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Abstract. We study rewritability of monadic disjunctive Datalog programs, (the comple-
ments of) MMSNP sentences, and ontology-mediated queries (OMQs) based on expressive
description logics of the ALC family and on conjunctive queries. We show that rewritability
into FO and into monadic Datalog (MDLog) are decidable, and that rewritability into
Datalog is decidable when the original query satisfies a certain condition related to equality.
We establish 2NExpTime-completeness for all studied problems except rewritability into
MDLog for which there remains a gap between 2NExpTime and 3ExpTime. We also
analyze the shape of rewritings, which in the case of MMSNP correspond to obstructions,
and give a new construction of canonical Datalog programs that is more elementary than
existing ones and also applies to non-Boolean queries.

1. Introduction

In data access with ontologies, the premier aim is to answer queries over incomplete and
heterogeneous data while taking advantage of the domain knowledge provided by an ontology
[BtCLW14, CDL+09, BO15]. Since traditional database systems are often unaware of
ontologies, it is common to rewrite the emerging ontology-mediated queries (OMQs) into
more standard database query languages. For example, the DL-Lite family of description
logics (DLs) was designed as an ontology language specifically so that any OMQ Q = (T ,Σ, q)
where T is a DL-Lite ontology, Σ a data signature, and q a conjunctive query, can be rewritten
into an equivalent first-order (FO) query that can then be executed using a standard SQL
database system [CGL+07, ACKZ09]. In more expressive ontology languages, it is not
guaranteed that for every OMQ, there is an equivalent FO query. For example, this is the
case for DLs of the EL and Horn-ALC families and for DLs of the expressive ALC family;
please see [BHLS17] for a general introduction to DLs. In many members of the EL and
Horn-ALC families, however, rewritability into monadic Datalog (MDLog) is guaranteed,
thus enabling the use of Datalog engines for query answering. In ALC and above, not
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even Datalog-rewritability is generally ensured. Since ontologies emerging from practical
applications tend to be structurally simple, though, there is reason to hope that (FO-,
MDLog-, and Datalog-) rewritings do exist in many practically relevant cases even when
the ontology is formulated in an expressive language. This has in fact been experimentally
confirmed for FO-rewritability in the EL family of DLs [HLISW15], and it has led to the
implementation of rewriting tools that, although incomplete, are able to compute rewritings
in many practical cases [PUMH10, KNG14, TSCS15].

Fundamental problems that emerge from this situation are to understand the exact
limits of rewritability and to provide (complete) algorithms that decide the rewritability of a
given OMQ and that compute a rewriting when it exists. These problems have been adressed
in [BLW13, HLISW15, BHLW16, LS17] for DLs from the EL and Horn-ALC families. For
DLs from the ALC family, first results were obtained in [BtCLW14] where a connection
between OMQs and constraint satisfaction problems (CSPs) was established and then used
to transfer decidability results from CSPs to OMQs. In fact, rewritability is an important
topic in CSP (where it is called definability) as it constitutes a central tool for analyzing the
complexity of CSPs [FV98, LLT07, ELT07, DL08]. In particular, it is known that deciding
the rewritability of (the complement of) a given CSP into FO and into Datalog is NP-
complete [LLT07, Bar16, CL17] and rewritability into MDLog is NP-hard and in ExpTime
[CL17]. In [BtCLW14], these results were used to show that FO- and Datalog-rewritability
of OMQs (T ,Σ, q) is decidable and in fact NExpTime-complete when T is formulated in
ALC or a moderate extension thereof and q is an atomic query (AQ), that is, a monadic
query of the simple form A(x). For MDLog-rewritability, one can show NExpTime-hardness
and containment in 2ExpTime.

The aim of this paper is to study the above questions for OMQs where the ontology
is formulated in an expressive DL from the ALC family and where the actual query is a
conjunctive query (CQ) or a union of conjunctive queries (UCQ). As observed in [BtCLW14],
transitioning in OMQs from AQs to UCQs corresponds to the transition from CSP to
its logical generalization MMSNP introduced by Feder and Vardi [FV98] and studied, for
example, in [MS07, Mad09, Mad10, BCF12]. More precisely, while the OMQ language
(ALC,AQ) that consists of all OMQs (T ,Σ, q) where T is formulated in ALC and q is an
AQ has the same expressive power as the complement of CSP (with multiple templates and
a single constant), the OMQ language (ALC,UCQ) has the same expressive power as the
complement of MMSNP (with free variables)—which in turn is essentially a notational variant
of monadic disjunctive Datalog (MDDLog). It should be noted, however, that while all
these formalisms are equivalent in expressive power, they differ significantly in succinctness
[BtCLW14]; in particular, the best known translation of OMQs from (ALC,UCQ) into
MMSNP/MDDLog involves a double exponential blowup. In contrast to the CSP case, FO-,
MDLog-, and Datalog-rewritability of (complemented) MMSNP sentences was not known to
be decidable. In this paper, we establish decidability of FO- and MDLog-rewritability in
(ALC,UCQ) and related OMQ languages, in MDDLog, and in complemented MMSNP. We
show that FO-rewritability is 2NExpTime-complete in all three cases, and that MDLog-
rewritability is in 3ExpTime; a 2NExpTime lower bound was established in [BL16]. Let us
discuss our results on the complexity of FO-rewritability from three different perspectives.
From the OMQ perspective, the transition from AQs to UCQs results in an increase of
complexity from NExpTime to 2NExpTime. From the monadic Datalog perspective,
adding disjunction (transitioning from monadic Datalog to MDDLog) results in a moderate
increase of complexity from 2ExpTime [BtCCV15] to 2NExpTime. And from the CSP
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perspective, the transition from CSPs to MMSNP results in a rather dramatic complexity
jump from NP to 2NExpTime.

For Datalog-rewritability, we obtain only partial results. In particular, we show that
Datalog-rewritability is decidable and 2NExpTime-complete for MDDLog programs that,
in a certain technical sense made precise in the paper, have equality. For the general case,
we only obtain a potentially incomplete procedure. It is well possible that the procedure is
in fact complete, but proving this remains an open issue for now. These results also apply
to analogously defined classes of MMSNP sentences and OMQs that have equality.

While we mainly focus on deciding whether a rewriting exists rather than actually
computing it, we also analyze the shape that rewritings can take. Since the shape turns out
to be rather restricted, this is important information for algorithms (complete or incomplete)
that seek to compute rewritings. In the CSP/MMSNP world, this corresponds to analyzing
obstruction sets for MMSNP, in the style of CSP obstructions [Nes08, BKL08, Ats08] and
not to be confused with colored forbidden patterns sometimes used to characterize MMSNP
[MS07]. More precisely, we show that an OMQ (T ,Σ, q) from (ALC,UCQ) is FO-rewritable
if and only if it is rewritable into a UCQ in which each CQ has treewidth (1,max{2, nq}),
where nq is the size of q;1 similarly, the complement of an MMSNP sentence ϕ is FO-definable
if and only if it admits a finite set of finite obstructions of treewidth (1, k) where k is the
diameter of ϕ (the maximum number of variables in a negated conjunction in its body, in
Feder and Vardi’s terminology). We also show that an OMQ (T ,Σ, q) is MDLog-rewritable
if and only if it is rewritable into an MDLog program of diameter max{2, nq} where the
diameter of an MDLog program is the maximum number of variables in a rule; equivalently,
the complemented of an MMSNP sentence ϕ is MDLog-definable if and only if it admits a
(potentially infinite) set of finite obstructions of treewidth (1, k) where k is the diameter
of ϕ. For the case of rewriting into Datalog, we give a new and direct construction of
canonical Datalog-rewritings of MMSNP sentences. It has been observed in [FV98] that for
every CSP and all `, k, it is possible to construct a canonical Datalog program Π of width
` and diameter k (the width is the maximum arity of IDB relations) in the sense that if
any such program is a rewriting of the CSP, then so is Π; moreover, even when there is no
(`, k)-Datalog rewriting, then Π is the best possible approximation of such a rewriting. The
existence of canonical Datalog-rewritings for (complemented) MMSNP sentences was already
known from [BD13]. However, the construction given there is quite complex, proceeding via
an infinite template that is obtained by applying an intricate construction due to Cherlin,
Shelah, and Shi [CSS99], and resulting in canonical programs that are rather difficult to
understand and to analyze. In contrast, our construction is elementary and essentially
parallels the CSP case; it also applies to MMSNP formulas with free variables, where the
canonical program takes a rather special form that involves parameters, similar in spirit to
the parameters to least fixed-point operators in FO(LFP) [BBV16].

Our main technical tool is the translation of MMSNP sentences into CSPs exhibited
by Feder and Vardi [FV98]; actually, the target of the translation is a generalized CSP,
meaning that there are multiple templates. The translation is not equivalence preserving and
involves a double exponential blowup, but it was designed so as to preserve complexity up to
polynomial time reductions. Here, we are primarily interested in the semantic relationship
between the original MMSNP sentence and the constructed CSP. It turns out that the

1What we mean here is that q has a tree decomposition in which every bag has at most max{2, nq}
elements and in which neighboring bags overlap in at most one element.
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translation does not quite preserve rewritability. In particular, when the original MMSNP
sentence has a rewriting, then the natural way of constructing from it a rewriting for the
CSP is sound only on instances of high girth. However, FO- and MDLog-rewritings of CSPs
that are sound on high girth (and unconditionally complete) can be converted into rewritings
that are unconditionally sound (and complete). The same is true for Datalog-rewritings
when the CSP is derived from an MMSNP sentence that has equality, but it remains open
whether it is true for Datalog-rewritings of unrestricted CSPs.

With our translations in place, we can also make relevant observations regarding the
(data) complexity of query evaluation in MMSNP, in MDDLog, and of OMQs. This is
especially interesting in the light of the recently obtained breakthrough in CSPs that there is
a dichotomy between PTime and NP in the complexity of CSPs [Bul17, Zhu17] and that it
is decidable and NP-complete whether a CSP is in PTime [CL17]. We show that this implies
a dichotomy between PTime and coNP for MDDLog and for all OMQ languages mentioned
above. We also prove that PTime query evaluation is decidable and 2NExpTime-complete
in the mentioned query languages, and that the same is true for MMSNP.

The structure of this paper is as follows. In Section 2, we introduce the essentials of
disjunctive Datalog and its relevant fragments as well as CSP and MMSNP; in fact, we shall
always work with Boolean MDDLog rather than with complemented MMSNP. In Section 3,
we summarize the main properties of Feder and Vardi’s translation of MMSNP into CSP.
We use this in Section 4 to show that FO- and MDLog-rewritability of Boolean MDDLog
programs and of the complement of an MMSNP sentences is decidable, also establishing
the announced complexity results. In Section 5, we analyze the shape of FO- and MDLog-
rewritings and of obstructions for MMSNP sentences. We also establish an MMSNP analogue
of an essential combinatorial lemma for CSPs which says that it is possible to replace a
structure by a structure of high high girth while preserving certain homomorphisms; the
MMSNP analogue achieves high ‘decomposition girth’ (defined in the paper) and preserves
the truth of certain MMSNP sentences. In Section 6, we study Datalog-rewritability of
MDDLog programs that have equality and construct canonical Datalog programs. Section 7
is concerned with lifting our results from the Boolean case to the general case, concerning
the complexity of deciding rewritability, the shape of rewritings, and the construction of
canonical Datalog programs. In this section, Datalog programs with parameters play a
central role. In Section 8, we introduce OMQs and further lift our results to that setting,
finally arriving at our goal to study fundamental rewritability questions for OMQ languages
based on (unions of) conjunctive queries. Section 9 is then concerned with dichotomies and
the complexity of deciding PTime query evaluation. We conclude in Section 10.

2. Preliminaries

We introduce disjunction Datalog, CSP, and MMSNP. To avoid overloading this section, the
introduction of ontology languages and ontology-mediated queries is deferred to Section 8.

A schema is a finite collection S = (S1, . . . , Sk) of relation symbols with associated arity.
An S-fact is an expression of the form S(a1, . . . , an) where S ∈ S is an n-ary relation symbol,
and a1, . . . , an are elements of some fixed, countably infinite set const of constants. For
an n-ary relation symbol S, pos(S) is {1, . . . , n}. An S-instance I is a finite set of S-facts.
The active domain dom(I) of I is the set of all constants that occur in the facts in I. We
use the symbols a, b, c to denote tuples of constants and, slightly abusing notation, write
a ⊆ dom(I) to mean that a is a tuple of constants from dom(I) when we do not want to be
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precise about the length of the tuple. For an instance I and a schema S, we write I|S to
denote the restriction of I to the relation symbols in S.

A tree decomposition of an instance I is a pair (T, (Bv)v∈V ), where T = (V,E) is
an undirected tree and (Bv)v∈V is a family of subsets of dom(I) such that the following
conditions are satisfied:

(1) for all a ∈ dom(I), {v ∈ V | a ∈ Bv} is nonempty and connected in T ;
(2) for every fact R(a1, . . . ar) in I, there is a v ∈ V such that a1, . . . , ar ∈ Bv.

Unlike in the traditional setup [FG06], we are interested in two parameters of tree
decompositions instead of only one. We call (T, (Bv)v∈V ) an (`, k)-tree decomposition if for
all distinct v, v′ ∈ V , |Bv ∩ Bv′ | ≤ ` and |Bv| ≤ k. An instance I has treewidth (`, k) if it
admits an (`, k)-tree decomposition.

We now define the notion of girth. A finite structure I has a cycle of length n > 0 if there
are distinct factsR0(a0), . . . , Rn−1(an−1) ∈ I and positions p0, p

′
0 ∈ pos(R0), . . . , pn−1, p

′
n−1 ∈

pos(Rn−1) such that

• pi 6= p′i for 0 ≤ i < n and
• the constant in the p′i-th position of ai is identical to the constant in the pi+1-th position

of ai+1 for 0 ≤ i < n and with pn := p0 and p′n := p′0.

