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Abstract. We consider the rewritability of ontology-mediated queries
(OMQs) based on UCQs into OMQs based on (certain kinds of) SPARQL
queries. Our focus is on ALCI as a paradigmatic expressive DL. For
rewritability into SPARQL queries that are unions of basic graph pat-
terns, we show that the existence of a rewriting is decidable, based on a
suitable characterization; for unary OMQs, this coincides with rewritabil-
ity into instance queries. For SPARQL queries that additionally admit
projection, we make some interesting first observations. In particular,
we show that whenever there is a rewriting, then there is one that uses
the same TBox as the original OMQ and only ALCI concepts from a
certain finite class of such concepts. We also observe that if the TBox of
the original OMQ falls into Horn-ALCI, then a rewriting always exists.

1 Introduction

We study ontology-mediated querying with expressive description logics (DLs),
focussing on ALCI as a paradigmatic such DL. A variety of query languages has
been considered in this context, including conjunctive queries (CQs), unions of
conjunctive queries (UCQs), instance queries (IQs), and SPARQL queries. The
former two are a particularly natural choice because they play a fundamental
role in database theory and systems, and in fact they are used in a large number
of theoretical studies on ontology-mediated querying [4, 5, 8]. On the practical
side, however, there do not seem to be any systems that fully support CQs and
UCQs whereas there are systems that support IQs and SPARQL queries, such
as Hermit [11, 15]. This raises the question of when and how a (U)CQ can be
expressed as an IQ or as a SPARQL query.

The relationship between unary (U)CQs and IQs, which can be seen as a
simple form of SPARQL query, has been studied in [13,14,17], and very recently
in [10]. While it is easy to see that every tree-shaped CQ can be translated
into an equivalent IQ, it is more surprising that also some CQs that are not
tree-shaped turn out to be IQ-rewritable when we have an expressive DL at
our disposal [17]. For example, the CQ r(x, x), which asks to return all objects
from the data that are involved in a reflexive r-loop, can be rewritten into the
equivalent IQ P → ∃r.P (x) (equivalently ¬P t ∃r.P (x)). Here, P behaves like



a monadic second-order variable due to the open-world assumption made for
OMQs: we are free to interpret P in any possible way and when making P true
at an object we are forced to make also ∃r.P true if and only if the object is
involved in a reflexive r-loop. Kikot and Zolin have identified a large class of
CQs that are rewritable into IQs in the context of ALCI, namely that class
of unary CQs in which every cycle passes through the answer variable. This
was further elaborated in [10] where it is shown that this condition precisely
characterizes IQ-rewritability, the condition is generalized to the case of non-
empty TBoxes and non-full ABox signatures, and tight complexity bounds for
deciding whether an IQ-rewriting exists are obtained, between NP-complete in
the case of the empty TBox and full ABox signature and 2NExpTime-complete
in the general case.

The purpose of this paper is to present initial results on the rewritability of
(U)CQs of arity greater than one, for which IQs are clearly not a suitable target.
Kikot and Zolin replace IQ-rewritability by Turing reductions to knowledge base
consistency [14]. We prefer to consider rewritability into (two fragments of)
SPARQL, namely into unions of basic graph patterns (UBGP), that is, UCQs
that contain no quantified variables but potentially have atoms C(x) with C a
compound concept, and into PUBGPs, which consist of a projection applied to
a UBGP. From an implementation perspective, answering such queries is closely
related to knowledge base consistency and other common reasoning tasks which
has resulted in support by practical systems, while answering (U)CQs is not. In
fact, an imporant difference is that the union in UBGPs and the projection in
PUBGPs are operations on query answers while the disjunction of UCQs and
the existential quantification of CQs are logical operators on the level of models
which makes them more difficult to handle. Note that we disregard many parts
of SPARQL such as difference, optional, and the binding of variables to concept
and role names. Also, we stick to the OWL 2 direct semantics entailment regime.

After giving preliminaries, in Section 3 we summarize the results from [10]
regarding IQ-rewritability in ALCI. We also observe that IQs and unary UBGPs
have the same expressive power, which is not entirely trivial, and that unary
PUBGPs are more expressive. In Section 4, we then study UBGP-rewritability of
OMQs from (ALCI,UCQ), that is, the TBox is formulated in ALCI, the actual
query is a UCQ, and an ABox signature may be imposed. Remarkably, even if
the UCQ is full (that is, it has no quantified variables), UBGP-rewritability is
not guaranteed. We develop a characterization of UBGP-rewritability and use it
to show that this problem is decidable.3 The characterization is more technical
than in the case of IQ-rewritability which we believe to be unavoidable. It also
implies that, in UBGP-rewritings, it is always sufficient to use the same TBox
as in the original OMQ.

For PUBGP-rewritability, our results are less complete. We start with observ-
ing that PUBGP-rewritings always exist when the TBox of the original OMQ is
formulated in Horn-ALCI, that otherwise rewritings are not guaranteed to exist

3 Here and in the subsequent results, we assume that every CQ in the original UCQ
is connected in the sense that every variable is reachable from an answer variable.



and that, when they exist, they might necessarily involve BGPs whose number of
variables is exponential in the size of the TBox of the original OMQ. We then es-
tablish a (non-effective) characterization which shows that PUBGP-rewritability
implies rewritability into a particular class of PUBGPs. It follows that it is never
necessary to modify the TBox when constructing PUBGP-rewritings and that in
atoms of the form C(x), the concept C can be restricted to a certain finite class
of concepts. This is a first step towards decidability of PUBGP-rewritability,
which remains as an interesting open problem.

2 Preliminaries

We assume familiarity with standard DL notation and languages [2] and only
introduce notions that are potentially ambiguous. The main DL studied in this
paper is ALCI. An ABox A is a finite set of assertions of the form A(a) and
r(a, b), where A is a concept name, r a role name, and a, b are individual names.
We use ind(A) to denote the set of all individual names that occur in A. An
interpretation is a model of an ABox A if it satisfies all assertions in A, that is,
a ∈ AI when A(a) is in A and (a, b) ∈ rI when r(a, b) is in A. We thus make the
standard name assumption. A signature Σ is a set of concept and role names.
We use sig(A) to denote the set of concept and role names that occur in the
ABox A, and likewise for other syntactic objects such as TBoxes. An ABox A
is a Σ-ABox if sig(A) ⊆ Σ.

