced for the con-

cepts (> ki tiGi) ∈ S with ti(a0, b
j
i ) ∈ AS for

1 ≤ i ≤ k and 1 ≤ j ≤ ki; and

• a1
1, . . . , a

m1+1
1 , . . . , a1

m, . . . , a
mm+1
m in AS introduced

for the concepts (> mi + 1 si pos(Fi)) ∈ S with
si(a0, a

j
i ) ∈ AS for 1 ≤ i ≤ m and 1 ≤ j ≤ mi + 1.

It follows from T |= CS v D that

T ,AS |=
∨

i=1..k

Ai(a0) ∨
∨

i=1..n

∃ri.pos(Ei)(a0)

∨
∨

i=1..m

∨
j=1..mi+1,A∈neg(Fi)

A(aji )

∨
∨

i=1..k

∨
j 6=j′

(bji = bj
′

i ) ∨
∨

i=1..m

∨
j 6=j′

(aji = aj
′

i )

By the ELIQ=-disjunction property of T we have T ,AS |= F
for a disjunct F . If AS is not satisfiable w.r.t. T , then T |=
C≤1
S v ⊥ and so Horn(C v D,S) 6= ∅, which contradicts

our assumption. Thus, assume AS is satisfiable w.r.t. T . Now
observe that

• if F = Ai(a0) then T |= C≤1
S v Ai and so C≤1

S v Ai
is in Horn(C v D,S);

• if F = A(ai) for some A ∈ neg(Fi) then T |= C≤1
S v

∀si.(pos(Fi) → A) and so C≤1
S v ∀si.(pos(Fi) → A)

is in Horn(C v D,S);

• if F = ∃ri.pos(Ei)(a0), then T |= C≤1
S v ∃ri.pos(Ei)

and T 6|= C≤1
S v ¬(> ni riEi); thus C≤1

S v
∃ri.pos(Ei) is in Horn(C v D,S).

• if F = (c = d) for some c 6= d, then T |= C≤1
S v

(6 1 r E), for some (> n r E) ∈ S with n ≥ 2. Then
C≤1
S v (6 1 r E) is in Horn(C v D,S).

In each case, we obtain Horn(C v D,S) 6= ∅ and thus derive
a contradiction.

(2.) ⇒ (3.). It suffices to show that for every ABox A
the following holds: if A is satisfiable relative to Thorn, then
there exists a CQ-materialization U of A and Thorn that is
a model of T . U is constructed using a set RT of chase
rules. The rules take as input an interpretation I and construct
a new interpretation J which is obtained from I by either
adding new facts of the form A(d) and r(d, d′) to I or by
‘identifying’ two elements d, d′ of ∆I . To ensure that a model
of T is constructed, our rules are slightly different from the
standard chase for Horn-DLs, however. At each stage of the
construction we have a model I of A in which to every aI
with a ∈ ind(A) a tree interpretation Ia is hooked. We use
standard terminology to speak about Ia. The rules are now as
follows:

1. if (d, e) ∈ rI and r v s ∈ T , then obtain J from I by
adding (d, e) to sI ;

2. if d ∈ CI and C v A ∈ Thorn, then obtain J from I by
adding d to AI ;

3. if d ∈ CI and C v R ∈ Thorn for R = ∀r.(A1 u · · · u
An → A), then add e to AI whenever (d, e) ∈ rI and
e ∈ (A1 u · · · uAn)I .

4. if d ∈ CI and C v (6 1 r E) ∈ Thorn and d1 6= d2 with
(d, d1), (d, d2) ∈ rI and d1, d2 ∈ EI , then construct J
as follows:
• if there are a, b ∈ ind(A) with aI = d1 and bI =
d2, then let J be the quotient of I by ∼, where
∼ is the smallest equivalence relation on ∆I with
d1 ∼ d2. To keep track of the equivalence class of
di inJ we introduce two binary relations,≺ and≺c.
In this case, there is no difference between d1 and
d2 and we set di ≺ {d1, d2} and di ≺c {d1, d2} for
i = 1, 2.