The girth of I is the length of the shortest cycle in it and ω if I has no cycle (in which case
we say that I is a tree).

A constraint satisfaction problem (CSP) is defined by an instance T over a schema SE , called
template.2 The problem associated with T , denoted CSP(T ), is to decide whether an input
instance I over SE admits a homomorphism to T , denoted I → T . We use coCSP(T ) to
denote the complement problem, that is, deciding whether I 6→ T . A generalized CSP is
defined by a set of templates S over the same schema SE and asks for a homomorphism from
the input I to at least one of the templates T ∈ S, denoted I → S. Note that a (generalized)
CSP can be viewed as a Boolean query over SE-instances.

An MMSNP sentence θ over schema SE has the form ∃X1 · · · ∃Xn∀x1 · · · ∀xmϕ with
X1, . . . , Xn monadic second-order variables, x1, . . . , xm first-order variables, and ϕ a con-
junction of quantifier-free formulas of the form

β1 ∨ · · · ∨ βn ← α1 ∧ · · · ∧ αm
with n,m ≥ 0 and where each αi takes the form Xi(xj) or R(x) with R ∈ SE and each βi
takes the form Xi(xj). The diameter of θ is the maximum number of variables in some
implication in ϕ. This presentation is syntactically different from, but semantically equivalent
to the original definition from [FV98], which does not use the implication symbol and instead
restricts the allowed polarities of atoms. Both forms can be interconverted in polynomial
time, see [BtCLW14]. The semantics of MMSNP is the standard semantics of second-order
logic. More information can be found, e.g., in [BCF12, BD13]. Note that, just like CSPs,
MMSNP sentences can be viewed as Boolean queries.

A conjunctive query (CQ) takes the form q(x) = ∃yϕ(x,y) where ϕ is a conjunction
of relational atoms and x, y denote tuples of variables; the equality relation may be used.
Whenever convenient, we shall confuse q(x) with the set of atoms in ϕ. The variables in x
are the answer variables in q(x). The arity of q(x) is the number of its answer variables

2Adopting Datalog terminology, we generally call the schema in which the data is formulated the EDB
schema and denote it with SE .
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and q(x) is Boolean if it has arity zero. We say that q(x) is over SE if ϕ uses only relation
symbols from SE . An answer to q on an SE-instance I is a tuple of constants a such that
I |= q(a) in the standard sense of first-order logic. It is well-known that I |= q(a) if and only
if there is a homomorphism from ϕ viewed as an instance to I that takes x to a. A Boolean
CQ q is true on an instance I, denoted I |= q, if the empty tuple is an answer to q on I. A
CQ q is a contraction of a CQ q′ if it can be obtained from q′ by identifying variables. A
union of conjunctive queries (UCQ) is a disjunction of CQs with the same answer variables.
The semantics of UCQs is defined in the expected way.

A disjunctive Datalog rule ρ has the form

S1(x1) ∨ · · · ∨ Sm(xm)← R1(y1) ∧ · · · ∧Rn(yn)

with n > 0 and m ≥ 0. We refer to S1(x1) ∨ · · · ∨ Sm(xm) as the head of ρ, and to
R1(y1) ∧ · · · ∧Rn(yn) as the body. Every variable that occurs in the head of ρ is required
to also occur in the body of ρ. A disjunctive Datalog (DDLog) program Π is a finite set
of disjunctive Datalog rules with a selected goal relation goal that does not occur in rule
bodies and appears only in non-disjunctive goal rules goal(x) ← R1(x1) ∧ · · · ∧ Rn(xn).
The arity of Π is the arity of the goal relation; we say that Π is Boolean if it has arity zero.
Relation symbols that occur in the head of at least one rule of Π are intensional (IDB)
relations, and all remaining relation symbols in Π are extensional (EDB) relations. Note
that, by definition, goal is an IDB relation. When all relations in Π are from schema SE ,
then we say that Π is over EDB schema SE . The IDB schema of Π is the set of all IDB
relations in Π.

We will sometimes use body atoms of the form true(x) that are vacuously true for all
elements of the active domain. This is just syntactic sugar since any rule with body atom
true(x) can equivalently be replaced by a set of rules obtained by replacing true(x) in all
possible ways with an atom R(x1, . . . , xn) where R is a relation symbol from SE and where
xi = x for some i and all other xi are fresh variables.

A DDLog program is called monadic or an MDDLog program if all its IDB relations
with the possible exception of goal have arity at most one. The size of a DDLog program
Π is the number of symbols needed to write it (where relation symbols and variable names
count one), its width is the maximum arity of non-goal IDB relations used in it, and its
diameter is the maximum number of variables that occur in a rule in Π.

A Datalog rule is a disjunctive Datalog rule in which the rule head contains exactly
one disjunct. Datalog (DLog) programs and monadic Datalog (MDLog) programs are then
defined in the expected way. We call a Datalog program an (`, k)-Datalog program if its
width is ` and its diameter is k.

For Π an n-ary DDLog program over schema SE , an SE-instance I, and a1, . . . , an ∈
dom(I), we write I |= Π(a1, . . . , an) if Π ∪ I |= goal(a1, . . . , an) where the variables in all
rules of Π are universally quantified and thus Π is a set of first-order (FO) sentences; please
see [AHV95, EGM97] for more information on the semantics of (disjunctive) Datalog. A
query q(x) over SE of arity n is

• sound for Π if for all SE-instances I and a ⊆ dom(I), I |= q(a) implies I |= Π(a);
• complete for Π if for all SE-instances I and a ⊆ dom(I), I |= Π(a) implies I |= q(a);
• a rewriting of Π if it is sound for Π and complete for Π.

Note that Boolean programs are also covered by the above definitions. To additionally
specify the syntactic shape of q(x), we speak of a UCQ-rewriting, an MDLog-rewriting, and
so on. An FO-rewriting takes the form of an FO-query that uses only relation symbols from



Vol. 15:2 REWRITABILITY IN MDDLOG, MMSNP, AND EXPRESSIVE DLS 15:7

the relevant EDB schema and possibly equality, but neither constants nor function symbols.
We say that an MDDLog program Π is FO-rewritable if there is an FO-rewriting of Π, and
likewise for UCQ-rewritability and for MDLog-rewritability. Since a generalized CSP defined
by a set of templates S can be viewed as a Boolean query, we can also speak of a query
to be sound and complete for respectively a rewriting of coCSP(S). The definitions are as
expected, paralleling the ones above.

It was shown in [BtCLW14] that the complement of an MMSNP sentence can be
translated into an equivalent Boolean MDDLog program in polynomial time and vice versa;
moreover, the transformations preserve diameter and all other parameters relevant for this
paper. From now on, we will thus not explicitly distinguish between Boolean MDDLog and
(complemented) MMSNP.

3. MDDLog, Simple MDDLog and CSP

Feder and Vardi show how to translate an MMSNP sentence into (the complemen of) a
generalized CSP that has the same complexity up to polynomial time reductions [FV98].
The resulting CSP has a different schema than the original MMSNP sentence and is thus not
equivalent to it. We are going to make use of this translation to reduce rewritability problems
for MDDLog to the corresponding problems for CSPs. Consequently, our main interest is in
the precise semantic relationship between the MMSNP sentence and the constructed CSP,
rather than in their complexity. In this section, we sum up the properties of the results
obtained in [FV98] that are relevant for us. These properties are all we need in later sections,
that is, we do not need to go further into the details of the translation. For the reader’s
convenience and information, we still describe the translations in full detail in Appendix A;
these are based on the presentation given in [BL16], which is more detailed than the original
presentation in [FV98].

Let SE be a schema. A schema S′E is a k-aggregation schema for SE if its relations have
the form Rq(x) where q(x) is a CQ over SE without quantified variables and the arity of Rq(x)

is identical to the length of x, which is at most k. The generalized CSP to be constructed
later makes use of a schema of this form. What is important at this point is that there are
natural translations of instances between the two schemas. To make this precise, let I be
an SE-instance. The corresponding S′E-instance I ′ consists of all facts Rq(x)(a) such that
I |= q(a). Conversely, let I ′ be an S′E-instance. The corresponding SE-instance I consists of
all facts S(b) such that Rq(x)(a) ∈ I ′ and S(b) is a conjunct of q(a).

Example 3.1. Let SE = {r} with r a binary relation symbol,

q(x1, x2, x3) = r(x1, x2) ∧ r(x2, x3) ∧ r(x3, x1),

and let S′E consist of Rq(x) where x = (x1, x2, x3) for brevity. Take the S′E-instance I ′

defined by
Rq(x)(a, a

′, c′), Rq(x)(b, b
′, a′), Rq(x)(c, c

′, b′).

The corresponding SE-instance I is

r(a, a′), r(a′, c′), r(c′, a), r(b, b′), r(b′, a′), r(a′, b), r(c, c′), r(c′, b), r(b′, c).

Note that when we transition from SE back to S′E and take the S′E-instance I ′′ corresponding
to I, we do not obtain I ′, but rather a strict superset that contains additional facts such as
Rq(x)(c

′, b′, a′). This is illustrated in Figure 1 which shows the instances I, I ′, and a subset
of I ′′ that contains all facts from I plus one additional fact.
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S′E-instance I ′ SE-instance I S′E-instance I ′′

b

a′ b′

cc′a

Rq Rq

Rq

b

a′ b′

cc′a
r r

r r r r

r r

r

b

a′ b′

cc′a

Rq Rq

Rq

Rq

Figure 1: Translating an S′E-instance into an SE-instance and back.

The translation in [FV98] consists of two steps. We describe them here using Boolean
MDDLog instead of (complemented) MMSNP. The first step is to transform the given Boolean
MDDLog program Π into a Boolean MDDLog program ΠS over a suitable aggregation
schema S′E such that ΠS is of a restricted syntactic form called simple. In the second step,
one transforms ΠS into a generalized CSP whose complement is equivalent to ΠS .

We start with summing up the important aspects of the first step. A Boolean MDDLog
program ΠS is simple if it satisfies the following conditions:

(1) every rule in ΠS contains at most one EDB atom and this atom contains all variables of
the rule body, each variable exactly once;

(2) rules without an EDB atom contain at most a single variable.

Now, the first step achieves the following.

Theorem 3.2 [FV98]. Given a Boolean MDDLog program Π over EDB schema SE of
diameter k, one can construct a simple Boolean MDDLog program ΠS over a k-aggregation
EDB schema S′E for SE and IDB schema S′I such that

(1) If I is an SE-instance and I ′ the corresponding S′E-instance, then I |= Π iff I ′ |= ΠS;
(2) If I ′ is an S′E-instance and I the corresponding SE-instance, then

(a) I ′ |= ΠS implies I |= Π;
(b) I |= Π implies I ′ |= ΠS if the girth of I ′ exceeds k.

If Π is of size n, then the size of ΠS and the cardinality of S′E ∪S′I are bounded by 2p(k·logn),
where p is a polynomial. The construction takes time polynomial in the size of ΠS.

The translation underlying Theorem 3.2 consists of three steps itself: first saturate
Π by adding all rules that can be obtained as a contraction of a rule in Π, that is, by
identifying variables in the rule body and head in a consistent way. Then rewrite Π in
an equivalence-preserving way so that all rule bodies are biconnected, introducing fresh
unary and nullary IDB relations as needed. And finally replace the conjunction q(x) of all
EDB atoms in each rule body with a single EDB atom Rq(x)(x), additionally taking care of
interactions between the new EDB relations that arise e.g. when we have two relations Rq(x)

and Rp(x) such that q(x) is contained in p(x) in the sense of query containment. Details are
in Appendix A.1.

The following theorem summarizes the second step of the translation of Boolean MDDLog
into a generalized CSP.



Vol. 15:2 REWRITABILITY IN MDDLOG, MMSNP, AND EXPRESSIVE DLS 15:9

Theorem 3.3 [FV98]. Let Π be a simple Boolean MDDLog program over EDB schema SE
and with IDB schema SI , m the maximum arity of relations in SE. Then there exists a set
of templates SΠ over SE such that

(1) Π is equivalent to coCSP(SΠ);

(2) |SΠ| ≤ 2|SI | and |T | ≤ |SE | · 2m|SI | for each T ∈ SΠ;

The construction takes time polynomial in
∑

T∈SΠ
|T |.

We again sketch the idea underlying the proof of the theorem. The desired set of
templates SΠ contains one template for every 0-type, that is, for every set of nullary IDB
relations in Π that does not contain goal() and that satisfies all rules in Π which use only
nullary IDBs. Each template contains one constant cM for every 1-type M , that is, for every
set M of unary IDBs that agrees on nullary IDBs with the 0-type for which the template
was constructed and that satisfy all rules in Π which use only IDB relations that are at
most unary. One then interprets all EDB relations in a maximal way so that all rules in Π
are satisfied. The fact that Π is simple implies that no choices arise, that is, there is only
one maximal interpretation of each EDB relation and the interpretations of different such
relations do not interact. Details are given in Appendix A.2.

4. FO- and MDLog-Rewritability of Boolean MDDLog Programs

We exploit the translations described in the previous section and the known results that FO-
rewritability of CSPs and MDLog-rewritability of coCSPs are decidable to obtain analogous
results for Boolean MDDLog, and thus also for MMSNP. In the case of FO-rewritability, we
obtain tight 2NExpTime complexity bounds. For MDLog-rewritability, the exact complexity
remains open (as in the CSP case), between 2NExpTime and 3ExpTime.