An instance query (IQ) takes the form C(x) where C is a concept from the DL
under consideration and x a variable. In this paper, C will always be an ALCI
concept. For an interpretation I, we write I |= C(a) if a ∈ CI . A conjunctive
query (CQ) is of the form q(x) = ∃yϕ(x,y), where x and y are tuples of variables
and ϕ(x,y) is a conjunction of atoms of the form A(z), r(z1, z2), or z1 = z2, with
A a concept name, r a role name, and z, z1, z2 ∈ x∪y. When z1 = z2 occurs in q
we assume w.l.o.g. that z1, z2 ∈ x and there is no other atom in q which contains
x2. A union of conjunctive queries (UCQ) q(x) is a formula of the form

∨
i qi(x),

where each qi(x) is a CQ. When compound concepts are admitted in place of
concept names in a CQ/UCQ, then we speak about an extended CQ/UCQ. For
any kind of query, the free variables are called answer variables, the arity is the
number of answer variables, and a query is Boolean if it has arity zero. A CQ is
full if all variables are answer variables and a UCQ is full if every disjunct is.

A homomorphism from a CQ q(x) to an interpretation I is a function h :
x∪y→ ∆I such that h(z) ∈ AI for every atom A(z) of q(x), (h(z1), h(z2)) ∈ rI
for every atom r(z1, z2) of q(x), and h(x1) = h(x2) for every atom x1 = x2
of q(x). We write I |= q(a) and call a an answer to q(x) on I if there is a
homomorphism from q(x) to I with h(x) = a. For a UCQ

∨
i qi(x) and an

interpretation I, we write I |= q(a) if I |= qi(a) for some i. The semantics of
extended CQ/UCQs is as expected.

We now introduce query languages related to SPARQL [12]. A basic graph
pattern (BGP) is an extended full CQ. Note that IQs coincide with unary BGPs.
A union of basic graph patterns (UBGP) is of the form

⋃
i ϕi(x) where each ϕi



is a BGP and a PUBGP is of the form Πx(
⋃
i ϕi(x,yi)) where each ϕi(x,yi)

is a BGP. UBGPs correspond to PUBGPs in which all tuples yi are empty as
in this case the projection to x denoted by Πx is vacuous. Note that BGPs and
UBGPs must have non-zero arity while this is not the case for PUBGPs.

An ontology-mediated query (OMQ) takes the form Q = (T , Σ, q(x)) with T
a TBox, Σ ⊆ sig(T ) ∪ sig(q) an ABox signature, and q(x) a query. The arity of
Q is the arity of q(x). When Σ is sig(T ) ∪ sig(q), then for brevity we denote it
with Σfull and speak of the full ABox signature. Let A be a Σ-ABox. If q(x) is
an IQ or a (possibly extended) UCQ, then a is an answer to Q on A if I |= q(a)
for all models I of A and T . This also captures the case where q(x) is a BGP.
If q(x) = Πx(

⋃
i ϕi(x,yi)) is a PUBGP, then a is an answer to Q on A if there

exist i and b such that ab is an answer to (T , Σ, ϕi(x,yi)). This also captures
the case where q(x) is a UBGP. In either case, we write A |= Q(a) if a is an
answer to Q on A.

It is important to note and to keep in mind that, in OMQs, the union in
(P)UBGPs behaves differently from the disjunction in UCQs and the projection
in PUBGPs behaves differently from the existential quantification in UCQs (also
note that the order is reversed). For example, let T = {∃r.> v A t B} and A
an {A,B}-ABox. Then the UCQ-based OMQ (T , Σfull, A(x) ∨ B(x)) returns
every individual in the range of r as an answer whereas the UBGP-based OMQ
(T , Σfull, A(x) ∪B(x)) returns only those individuals a from the range of r such
that A(a) ∈ A or B(a) ∈ A. In fact, the latter query corresponds to executing the
two OMQs (T , Σfull, A(x)) and (T , Σfull, B(x)) independently and then taking the
union of their answer sets. Likewise, the projection of PUBGPs is a projection
on answer sets.

We use (L,Q) to refer to the OMQ language in which the TBox is formulated
in the DL L and where the actual queries are from the query language Q, such
as in (ALCI,UCQ).

Definition 1. Let (L,Q) be an OMQ language. An OMQ Q = (T , Σ, q(x)) is
(L,Q)-rewritable if there is an OMQ Q′ from (L,Q) such that the answers to Q
and to Q′ are identical on any Σ-ABox that is consistent with T . In this case,
we say that Q is rewritable into Q′ and call Q′ a rewriting of Q.

We are interested in rewriting OMQs from (ALCI,UCQ) into OMQs based on
IQs, UBGPs, and PUBGPs. For brevity, we speak of Q-rewritability instead of
(ALCI,Q)-rewritability. For example, IQ-rewritability means rewritability of an
OMQ from (ALCI,UCQ) into an OMQ from (ALCI, IQ) with the IQ formu-
lated in ALCI, and PUBGP-rewritability means rewritability into an OMQ from
(ALCI,PUBGP) where the PUBGP uses only ALCI compound concepts. The
following example of IQ-rewritability is from [10]. Examples and non-examples
of PUBGP-rewritability are given later in this paper.

Example 1. Let q1(x) = r(x, x). The OMQ Q1 = (∅, {r}, q1(x)) is rewritable into
the OMQ (∅, {r}, C(x)) where C is the ALCI concept P → ∃r.P. In contrast,
let q2(x) = ∃y r(x, y) ∧ r(y, y). It follows from Theorem 1 below that the OMQ
Q2 = (∅, {r}, q2(x)) is not rewritable into an OMQ from (ALCI, IQ).



We close this section with some additional, more technical preliminaries. We
say that an OMQ Q = (T , Σ, q(x)) is empty if for all Σ-ABoxes A, there is no
answer to Q on A. Let Q1, Q2 be OMQs, Qi = (Ti, Σ, qi(x)) for i ∈ {1, 2}. Then
Q1 is contained in Q2, written Q1 ⊆ Q2, if for all Σ-ABoxes A, every answer
to Q1 on A is also an answer to Q2 on A. Further, Q1 and Q2 are equivalent,
written Q1 ≡ Q2, if Q1 ⊆ Q2 and Q2 ⊆ Q1.

Every CQ q(x) = ∃yϕ(x,y) gives rise to an undirecteded graph Gq whose
nodes are the elements of x ∪ y and that contains an edge {z1, z2} if ϕ(x,y)
contains an atom r(z′1, z

′
2) or z′1 = z′2 with {z1, z2} = {z′1, z′2}. Gq might contain

self loops. We say that q(x) is connected if every variable is reachable from an
answer variable in Gq. An UCQ is connected if every CQ in it is and an OMQ
from (ALCI,UCQ) is connected if the UCQ in it is. A contraction of a CQ q(x)
is a CQ obtained from q(x) by zero or more variable identifications, where the
identification of an answer variable x with any non-answer variable yields x.

3 IQ-rewritability

We give an overview of the results on IQ-rewritability in (ALCI,UCQ) from [10].
In that paper, several other DLs are considered as well, including ALC and
variations of ALC and ALCI that support role hierarchies, the universal role,
and functional roles. In some cases, the characterization of OMQ rewritability
and the complexity of deciding IQ-rewritability are rather different from the
ALCI case, which we briefly comment on. We also show that unary OMQs from
(ALCI, IQ), (ALCI,BGP), and (ALCI,UBGP) have the same expressive power
while unary OMQs from (ALCI,PUBGP) are more expressive.