• otherwise assume w.l.o.g. that d1 is a descendant of
d in some tree interpretation Ia hooked to some aI
with a ∈ ind(A) in I. Then let I ′ be the result of
removing from I all descendants of d1 and let J
be the quotient of I ′ by ∼, where ∼ is the smallest
equivalence relation on ∆I

′
with d1 ∼ d2. We set

d2 ≺ {d1, d2} and di ≺c {d1, d2} for i = 1, 2.
5. if d ∈ CI and C v (> 1 r E) ∈ Thorn then take fresh
e1, . . . , en with n the largest number occurring in number
restrictions in T and define J by adding (d, ei) to rI and
ei to F I for all concept names F which are conjuncts
of E and 1 ≤ i ≤ n. If this rule has been applied to
d for (> 1 r E), then it is not applied again to any d′
with d ≺∗ d′, where ≺∗ is the transitive reflexive closure
of the relation ≺ introduced in the previous rule. The
elements e1, . . . , en introduced by this rule are called the
witnesses for (> 1 r E) at d.

The interpretation U is the limit of the sequence I0, I1, . . .
obtained from the interpretation I0 := IA corresponding to
A by applying the rules in RT . We assume that the rules are
applied in a fair way: if a rule is applicable then it is eventually
applied. Observe that it follows from the condition that Rule 5



is never again applied to a ≺∗-successor of a node to which it
has been applied that for every n there exists an m such that
the restrictions of Im, Im+1, . . . to nodes of depth ≤ n in the
tree interpretations hooked to the aIm , a ∈ ind(A), coincide.
Thus, the limit interpretation is well defined. Using the fact
that we do not make the UNA it is straightforward to prove
that U is a CQ-materialization of A and Thorn.

Our aim now is to prove that U is a model of T . We proceed
in two steps. Let d ∈ ∆U and assume that the chase has
introduced e1, . . . , en as witnesses for (> 1 r E) in Im at
some d0 ≺∗ d. Assume that E = pos(F ) for some (>
mrF ). We say that these witnesses have been invalidated for
(> mrF ) if

1. F contains a negative literal and there exists e ∈ ∆U and
1 ≤ i ≤ n with ei ≺∗c e such that e 6∈ FU or

2. m ≥ 2 and there are distinct ei, ej such that there exists
e ∈ ∆U with ei ≺∗c e and ej ≺∗c e.

For an interpretation I and d ∈ ∆I we denote by postpTU (d)
the set of all F ∈ LT such that d ∈ F I .

Claim 1. Let d ∈ ∆U and assume that witnesses e1, . . . , en
for (> 1 r E) in Im at some d0 ≺∗ d have been invalidated
for (> mrF ). Then Thorn |= C≤1

S v ¬(> mrF ) for S =
postpTU (d).

For the proof of Claim 1, assume first that there exists a ∈
ind(A) with aI ≺∗ d. Denote by AS≤1 the ABox with root
ρ corresponding to C≤1

S . Denote by A(≥mr.F )

S≤1 the extension
of AS≤1 with fresh individuals e1, . . . , em and the assertions
r(ρ, ei) and A(ei) for all 1 ≤ i ≤ m and all concept names
A in E. We apply the chase procedure for Thorn to A(≥mr.F )

S≤1

and obtain a CQ-materialization U ′ of A(≥mr.F )

S≤1 and Thorn. It
suffices to show that

1. either F contains a negative literal and there exists e ∈
∆U

′
and 1 ≤ i ≤ m with ei ≺∗c e such that e 6∈ FU ′ or

2. m ≥ 2 and there are distinct ei, ej such that there exists
e ∈ ∆U

′
with ei ≺∗c e and ej ≺∗c e.

But this can be proved using the fact that the CIs of Thorn
have depth 1 and the condition that witnesses e1, . . . , en for
(> 1 r E) in Im at some d0 ≺∗ d have been invalidated for
(> mrF ) in the chase applied to A. The proof for the case
that there is no a ∈ ind(A) with aI ≺∗ d is similar.

Claim 2. U is a model of T .