We start with observing that FO-rewritability and MDLog-rewritability are more closely
related than one might think at first glance. Recall that, by Rossman’s homomorphism
preservation theorem [Ros08], a first-order formula is preserved under homomorphisms on
finite structures if and only if it is equivalent to a UCQ. While every MDLog-rewriting can
be viewed as an infinitary UCQ-rewriting, Rossman’s result implies that FO-rewritability of
a Boolean MDDLog program coincides with (finitary) UCQ-rewritability. The latter is true
also in the non-Boolean case.

Proposition 4.1. Let Π be an MDDLog program. Then Π is FO-rewritable iff Π is UCQ-
rewritable.

Proof. It is well known and easy to show that truth of disjunctive Datalog programs is
preserved under homomorphisms. Thus, the proposition immediately follows from Rossman’s
theorem in the Boolean case. For the non-Boolean case, we observe that Rossman establishes
his result also in the presence of constants. Let Π be an MDDLog program and ϕ(x) a
rewriting of Π. We can apply Rossman’s result to ϕ(a), where a is a tuple of constants of
the same length as x, obtaining a UCQ q(a) equivalent to ϕ(a). Let q(x) be obtained from
q(a) by replacing the constants in a with the variables from x. It can be verified that q(x)
is a rewriting of Π.

For utilizing the translation of Boolean MDDLog programs to generalized CSPs in the
intended way, the interesting aspect is to deal with the translation of a Boolean MDDLog
program Π into a simple program ΠS stated in Theorem 3.2, since it is not equivalence
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preserving. The following proposition relates rewritings of Π to rewritings of ΠS . It also
applies to Datalog-rewritings, which we will make use of in Section 6.

Lemma 4.2. Let Π be a Boolean MDDLog program of diameter k, ΠS as in Theorem 3.2,
and Q ∈ {UCQ,MDLog,DLog}. Then

(1) every Q-rewriting of ΠS can effectively be converted into a Q-rewriting of Π;
(2) every Q-rewriting of Π can effectively be converted into a Q-rewriting of ΠS that is

(i) sound on instances of girth exceeding k and (ii) complete.

Proof. Let SE and S′E be the EDB schema of Π and of ΠS , respectively. We start with the
case Q = UCQ.

For Point 1, let qΠS
be a UCQ-rewriting of ΠS . Let qΠ be the UCQ obtained from

qΠS
by replacing every atom Rq(x)(y) with q[y/x], that is, with the result of replacing the

variables x in q(x) with the variables y (which may lead to identifications). We show that
qΠ is as required. Let I be an SE-instance and I ′ the corresponding S′E-instance. Then
we have I |= Π iff I ′ |= ΠS (by Point 1 of Theorem 3.2) iff I ′ |= qΠS

(by choice of qΠS
) iff

I |= qΠ (by construction of I ′ and of qΠ). Let us expand on the latter.
First assume that I ′ |= qΠS

. Then there is a CQ q in qΠS
and a homomorphism h

from q to I ′. By construction, qΠ contains a CQ q′ that is obtained from q by replacing
every atom Rq(x)(y) ∈ q with q[y/x]. Clearly, for every atom Rq(x)(y) ∈ q, we must
have Rq(x)(h(y)) ∈ I ′. The construction of I ′ yields q(h(y)) ⊆ I. Consequently, h is also
a homomorphism from q′ to I. Conversely, assume that there is a CQ q′ in qΠ and a
homomorphism h from q′ to I. Then there is a CQ q in qΠS

from which q′ was obtained by
the described replacement operation. For every atom Rq(x)(y) ∈ q, we must have q(h(y)) ⊆ I.
We obtain Rq(x)(h(y)) ∈ q and thus h is a homomorphism from q to I ′.

For Point 2, let qΠ be a UCQ-rewriting of Π. The UCQ qΠS
consists of all CQs that

can be obtained as follows:

(1) choose a CQ ∃x q(x) from qΠ, a contraction ∃x′ q′(x′) of ∃x q(x), and a partition
q1(x1), . . . , qn(xn) of q′(x′);

(2) for each i ∈ {1, . . . , n}, choose a relation Rp(z) from S′E and a tuple y of |z| variables
(repeated occurrences allowed) that are either from xi or do not occur in x′ such that
qi(xi) ⊆ p[y/z]; then replace qi(xi) in ∃x′ q′(x′) with the single atom Rp(z)(y).

To establish that qΠS
is as desired, we show that for every S′E-instance I ′

(I) I ′ |= qΠS
implies I ′ |= ΠS if I ′ is of girth exceeding k (soundness) and

(II) I ′ |= ΠS implies I ′ |= qΠS
(completeness).

Let I be the SE-instance corresponding to I ′.
For Point (I), we observe that I ′ |= qΠS

implies I |= qΠ (by construction of qΠS
and of

I ′) implies I |= Π (by choice of qΠ) implies I ′ |= ΠS (by Point 2b of Theorem 3.2 and if I ′ is
of girth exceeding k). Let us zoom into the first implication. Assume that I ′ |= qΠS

. Then
there is a CQ ∃u p0(u) in qΠS

and a homomorphism h from p0(u) to I ′. There must be some
CQ ∃x q(x) in qΠ from which ∃u p0(u) has been constructed in Steps 1 and 2 above. Let
q1(x1), . . . , qn(xn) be as in this construction. It suffices to show that h is a homomorphism
from qi(xi) to I, for each i. Thus fix a qi(xi). Then there is a relation Rp(z) ∈ S′E and a
tuple y of variables that are either from xi or do not occur in x′ such that qi(xi) ⊆ p[y/z]
and Rp(z)(y) ∈ p0(u). Thus Rp(z)(h(y)) ∈ I ′. By construction of I ′, this yields qi(h(xi)) ⊆ I
and thus we are done.
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For Point (II), we have that I ′ |= ΠS implies I |= Π (by Point 2a of Theorem 3.2) implies
I |= qΠ (by choice of qΠ). It thus remains to show that I |= qΠ implies I ′ |= qΠS

. Thus
assume that there is a CQ ∃x q(x) in qΠ and a homomorphism h from q(x) to I. We use
∃x q(x) and h to guide the choices in Step 1 and Step 2 of the construction of CQs in qΠS

to exhibit a CQ p0 in qΠS
such that p0 → I ′.

We start with Step 1. As ∃x′ q′(x′), we use the contraction of ∃x q(x) obtained by
identifying variables x and y whenever h(x) = h(y). Thus, h is an injective homomorphism
from q′(x′) to I. We next need to choose a partition of q′(x′). For every fact R(a) ∈ I, choose
a fact Rp(x0)(b) ∈ I ′ that R(a) was obtained from during the construction of I and denote
this fact with µ(R(a)). Now let q1(x1), . . . , qn(xn) be the partition of q′(x′) obtained by
grouping together two atoms R1(y1) and R2(y2) if and only if µ(R1(h(y1))) = µ(R2(h(y2))).
Let µ(qi) denote the (unique) value of µ for all the atoms in qi(xi).

Step 2 deals with each query qi(xi) separately. We choose the relation Rp(z) from
µ(qi) = Rp(z)(b), which clearly is in S′E . We choose the tuple y of variables based on the
tuple of individuals b. Let b = b1, . . . , bn. Then the `-th variable in y is y if h(y) = b`
(which is well-defined since h is injective) and a fresh variable if there is no such y. This
finishes the guiding process and thus gives rise to a query p0(u) in qΠS

.
It remains to argue that h can be extended to a homomorphism h′ from p(u) to I ′.

Take a qi(xi) and consider the corresponding atom Rp(z)(y) in p0. Then all the facts in
qi(h(x)) ⊆ I were obtained from the fact µ(qi) = Rp(z)(b) ∈ I ′ during the construction of I.
By construction of y from b, we can extend h to the fresh variables in y so that h(y) = b
and thus Rp(z)(h(y)) ∈ I ′. Doing this for all qi yields the desired h′.

Now for the cases Q ∈ {MDLog,DLog}. We treat these cases in one since our construc-
tion preserves the width of Datalog-rewritings. In fact, this construction is very similar to
the case Q = UCQ, so we only give a sketch.

For Point 1, let ΓΠS
be a Datalog-rewriting of ΠS . We construct a Datalog program

ΓΠ of the same width over EDB schema SE by modifying the EDB part of each rule body
in the same way in which we had modified the UCQ-rewriting qΠS

in the case Q = UCQ:
replace every EDB-atom Rq(x)(y) with q[y/x]. We then have I |= Π iff I ′ |= ΠS (by Point 1
of Theorem 3.2) iff I ′ |= ΓΠS

(by choice of ΓΠS
) iff I |= ΓΠ. The latter is by construction of

I ′ and of ΓΠ. To prove it in more detail, it suffices to show that for every extension J of
I to the IDB relations in ΓΠS

with corresponding extension J ′ of I ′, and every rule body
q in ΓΠS

which was translated into a rule body q′ in ΓΠ, we have q → J iff q′ → J ′. The
arguments needed are as in the case Q = UCQ.

The proof of Point 2 can be adapted from UCQs to Datalog in an analogous way. Let
ΓΠ be a Datalog-rewriting of Π. We construct a Datalog program ΓΠS

of the same width
over EDB schema SE′ . The rules in ΓΠS

are obtained by taking a rule

P0(x0)← P1(x1) ∧ · · · ∧ Pn(xn) ∧ q(y)

from ΓΠ, where the Pi are IDB and q(y) is a CQ over schema SE , converting q(y) into a CQ
q′(y′) over schema S′E in two steps, in the same way in which a CQ over SE was converted
into a CQ over S′E in the case Q = UCQ, and then including in ΓΠS

the rule

P0(x0)← P1(x1) ∧ · · · ∧ Pn(xn) ∧ q′(y′).
The crucial step in the correctness proof is to show that I |= ΓΠ implies I ′ |= ΓΠS

for any
S′E-instance I ′ and corresponding SE-instance I. The arguments are again the same as in
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the case Q = UCQ, the main difference being that we need to consider extensions of I and
I ′ to IDB relations from ΓΠ instead of working with I and I ′ themselves.

Point 2 of Lemma 4.2 only yields a rewriting of ΠS on S′E-instances of high girth. We
next show that, for Q ∈ {UCQ,MDLog}, the existence of a Q-rewriting on instances of
high girth implies the existence of a Q-rewriting that works on instances of unrestricted
girth. Whether the same is true for Q = Datalog remains as an open problem. We need the
following well-known lemma that goes back to Erdös and was adapted to CSPs by Feder
and Vardi. Informally, it says that every instance can be ‘exploded’ into an instance of high
girth that behaves similarly regarding homomorphisms.

Lemma 4.3. For every instance I and g, s ≥ 0, there is an instance I ′ (over the same
schema) such that I ′ → I, I ′ has girth exceeding g, and for every instance T of size at most
s, we have I → T iff I ′ → T .

Feder and Vardi additionally show that I ′ can be constructed by a randomized polynomial
time reduction that was later derandomized by Kun [Kun13], but here we do not rely on
such computational properties. Every CQ q can be viewed as an instance Iq by using the
variables as constants and the atoms as facts. It thus makes sense to speak about tree
decompositions of CQs and about their treewidth, and it is clear what we mean by saying
that a CQ is a tree (that is, has girth ω).

Lemma 4.4. Let S be a set of templates over schema SE, g ≥ 0, and Q ∈ {UCQ,MDLog}.
If coCSP(S) is Q-rewritable on instances of girth exceeding g, then it is Q-rewritable.

Proof. We start with Q = UCQ. Let qg be a UCQ that defines coCSP(S) on instances of
girth exceeding g, and let q be the UCQ that consists of all contractions of a CQ in qg that
are a tree CQ. We show that q defines coCSP(S) on unrestricted SE-instances.

Let I be an SE-instance. First assume that I 6→ S. By Lemma 4.3, there is an SE-
instance I ′ of girth exceeding g and also exceeding the number of variables in each CQ in
qg and satisfying I ′ → I and I ′ 6→ S. Thus I ′ |= qg, that is, there is a CQ q′ in qg and
a homomorphism h from q′ to I ′. Let q′′ be the contraction of q′ obtained by identifying
variables x and y if h(x) = h(y). Thus, h is an injective homomorphism from q′′ to I ′. Since
the girth of I ′ exceeds the number of variables in q′′, q′′ must be a tree. Consequently, q′′ is
a CQ in q and we have I ′ |= q. From I ′ → I, we obtain I |= q.

Now assume that I |= q. Then, there is a tree CQ q′ in q such that q′ → I. When we
view q′ as an SE-instance Iq′ , then clearly Iq′ |= qg and Iq′ has girth exceeding k. Thus,
q′ 6→ S, and from q′ → I we obtain I 6→ S.

Now for the case Q = MDLog. Let Γg be an MDLog program that defines coCSP(S)
on instances of girth exceeding g. Let Γ be the program obtained from Γg by replacing
every rule P (x)← q(x) with all rules P (x)← q′(x′) such that q′(x′) is a tree CQ that is a
contraction of q(x). We show that Γ is an MDLog-definition of coCSP(S) on instances of
unrestricted girth.

Let I be an SE-instance. First assume that I 6→ S. By Lemma 4.3, there is an SE-
instance I ′ whose girth exceeds g and also exceeds the diameter of Γg and that satisfies
I ′ → I and I ′ 6→ S. The latter yields I ′ |= Γg. It remains to show that this implies I ′ |= Γ
since with I ′ → I, this yields I |= Γ as required.

To show that I ′ |= Γ follows from I ′ |= Γg, it suffices to show that all IDB facts derived
by Γg starting from I ′ are also derived by Γ. Thus let J ′ be an extension of I ′ to the IDBs
in Γg. It is enough to show that when a single application of a rule from Γg in J ′ yields



Vol. 15:2 REWRITABILITY IN MDDLOG, MMSNP, AND EXPRESSIVE DLS 15:13

an IDB atom P (a), then Γ can derive the same atom. The former is the case only if Γg
contains a rule P (x) ← q(x) such that there is a homomorphism h from q(x) to J ′ with
h(x) = a. Let q′(x′) be the contraction of q(x) obtained by identifying variables x and y
when h(x) = h(y). Since the girth of I ′ exceeds the diameter of Γg, q

′(x′) is a tree. Thus, Γ
contains the rule P (x)← q′(x′) and the application of this rule in J ′ enabled by h yields
P (a). We have thus shown I ′ |= Γ and are done.