We start with a fundamental characterization of OMQs from (ALCI,UCQ)
that are IQ-rewritable, first giving some preliminaries. Let q(x) be a unary CQ.
We can assume w.l.o.g. that, being unary, q(x) contains no equality atoms. A
cycle in q(x) is a sequence of non-identical atoms r0(x0, x1), . . . , rn−1(xn−1, xn)
in q(x), n ≥ 1, where4

1. r0, . . . , rn−1 are (potentially inverse) roles,
2. xi 6= xj for 0 ≤ i < j < n, and x0 = xn.

We say that q(x) is x-acyclic if every cycle in it passes through x. A UCQ is
x-acyclic if every CQ in it is.

Let q(x) be a UCQ. We use qacyc(x) to denote the UCQ that consists of all
contractions of a CQ from q(x) that are x-acyclic and qconacyc(x) to denote the
UCQ obtained from qacyc(x) by restricting every CQ in it to atoms that only use
variables reachable in Gq from the answer variable x. The following theorem is
the announced characterization [10].

Theorem 1. Let Q = (T , Σ, q(x)) be a unary OMQ from (ALCI,UCQ) that is
non-empty. Then the following are equivalent:

4 We require the atoms be non-identical to prevent r(x0, x1), r−(x1, x0) from being a
cycle (both atoms are identical).



1. Q is IQ-rewritable;
2. Q is rewritable into an OMQ Q′ = (T , Σ,C(x)) from (ALCI, IQ);
3. Q ≡ (T , Σ, qconacyc(x)).

Theorem 1 excludes empty OMQs, but these are trivially IQ-rewritable;
moreover, emptiness of OMQs from (ALCI,UCQ) is decidable (and 2ExpTime-
complete) [1]. Equivalence of Points 1 and 2 implies that it is not necessary to
modify the TBox when constructing an IQ-rewriting. The latter is not the case,
for example, when constructing IQ-rewritings of OMQs from (ALC,UCQ) as-
suming that the constructed IQ must be an ALC concept. In that case, Point 1
and 3 of Theorem 1 are still equivalent, but equivalence with Point 2 is not as
it might be necessary to (mildly) extend the TBox [10].

In the direction “3 ⇒ 2”, we construct actual rewritings, extending a con-
struction due to Kikot and Zolin [14] to accomodate TBoxes, ABox signatures,
and UCQs (instead of CQs). This extension yields the following.

Lemma 1. Let Q = (T , Σ, q(x)) be an OMQ from (ALCI,UCQ). If q(x) is
x-acyclic and connected, then Q is rewritable into an OMQ (T , Σ,C(x)) with
C(x) an IQ. The size of the IQ C(x) is polynomial in the size of q(x).

The IQ C(x) constructed in the proof of Lemma 1 takes the form P →
(C1t· · ·tCn) where P is a concept name or > and C1, . . . , Cn are ELI-concepts.
Based on Theorem 1 and variations thereof and using careful reductions to OMQ
containment [6], one can establish the following complexity results [10].

Theorem 2. Deciding IQ-rewritability of a unary OMQ from (ALCI,UCQ) is

1. 2NExpTime-complete in the general case;
2. 2ExpTime-complete for OMQs based on the full ABox signature;
3. NP-complete for OMQs based on the empty TBox.

Different complexities are obtained for other DLs. For example, IQ-rewritability
is undecidable in (ALCF ,CQ) and between ExpTime and coNExpTime in
(ALC,UCQ) when the ABox signature is full. As observed in [10], IQ-rewritings
for OMQs based on the empty TBox can be viewed as underapproximations for
OMQs with non-empty TBoxes in the sense that an IQ-rewriting for (∅, Σ, q(x))
with q(x) a UCQ is also an IQ-rewriting for (T , Σ, q(x)) for any ALCI TBox T .

We now compare OMQs based on IQs to unary OMQs based on BGPs,
UBGPs, and PUBGPs. It is obvious from the definitions that OMQs from
(ALCI, IQ) and (ALCI,BGP) have the same expressive power. The follow-
ing is less trivial to show than one might think as converting an OMQ from
(ALCI,UBGP) into an OMQ from (ALCI, IQ) requires a careful modification
of the TBox to bridge the semantic gap between unions in UBGPs and disjunc-
tion in IQs. A proof is in the appendix.

Theorem 3. The language (ALCI, IQ) has the same expressive power as unary
(ALCI,UBGP).

The next example shows that unary (ALCI,PUBGP) is more expressive than
(ALCI, IQ).



Example 2. Let Q = (∅, {r}, q(x)) be the OMQ where q(x) is the PUBGP
Πxϕ(x, y) and ϕ(x, y) is the BGP r(x, y) ∧ (P → ∃r.P )(y). It can be verified
that Q is equivalent to the OMQ Q2 from Example 1, which is not expressible
in (ALCI, IQ).

4 UBGP-Rewritability

We study UBGP-rewritability in (ALCI,UCQ). We first present an example
and a characterization of UBGP-rewritability, and then use it to show that this
property is decidable. The example illustrates that as a result of disjunction in
UCQs behaving differently from union in UBGPs, OMQs based on full UCQs
are not always UBGP-rewritable. Note that this is in contrast to the CQ case
since every OMQ based on a full CQ is by definition also an OMQ based on a
BGP.

Example 3. Take the UCQ

q(x, y) = (A(x) ∧ r(x, y)) ∨ (r(x, y) ∧A(y)).

We first consider the OMQ Q0 = (∅, Σfull, q(x, y)) based on the empty TBox.
Clearly, Q0 is rewritable into the OMQ Q′0 = (∅, Σfull, q

′(x, y)) from the language
(ALCI,UBGP) in which the disjunction from the UCQ q(x, y) is replaced by
BGP union:

q′(x, y) = (A(x) ∧ r(x, y)) ∪ (r(x, y) ∧A(y)).

Now consider the TBox T = {M v ∀s.At∀t.A} and let Q1 = (T , Σfull, q(x, y)).
Then Q′1 = (T , Σfull, q

′(x, y)) is not a rewriting of Q1. To see this, consider the
ABox

A = {r(a, b),M(c), s(c, a), t(c, b)}.

Then A |= Q1(a, b), but A 6|= Q′1(a, b). In fact, Q1 is not UBGP-rewritable.
We sketch the proof. Assume to the contrary that there is a rewriting Q =
(T ′, Σ,

⋃
i ϕi(x, y)) of Q1 from (ALCI,UBGP). Then A |= Q(a, b). Consider the

ABox A′ obtained from A by dropping all assertions that use c, taking the union
with two copies Aa and Ab of A that do not share individuals with A or with
each other, and then identifying the copy of a in Aa with a, and the copy of b
in Ab with b. Thus,

A′ = {r(a, b),M(c1), s(c1, a), t(c1, b
′),M(c2), s(c2, a

′), s(c2, b), t(a
′, b)}.