U satisfies all RIs in T by Rule 1. Now let C v D ∈ T and
d ∈ CU . We show that d ∈ DU . For a proof by contradiction
assume that this is not the case. Then the set S = postpTU (d)
is a trigger for C v D. By (2.) there exists α ∈ Horn(C v
D,S). We obtain that at least one of the following holds:

1. there is a concept name A in D such that T |= C≤1
S v A.

Then C≤1
S v A ∈ Thorn and so d ∈ AU by Rule 2. Thus

d ∈ DU and we have derived a contradiction.
2. there is a universal restriction R = ∀r.(A1 u · · · uAn →
A) which is a Horn restriction of some (6 mrE) in D
such that T |= C≤1

S v R. Then C≤1
S v R ∈ Thorn and

so d ∈ RU by Rule 3. Thus d ∈ DU and we have derived
a contradiction.

3. there is an (> mrE) in D such that T |= C≤1
S v (>

1 r pos(E)) and T 6|= C≤1
S v ¬(> mrE). By Rule 5,

there exists m and d′ ≺∗ d in ∆Im with d′ ∈ (C≤1
S )Im

such that there are distinct witnesses e1, . . . , em ∈ ∆Im

for (> 1 r pos(E)) at d′. By Claim 1, the witnesses
e1, . . . , em are not invalidated for (> mrE) at d. Thus
there are at least m distinct e′1, . . . , e

′
m ∈ ∆U such that

(d, e′i) ∈ rU and e′i ∈ EU for 1 ≤ i ≤ m. Thus d ∈
(> mrE)U . Hence d ∈ DU and we have derived a
contradiction.

4. there is a concept (> n r E) in S with n ≥ 2 such that
T |= C≤1

S v (6 1 r E). But then U is not a model of
Thorn and we have derived a contradiction.

This finishes the proof of Lemma 4.

Theorem 4 (restated). Deciding CQ-Horn-rewritability of
ALCHIQ TBoxes of depth 1 is EXPTIME-complete.

We start with the rather straightforward lower bound proof
(which goes through forALC TBoxes of depth 1 already). We
give a polynomial reduction of the unsatisfiability problem
for ALC TBoxes of depth 1 which is known to be EXPTIME-
hard. Given an ALC TBox T of depth 1, let T ′ = T ∪ {> v
B1 tB2}, where B1, B2 are fresh concept names. Then T is
not satisfiable iff T ′ has the CQ-disjunction property iff T is
CQ-Horn-rewritable.

The proof of the EXPTIME upper bound proceeds through a
series of lemmas. The algorithm decides CQ-materializability
(recall that CQ-materializability is equivalent to the CQ-
disjunction property which is equivalent to being CQ-Horn-
rewritable, forALCHIQ TBoxes of depth 1). The first insight
underlying the proof of the EXPTIME upper bound is that for
TBoxes in ALCHIQ of depth 1 CQ-materializability already
follows from the existence of CQ-materializations for tree
ABoxes of depth 1. We start by introducing the basic notions
used in the proof. An ABox A is T -saturated if

• T ,A |= (a = b) implies a = b;

• T |= A(a) implies A(a) ∈ A;

• T ,A |= r(a, b) implies r(a, b) ∈ A.

For every T and ABox A, let ∼T be the equivalence relation
on ind(A) defined by setting a ∼T b if T ,A |= (a = b). Let
a/∼T denote the equivalence class of a w.r.t. ∼T . We regard
the elements of {a/∼T | a ∈ ind(A)} as individual names.
Define a new ABox AT , the T -saturation of A, by setting

• r(a/∼T , b/∼T ) ∈ AT iff there are a′ ∈ a/∼T and b′ ∈
b/∼T such that T ,A |= r(a′, b′);

• A(a/∼T ) ∈ AT iff there exists a′ ∈ a/∼T with T ,A |=
A(a′).

The mapping h : A → AT mapping a to a/∼T is an isomor-
phism iff A is T -saturated. The following lemma lists the
basic properties of T -saturated ABoxes.



Lemma 8. Let T be an ALCHIQ TBox. Let A ⊆ A′ be
ABoxes with A′|ind(A) = A. Assume A′ is satisfiable w.r.t. T .
Then the following hold:

(a) There exists a CQ-materialization of T and A iff there
exists a CQ-materialization of T and AT ;

(b) If I is a CQ-materialization of T and A and A is T -
saturated, then the restriction of I to {aI | a ∈ ind(A)}
coincides (up to isomorphism) with IA;

(c) If A′ is T -saturated, then A is T -saturated.