Now assume that I |= Γg. Then there is a proof tree for goal() from I and Γg, see
[AHV95] for details. From that tree, we can read off an SE-instance O such that O → I,
O |= Γg, and, since Γg is monadic and only comprises rules with tree-shaped bodies, O is a
tree. Thus, O has girth exceeding g and from O |= Γg we get O 6→ S. But with O → I, this
yields I 6→ S as required.

Putting together Theorems 3.2 and 3.3, Proposition 4.1, and Lemmas 4.2 and 4.4,
we obtain the following reductions of rewritability of Boolean MDDLog programs to CSP
rewritability.

Proposition 4.5. Every Boolean MDDLog program Π can be converted into a set of
templates SΠ such that

(1) Π is Q-rewritable iff coCSP(SΠ) is Q-rewritable for every Q ∈ {FO,UCQ,MDLog};
(2) every Q-rewriting of Π can be effectively translated into a Q-rewriting of coCSP(SΠ)

and vice versa, for every Q ∈ {UCQ,MDLog}.
(3) |SΠ| ≤ 22p(n)

and |T | ≤ 22p(n)
for each T ∈ SΠ, n the size of Π and p a polynomial.

The construction takes time polynomial in
∑

T∈SΠ
|T |.

FO-rewritability of CSPs (and their complements) is NP-complete [LLT07] and it was
observed in [BtCLW14] that the upper bound lifts to generalized CSPs. MDLog-rewritability
of coCSPs is NP-hard and in ExpTime [CL17]. We show in Appendix B that also this
upper bound lifts to generalized coCSPs. Together with Proposition 4.5, this yields the
upper bounds in the following theorem. The lower bounds are from [BL16].

Theorem 4.6. For Boolean MDDLog programs and the complement of MMSNP sentences,

(1) FO-rewritability (equivalently: UCQ-rewritability) is 2NExpTime-complete;
(2) MDLog-rewritability is in 3ExpTime (and 2NExpTime-hard).

5. Shape of Rewritings, Obstructions, Explosion

In the FO case, it is possible to extract from the approach in the previous section an
algorithm that computes actual rewritings, if they exist. However, that algorithm is hardly
practical. An important first step towards the design of more practical algorithms that
compute rewritings (in an exact or in an approximative way) is to analyze the shape of
rewritings. In fact, both FO- and MDLog-rewritings of coCSPs are known to be of a rather
restricted shape, far from exploiting the full expressive power of the target languages. In this
section, we establish corresponding results for Boolean MDDLog. This topic is closely related
to the theory of obstructions, so we also establish connections between the rewritability of
MMSNP sentences and natural obstruction sets. Finally, we observe an MMSNP counterpart
of Lemma 4.3, the fundamental ‘explosion’ lemma for CSPs.

The following summarizes our results regarding the shape of rewritings.

Theorem 5.1. Let Π be a Boolean MDDLog program of diameter k. Then



15:14 C. Feier, A. Kuusisto, and C. Lutz Vol. 15:2

(1) if Π is FO-rewritable, then it has a UCQ-rewriting in which each CQ has treewidth
(1, k);

(2) if Π is MDLog-rewritable, then it has an MDLog-rewriting of diameter k.

Proof. We analyze the proof of Lemma 4.2 and use known results from CSP. In fact, any
FO-rewritable coCSP has a UCQ-rewriting that consists of tree CQs [NT00], and thus the
same holds for simple Boolean MDDLog programs. If we convert such a rewriting of ΠS into
a rewriting of Π as in the proof of Lemma 4.2, we obtain a UCQ-rewriting in which each CQ
has treewidth (1, k). For Point 2 of Theorem 5.1, one uses the proof of Lemma 4.2 and the
known fact that every MDLog-rewritable CSP has an MDLog-rewriting in which every rule
body comprises at most one EDB atom, see e.g. the proof of Theorem 19 in [FV98].

In a sense, the concrete bound k in Points 1 and 2 of Theorem 5.1 is quite remarkable.
Point 2 says, for example, that when eliminating disjunctions from a Boolean MDDLog
program, it is never necessary to increase the diameter!

We now consider obstructions. An obstruction set O for a CSP template T over schema
SE is a set of instances over the same schema such that for any SE-instance I, we have
I 6→ T iff O → I for some O ∈ O. The elements of O are called obstructions. A lot is
known about CSP obstructions. For example, T is FO-rewritable if and only if it has a
finite obstruction set [Ats08] if and only if it has a finite obstruction set that consists of
finite trees [NT00], and T is MDLog-rewritable if and only if it has a (potentially infinite)
obstruction set that consists of finite trees [FV98]. Here we consider obstruction sets for
MMSNP, defined in the obvious way: an obstruction set O for an MMSNP sentence θ
over schema SE is a set of instances over the same schema such that for any SE-instance
I, we have I 6|= θ iff O → I for some O ∈ O. This should not be confused with colored
forbidden patterns used to characterize MMSNP in [MS07]. The following characterizes
FO-rewritability of MMSNP sentences in terms of obstruction sets.

Corollary 5.2. For every MMSNP sentence θ, the following are equivalent:

(1) θ is FO-rewritable;
(2) θ has a finite obstruction set;
(3) θ has a finite set of finite obstructions of treewidth (1, k).

Corollary 5.2 follows from Point 1 of Theorem 5.1 and the straightfoward observations that
an MMSNP sentence θ is FO-rewritable iff ¬θ is (which is equivalent to a Boolean MDDLog
program) and that every finite obstruction set O for θ gives rise to a UCQ-rewriting

∨
O of

¬θ and vice versa. We now turn to MDLog-rewritability.

Proposition 5.3. Let θ be an MMSNP sentence of diameter k. Then ¬θ is MDLog-rewritable
iff θ has a set of obstructions (equivalently: finite obstructions) that are of treewidth (1, k).

Proof. The “only if” direction is a consequence of Point 2 of Theorem 5.1 and the fact that,
for any Boolean monadic Datalog program Π ≡ ¬θ of diameter k over EDB schema SE , a
proof tree for goal() from an SE-instance I and Π gives rise to a finite SE-instance J of
treewidth (1, k) with J → I. The desired obstruction set for ¬θ is then the set of all these
J . The “if” direction is a consequence of Theorem 5 in [BD13].

We remark that the results in [BD13] almost give Proposition 5.3, but do not seem to
deliver any concrete bound on the parameter k of the treewidth of obstruction sets.

We close with observing an MMSNP counterpart of the ‘explosion’ Lemma 4.3, first
giving a preliminary. Let I be an instance over some schema SE . A (1, k)-decomposition of I
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is a pair (V, (Iv)v∈V ) where V is a set of indices and (Iv)v∈V is a partition of I such that for all
distinct v, v′ ∈ V , |dom(Iv) ∩ dom(I ′v)| ≤ 1 and |dom(Iv)| ≤ k. Thus, a (1, k)-decomposition
D = (V, (Iv)v∈V ) decomposes I into parts of size at most k and with little overlap. These
parts can be viewed as the facts of an instance ID over an aggregation schema S′E defined
by the relations Rqv(x) where qv(x) is Iv viewed as a CQ, that is,

ID = {Rqv(x)(dom(Iv)) | v ∈ V }
where we assume some fixed (but otherwise irrelevant) order on the elements of each dom(Iv).
Now, we say that I has (1, k)-decomposition girth g if g is the supremum of the girths of ID,
for all (1, k)-decompositions D of I. It can be shown that I has (1, k)-decomposition girth
ω if and only if it has treewidth (1, k).

Here comes the announced MMSNP counterpart of Lemma 4.3.

Lemma 5.4. For every instance I and g ≥ s > 0, and every MDDLog program Π of
diameter at most s, there is an instance J (over the same schema) such that J → I, J has
(1, s)-decomposition girth exceeding g, and I |= Π iff J |= Π.

Proof. Let Π be a Boolean MDDLog program of diameter k ≤ s over EDB schema SE . By
Theorems 3.2 and 3.3, there is a k-aggregation schema S′E and a set of templates SΠ over
S′E such that:

(1) for any SE-instance I with corresponding S′E-instance I ′, I |= Π iff I ′ 6→ SΠ;
(2) for any S′E-instance I ′ whose girth exceeds k with corresponding SE-instance I, I ′ 6→ SΠ

iff I |= Π.

Let I and I ′ be an SE-instance and its corresponding S′E-instance. Furthermore, let J ′ be
the S′E-instance obtained from I ′ by applying Lemma 4.3 with s = max{|T | | T ∈ SΠ} and
g as given. Then J ′ → I ′, J ′ has girth exceeding g, and J ′ → SΠ iff I ′ → SΠ iff I 6|= Π. Let
J be the SE-instance corresponding to J ′. As J ′ has girth exceeding k, Point (2) above
yields J |= Π iff J ′ 6→ SΠ. In summary, we thus obtain I |= Π iff J |= Π.

It thus remains to show that J has (1, s)-decomposition girth exceeding g and that
J → I. The former is witnessed by the (1, k)-decomposition D = (V, (Iv)v∈V ) of J obtained
by using as V the facts of J ′ and as Iv the set of facts obtained from fact v during the
construction of J .

As the last step, we argue that J → I follows from J ′ → I ′, and that in fact any
homomorphism h from J ′ to I ′ is also a homomorphism from J to I. Thus let h be such
a homomorphism. For any fact R(ai1 , . . . , ai`) in J , there is a fact Rq(x1,...,xn)(a1, . . . , am)
in J ′ such that R(xi1 , . . . , xi`) ∈ qi(x1, . . . , xn). We have Rq(x1,...,xn)(h(a1), . . . , h(am)) ∈ I ′.
By definition of I ′, this means R(h(ai1), . . . , h(ai`)) ∈ I and we are done.

We believe that Lemma 5.4 can be useful in many contexts, saving a detour via CSPs.
For example, it enables an alternative proof of Theorem 5.1. We illustrate this for Point 1.
We can start with a UCQ-rewriting q of an MDDLog program Π of diameter k and show
that the UCQ qt that consists of all CQs of treewidth (1, k) that are a contraction of a CQ
in q must also be a rewriting of Π: take an instance I that makes Π true, use Lemma 5.4 to
transform I to an I ′ of girth exceeding k and also exceeding the size of any CQ in q such
that I ′ |= Π and I ′ → I, observe that I ′ |= q and that a homomorphism from any CQ p in q
to I ′ gives rise to a homomorphism from a CQ p′ in qt to I ′, and derive p′ → I from I ′ → I.
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6. Datalog-Rewritability of Boolean MDDLog Programs and Canonical
Datalog Programs

We consider rewriting Boolean MDDLog programs into Datalog programs, making two
contributions. First, we show that Datalog-rewritability is decidable for programs that have
equality, a condition that is defined in detail below. For programs that do not have equality,
the same construction yields a procedure that is sound, but whose completeness remains
an open problem. And second, we give a new and direct construction of canonical Datalog-
rewritings of Boolean MDDLog programs (equivalently: the complements of MMSNP
sentences), bypassing the construction of infinite templates [BD13] which involves the
application of a non-trivial construction due to Cherlin, Shelah, and Shi [CSS99]. This
construction is potentially useful even though it is yet unknown whether Datalog-rewritability
of MDDLog programs Π is decidable (for programs that do not have equality): when Π is
not rewritable, then the canonical Datalog-rewriting is the best possible approximation of Π
in terms of a Datalog program (of given width and diameter).

6.1. Datalog-Rewritability of Boolean MDDLog Programs. A CSP template T has
equality if its EDB schema includes the distinguished binary relation eq and T interprets eq
as the relation {(a, a) | a ∈ dom(T )}. Thus, eq is an extremely natural kind of constraint: a
fact eq(a, b) in the input instance means that a and b must be mapped to the same template
element; spoken from the perspective of constraint satisfaction, they are variables that must
receive the same value.

In accordance with the above, we say that an MDDLog program Π has equality if its
EDB schema includes the distinguished binary relation eq, Π contains the rules

P (x) ∧ eq(x, y)→ P (y) and P (y) ∧ eq(x, y)→ P (x)

for each IDB relation P , and these are the only rules that mention eq. Thus, a fact eq(a, b)
in the input instance says that the same IDB relations can be derived by Π for a and for b.
It can be verified that when an MDDLog program that has equality is converted into a
generalized CSP based on a set of templates SΠ according to Theorems 3.2 and 3.3 (using
the concrete constructions in the appendix), then all templates in SΠ have equality.

We aim to show decidability of the Datalog-rewritability of MDDLog programs that
have equality following the strategy that we have used for rewritability into FO and into
MDLog in Section 4. We thus need a counterpart of Lemma 4.4, that is, we have to show
that for all templates T that have equality, Datalog-rewritability of coCSP(T ) on instances
of high girth implies unrestricted Datalog-rewritability. It is here that having equality is
an advantage. In particular, every input instance for coCSP(T ) can be made high girth
preserving (non-)homomorphisms to T by introducing additional eq-facts. This is similar in
spirit to the explosion Lemma 4.3, but the construction is much simpler than in the proof of
that lemma. We next make it explicit.

Let I be an SE-instance and let g ≥ 0. We use pos(I) to denote the set of pairs (R(a), i)
such that R(a) ∈ I and i ∈ pos(R). In what follows, for any tuple of constants a, we use ai
to denote its i-th component. Reserve fresh constants as follows:

• a constant bp, for all p = (R(a), i) ∈ pos(I);
• g constants bp,p′,1, . . . , bp,p′,g, for all p, p′ = (R(a), i), (R′(a′), i′) ∈ pos(I) with ai = a′i′ .