We then have A′ 6|= Q1(a, b), and so A′ 6|= Q(a, b). By construction, there is a
homomorphism from A to A′ that maps a to a and also a homomorphism from A
to A′ that maps b to b. As entailment of ALCI concepts is preserved under ABox
homomorphisms, for every ALCI concept C, A |= (T ′, Σfull, C(x))(a) implies
A′ |= (T ′, Σfull, C(x))(a) and the same holds for b. We obtain A′ |= Q(a, b) from
A |= Q(a, b) and have derived a contradiction.



We now give the characterization of UBGP-rewritability, starting with some
technical preliminaries. We first identify a set of concepts to be used in UBGP-
rewritings and, later on, also in PUBGP-rewritings.

Let Q = (T , Σ, q(x)) be a non-Boolean OMQ from (ALCI,UCQ). Let Qq(x)
be the set of unary CQs p(x) that are connected and x-acyclic and can be
obtained from a contraction of a CQ in q(x) by dropping all equality atoms,
then (potentially) taking a subquery, and finally choosing any variable x as the
new answer variable and existentially quantifying all other variables. For every
such p(x), take an ALCI concept Cp such that the CQ-based OMQ (T , Σ, p(x))
is equivalent to the IQ-based OMQ (T , Σ,Cp(x)), as constructed in the proof of
Lemma 1. Let sub(Q) be the closure under subconcepts of concepts Cp, p(x) ∈
Qq(x), and concepts used in T . A Q-type is a minimal set of concepts that
contains C or ¬C for every C ∈ sub(Q). For a Q-type τ , set Cτ = u

C∈τ
C. Also

let CQ be the set of concepts of the form Cτ1 t · · · t Cτ` with each τi a Q-type.
We next define an approximation of Q from below that is formulated in

(ALCI,UBGP) and based on the TBox T from Q and the concepts from CQ.
More precisely, QUBGP is the OMQ (T , Σ, q′(x)) where q′(x) is the UBGP that
is the union of all BGPs ϕ(x) such that

1. for every x ∈ x, there is a unique atom D(x) ∈ ϕ(x), and D ∈ CQ and
2. (T , Σ, ϕ(x)) ⊆ Q.

It is easy to see that there are only finitely many such BGPs. Note that, by
construction, QUBGP ⊆ Q.

Theorem 4. Let Q = (T , Σ, q(x)) be an OMQ from (ALCI,UCQ) that is con-
nected, of arity at least one, and non-empty. Then the following are equivalent:

1. Q is UBGP-rewritable;
2. QUBGP is a rewriting of Q;
3. Q ⊆ QUBGP.

Since QUBGP uses the same TBox as Q, Theorem 4 implies that it is not nec-
essary to modify the TBox when constructing UBGP-rewritings. The proof of
Theorem 4 is a minor variation of the proof of Theorem 7 below, given after
Lemma 2.

The next theorem can be obtained by a reduction of UBGP-rewritability to
containment in monadic disjunctive datalag [6], based on Theorem 4.

Theorem 5. UBGP-rewritability in (ALCI,UCQ) is decidable.

A 2NExpTime lower bound follows from Theorems 2 and 3. The described
reduction only yields a 4NExpTime upper bound.

5 PUBGP-Rewritability

We study PUBGP-rewritability in (ALCI,UCQ), first observing that these al-
ways exist when the TBox of the original OMQ is formulated in the fragment
Horn-ALCI of ALCI. This is essentially a consequence of the fact that Horn-
ALCI has universal models, more details are given in the appendix.



Theorem 6. Every OMQ from (Horn-ALCI,UCQ) is PUBGP-rewritable.

We next give an example showing that PUBGP-rewritings are not guaranteed
to exist in the non-Horn case. This is already true for OMQs from (ALC,CQ)
even when ALCI concepts are admitted in PUBGPs.

Example 4. Let Q = (T , Σfull, q(x)) with

T = {M vM1 tM2,M1 v ∀s.A,M2 v ∀t.A,A v ∀t.A}

and q(x) = ∃y r(x, y) ∧A(y) ∧ r(y, y). Then Q is not PUBGP-rewritable. For a
proof by contradiction, assume that Q′ = (T ′, Σfull, q

′(x)) is a PUBGP-rewriting.
For every n ≥ 1, let

An = {r(a, b1), r(a, b2), r(b1, b1), r(b2, b2),

M(c1), s(c1, b1), t(c1, c2), . . . , t(cn, b2)}.

It can be verified that An |= Q(a) and thus An |= Q′(a), for every n. Choose
n > 0 that exceeds the number of variables in any BGP in q′. As An |= Q′(a),
there must be a BGP ϕ(x,y) in q′ and a b such that An |= Qϕ(a,b) for the
OMQ Qϕ = (T , Σfull, ϕ(x,y)). Further, there must be a ci in An that is not in b.
Let ind− = ind(An) \ {ci} and for each b ∈ ind−, let Abn denote the disjoint copy
of An obtained by renaming every individual c to cb. Now consider the ABox A′n
obtained from An by removing all assertions that use ci, taking the disjoint union
with all Abn, b ∈ ind−, and then identifying each individual b ∈ ind− with the
individual bb from Abn. Note that this construction is similar to the construction
of A′ in Example 3. We have A′n |= Qϕ(a,b) since for every b ∈ ind−, there is a
homomorphism h from An to A′n with h(b) = b and for all b, b′ ∈ ind− and role
names v, v(b, b′) ∈ An iff v(b, b′) ∈ A′n. On the other hand, it is easy to see that
A′n 6|= Q(a) due to the removal of ci.

Next example shows that when constructing PUBGP-rewritings of OMQs
from (ALC,CQ), it can be necessary to use BGPs whose topology is different
from that of the CQs in the original OMQ. In fact, exponentially many variables
(in the size of the TBox of the original OMQ) can be required in BGPs. We
conjecture that the example can even be improved to show a double exponential
lower bound on the number of variables. As for the previous example, the same
is true for (ALCI,CQ), that is, when ALCI concepts are admitted in PUBGPs.

Example 5. Let Q = (T , Σ, q(x)) be the OMQ with

T = {Ai v ∀r.Ai+1 t ∀s.Ai+1 | 0 ≤ i < n} ∪ {An v A}
Σ = {A0, r, s, t}

q(x) = ∃y t(x, y) ∧A(y) ∧ t(y, y).