We introduce more notation. The outdegree of a tree inter-
pretation I is the outdegree of GI . An ABoxA is a tree ABox
if IA is a tree interpretation. The outdegree of a tree ABox A
is the outdegree of IA. For any interpretation I and d ∈ ∆I ,
denote by I≤1

d the one-unfolding of I at d ∈ ∆I . It is the
standard unfolding at d, but only up to depth 1. In detail, the
domain ∆I

≤1
d of I≤1

d contains d and all pairs (d, d′) such that
there exists a role r with (d, d′) ∈ rI . Then set

AI
≤1
d = {d | d ∈ AI} ∪ {(d, d′) | d′ ∈ AI}

rI
≤1
d = {(d, (d, d′)) | (d, d′) ∈ rI} for all roles r.

If I is a tree interpretation already, then we can (and will) iden-
tify I≤1

d with the restriction I|X of I to X , where X contains
d and all d′ such that there exists a role r with (d, d′) ∈ rI . We
then call I≤1

d the 1-neighborhood of I at d. We say that I a
bouquet with root d if I≤1

d = I . We use the same notation for
ABoxes, in the obvious way. Thus, an ABox A is a bouquet
with root a0 if there exists an individual name a0 such that
all role assertions of A take the form r(a0, a) where a 6= a0

and r is a role. Clearly, the outdegree A is then cardinality of
{a | a0 6= a ∈ ind(A)}.
Lemma 9. Let T be an ALCHIQ TBox of depth 1. Then T
is CQ-materializable if T is CQ-materializable for all bouquet
ABoxes.

Proof. Assume that T is CQ-materializable for all bouquet
ABoxes. Let A be an ABox satisfiable w.r.t. T . We show
that a CQ-materialization of T and A exists. By Lemma 8
(Point (a)), it suffices to prove that T and AT have a CQ-
materialization. Thus, we may assume that A is T -saturated.
Let for any a ∈ ind(A), A≤1

a be the one-unfolding of A at
a. Let Ia be a CQ-materialization of T and A≤1

a (Ia exists
since A≤1

a is a bouquet ABox). We may assume that Ia is
a forest model of T and A≤1

a . Using Lemma 8 (Point (c))
and a straightforward unfolding argument, one can show that
A≤1
a is T -saturated. Thus, by Point (b), the restriction of Ia

to {bIa | b ∈ ind(A≤1
a } coincides (up to isomorphism) with

IA≤1
a

. Define a model I of A by

• hooking to A at every a ∈ Ind(A) the interpretation
hooked to A≤1

a at aIa in Ia and

• adding (a, b) to rI for all r(a, b) ∈ A and

• setting aI = a for a ∈ ind(A).

Using the condition that T has depth 1 it is straightforward to
prove that I is CQ-materialization of T and A.

The signature sig(A) of an ABox A is the set of concept
and role names occurring in A. The signature sig(T ) of a
TBox T is the set of concept and role names occurring in T .

Lemma 10. Let T be anALCHIQ TBox of depth 1. Then T
is CQ-materializable iff T is CQ-materializable for bouquet
ABoxes A of outdegree ≤ |T | satisfying sig(A) ⊆ sig(T ).

Proof. Assume T is given. Let A be a bouquet ABox with
root a0 of minimal outdegree such that there is no CQ-
materialization of T and A. We show that the outdegree
of A does not exceed |T |. We may assume that the outdegree
of T is at least three (otherwise we are done). By Lemma 8
(Point (a)), we may assume thatA is T -saturated. Take for any
subconcept D of the form (≥ nr.C) or (≤ nr.C) occurring
in a concept in T the set

SD = {b 6= a0 | IA |= r(a0, b) ∧ C(b)}

Let S′D = SD if |SD| ≤ n+ 1; otherwise let S′D be a subset
of SD of cardinality n+ 1. Let A′ be the restriction A|S of A
to the union S of all S′D and {a}. We show that there exists
no CQ-materialization of T and A′. Assume for a proof by
contradiction that there is a CQ-materialization I of T andA′.
A′ is T -saturated and so its restriction to {aI | a ∈ ind(A′)}
coincides with IA′ . We may assume that aI = aIA = a for
all a ∈ Ind(A′). Define an interpretation I ′ by

• taking the union of IA and I and

• hooking to the resulting interpretation at every b with
b ∈ ind(A) \ ind(A′) the model Ib hooked toA|{a0,b} at
b in a forest model CQ-materialization of T andA|{a0,b}.