Define an instance Ig that consists of the following facts:

(1) for every R(a) ∈ I with R of arity n, the fact R(bp1 , . . . , bpn) where pi = (R(a), i);
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(2) for all distinct p, p′ = (R(a), i), (R′(a′), i′) ∈ pos(I) with ai = a′i′ , the facts

eq(bp, bp,p′,1), eq(bp,p′,1, bp,p′,2), . . . , eq(bp,p′,g−1, bp,p′,g), eq(bp,p′,g, bp′).

Observe that Ig has girth exceeding g. Moreover, it satisfies the following crucial property.

Lemma 6.1. For every CSP template T over SE that has equality, Ig → T iff I → T .

Proof. Let T be a template over SE that has equality. We have to show that there is a
homomorphism h from I to T iff there is a homomorphism hg from Ig to T . In fact, hg can be
obtained from h by setting hg(bp) = hg(bp,p′,j) = h(ai) when p = (R(a), i); conversely, h can
be obtained from hg by setting h(ai) = hg(bp) when p = (R(a), i)—the latter is well-defined
by construction of Ig and since eq is interpreted as the reflexive relation in T .

We are now ready to establish the announced counterpart of Lemma 4.4.

Lemma 6.2. Let S be a set of templates over schema SE that have equality, and let g ≥ 0.
If coCSP(S) is DLog-rewritable on instances of girth exceeding g, then it is DLog-rewritable.

Proof. Assume that coCSP(S) is DLog-rewritable on instances of girth exceeding g and let
Γ be a concrete rewriting. We construct a Datalog program Γ′ such that for any SE-instance
I, I |= Γ′ iff Ig |= Γ. Clearly, Γ′ is then a rewriting of coCSP(S) on instances of unrestricted
girth.

We aim to construct Γ′ such that it mimics the execution of Γ on Ig, despite being
executed on I. One challenge is that the domains of I and Ig are not identical. In Γ′, the
IDB relations of Γ need to be adapted to reflect this change of domain, and so do the rules.
Let m be the maximum arity of any relation in SE . Every IDB relation P of Γ gives rise to
a set of IDB relations in Γ′. In fact, every position of P can be replaced either with

(1) ` positions, for some ` ≤ m, reflecting the case that the position is filled with a constant
bp where p = (R(a), i) with R `-ary; or with

(2) `+ `′ positions, for some `, `′ ≤ m, reflecting the case that the position is filled with a
constant bp,p′,j where p = (R(a), i) and p′ = (R′(a′), i′), with R `-ary and R′ `′-ary.

In Case 1, the ` positions store the constants in a. The symbol R and the number i from p
also need to be stored, which is done as an annotation to the IDB relation. In Case 2, the
first ` positions store the constants in a while the latter `′ positions store the constants in a′;
we additionally need to store the symbols R and R′, the numbers i and i′ from p and p′,
and the number j, which is again done by annotation of the IDB relation.

Let us make this formal. The IDB relations of Γ′ take the form Pµ where P is an IDB
relation of Γ and µ is a function from pos(P ) to

Ω := (SE × {1, . . . ,m}) ∪ (SE × {1, . . . ,m} × SE × {1, . . . ,m} × {1, . . . , g})
such that if µ(`) = (R, i), then i ∈ pos(R) and if µ(`) = (R, i,R′, i′, j), then i ∈ pos(R) and
i′ ∈ pos(R′). The arity of Pµ is

∑
`=1..pos(P ) q` where q` is the arity of R if µ(`) = (R, i) and

q` is the sum of the arities of R and R′ if µ(`) = (R, i,R′, i′, j). In the construction of Γ′, we
manipulate the rules of Γ to account for this change in the IDB schema. We can assume
w.l.o.g. that Γ is closed under contractions of rules. Let

P0(x0) ← P1(x1) ∧ · · · ∧ P`1(x`1)∧
R1(y1) ∧ · · · ∧R`2(y`2)∧
eq(z1,1, z1,2) ∧ · · · ∧ eq(z`3,1, z`3,2)
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be a rule in Γ where P0, . . . , P`1 are IDB and R1, . . . , R`2 are EDB (possibly the distinguished
eq relation), such that

(∗) every variable occurs at most once in R1(y1) ∧ · · · ∧R`2(y`2).

Note that it might be possible to write a single rule from Γ in the above form in more than
one way because eq-atoms can be placed in the second line or in the third line; we then
consider all possible ways. Informally, this choice corresponds to the decision whether the
eq-atom is mapped to an eq-fact in Ig that comes from an eq-fact in I (Point 1 of the
definition of Ig) or to a freh eq-fact (Point 2 of the definition of Ig). Also note that rules
that do not satisfy (∗) can be ignored since they never apply in Ig.

Let x be the variables in the rule, and let δ : x→ Ω be such that the following conditions
are satisfied:

(1) for each Ri(yi) with yi = y1 · · · yk, we have δ(yj) = (Ri, j) for all j;
(2) for each eq(zi,1, zi,2), one of the following is true for some R, i,R′, i′, j:

(a) δ(zi,1) = (R, i) and δ(zi,2) = (R, i,R′, i′, 1);
(b) δ(zi,1) = (R, i,R′, i′, g) and δ(zi,2) = (R′, i′);
(c) δ(zi,1) = (R, i,R′, i′, j) and δ(zi,2) = (R, i,R′, i′, j ± 1).

With each variable x in x, we associate a tuple ux of distinct variables. If δ(x) is of the form
(R, i), then the length of ux matches the arity of R and ux is called a variable block. If δ(x)
is of the form (R, i,R′, i′, j), then the length of ux is the sum of the arities n and n′ of R
and R′; the first n variables in ux are then also called a variable block, and so are the last n′

variables. Variable blocks will either be disjoint or identical. Identities are minimized such
that the following conditions are satisfied:

(I1) if x occurs in some yi, then ux = yi;
(I2) if Case 2a applies to eq(zi,1, zi,2), then uzi,1 is identical to the first variable block in uzi,2 ;
(I3) if Case 2b applies to eq(zi,1, zi,2), then uzi,2 is identical to the second variable block

in uzi,1 ;
(I4) if Case 2c applies to eq(zi,1, zi,2), then the first variable blocks of uzi,1 and uzi,2 are

identical, and so are the second variable blocks.

Regarding (I1), note that x cannot occur in more than one yi because of (∗), thus the
condition can always be satisfied ‘without conflicts’. Then include in Γ′ the rule

Pµ0
0 (x′0) ← Pµ1

1 (x′1) ∧ · · · ∧ Pµ`1`1
(x′`1)∧

R1(y1) ∧ · · · ∧R`2(y`2)∧
W

such that

(R1) if the k-th component in x0 is x, then µi(k) = δ(x);
(R2) x′i is obtained from xi by replacing each variable x with ux;
(R3) W contains the following atoms:
• for each variable x ∈ x with δ(x) of the form (R, i), an atom R(w) where the i-th

component of w is x and all other variables are distinct and fresh;
• for each variable x ∈ x with δ(x) of the form (R, i,R′, i′, j), atoms R(w), R′(w′) where

the i-th component of w and the i′-th component of w′ is x and all other variables
are distinct and fresh.

As an example, consider the following rule in Γ:

goal()← P (x1, x2) ∧R(x1, x2) ∧ eq(x2, x3)
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where R is EDB and P IDB, and let δ(x1) = (R, 1), δ(x2) = (R, 2), and δ(x3) = (R, 2, R, 1, 1).
Note that Case 2a applies to eq(x2, x3). We have ux1 = ux2 = x1x2 and ux3 = x1x2u1u2

and thus obtain the following rule in Γ′:

goal() ← Pµ(x1, x2, x1, x2, u1, u2) ∧R(x1, x2)∧
R(x1, w1) ∧R(w2, x2) ∧R(w3, x3) ∧R(x3, w4)

where the last line corresponds to W above, and where µ(1) = (R, 1) and µ(2) = (R, 2, R, 1, 1).
We have have to show that I |= Γ′ iff Ig |= Γ for any SE-instance I. There is a

correspondence between extensions of Ig to the IDB relations in Γ and extensions of I to the
IDB relations in Γ′. More precisely, a fact Pµ(a) in an extension of I represents a fact P (b)
in an extension of Ig as follows (and vice versa): for each i ∈ pos(P ), let ai be the subtuple
of a that starts at position

∑
`=1..i−1 q` and is of length qi (where, as before, q` is the arity

of R if µ(`) = (R, i) and q` is the sum of the arities of R and R′ if µ(`) = (R, i,R′, i′, j));
the i-th constant in b is bR(ai),j if µ(i) = (R, j) and bR(c),j,R′(c′),j′,` if µ(i) = (R, j,R′, j′, `)
and ai = cc′.

One essentially has to show that every application of a rule from Γ′ in an extension of I
can be reproduced by an application of a rule from Γ in the corresponding extension of Ig,
and vice versa. We only sketch the details. First let Jg be an extension of Ig to the IDB
relations in Γ and let P (y)← q(x) be a rule in Γ applicable in Jg, and h a homomorphism
from q(x) to Jg such that P (h(y)) /∈ Jg. Since Γ is closed under contractions of rules, we
can assume that h is injective. Let

q(x) = P1(x1) ∧ · · · ∧ P`1(x`1)∧
R1(y1) ∧ · · · ∧R`2(y`2)∧
eq(z1,1, z1,2) ∧ · · · ∧ eq(z`3,1, z`3,2)

such that all Pi are IDB, all Ri EDB, and an equality atom eq(x, y) is included in the third
line if and only if at least one of h(x) and h(y) is not of the form bp. Consequently, for all
variables x that occur in the second line, h(x) is of the form bp. One can now verify that
Condition (∗) is satisfied. Assume that this is not the case. The first case is that that there
are distinct atoms Ri(yi) and Rj(yj) that share a variable x. In Ig, every constant of the
form bp occurs in exactly one fact that only contains constants of the form bp. Thus, h must
take Ri(yi) and Rj(yj) to the same fact in Jg. Since h is injective, Ri(yi) and Rj(yj) must
be identical which is a contradiction. The second case is that there is an atom Ri(yi) in
which a variable occurs more than once. This is in contradiction to h being a homomorphism
to Jg.

Now define a map δ : x → Ω by putting δ(x) = p if h(x) = bp and δ(x) = (p, p′, i) if
h(x) = bp,p′,i. It can be verified that the two conditions required of δ are satisfied. We thus
obtain a corresponding rule in Γ′. It can be verified that applying this rule in the extension
J of I corresponding to Jg adds the fact that corresponds to P (h(y)).

Conversely, let J be an extension of I to the IDB relations in Γ′ and let

Pµ0
0 (x′0) ← Pµ1

1 (x′1) ∧ · · · ∧ Pµ`1`1
(x′`1)∧

R1(y1) ∧ · · · ∧R`2(y`2)∧
W
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be a rule in Γ′ and h a homomorphism from the rule body to J such that Pµ0(h(x′0)) is not
in J . This rule was derived from a rule

P0(x0) ← P1(x1) ∧ · · · ∧ P`1(x`1)∧
R1(y1) ∧ · · · ∧R`2(y`2)∧
eq(z1,1, z1,2) ∧ · · · ∧ eq(z`3,1, z`3,2)

in Γ and a map δ : x→ Ω, x the variables in the latter rule. We define a map h′ from x to
dom(Jg), where Jg is the extension of Ig that corresponds to J . Let x ∈ x. If δ(x) = (R, i)
and h(ux) = a, then set h′(x) = bR(a),i. If δ(x) = (R, i,R′, i′, j) and h(ux) = aa′, then set
h′(x) = bR(a),i,R′(a′),i′,j . We argue that h′ is a homomorphism from the body of the latter
rule to Jg. There are three cases:

• Consider an atom Pi(xi). Let xi = x1 · · ·xn. Then there is a corresponding atom Pµii (xi)
in the former rule and thus Pµii (h(xi)) ∈ J . For each j ∈ pos(Pi), let aj be the subtuple of
h(xi) that starts at position

∑
`=1..j−1 q` and is of length qj . Define the tuple b by letting

the j-th constant be bR(aj),` if µ(j) = (R, `) and bR(c),`,R′(c′),`′,k if µ(j) = (R, `,R′, `′, k)

and aj = cc′. By (R3), all constants in b occur in the domain of Jg. Moreover, Pi(b) ∈ Jg.
It thus remains to observe that h′(xi) = b, which follows from (R1) and (R2) and the
definition of h′.
• Consider an atom Ri(yi). Let yi = y1 · · · yn. Then the atom Ri(yi) must also be in

the former rule and thus Ri(h(yi)) ∈ J , yielding R(bRi(h(yi)),1, . . . , bRi(h(yi)),n) ∈ Jg. By
Condition 1 imposed on δ, we have δ(yj) = (Ri, j) for each j. Moreover, by (I1) we must
have uyj = yi for each j. Thus, the definition of h′ yields h′(yi) = bRi(h(yi)),1 · · · bRi(h(yi)),n

and we are done.
• Consider an atom eq(zi,1, zi,2). We know that one of the Cases 2a to 2d apply to
eq(zi,1, zi,2). We only treat the first case explicitly. Thus assume that δ(zi,1) = (R, j) and
δ(zi,2) = (R, j,R′, j′, 1). By definition, h′(zi,1) = bR(h(uzi,1 )),j and h′(zi,2) = bR(c),j,R′(c′),j′,1

where h(uzi,1) = cc′. By (I2), uzi,1 is identical to the first variable block in uzi,2 and thus
h(uzi,1) = c. By definition if Ig, Jg contains eq(bR(c),j , bR(c),j,R′(c′),j′,1) and we are done.