Q is rewritable into the OMQ Q′ = (∅, Σ, q′(x)) where q′(x) is the PUBGP
Πxϕ(x,y) with ϕ(x,y) as depicted in Figure 5. Observe that the topmost part
is a full binary tree of depth n. We aim to show that there is no rewriting of Q
that uses less than 2n variables.
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Fig. 1. PUBGP-rewriting for the OMQ Q in Example 5

Assume for a proof by contradiction that there is such a rewriting Q′ =
(T ′, Σ, q′(x)). Let Aϕ be ϕ viewed as an ABox. Clearly, Aϕ |= Q(x) and thus
there must be a BGP ϕ′(x,y′) in q′ and a homomorphism h such that Aϕ |=
Qϕ(x, h(y′)) where Qϕ = (T ′, Σ, ϕ′(x,y′)). Some leaf node y from the binary
tree in ϕ must be outside the range of h. Now consider the ABox A′ϕ obtained
from Aϕ by dropping all assertions that use y, adding a disjoint copy Azϕ of Aϕ
for every z ∈ ind(Aϕ) except y, and then identifying each z from Aϕ with the
copy of z in Azϕ. Note that this construction is similar to the construction of
A′ in Example 3. Then, as in Example 3, A′ϕ |= Q′(x, h(y′)) follows from the
fact that ϕ′(x,y′) is a BGP in q′. On the other hand, A′ϕ 6|= Q(x) and we have
derived a contradiction.

We now show that PUBGP-rewritability implies rewritability into a more
controlled class of PUBGPs, based on the set of concepts CQ defined in Section 4.
A CQ-PUBGP is a PUBGP that uses only concepts from CQ.

Theorem 7. Let Q = (T , Σ, q(x)) be an OMQ from (ALCI,UCQ) that is con-
nected, of arity at least one, and non-empty. Then the following are equivalent:

1. Q is PUBGP-rewritable;
2. Q is rewritable into an OMQ Q′ = (T , Σ, q′(x)) with q′(x) a CQ-PUBGP.

Theorem 7 clearly implies that it is not necessary to modify the TBox when con-
structing PUBGP-rewritings. It also implies that it is not necessary to use con-
cepts from outside CQ. Unlike Theorem 4, however, it does not immediately give
rise to a decision procedure for PUBGP-rewritability. Note that an approxima-
tion QPUBGP of Q from below, formulated in (ALCI,PUBGP) and constructed
in exact analogy with the query QUBGP from Theorem 4, is not guaranteed to be
finite. In fact, the main challenge in showing decidability of PUBGP-rewritability
is to give a bound on the number of variables used in PUBGP-rewritings. An



additional complication is that there are no existing approaches for deciding
containment or equivalence between an OMQ from (ALCI,UCQ) and an OMQ
from (ALCI,PUBGP). Regarding the converse direction, it is possible to prove
that every OMQ from (ALCI,PUBGP) can be rewritten into (ALCI,UCQ),
the construction being similar to that used in the proof of Theorem 3.

To prove Theorems 7 and 4, we introduce a certain normalization of PUBGP-
rewritings. Let Q = (T , Σ, q(x)) be an OMQ from (ALCI,UCQ) and let QR =
(TR, Σ, qR(x)) be a PUBGP-rewriting of Q with qR(x) = Πx(

⋃
i ϕi(x,yi)). We

may assume w.l.o.g. that the set of BGPs ϕi(x,yi) in qR(x) is closed under
contraction.5 From each BGP ϕi(x,yi), we construct all BGPs ϕi,j(x,yi) that
satisfy the following conditions:

1. r(z1, z2) ∈ ϕi,j iff r(z1, z2) ∈ ϕi;
2. z1 = z2 ∈ ϕi,j iff z1 = z2 ∈ ϕi;
3. for each z ∈ xyi, there is a unique atom C(z) ∈ ϕi,j , and C ∈ CQ;
4. (T , Σ,Πxϕi,j(x,yi)) ⊆ Q.

We call the OMQ Q′R = (T , Σ,Πx(
⋃
i,j ϕi,j(x,yi))) from (ALCI,PUBGP) the

normalization of QR. In the appendix, we show the following, which clearly
yields Theorem 7.

Lemma 2. If QR is a PUBGP-rewriting of Q, then so is its normalization Q′R.

We note that Lemma 2 also gives Theorem 4. In fact, assume that an
OMQ Q = (T , Σ, q(x)) from (ALCI,UCQ) is rewritable into an OMQ QR =
(T ′, Σ, q′(x)) from (ALCI,UBGP), a subclass of (ALCI,PUBGP). Then, the
rewriting Q′R constructed above is also from (ALCI,UBGP). Recall the OMQ
QUBGP constructed before Theorem 4. By construction, QUBGP ⊆ Q and QUBGP

contains every BGP from QR. Thus, we also have Q ⊆ QUBGP, as required.

6 Conclusion

The main problem left open in this paper is whether PUBGP-rewritability is de-
cidable in (ALCI,UCQ) and related OMQ languages. As a precursor, it would
be interesting to show that equivalence of an OMQ from (ALCI,UCQ) and
an OMQ from (ALCI,PUBGP) is decidable. Another interesting question is
whether rewritability into PUBGPs is actually different from rewritability into
(more) complete SPARQL, that is, whether features such as difference make it
possible to rewrite additional queries. Finally, it would be interesting to investi-
gate the consequence of admitting constants in the original query and nominals
in the rewriting.
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5 Meaning that we treat ϕi(x,yi) as a CQ with answer variables x.
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A Proofs for Section 3

Theorem 3. The language (ALCI, IQ) has the same expressive power as unary
(ALCI,UBGP).

Proof. By definition, every OMQ from (ALCI, IQ) is also from (ALCI,BGP).
We thus concentrate on the converse direction.

Let Q = (T , Σ, q(x)) be a unary OMQ from (ALCI,UBGP). We can assume
w.l.o.g. that all BGPs in q(x) consist of only a single concept atom since every
role atom r(x, x) can be replaced with the concept atom P → ∃r.P (x), P a fresh
concept name, and then multiple concept atoms can be combined into a single
one using conjunction from ALCI. Let C1(x), . . . , Cn(x) be all these BGPs.

We have to construct an OMQ from (ALCI, IQ) whose answers are the union
of the answers to the OMQs (T , Σ,Ci(x)), 1 ≤ i ≤ n. To achieve this, we would
ideally like to use n copies T1, . . . , Tn of the TBox T with disjoint signatures.
However, the ABox is of course still given in signature Σ. We can link every
concept name A ∈ Σ used in T to its copy Ai in Ti using the CI A v Ai. Not
having available role inclusions, however, we cannot straightforwardly link role
names to their copies. We thus let the copies of T share role names from Σ, in
a way such that there is still no interaction between the different copies.