One can show that I ′ is a CQ-materialization of A and T
(and thus derive a contradiction): using the condition that A
is T -saturated and Points (b) and (c), one can show that the
restriction I ′|ind(A) of I ′ to ind(A) coincides with A. Using
the condition that T has depth 1 it is easy to show that I ′ is
a model of T . It is a CQ-materialization of A and T as it
consists of CQ-materializations of sub-ABoxes of A and T .
This finishes the proof.

Let A be a T -saturated bouquet ABox with root a0. A
forest model I of A is a 1-materialization of T and A with
root a0 if it is a bouquet with root aI0 = a0 and

1. there exists a forest model J of T and A such that I =
J≤1
a0 ;

2. for any model J of T and A there exists a homomor-
phism from I to J .

An ABox A is called T -simple if it is a bouquet ABox, sat-
isfiable w.r.t. T , T -saturated, of outdegree at most |T |, and
satisfies sig(A) ⊆ sig(T ). We show that when checking CQ-
materializability of ALCHIQ TBoxes of depth 1, not only is
it sufficient to consider T -simple bouquet ABoxes instead of
unrestricted bouquet ABoxes, but additionally one can con-
centrate on 1-materializations of such bouquet ABoxes.

Lemma 11. Let T be an ALCHIQ TBox of depth 1. Then
T is CQ-materializable iff for all T -simple bouquet ABoxes
A there is a 1-materialization of T and A.



Proof. Let A be a T -simple bouquet ABox with root a0. As-
sume that for all T -simple bouquet ABoxes B with root b
there exists a 1-materialization J of T and B with root b.
Call such a triple (B, b,J ) a 1-materializability witness. It
suffices to prove that there exists a CQ-materialization of T
and A. We construct the desired CQ-materialization step-by-
step using these 1-materializability witnesses and also mem-
orizing sets of frontier elements that have to be expanded
in the next step. We start with a 1-materializability witness
(A, a0, I0) and set F0 = ∆I

0 \ {aI00 }. Then we construct a
sequence of tree interpretations I0 ⊆ I1 ⊆ . . . and frontier
sets Fi+1 ⊆ ∆I

i+1 \ ∆I
i

inductively as follows: given Ii
and Fi, take for any b ∈ Fi its predecessor b′ in Ii and a
1-materializability witness (Ii|{b′,b}, b, Ib) and set

Ii+1 := Ii ∪
⋃
b∈Fi

Ib Fi+1 :=
⋃
b∈Fi

∆Ib \ {b}

Let I∗ :=
⋃
i≥0 Ii. We show that I∗ is a CQ-materialization

of T and A. I∗ is a model of T by construction since T is an
ALCHIQ TBox of depth 1.

We show that for every model J of T and A there exists
a homomorphism from I∗ to J . Consider a model J of
T and A. We may assume that J is a forest model and
irreflexive in the sense that (d, d′) ∈ rJ implies d 6= d′ for
all d, d′ ∈ ∆J . We construct h as the limit of a sequence
h0 ⊆ h1 ⊆ . . . of homomorphisms hi from Ii to J . By
definition, there exists a homomorphism h0 from I0 to J≤1

a0

mapping aI
0

to aJ for every a ∈ ind(A). Now, inductively,
assume that hi is a homomorphism from Ii to J . Assume
c has been added to Ii in the construction of Ii+1. Then
there exists b ∈ Fi and its predecessor b′ in Ii such that
c ∈ ∆Ib \ {b}, where Ib is the irreflexive tree interpretation
that has been added to Ii as the last component of the 1-
materializability witness (Ii|{b′,b}, b, Ib). But then, as Ib is
a 1-materialization of Ii|{b′,b} and hi is injective on Ii|{b′,b}
(since J is irreflexive), we can expand the homomorphism hi
to a homomorphism from ∆I

i ∪ {c} into J . Thus, we can
expand hi to a homomorphism from Ii+1 to J .