It can now be verified that the application of the latter rule adds to Jg the fact that
corresponds to Pµ0(h(x′0)).

DLog-rewritability of CSPs is NP-complete [Bar16, CL17] and it was observed in
[BtCLW14] that this result lifts to generalized CSPs. It thus follows from Theorems 3.2
and 3.3 and Lemma 6.2 that DLog-rewritability of Boolean MDDLog programs that have
equality is decidable in 2NExpTime. It is straightforward to verify that the 2NExpTime
lower bound for Datalog-rewritability of MDDLog programs from [BL16] applies also to
programs that have equality.

Theorem 6.3. For Boolean MDDLog programs that have equality, Datalog-rewritability is
2NExpTime-complete.

Regarding MDDLog programs that do not have equality, the above yields a sound but
possibly incomplete algorithm for deciding DLog-rewritability. Let us make this more precise.
For an MDDLog program Π that does not have equality, we use Π= to denote the extension
of Π with the fresh EDB relation eq and the above rules. If Π has equality, then Π= simply
denotes Π.

Lemma 6.4. For MDDLog programs Π, DLog-rewitability of Π= implies DLog-rewritability
of Π.
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Lemma 6.4 follows from the trivial observation that any DLog-rewriting of Π= can be
converted into a DLog-rewriting of Π by dropping all rules that use the relation eq. It is an
interesting open question whether the converse of Lemma 6.4 holds. Due to Lemma 6.4, a
sound but possibly incomplete algorithm for unrestricted MDDLog programs Π can thus
be formulated as follows: first replace Π with Π= and then decide DLog-rewritability as
per Theorem 6.3. We speculate that this algorithm is actually complete. In particular,
for CSPs it is known that adding equality does preserve Datalog-rewritability [LZ07], and
completeness of our algorithm is equivalent to an analogous result holding for MDDLog.

6.2. Canonical Datalog-Rewritings. For constructing actual DLog-rewritings instead of
only deciding their existence, canonical Datalog programs play an important role. Feder
and Vardi show that for every CSP template T and all `, k > 0, one can construct an
(`, k)-Datalog program that is canonical for T in the sense that if there is any (`, k)-Datalog
program which is equivalent to the complement of T , then the canonical one is [FV98]. In
this section, we show that there are similarly simple canonical Datalog programs for Boolean
MDDLog. Note that the existence of canonical Datalog programs for MMSNP (and thus for
Boolean MDDLog) is already known from [BD13]. However, the construction given there is
more general and rather complex, proceeding via an infinite template and exploiting that it
is ω-categorial. This makes it hard to analyze the exact structure and size of the resulting
canonical programs. Here, we define canonical Datalog programs for Boolean MDDLog
programs in a more elementary way. In contrast to the previous subsection, we do not
assume that equality is available.

Let Π be a Boolean MDDLog program over EDB schema SE and with IDB relations
from SI . Further let 0 ≤ ` < k. We aim to construct a canonical (`, k)-DLog program
for Π. The most important properties of this program is that it is sound for Π and complete
for Π on SE-instances of treewidth (`, k). We first convert Π into a DDLog program Π′

that is equivalent to Π on instances of treewidth (`, k) and then construct the canonical
program for Π′ rather than for Π. Unlike Π, the new program Π′ is not monadic. Informally,
the canonical program simulates Π on SE-instances of treewidth (`, k) proceeding in a
bag-by-bag fashion. This is enabled by the additional non-monadic IDB relations introduced
in Π′ which represent information that needs to be passed from bag to bag. We remark that
the construction of Π′ is vaguely similar in spirit to the first step of converting an MDDLog
program into simple form, c.f. Appendix A.1. To describe it, we need a preliminary.

With every MDDLog rule p(y)← q(x) where q(x) is of treewidth (`, k) and every (`, k)-
tree decomposition (T, (Bv)v∈V ) of q(x), we associate a set of rewritten rules constructed
as follows. Choose a root v0 of the undirected tree T , thus inducing a direction. We write
v ≺ v′ if v′ is a successor of v in T and use xv′ to denote Bv ∩Bv′ . For all v ∈ V \ {v0} such
that |xv| = m, introduce a fresh m-ary IDB relation Qv; note that m ≤ `. Now, the set of
rewritten rules contains one rule for each v ∈ V . For v 6= v0, the rule is

pv(yv) ∨Qv(xv)← q(x)|Bv ∧
∧
v≺v′

Qv′(xv′)

where pv(yv) is the sub-disjunction of p(y) that contains all disjuncts P (z) with z ⊆ Bv and
q(x)|Bv is the restriction of q to the atoms that contain only variables from Bv. For v0, we
include the same rule, but use only pv(yv) as the head. The set of rewritten rules associated
with p(y) ← q(x) is obtained by taking the union of the rewritten rules associated with
p(y)← q(x) and any (T, (Bv)v∈V ).
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The DDLog program Π′ is constructed from Π as follows:

(1) first extend Π with all contractions of rules in Π;
(2) then delete all rules with q(x) not of treewidth (`, k) and replace every rule p(y)← q(x)

with q(x) of treewidth (`, k) with the rewritten rules associated with it.

To clarify the relation between Π and Π′, we remark that it is possible to verify the following
conditions; a detailed proof is omitted since these conditions are not going to be used in
what follows:

(I) Π′ is sound for Π, that is, for all SE-instances I, I |= Π′ implies I |= Π;
(II) Π′ is complete for Π on SE-instances of treewidth (`, k), that is, for all such instances I,

I |= Π implies I |= Π′.

Note that Π′ is not complete for Π on instances of unrestricted treewidth. For example, if Π
consists of only a goal rule whose rule body is a k + 1-clique (without reflexive loops), then
Π′ returns false on the instance that consists of the same clique.

Example 6.5. Assume that Π contains the rule

P1(x) ∨ P2(z)← R(x, y1) ∧ S(x, y2) ∧R(y1, z) ∧R(y2, z)

and consider the (2, 3)-tree decomposition of the rule body that consists of two nodes v, v′,
v′ successor of v, with Bv = {x, y1, y2} and Bv′ = {y1, y2, z}. In Π′, the rule is split into two
rules

P2(z) ∨Qv′(y1, y2)← R(y1, z) ∧R(y2, z)

P1(z)← R(x, y1) ∧ S(x, y2) ∧Qv′(y1, y2).

Informally, these rules are supposed to cover homomorphisms from the body of the original
rule to an S′E-instance of treewidth (`, k) such that the variables in Bv′ are mapped to
constants from some bag and variables from Bv to constants from a neighboring bag. The
IDB relation Qv′ memorizes that we have already seen part of the rule body.

Let S′I denote the additional IDB relations in Π′. We now construct the canonical
(`, k)-DLog program Γc for Π. Fix constants a1, . . . , a`. For `′ ≤ `, we use I`′ to denote the
set of all SI ∪ S′I -instances with domain a`′ := a1, . . . , a`′ . The program uses `′-ary IDB
relations PM , for all `′ ≤ ` and all M ⊆ I`′ . It contains all rules q(x)→ PM (y), M ⊆ I`′ ,
that satisfy the following conditions:

(1) q(x) is over schema SE ∪ {PM |M ⊆ I`′ , `
′ ≤ `} and contains at most k variables;

(2) for every extension J of the SE-instance Iq|SE
with SI ∪ S′I -facts such that

(a) J satisfies all rules of Π′ and does not contain goal() and
(b) for each PN (z) ∈ q, N ⊆ I`′′ , there is an L ∈ N such that L[z/a`′′ ] = J |SI∪S′I ,z
there is an L ∈M such that L[y/a`′ ] = J |SI∪S′I ,y

where Iq is q viewed as an instance, L[x/a] denotes the result of replacing the constants in
a with the variables in x (possibly resulting in identifications), and J |SI∪S′I ,x denotes the

simultaneous restriction of J to schema SI ∪ S′I and constants x.3 We also include in Γc all
rules of the form P∅(x)→ goal(), P∅ of any arity from 0 to `.

The intuition behind the construction of Γc is as follows. When starting with an input
SE-instance I of treewidth (`, k) and then chasing with Γc, that is, exhaustively applying
these rules in an unspecified order, then the resulting instance I ′ represents all extensions J

3We could additionally demand that M is minimal so that Condition 2 is satisfied, but this is not strictly
required.
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of I to the relations in SI ∪ S′I that satisfy all rules in Π′ and do not contain goal(). A fact
PM (a) ∈ I ′, M ⊆ I`′′ , means that for every such J there is an L ∈M such that J contains
the facts in L[a/a`′′ ]. Thus, the set M in the index of PM should be read disjunctively. Note
that P∅(a) ∈ I ′ then indicates that every extension of I that satisfies all rules in Π′ must
contain goal(). The bodies of rules in Γc are large enough to cover the restriction of I to
the constants from any single bag. This suffices only because we have transitioned from Π
to Π′ before constructing Γc.

The following are central properties of canonical DLog programs.

Lemma 6.6.

(1) Γc is sound for Π;
(2) Γc is complete for Π on instances of treewidth (`, k).

Proof. For Point 1, let I be an SE-instance with I |= Γc. It suffices to show that I |= Π′.
Let I = I1, I2, . . . be the sequence of SE ∪ SI ∪ S′I -instances obtained by chasing I with Γc.
We first note that the following can be proved by induction on i (and using the definition
of Γc):

Claim. If PM (b) ∈ Ii, M ⊆ I`′ , then for every extension J of I to the relations in SI ∪ S′I
that satisfies all rules of Π′ and does not contain goal(), there is an L ∈ M such that
L[b/a`′ ] = J |SI∪S′I ,b.

Since I |= Γc, there are i > 0 and b ⊆ dom(I) such that P∅(b) ∈ Ii. By the claim, there is
thus no extension J of I to the relations in SI ∪ S′I that satisfies all rules of Π and does not
contain goal(). Consequently, I |= Π′.

For Point 2, assume that I 6|= Γc and let (T, (Bv)v∈V ) be an (`, k)-tree decomposition
of I, T = (V,E). Then there is an extension J of I to the IDB relations in Γc such that all
rules in Γc are satisfied and J contains no atom of the form P∅(b).

We use J to construct an extension J ′ of I to the relations in SI ∪ S′I . Choose a root v0

of T , thus inducing a direction on the undirected tree T . For all v ∈ V and successors v′ of v,
choose an ordering cv,v′ of the constants in Bv ∩Bv′ and let `v,v′ denote the number of these
constants. Let PM1(cv,v′), . . . , PMr(cv,v′) be all facts of this form in J . By construction of
Γc, there must be at least one such fact, and the fact PM1∩···∩Mr(cv,v′) must also be in J .
Thus, we can associate with v, v′ a unique minimal set Mv,v′ so that PMv,v′ (cv,v′) ∈ J .

The construction of J ′ proceeds top down over T . At all points, we maintain the
invariant that

(∗) for all nodes v ∈ V and successors v′ of v, there is an L ∈Mv,v′ such that L[cv,v′/a`v,v′ ] =

J ′|SI∪S′I ,cv,v′ .

The construction of J ′ starts at the root v0 of T . There must be an extension Jv0 of I|Bv0

with SI ∪ S′I -facts such that

(i) Jv0 satisfies all rules of Π and does not contain goal()
(ii) for each PM (b) ∈ J |Bv0

, M ⊆ I`′ , there is an L ∈M such that L[b/a`′ ] = Jv0 |Si∪S′I ,b

as, otherwise, a rule of Γc would create an atom of the form P∅(c) in J . Start with putting
J ′ = I ∪ Jv0 . Note that for each successor v of v0, (∗) is satisfied because of Point (ii) and
since PMv0,v

(av0,v) ∈ J |Bv0
.

We proceed top-down over T . Assume that v′ is a successor of v and Bv has already
been treated. There must be an extension Jv′ of I|Bv′ with SI ∪ S′I -facts such that
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(i) Jv′ satisfies all rules of Π and does not contain goal(),
(ii) Jv′ |SI∪S′I ,cv,v′ = J ′|SI∪S′I ,cv,v′ , and

(iii) for each PM (b) ∈ J |Bv′ , M ⊆ I`′ , there is an L ∈M such that L[b/a`′ ] = Jv′ |Si∪S′I ,b

as, otherwise, because of (∗) a rule of Γc would create an atom of the form PM (cv,v′) in
J with M ( Mv,v′ , in contradiction to Mv,v′ being minimal with PMv,v′ (cv,v′) ∈ J . Put

J ′ = J ′ ∪ Jv′ . It can again be verified that (∗) is satisfied.
By construction, the instance J ′ does not contain goal() and (T, (Bv)v∈V ) is also a tree

decomposition of J ′, that is, each EDB atom and each IDB atom of J ′ falls within some
bag Bv. We aim to show that J ′ satisfies all rules of Π, thus I 6|= Π as required.

Let Π0 be the result of closing Π under contractions of rules and recall that Π′ is
obtained from Π0 by dropping and rewriting rules. Let ρ be a rule in Π and let h be a
homomorphism from its body to J ′. We have to show that one of the disjuncts in the head
of ρ is satisfied under h. Π0 contains the rule ρ0 obtained from ρ by identifying all variables
x, y such that h(x) = h(y). It clearly suffices to show that one of the disjuncts in the head of
ρ0 is satisfied under h. Note that h is an injective homomorphism from the body q(x) of ρ0

to J ′ which implies that q(x) is of treewidth (`, k). Moreover, we can read off an (`, k)-tree
decomposition (T ′, (B′v)v∈V ′) of q(x) from h and (T, (Bv)v∈V ).