We now make this formal. Let CN(T ) and RN(T ) denote the set of concept
names and role names used in T . For every A ∈ CN(T ), introduce fresh concept
names A1, . . . , An and for every r ∈ RN(T ), introduce fresh role names r1, . . . , rn.
We assume w.l.o.g. that T is of the form > v CT with CT in negation normal
form (NNF) and that C1, . . . , Cn are also in NNF.

The right i-th relativization ρi(C) of an ALCI concept C in NNF is defined
inductively as follows:

ρi(A) = Ai ρi(¬A) = ¬Ai
ρi(C uD) = ρi(C) u ρi(D) ρi(C tD) = ρi(C) t ρi(D)

ρi(∃r.C) = ∃ri.ρi(C)

ρi(∃r−.C) = ∃r−i .ρi(C)

ρi(∀r.C) = ∀ri.ρi(C) if r /∈ Σ
ρi(∀r−.C) = ∀r−i .ρi(C) if r /∈ Σ
ρi(∀r.C) = ∀ri.ρi(C) u ∀r.ρi(C) if r ∈ Σ

ρi(∀r−.C) = ∀r−i .ρi(C) u ∀r−.ρi(C) if r ∈ Σ

The left i-th relativization λi(C) is defined analogously except that the clause
for existential restrictions changes:

λi(∃r.C) = ∃ri.λi(C) if r /∈ Σ
λi(∃r−.C) = ∃r−i .λi(C) if r /∈ Σ
λi(∃r.C) = ∃ri.λi(C) t ∃r.λi(C) if r ∈ Σ

λi(∃r−.C) = ∃r−i .λi(C) t ∃r−.λi(C) if r ∈ Σ.



Now define the TBox

T ′ = {> v ρi(CT ) | 1 ≤ i ≤ n}∪
{A v Ai | A ∈ CN(T ), 1 ≤ i ≤ n}.

It is possible to prove the following.

Claim. Q is equivalent to the OMQ (T ′, Σ, (λ1(C1)t · · · tλn(Cn))(x) from the
language (ALCI, IQ).

Details are left to the reader. We remark that the exponential blowup involved in
the construction of T ′ can be avoided by introducing additional (non-Σ) concept
names. o

B Proofs for Section 4

Theorem 5. UBGP-rewritability in (ALCI,UCQ) is decidable.

Proof. By Theorem 4, it suffices to construct QUBGP and to then decide whether
Q ⊆ QUBGP. It thus suffices to argue that the following containment problems
are decidable:

1. of an OMQ from (ALCI,BGP) in an OMQ from (ALCI,UCQ) (needed for
the construction of QUBGP);

2. of an OMQ from (ALCI,UCQ) in an OMQ from (ALCI,UBGP).

Decidability of Problem 1 is immediate since (ALCI,BGP) is a subclass of
(ALCI,UCQ) (except for the use of compound concepts in the query, which
can be avoided by introducing fresh concept names and slightly extending the
TBox) and OMQ containment in (ALCI,UCQ) is decidable. In fact, this is
proved in [6] by showing that every OMQ from (ALCI,UCQ) can be rewritten
into an equivalent monadic disjunctive datalog (MDDLog) program and that
containment between MDDLog programs is decidable, for the latter see also [9].

From this, it follows that Problem 2 is also decidable. Let Q1 be an OMQ
from (ALCI,UCQ) and Q2 = (T , Σ,

⋃
i ϕi(x)) an OMQ from (ALCI,UBGP).

We can construct an equivalent MDDLog program for each OMQ (T , Σ, ϕi(x)),
viewing it as an OMQ from (ALCI,UCQ), and then take the union of all those
programs as MDDLog is closed under union. By the semantics of UBGPs, the
resulting program is equivalent to Q2. o

C Proofs for Section 5

Theorem 6. Every OMQ from (Horn-ALCI,UCQ) is PUBGP-rewritable.

Proof. (sketch) The central idea of the construction is to use a decomposition
of CQs that goes under various names such as splittings [16], forest decom-
positions [3], and squid decompositions [7]. Let Q = (T , Σ, q(x)) be an OMQ



from (Horn-ALCI,UCQ), and let x = x1 · · ·xn. First assume that n > 0. To
construct an equivalent OMQ from (Horn-ALCI,PUBGP), we consider all con-
tractions p(x) of a CQ from q(x) and all possible ways to partition the atoms of
p(x) into sets V0, . . . , Vn such that for 1 ≤ i ≤ n,

1. x ⊆ V0, Vi ∩ x ⊆ {xi} and
2. p(x)|Vi

is forest-shaped (with edges pointing upwards or downwards)

where p(x)|V denotes the restriction of p(x) to those atoms that contain only
variables from V . Each p(x) and V0, . . . , Vn gives rise to an n-ary PUBGP that
can be obtained by starting with p(x)|V0 , adding Aip(x),V0,...,Vn

(xi) for 1 ≤ i ≤ n
where A1

p(x),V0,...,Vn
, . . . , Anp(x),V0,...,Vn

are fresh concept names, and then pro-

jecting out all variables from V0 that are not answer variables. Let q′(x) be the
union of these PUBGPs, for all p(x) and V0, . . . , Vn.

We next extend the TBox T , for all p(x) and V0, . . . , Vn, and 1 ≤ i ≤ n. If
p(x)|Vi

contains the answer variable xi and thus is a unary query, then we add
C v Aip(x),V0,...,Vn

if C is a minimal conjunction of subconcepts of T such that

the root of the universal model of C and T is an answer to p(x)|Vi
. If p(x)|Vi

does not contain the answer variable xi and thus is a Boolean query, then we add
C v Aip(x),V0,...,Vn

if C is a minimal conjunction of subconcepts of T such that

the universal model of C and T makes p(x)|Vi
true. Let T ′ denote the result of

extending T in the described way.
Then Q′ = (T ′, Σ, q′(x)) is equivalent to Q.
It remains to comment on the case that Q is Boolean. One can then add

> v A to T with A a fresh concept name and A(x) to each CQ in q() where x
is a fresh answer variable. The resulting UCQ is unary and we can construct Q′

from above. It remains to project away the answer variable of Q′. o

For the subsequent proofs, we introduce relevant notation and basic results.
Every interpretation I can be viewed as an undirected graph GI , analogously
to the definition of the undirected graph Gq of a CQ q. An interpretation is tree-
shaped or a tree interpretation if GI is a tree and there are no multi-edges, that is,
(d, e) ∈ rI implies (d, e) /∈ sI for all (potentially inverse) roles s 6= r. Let A be an
ABox. An interpretation I is a forest model of A if there are tree interpretations
(Ia)a∈ind(A) with mutually disjoint domains, and ∆Ia ∩ ind(A) = {a} for all
a ∈ ind(A) such that I is the union of A (viewed as an interpretation) and
(Ia)a∈ind(A). Lemmas of the following kind have been widely used in the literature
on ontology-mediated querying. The proof of the “if” direction uses a standard
unraveling argument and is omitted, see for example [16].