Lemma 11 implies that an ALCHIQ TBox T of depth 1
enjoys CQ-Horn-rewritability iff for all T -simple bouquet
ABoxes A there exists a 1-materialization of T and A. The
latter condition can be checked in deterministic exponential
time using satisfiability checks for ABoxes w.r.t. ALCHIQ
TBoxes.

Observe that if T is a ALCHIF TBox in normal form,
then the TBox Thorn is easily transformed into an equivalent
Horn-ALCHIF TBox: the only CIs which are not already
Horn-ALCHIF CIs take the form C≤1

S v (6 1 r E) with
(> mrE) ∈ S. But if T 6|= C≤1

S v ⊥, then T |= C≤1
S v

(6 1 r E) can only hold for an ALCHIF TBox T if T |=
> v (6 1 r>) and thus we can replace C≤1

S v (6 1 r E) by
> v (6 1 r>) in Thorn.

E Proofs for Section 5
We first verify the properties claimed for the TBox T con-
structed in Example 4. Recall that the TBox T states that role
names s1 and s2 are functional and contains the RIs r v s1

and r v s2 and the CIs

∃s1.(B1 uB2) v ∃r.>
∃s1.> u ∃s2.> v ∀s1.B1 u ∀s2.B2

∃s1.> u ∃s2.> v B t ∃r.>

We show that T has the CQ-disjunction with UNA by con-
structing for any ABox A satisfiable w.r.t. T with UNA a
CQ-materialization I of A and T with UNA. To construct
the CQ-materialization one has to distinguish two kinds of
individual names a. Informally,

• if a has distinct s1- and s2-successors in A, then because
of the UNA a having an r-successor contradicts the role
inclusions and s1, s2 being functional and thus B(a) is
entailed and added to the extension of B;

• if a has a common s1- and s2-successor, then ∃r.> is
entailed at a and we add an r-successor of a.

Formally, we construct the CQ-materialization I of A and T
as follows. We start with I := IA. Whenever an individual
name a has both an s1-successor and an s2-successor in I,
then add all its si-successors, i ∈ {1, 2} to BIi . Next, for any
a that has an sI1 -successor b in (B1 u B2)I , add (a, b) to sI1
and (a, b) to sI1 . If sI1 or sI2 are not functional, then A is not
satisfiable w.r.t. T with UNA. Otherwise, a CQ-materialization
is obtained by adding a to BI whenever a has distinct s1- and
s2-successors in I.

Theorem 5 (restated). Let T be a ALCHIFvf TBox. Then
CQ-evaluation w.r.t. T without UNA is in PTIME iff CQ-
evaluation w.r.t. T with UNA is in PTIME.

Proof (sketch). The direction (⇒) is Theorem 2. Conversely,
assume that CQ-evaluation with UNA is in PTIME. Let A
be an ABox. Let ∼ be the smallest equivalence relation on
ind(A) such that if a ∼ b and r(a, a′), r(b, b′) ∈ A and
func(r) ∈ T , then a′ ∼ b′. We show that T ,A |=nUNA q(~a)
iff T ,A/∼ |=UNA q(~a/∼), for every CQ q and tuple ~a in
ind(A).

Clearly, a ∼ b implies aI = bI for every model I of A
and T . Thus, it suffices to construct for every model I of
A a model J of T and A/∼ with UNA such that there is a
homomorphism from J to I mapping the equivalence class
a/∼ of a ∈ ind(A) w.r.t. ∼ to aI . For the construction of J
assume a ∈ ind(A) is given. The I-unfolding Ia of I at aI
w.r.t. T is defined as follows. The domain ∆Ia of J consists
of all words d0r1 . . . rndn with n ≥ 0, aI = d0, each di from
∆I and each ri a role such that

(a) (di, di+1) ∈ rIi+1 for 0 ≤ i < n;

(b) if > v (6 1 ri+1>) ∈ T and r−i = ri+1, then di−1 6=
di+1 for 0 < i < n.