In Π′, ρ0 and (T ′, (B′v)v∈V ′) are rewritten into rules ρ1, . . . , ρm such that no ρi uses a
fresh IDB relation from the head of any ρj with j ≥ i (that is, an IDB relation that does
not occur in Π0, of arity at most `). Let ρi be qi(xi)→ Ri,1(xi,1)∨ · · · ∨Ri,ni(xi,ni)∨Qi(zi)
where Ri,1(xi,1), . . . , Ri,ni(xi,ni) are disjuncts that also occur in the head of ρ0 and Qi is a
fresh IDB relation introduced by the rewriting in the case that i < m and false if i = m (by
which we mean: there is no Qi(zi) disjunct in the latter case). One can show by induction
on i that for 1 ≤ i ≤ m,

(1) Rj,m(h(xj,t)) ∈ J ′ for some j ≤ i and t ∈ {1, . . . , nj} or
(2) Qi(h(zi)) ∈ J ′.
To see this, assume that Point 1 is not satisfied for some i. Then Point 2 holds for all
j < i. By choice of ρi, there is a v ∈ V such that h(xi) ⊆ Bv. Thus h is a homomorphism
from qi(xi) to Jv, and consequently there is a disjunct R(z) in the head of ρi such that
R(h(z)) ∈ Jv ⊆ J ′. This implies that one of Points 1 or 2 is satisfied for i.

Note that Point 2 cannot hold for i = m because the Qm disjunct is not present in ρm.
Thus there is an i ≤ m such that Ri,j(h(xi,j)) ∈ J ′ for some j. Since Ri,j(xi,j) occurs in the
head of ρ0, we are done.

We are now ready to show that the canonical program is indeed canonical, as detailed by
the following theorem. For two Boolean DLog programs Π1,Π2 over the same EDB schema
SE , we write Π1 ⊆ Π2 if for every SE-instance I, I |= Π1 implies I |= Π2.

Theorem 6.7. Let Π be a Boolean MDDLog program, 0 ≤ ` ≤ k, and Γc the canonical
(`, k)-DLog program for Π. Then

(1) Γ ⊆ Γc for every (`, k)-DLog program Γ that is sound for Π;
(2) Π is (`, k)-DLog-rewritable iff Γc is a DLog-rewriting of Π.

Proof. Let SE be the EDB schema of Π.
For Point 1, let Γ be an (`, k)-DLog program that is sound for Π and let I be an

SE-instance with I |= Γ. From the proof tree for goal() from I and Γ, we can construct
an SE-instance J of treewidth (`, k) such that J |= Γ and J → I. It suffices to show that
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J |= Γc, which is easy: from J |= Γ, we obtain J |= Π and Point 2 of Lemma 6.6 yields
J |= Γc.

The “if” direction of Point 2 is trivial. For the “only if” direction, assume that Π is
(`, k)-DLog-rewritable and let Γ be a concrete rewriting. We have to show that Γc is sound
and complete for Π. The former is Point 1 of Lemma 6.6. For the latter, we get Π ⊆ Γ since
Γ is a rewriting of Π and Γ ⊆ Γc from Point 1, thus Π ⊆ Γc as required.

Note that by Point 1 of Theorem 6.7, the canonical (`, k)-DLog program for an MDDLog
program Π is interesting even if Π is not rewritable into an (`, k)-DLog program as it is the
strongest sound (`, k)-DLog approximation of Π.

7. Non-Boolean MDDLog Programs

We lift the results about the complexity of rewritability, about canonical DLog programs,
and about the shape of rewritings and obstructions from the case of Boolean MDDLog
programs to the non-Boolean case. For all of this, a certain extension of (`, k)-Datalog
programs with parameters plays a central role. We thus begin by introducing these extended
programs.

7.1. Deciding Rewritability. An (`, k)-Datalog program with n parameters is an n-ary
(`+ n, k + n)-Datalog program in which all IDBs have arity at least n and where in every
rule, all IDB atoms agree on the variables used in the last n positions (both in rule bodies
and heads and including the goal IDB). The last n positions of IDBs are called parameter
positions. To visually separate the parameter positions from the non-distinguished positions,
we use “|” as a delimiter to replace the usual comma, writing e.g.

P (x1, x2 | y1, y1, y2)← Q(y1 | y1, y1, y2) ∧R(x1, y1, y2, x2)

where P,Q are IDB, R is EDB, and there are three parameter positions. Note that, by
definition, all variable positions in goal atoms are parameter positions.

Example 7.1. The following is an MDLog program with one parameter that returns all
constants which are on an R-cycle, R a binary EDB relation:

P (y |x) ← R(y |x)

P (z |x) ← P (y |x) ∧R(z, y)

goal(x) ← P (x |x)

Parameters in Datalog programs play a similar role as parameters to least fixed-point
operators in FO(LFP), see for example [BBV16] and references therein. The program in
Example 7.1 is not definable in MDLog without parameters, which shows that adding
parameters increases expressive power. Although (`, k)-DLog programs with n parameters
are (` + n, k + n)-DLog programs, one should think of them as a mild generalization of
(`, k)-programs.

A DLog program is an `-DLog program if it is an (`, k)-DLog program for some k. To
lift decidability and complexity results from the Boolean to the non-Boolean case, we show
that rewritability of an n-ary MDDLog program into `-DLog with n parameters can be
reduced to rewritability of a Boolean MDDLog program into `-DLog (without parameters).
We believe that Datalog with parameters is a natural rewriting target for non-Boolean
MDDLog programs since, in a sense, the n parameters reflect the special role of the constants
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from the input instance that are returned as an answer. Note that the case ` = 0 is about
UCQ-rewritability (and thus FO-rewritability) because 0-DLog programs (with and without
parameters) are an alternative presentation of UCQs. The reduction proceeds in two steps,
described by subsequent Lemmas 7.3 and 7.4.

Example 7.2. The following MDDLog program is rewritable into the MDLog program
with parameters from Example 7.1, but not into an MDLog program without parameters:

P0(x) ∨ P1(y)← R(x, y)

goal(x)← P0(x)

P1(y)← P1(x) ∧R(x, y)

goal(x)← P1(x).

The following lemma shows that, by introducing constants, we can reduce the rewritabil-
ity of non-Boolean MDDLog programs into Datalog with parameters to the rewritability
of Boolean MDDLog programs with constants into Datalog with constants. Note that
the presence of constants in an (`, k)-DLog program is not reflected in the values of `
and k. We will show in a second step that the rewritability of Boolean MDDLog programs
with constants into Datalog with constants can be reduced to the rewritability of Boolean
MDDLog programs without constants into Datalog without constants.

The diameter of an (`, k)-DLog program with n parameters is k and the diameter of
a DLog program with constants is defined as for DLog programs without constants, that
is, only variables contribute to the diameter, but constants do not. The rule size of an
MDDLog program is the maximum number of variable occurrences in a rule body.

Lemma 7.3. Given an n-ary MDDLog program Π, one can construct Boolean MDDLog
programs with constants Π1, . . . ,Πm over the same EDB schema such that for all `, k,

(1) Π is rewritable into an (`, k)-DLog program with n parameters iff each of Π1, . . . ,Πm is
rewritable into an (`, k)-DLog program with constants;

(2) m ≤ nn and the size (resp. diameter, rule size) of each program Πi is bounded by the
size (resp. diameter, rule size) of Π.

The construction takes time polynomial in the size of |Π1 ∪ · · · ∪Πm|.

Proof. Let Π be an n-ary MDDLog program over EDB schema SE . Fix a set C of n
constants. For each c ∈ Cn, we construct from Π a Boolean MDDLog program Πc such that
for any ` < k, Π is (`, k)-DLog rewritable iff all programs Πc are.

Let c ∈ Cn. Given two n-tuples of terms (constants or variables) s and t, we write s � t
if ti = tj implies si = sj for 1 ≤ i < j ≤ n. We write s ≈ t when s � t � s. The program
Πc is obtained from Π as follows:

• replace every rule goal(x)← q(x,y) with c � x by goal()← q(c,y);
• drop every rule goal(x)← q(x,y) with c 6� x.

Note that the non-goal rules in Πc are identical to those in Π. By converting proof trees for
Π into proof trees for Πc and vice versa, one can show the following.

Claim. For all SE-instances I and a ⊆ dom(I)n with a ≈ c, I |= Π(a) iff I[c/a] |= Πc.

We show that Π is rewritable into an (`, k)-DLog program with n parameters iff all of the
constructed programs Πc are rewritable into an (`, k)-DLog program with constants.
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Let Γ be an (`, k)-DLog program with n parameters that is a rewriting of Π. For each
c ∈ Cn, let Γc be the Boolean (`, k)-DLog program with constants obtained from Γ as
follows:

• replace every rule P (x |y) ← q(z |y) with c � y (and where P might be goal) by
P (xc)← q(zc), where vc is the result of replacing in v each variable yi with ci;
• drop every rule P (x |y)← q(z |y) with c 6� y.

By translating proof trees, it can be shown that (∗) I |= Γ(c) iff I |= Γc. It is now easy to
show that Γc is a rewriting of Πc: for every SE-instance I, I |= Πc iff I |= Π(c) (by the
claim) iff I |= Γ(c) (since Γ is a rewriting of Π) iff I |= Γc (by (∗)).

Conversely, for all c ∈ Cn let Γc be a Boolean (`, k)-DLog program with constants that
is a rewriting of Πc. We construct an (`, k)-DLog program with n parameters Γ as follows.
For each c ∈ Cn, fix a tuple v of fresh variables such that v ≈ c. Let Γvc be the (`, k)-DLog
program with n parameters obtained from Γc as follows:

(i) replace each ci with vi;
(ii) replace each non-goal IDB atom P (x) with the atom P c(x |v) (both in rule bodies and

heads), P c a fresh IDB relation;
(iii) replace goal() with goal(v).

Then Γ is defined as the union of all programs Γvc. We first argue that for every c ∈ Cn,
SE-instance I, and a ⊆ dom(I)n with a ≈ c,

(1) I |= Γc implies I[a/c] |= Γvc(a) and
(2) I |= Γvc′(a), with a � c′, implies I[c/a] |= Γc.

Point 1 can be proved by showing that, from a proof tree of goal() from I and Γc, one can
construct a proof tree of goal(a) from I[a/c] and Γvc. For Point 2, assume I |= Γvc′(a) with
a � c′. Then I[c/a] |= (Γc′)[c/c

′] can again be shown by manipulating proof trees. It can
be verified that, by construction, (Πc′)[c/c

′] ⊆ Πc. Consequently and since Γc′ is a rewriting
of Πc′ , J |= (Γc′)[c/c

′] implies J |= Γc for all J , that is, (Γc′)[c/c
′] is contained in Γc in the

sense of query containment. Thus in particular I[c/a] |= Γc, as required.
It remains to show that Γ is a rewriting for Π. First assume that I |= Π(a). Choose

some c ∈ Cn with a ≈ c. Then I[c/a] |= Πc by the claim and thus I[c/a] |= Γc since Γc is a
rewriting of Πc. Point 1 above yields I[c/a][a/c] = I |= Γ(a).

Now assume that I |= Γ(a). Then by construction of Γ, there is a c′ ∈ Cn such that
a � c′ and I |= Γvc′(a). To see this, note in particular that the different programs Γvc do
not share any IDBs and thus do not interact in Γ. Choose a c ∈ Cn with a ≈ c. From
Point 2 above, we obtain I[c/a] |= Γc which yields I[c/a] |= Πc. This implies I |= Π(a) by
the claim.

We next show that constants can be eliminated from Boolean programs.

Lemma 7.4. Given a Boolean MDDLog program Πc with constants over EDB schema SE,
one can construct a Boolean MDDLog program Π over an EDB schema S′E such that

(1) Πc is rewritable into `-DLog with constants iff Π is rewritable into `-DLog, for any `;

(2) If Πc is of size n and diameter k, then the size of Π is 2p(k·logn); moreover, the diameter
of Π is bounded by the rule size of Πc.

The construction takes time polynomial in the size of |Π|.

Proof. Let Πc be a Boolean MDDLog program over EDB schema SE that contains constants
c1, . . . , cn. The program Π will be over EDB schema S′E = SE ∪ {R1, . . . , Rn} where
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R1, . . . , Rn are fresh monadic relation symbols. Π contains all rules that can be obtained
from a rule ρ in Π by choosing a partial function δ that maps terms (variables or constants)
in ρ to elements of {1, . . . , n} such that δ(ci) = i for each constant ci and then, for each
term t with δ(t) = i,

(1) replacing each occurrence of t in the body of ρ with a fresh variable x and adding Ri(x),
and

(2) replacing each occurrence of t in the head of ρ with one of the fresh variables introduced
for t in Step 1.

Additionally, Π contains the rule goal()← Ri(x), Rj(x), for 1 ≤ i < j ≤ n.
Note that the rewriting presented above, which we call dejoining since it introduces

different variables for each occurence of a term t in a rule body, can be applied not only
to MDDLog programs, but also to MDLog programs. Before we proceed, we make a basic
observation about dejoining and its connection to a certain quotient construction. Let Π be
an MDDLog program or an MDLog program, with constants c1, . . . , cn, and let Πd be the
result of dejoining Π. Let I be an S′E-instance such that Ri, Rj are disjoint whenever i 6= j
and which does not contain the constants c1, . . . , cn. The quotient of I is the SE-instance I ′

obtained from I by replacing every d ∈ dom(I) with Ri(d) ∈ I by the constant ci (which
also results in the identification of elements in the active domain) and removing all atoms
involving one of the Ri relations. By converting proof trees of goal() from Π into proof
trees of goal() from Πc and vice versa, one can show the following.

Claim. I |= Π iff I ′ |= Πd.