Lemma 3. Let Q = (T , Σ, q(x) be an OMQ from (ALCI,UCQ), A a Σ-ABox,
and a ⊆ ind(A). Then A |= Q(a) iff for all forest models I of A and T , I |=
Q(a).

A homomorphism from an ABox A to an ABox B is a function h : ind(A) →
ind(B) such that A(a) ∈ A implies A(h(a)) ∈ B and r(a, b) ∈ A implies
r(h(a), h(b)) ∈ B. We write A → B to indicate that there is a homomorphism



from A to B. For a ∈ ind(A) and b ∈ ind(B), we further write (A,a) → (B,b)
to indicate that there is a homomorphism h from A to B with h(a) = b. The
following lemma is well-known, see for example [5].

Lemma 4. Let Q = (T , Σ, q) be a unary OMQ from (ALCI,Q), with Q ∈
{UCQ, IQ}, A and B be Σ-ABoxes, a ∈ ind(A), and b ∈ ind(B). Then (A, a)→
(B, b) and A |= Q(a) implies B |= Q(b).

Note that in assertions r(x, y) in an ABox, r must be a role name but cannot
be an inverse role. For purposes of uniformity, we use r−(x, y) as an alternative
notation to denote an assertion r(y, x) in an ABox. A cycle in an ABox is defined
exactly like a cycle in a CQ, repeated here for convenience. A cycle in an ABox
A is a sequence of non-identical assertions r0(a0, a1), . . . , rn−1(an−1, an) in A,
n ≥ 1, where

1. r0, . . . , rn−1 are (potentially inverse) roles,
2. ai 6= aj for 0 ≤ i < j < n, and a0 = an.

The length of this cycle is n. The girth of A is the length of the shortest cycle
in it and ∞ if A has no cycle.

The following is a DL formulation of what is often known as the sparse
incomparability lemma in CSP [9].

Lemma 5. For every ABox A and all g, s ≥ 0, there is an ABox Ag of girth
exceeding g such that

1. Ag → A and
2. for every ABox B with |ind(B)| ≤ s, A → B iff Ag → B.

We next establish a ‘pointed’ version of Lemma 5 that is crucial for the
subsequent proofs. The a-girth of A is defined exactly like the girth except that
we only consider cycles that do no pass through a. The following lemma is proved
in [10].

Lemma 6. For all ABoxes A, a ∈ ind(A), and g, s ≥ 0, there is an ABox Ag
of a-girth exceeding g such that

1. (Ag, a)→ (A, a)
2. for every ABox B with |ind(B)| ≤ s and every b ∈ ind(B), (A, a)→ (B, b) iff

(Ag, a)→ (B, b).

For a tuple a ∈ (ind(A))n, the a-girth of A is the length of the shortest cycle
in A that does not pass through any a ∈ a or ∞ if there is no such cycle .

We provide a construction of high-girth ABoxes which preserve the answers
to BGPs. It can be seen as a generalization of Lemma 6. For two ABoxes A and
B, a ∈ ind(A), and b ∈ ind(B), we denote with (A, a)] (B, b) the ABox obtained
by first considering the disjoint union of A and B, A ] B, and then identifying
the copy of a in A]B with the copy of b in A]B. As for CQs, we can associate
an undirected graph GA with every ABox A. The restriction of A on a subset
D of its domain elements ind(A) is denoted with A|D.



Lemma 7. For every Σ ABox A, n ≥ 0, tuple a ∈ (ind(A))n, g ≥ 0, and n-ary
OMQ Q = (T , Σ, q(x)) from (ALCI,BGP), there exists an ABox Aga such that

1. Aga has a-girth exceeding g;
2. every path d1, . . . , dm in GA with di 6= dj for all 0 ≤ i < j ≤ n, and

d1, dn ∈ a, contains only elements from a;
3. r(ai, aj) ∈ (Aga,a) iff r(ai, aj) ∈ A and r(xi, xj) ∈ q;
4. (Aga,a)→ (A,a);
5. A |= Q(a) iff Aga |= Q(a).

Proof. Assume a Σ ABox A, a ∈ (ind(A))n, g ≥ 0, and Q = (T , Σ, q(x)) are
given. It is known that for every ALCI concept C, there exists an ABox BC
and elements b1, . . . bm ∈ ind(BC) such that A |= (T , Σ,C(x))(a) iff (A, a) 6→
(BC , bi), for every i with 1 ≤ i ≤ m, see [5]. Let s be the maximum size of
all BC , where C is a concept in q. For every i, with 1 ≤ i ≤ n, we apply
Lemma 6 for A, ai, g, and s, obtaining a high ai-girth ABox Agi . Note that by
construction ai ∈ ind(Agi ), for every 1 ≤ i ≤ n. To construct Aga we start with
{r(ai, aj) | r(ai, aj) ∈ A and r(xi, xj) ∈ q} and then hook a fresh copy of Agi to
every ai, for 1 ≤ i ≤ n. We show that Aga is as required.

Points 1-3 follow directly from the construction.

Point 4. For every i with 1 ≤ i ≤ n, let hai be a homomorphism from (Agi , ai)
to (A, ai). Then the function ha : ind(Aga) → ind(A) with ha(x) = hai(x) for
x ∈ ind(Aai) is a homomorphism from (Aga,a) to (A,a). Thus, (Aga,a)→ (A,a).

Point 5. We first observe that for every ABox B with |B| ≤ s and b ∈ ind(B),
and every i with 1 ≤ i ≤ n: (Aga, ai) → (B, b) iff (A, ai) → (B, b). One direction
is clear from the existence of a homomorphism between (Aga, ai) and (A, ai).
For the other direction, (Aga, ai) → (B, b) implies (Agi , ai) → (B, b) and thus
(A, ai) → (B, bi) (from the properties of (Agi , ai)). Thus, for every concept C
in q and ai ∈ a, Aga |= (T , Σ,C(x))(ai) iff A |= (T , Σ,C(x))(ai). Moreover, for
every r(xi, xj) ∈ q we have that r(ai, aj) ∈ A iff r(ai, aj) ∈ Aga. Thus, A |= Q(a)
iff Aga |= Q(a). o

Lemma 2. If QR is a PUBGP-rewriting of Q, then so is its normalization Q′R.

Proof. Assume that

– Q = (T , Σ, q(x));
– QR = (TR, Σ, qR(x)), where qR(x) = Πx(

⋃
i ϕi(x,yi)) and the set of BGPs

ϕi(x,yi) is closed under contractions;
– Q′R = (T , Σ,Πx(

⋃
i,j ϕi,j(x,yi))) is the normalisation of QR.