(c) if > v (6 1 r1>) ∈ T , then there does not exist an
a′ ∼ a and b such that r(a′, b) ∈ A.



For d0 · · · dn ∈ ∆Ia , we set tail(d0 · · · dn) = dn and let
w ∈ AIa if tail(w) ∈ AI and (w,wrd) ∈ sIa if T |= r v s
(where s, r are roles).

Now define J by setting aJ = a/∼ for all a ∈ ind(A) and
(a/∼, b/∼) ∈ rJ if there exist a′ ∼ a, b′ ∼ b, and a role s
such that T |= s v r and s(a′, b′) ∈ A and by then hooking
the interpretation Ia to a/∼ by identifying a/∼ and the root
aI of Ia. Using the condition that no functional role occurs in
the right-hand side of an RI in T one can easily show that J
is a model of T and A. Moreover, by construction there is a
homomorphism from J to I mapping every a/∼ to aI .

F Proofs for Section 6
We require the direct product of two interpretations, see
[Chang and Keisler, 1990; Lutz et al., 2011]. Let I1 and
I2 be interpretations. Then the direct product I1 × I2 of I1

and I2 is defined by setting

∆I1×I2 = ∆I1 ×∆I2

AI1×I2 = {(d1, d2) | d1 ∈ AI1 , d2 ∈ AI2}
rI1×I2 = {((d1, d2), (e1, e2)) | (d1, e1) ∈ rI1 ,

(d2, e2) ∈ rI2}
aI1×I2 = (aI1 , aI2)

It is well know (and easy to see) that if T ′ is a Horn TBox and
a conservative extension of a TBox T , then T is preserved
under direct products; that is, if I1 and I2 are models of T ,
then I1 × I2 is a model of T . Recall that T1 contains a single
CI:

∃author.> v ∃author.Novel t
∃author.Short Story t ∃author.¬Fiction,

Lemma 12. T1 is not preserved under direct products.

Proof. Consider the interpretation I1 with

• ∆I1 = {a, b};
• authorI1 = {(a, b)};
• NovelI1 = {b};
• Sort StoryI1 = ∅;
• FictionI1 = {b}.

I1 is a model of T1. Consider the interpretation I2 defined by

• ∆I2 = {a, b};
• authorI2 = {(a, b)};
• NovelI2 = ∅;
• Sort StoryI2 = {b};
• FictionI2 = {b}

Then I2 is a model of T1. It is easy to see that I1 × I2 is not
a model of T1.

Theorem 8 (restated). For ALC TBoxes of depth 1 there is
not algorithm that decides CQ-Horn-rewritability for (Σ1,Σ2)
and outputs such a rewriting in case it exists.

Proof. In [Botoeva et al., 2016b], the authors construct a se-
quence of ALC TBoxes Ti and EL TBoxes T ′i such that it
is undecidable whether Ti and T ′i are CQ-inseparable w.r.t. a
signature pair (Σi1,Σ

i
2), i ∈ N. Moreover, it is shown that

for TBoxes in Horn-ALC CQ-inseparability w.r.t. signature
pairs is decidable. Now assume for a proof by contradic-
tion that the theorem is false: we show that one can then
decide whether Ti and T ′i are CQ-inseparable w.r.t. (Σi1,Σ

i
2).

Given Ti, decide whether there is a CQ-Horn-rewriting of
Ti w.r.t. (Σi1,Σ

i
2). If not, output that Ti and T ′i are not CQ-

inseparable w.r.t. (Σi1,Σ
i
2). If yes, then compute a CQ-Horn

rewriting T ′′i of Ti w.r.t. (Σi1,Σ
i
2). Then check whether T ′′i

and T ′i are CQ-inseparable w.r.t. (Σi1,Σ
i
2). If not, output that

Ti and T ′i are not CQ-inseparable w.r.t. (Σi1,Σ
i
2). If yes, out-

put that Ti and T ′i are CQ-inseparable w.r.t. (Σi1,Σ
i
2).