By construction of Q′R, it suffices to show that Q ⊆ Q′R. Let A be a Σ-ABox with
A |= Q(a). We show that A |= Q′R(a). There exist a BGP ϕi(x,yi) in qR(x) and
bi such that A |= Qi(a,bi) for Qi = (T , Σ,Πxϕi(x,yi)). Assume x = x1 · · ·xn,
yi = y1 · · · y`i , a = a1 · · · an, and bi = b1 · · · b`i . By closure under contraction
of the set of BGPs ϕi(x,yi) in qR(x), we may assume that no bj occurs in a,



bj 6= bk for j 6= k, and that for any aj , ak, aj = ak iff xj = xk ∈ ϕi(x,yi). We
set h(xj) = aj and h(yk) = bk, for 1 ≤ j ≤ n and 1 ≤ k ≤ `i.

Let ` be the length of a longest cycle in q(x) or 0 if no such cycle exists.
By applying Lemma 7 to A, the tuple abi, g = ` + 1, and (T , Σ, ϕi(x,yi)), we
obtain an ABox Agabi

satisfying the Conditions 1–5. In particular, the abi-girth
of Agabi

exceeds g and Agabi
|= (T , Σ, ϕi(x,yi))(a,bi). Then, Agabi

|= QR(a)
and, by equivalence of Q and QR, Agabi

|= Q(a). We construct a BGP ρ(x,yi)
as follows:

1. r(v1, v2) ∈ ρ(x,yi) iff r(v1, v2) ∈ ϕi(x,yi);
2. v1 = v2 ∈ ρ(x,yi) iff v1 = v2 ∈ ϕi(x,yi);
3. for every v in xyi, let D(v) ∈ ρ(x,yi) for D = t

1≤l≤p
Cτl , where the τl are

exactly the Q-types which are realized in models of T and Agabi
at h(v).

It follows from the construction of ρ(x,yi) that Agabi
|= (T , Σ, ρ(x,yi))(a,bi).

Thus, from (Agabi
,abi) → (A,abi), it follows that A |= (T , Σ, ρ(x,yi))(a,bi).

It remains to be shown that ρ(x,yi) is one of the queries ϕi,j(x,yi) in Q′R. Then
A |= Q′R(a), and we are done.

To show that ρ(x,yi) is one of the queries ϕi,j(x,yi) in Q′R, it suffices to
prove that (T , Σ,Πxρ(x,yi)) ⊆ Q(x). Let B be a Σ-ABox such that B |=
(T , Σ,Πxρ(x,yi))(a

′). We show that B |= Q(a′). Take a tuple b′i such that B |=
(T , Σ, ρ(x,yi))(a

′,b′i). Recall that the concepts Cp(x) in sub(Q) corresponding
to queries p(x) in Qq(x) are either ELI concepts or of the form P → C1t· · ·tCn,
where C1, . . . , Cn are ELI concepts and P is a fresh concept name. We may as-
sume that the fresh concept names P are distinct for distinct queries p(x) and
in any D(v1) and D(v2) with v1 6= v2. Let J be a model of T and B. We show
that J |= Q(a′). Assume a′ = a′1 · · · a′n, and b′i = b′1 · · · b′`i . We set h′(xj) = a′j
and h′(yk) = b′k, for 1 ≤ j ≤ n and 1 ≤ k ≤ `i.

By construction of ρ, the mapping f defined by setting f(ai) = a′i and
f(bi) = b′i is well-defined and a homomorphism from the restriction of Agabi

to abi (regarded as an interpretation) to J . To see that r(c1, c2) ∈ Agabi
implies

(f(c1), f(c2)) ∈ rJ for c1, c2 ∈ abi, observe that r(h(v1), h(v2)) ∈ Agabi
implies

r(v1, v2) ∈ ϕi(x,yi) (by Condition 3 of Lemma 7) implies r(v1, v2) ∈ ρ(x,yi)
(by definition of ρ(x,yi)), which implies (h′(v1), h′(v2)) ∈ rJ , as required. For
p(x) in Qq(x) and Cp(x) the concept corresponding to p(x) in sub(Q), we may

assume that if c ∈ CJp(x) for some c in a′b′i, then there exists a homomorphism

from p(x) to J mapping x to c.
To show that J |= q(a′), we first construct from J a forest model I of

T and Agabi
and then deduce from I |= Q(a) that J |= Q(a′). Denote by

τv the Q-type realized in J at h′(v), for v in xyi. By definition of ρ(x,yi),
τv is realized in h(v) in a model of T and Agabi

. Thus, there exists a forest
model Ih(v) of T and Agh(v), the ABox which has been hooked to h(v) in the

construction of Agabi
in the proof of Lemma 7, such that h(v) ∈ C

Ih(v)
τv . We

now hook the models Ih(v) at h(v) to the restriction of Agabi
to abi. (Observe

that h(v1) = h(v2) implies h′(v1) = h′(v2).) The resulting interpretation, I, is



a model of T and Agabi
satisfying Cτv in h(v). To show this, it suffices to show

that whenever r(h(v1), h(v2)) ∈ Agabi
, then τv1 , τv2 are r-coherent, where we call

τ1, τ2 r-coherent if the following conditions hold:

– if C ∈ τ2 and ∃r.C ∈ sub(Q), then ∃r.C ∈ τ1;
– if C ∈ τ1 and ∃r−.C ∈ sub(Q), then ∃r−.C ∈ τ2;
– if ∀r.C ∈ τ1, then C ∈ τ2;
– if ∀r−.C ∈ τ2, then C ∈ τ1.

But this follows from the facts that r(h(v1), h(v2)) ∈ Agabi
implies (h′(v1), h′(v2)) ∈

rJ (see the mapping f above) and that τv1 , τv2 are realized in h′(v1) and h′(v2)
in J , respectively.

As I is a model of both T and Agabi
, it follows that I |= qi(a), for some CQ

qi(x) in q(x). Let h′′ be a homomorphism from qi(x) to I witnessing I |= qi(a).
As the abi-girth of I exceeds g and qi(x) is connected, the image of qi(x) under
h′′ is contained in abi extended by connected and c-acyclic subinterpretations
of I, for c in abi. Thus, by identifying variables in qi(x), we obtain a query that
is the union of CQs qcore and p1(z1), . . . , pm(zm) in Qq(x) such that

– the image of qcore under h′′ is contained in abi;
– var(qcore) ∩ var(pi(zi)) = {zi} for 1 ≤ i ≤ m;
– var(pi(zi)) ∩ var(pj(zj)) = ∅ for 1 ≤ i < j ≤ m.

For any such pi(zi) there exists a concept Cpi(zi) such that h′′(zi) ∈ CIpi(zi). By

construction of I from J , f(h′′(zi)) ∈ CJpi(zi). By construction of J , there is

a homomorphism from p(zi) to J mapping zi to f(h′′(zi)). f is also a homo-
morphism from the restriction of I to abi to J . It follows that J |= qi(a

′), as
required.
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