We now show that Πc is rewritable into `-DLog iff Π is.
First let Γc be an `-DLog rewriting of Πc. Let Γ be obtained from Γc by dejoining all

rules and adding the rule goal()← Ri(x), Rj(x) for 1 ≤ i < j ≤ n. Clearly, Γ is an `-DLog
program. We argue that Γ is a rewriting of Π. Let I be an S′E-instance. W.l.o.g., we can
assume that I does not contain c1, . . . , cn. If Ri, Rj are not disjoint for some i 6= j, then
I |= Π and I |= Γ. Otherwise, let I ′ be the quotient of I. We have I |= Π iff I ′ |= Πc (by the
claim) iff I ′ |= Γc (Γc is rewriting of Πc) iff I |= Γ (again by the claim).

Let Γ be an `-DLog rewriting of Π. Let Γc be the program constructed from Γ by
removing all rules that contain atoms of the form Ri(x) and Rj(x) with i 6= j and replacing
all variables x that occur in a rule body in atoms of the form Ri(x) with ci and removing all
Ri-atoms from such rules. Clearly, Γc is an `-DLog program (with constants c1, . . . , cn). We
argue that Γc is a rewriting of Πc. Let I be an SE-instance that w.l.o.g. does not contain
c1, . . . , cn and let I ′ = I ∪ {R1(c1), . . . , Rn(cn)}. Note that I is the quotient of I ′. Then
I |= Πc iff I ′ |= Π (by the claim) iff I ′ |= Γ (Γ is rewriting of Π) iff I |= Γc (by construction
of Γc).

We are now ready to lift the complexity results from Theorems 4.6 and 6.3 to the
non-Boolean case, by putting them together with Lemmas 7.3 and 7.4.

Theorem 7.5. For n-ary MDDLog programs,

(1) FO-rewritability (equivalently: UCQ-rewritability) is 2NExpTime-complete;
(2) rewritability into MDLog with n parameters is in 3ExpTime (and 2NExpTime-hard);
(3) DLog-rewritability is 2NExpTime-complete for programs that have equality.

Proof. We remind that the upper bounds for rewritability of Boolean MDDLog programs
stated in Theorems 4.6 and 6.3 are obtained by a (generalized) CSP and then deciding
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the rewritability of (the complement of) that CSP. One can trace the blowups stated in
Lemmas 7.3 and 7.4 as well as in Theorems 3.2 and 3.3 to verify that the constructed CSP
does not become significantly larger in the non-Boolean case, that is, it still satisfy the
bounds stated in Point 3 of Proposition 3.2. Thus, we obtain the same upper bounds as
in the Boolean case. Regarding Point 1, we additionally recall that Proposition 4.1 also
covers non-Boolean MDDLog programs and thus it suffices to consider UCQ-rewritability.
Regarding Point 3, we note that it can be verified that the constructions in the proofs of
Lemmas 7.3 and 7.4 preserve the property of having equality.

In view of Point 2, we remark (once more) that for non-Boolean MDDLog programs
Π, MDLog with parameters is in a sense a more natural target for rewriting than MDLog
without parameters. The intuitive reason is that positions in the answer to Π can be thought
of as constants, and constants correspond to parameters. To make this a bit more precise,
consider the grounding Π′ of Π obtained by replacing, in every goal rule, each variable
that occurs in the head by a constant. In contrast to the standard database setup (and in
contrast to the proof of Lemma 7.3), we mean here constants that are interpreted according
to the standard FO semantics, that is, different constants can denote the same element of
an instance. When looking for an MDLog-rewriting of Π′, it is clearly very natural to admit
the constants from Π′ also in the rewriting. Now, one can verify that any such rewriting can
be translated in a straightforward way into a rewriting of Π into MDLog with parameters,
and vice versa.

We further note that MDLog with parameters enjoys similarly nice properties as
standard MDLog. For example, containment is decidable. This follows from [RK13, BKR15]
where generalizations of MDLog with parameters are studied, the actual parameters being
represented by constants.

We also remark that Theorem 7.5 remains true when we admit constants in MDDLog
programs. In fact, the proof of Lemma 7.3 goes through also when the original MDDLog
program contains constants, and both the original and the newly introduced constants can
then be removed by Lemma 7.4.

7.2. Canonical Datalog-Rewritings. We now turn our attention to canonical DLog-
rewritings for non-Boolean MDDLog programs. Let Π be an n-ary MDDLog program. We
associate with Π a canonical (`, k)-DLog program with n parameters, for any ` < k. The
construction is a refinement of the one from the Boolean case.

We start with some preliminaries. An n-marked instance is an instance I endowed with n
(not necessarily distinct) distinguished elements c = c1, . . . , cn. An (`, k)-tree decomposition
with n parameters of an n-marked instance (I, c) is an (`+m, k+m)-tree decomposition of I,
m the number of distinct constants in c, in which every bag Bv contains all constants from c.
An n-marked instance has treewidth (`, k) with n parameters if it admits an (`, k)-tree
decomposition with n parameters.

We first convert Π into a DDLog program Π′ that is equivalent to Π on instances
of bounded treewidth. The construction is identical to the Boolean case (first variable
identification, then rewriting) except that

(1) we use treewidth (`+ n, k+ n) in place of treewidth (`, k); consequently, the arity of the
freshly introduced IDB relations may also be up to `+ n;
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(2) for goal rules, all head variables must occur in the root bag of the tree decomposition
(they can then be treated in the same way as a Boolean goal rule despite the n-ary
head relation).

It can be verified that Π′ is sound for Π and that it is complete for Π on n-marked instances
of treewidth (`, k) with n parameters in the sense that, for all such instances (I, c), I |= Π[c]
implies I |= Π′[c]. Π′ is not guaranteed to be complete for answers other than c because
of the way we treat goal rules in Point 2 above, for example when Π contains a rule of the
form goal(x, y)← A(x) ∧B(y).

Let S′I denote the additional IDB relations in the resulting program Π′. We now
construct the canonical (`, k)-DLog program with n parameters Γc. Fix constants a1, . . . , a`,
b1, . . . , bn and let I`′+n denote the set of all SI∪SI′-instances with domain a`′,n := a1, . . . , a`′ ,
b1, . . . , bn. The program uses `′ + n-ary IDB relations PM , for all `′ ≤ ` and all M ⊆ I`′,n.
It contains all rules q(x)→ PM (y |xp), M ⊆ I`′,n, that satisfy the following conditions:

(1) q(x) contains at most k + n variables;
(2) in every extension J of the SE-instance Iq|SE

with SI ∪ S′I -facts such that
(a) J satisfies all rules of Π′ and does not contain goal(xp) and
(b) for each PN (z |xp) ∈ q, N ⊆ I`′′,n, there is an L ∈ N such that L[zxp/a`′′,n] =

J |SI∪S′I , z

there is an L ∈M such that L[yxp/a`′,n] = J |SI∪S′I ,y

We also include all rules of the form P∅(y |xp)→ goal(xp). This finishes the construction
of Γc. It is straightforward to verify that Γc is sound for Π. It is complete in the same sense
as Π′.

Lemma 7.6. Γc is sound for Π. It is complete for Π on n-marked instances of treewidth
(`, k) with n parameters in the sense that for any such instance (I, c), I |= Π(c) implies
I |= Γc(c).

The proof of Lemma 7.6 is similar to that of Lemma 6.6, details are omitted. In analogy
with Theorem 6.7, we can then obtain the following result about canonical DLog programs.

Theorem 7.7. Let Π be an n-ary MDDLog program, 0 < ` ≤ k, and Γc the canonical
(`, k)-DLog program with n parameters associated with Π. Then

(1) Γ ⊆ Γc for every (`, k)-DLog program Γ that is sound for Π;
(2) Π is rewritable into (`, k)-DLog with n parameters iff Γc is a rewriting of Π.

Note that, as a consequence of Theorem 7.7, an n-ary MDDLog program Π is DLog-
rewritable (in the standard sense, without parameters) iff the canonical (`, k)-DLog program
with n parameters is a rewriting, for some `, k. In a sense, this exactly parallels the
behaviour of canonical DLog programs in the Boolean case. As an important consequence,
the reductions presented in Lemmas 7.3 and 7.4 show that if DLog-rewritability of Boolean
programs turns out to be decidable (without assuming equality), then the same is true for
DLog-rewritability of non-Boolean programs. Theorems 4.6 and 6.3

7.3. Shape of Rewritings and Obstructions. We now analyze the shape of rewritings
of non-Boolean MDDLog programs. An (`, k)-tree decomposition with n parameters of an
n-ary CQ q is an (`+ n, k + n)-tree decomposition of q in which every bag Bv contains all
answer variables of q. The treewidth with n parameters of an n-ary CQ is now defined in
the expected way.
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Theorem 7.8. Let Π be an n-ary MDDLog program of diameter k. Then

(1) if Π is FO-rewritable, then it has a UCQ-rewriting in which each CQ has treewidth (1, k)
with n parameters;

(2) if Π is rewritable into MDLog with n parameters, then it has an MDLog-rewriting with
n parameters of diameter k.

Note that Theorem 7.8 is immediate from Theorem 5.1 and Lemmas 7.3 and 7.4 when k
denotes the rule size of Π instead of its diameter. To get the improved version, one needs to
carefully trace the construction of rewritings, starting with rewritings for the CSPs ultimately
constructed and then through the proofs of Lemmas 4.2, 7.4, and 7.3. In particular, the
constructions in Lemmas 4.2 and 7.4 interplay in a subtle way that can be exploited to
improve the bound. Details are given in Appendix C.

As in the Boolean case, rewritings are closely related to obstructions. We define
obstruction sets for MMSNP formulas with free variables and summarize the results that
we obtain for them. A set of marked obstructions O for an MMSNP formula θ with n free
variables over schema SE is a set of n-marked instances over the same schema such that for
any SE-instance I, we have I 6|= θ[a] iff for some (O, c) ∈ O, there is a homomorphism h
from O to I with h(c) = a. We obtain the following corollary from Point 1 of Theorem 7.8
in exactly the same way in which Corollary 5.2 is obtained from Point 1 of Theorem 5.1.

Corollary 7.9. For every MMSNP formula θ with n free variables, the following are
equivalent:

(1) θ is FO-rewritable;
(2) θ has a finite marked obstruction set;
(3) θ has a finite set of finite marked obstructions of treewidth (1, k) with n parameters.

It is interesting to note that this result can be viewed as a generalization of the
characterization of obstruction sets for CSP templates with constants in terms of ‘c-acyclicity’
in [AtCKT11]; our parameters correspond to constants in that paper. We now turn to
MDLog-rewritability.

Proposition 7.10. Let θ be an MMSNP formula of diameter k with n free variables. Then
¬θ is rewritable into an MDLog program with n parameters iff θ has a set of marked
obstructions (equivalently: finite marked obstructions) that are of treewidth (1, k) with n
parameters.

Proof. The “only if” direction is a consequence of Point 2 of Theorem 7.8 and the fact that,
for any MDLog program Π ≡ ¬θ with n parameters of diameter k over EDB schema SE , a
proof tree for goal(c) from an SE-instance I and Π gives rise to a finite n-marked SE-instance
(J, c) of treewidth (1, k) with n parameters that satisfies J → I. The “if” direction is a
consequence of the fact that the canonical (1, k)-DLog program with parameters associated
with ¬θ viewed as an MDDLog program is complete on inputs of treewidth (1, k, n) with n
parameters in the sense of Lemma 7.6.

As an illustration, it might be interesting to reconsider Example 7.2. The unary MDDLog
program shown there is the negation of a unary MMSNP formula that has as a set of marked
obstructions the set of all R-cycles on which one element is the marked element. Each of
these obstructions has treewidth (1, 2) with one parameter, but not treewidth (1, 2) in the
strict sense.



15:32 C. Feier, A. Kuusisto, and C. Lutz Vol. 15:2

8. Ontology-Mediated Queries

While the results on disjunctive Datalog and on MMSNP obtained in the previous sections
are interesting in their own right, our premier aim is to study fundamental question of
rewritability in the context of ontology-mediated queries (OMQs). Such questions have
received a lot of interest in the OMQ context, see for example [BtCLW14, BHLW16, LS17]
and references therein. In particular, we settle an open question from [BtCLW14] by showing
that in the OMQ language (ALCI,CQ), introduced in detail below, FO-rewritability is
decidable and 2NExpTime-complete. In what follows, we first introduce several prominent
description logics to serve as ontology languages and, based on that, ontology-mediated
queries. We then show how the results from the previous sections can be used to obtain
results about ontology-mediated queries.

8.1. Preliminaries. In description logics, ontologies are defined by so-called TBoxes. A
TBox, in turn, is a set of inclusions (that is, logical implications) between concepts (that
is, logical formulas), and possibly also additional kinds of statements. Each description
logic is determined by the constructors that are available to build up concepts and by the
statements that are allowed in TBoxes. Here, we introduce the widely known description
logics ALC, ALCI, and SHI, listed in the order of increasing expressive power. We refer
the reader to [BHLS17] for a more thorough introduction to DLs.

An ALCI-concept is formed according to the syntax rule

C,D ::= > | ⊥ | A | ¬C | C uD | C tD | ∃r.C | ∃r−.C | ∀r.C | ∀r−.C
where A ranges over a fixed countably infinite set of concept names and r over a fixed
countably infinite set of role names. An ALC-concept is an ALCI-concept in which the
constructors ∃r−.C and ∀r−.C are not used. An ALC-TBox (resp. ALCI-TBox) is a finite set
of concept inclusions C v D, C and D ALC-concepts (resp. ALCI-concepts). While ALCI
extends ALC with additional concept constructors, SHI extends ALCI with additional
types of TBox statements. There is thus no need to define SHI-concepts as these are simply
ALCI-concepts. A role is either a role name or an expression r− with r a role name. A
SHI-TBox is a finite set of

• concept inclusions C v D, C and D ALCI-concepts,
• role inclusions r v s, r and s roles, and
• transitivity statements trans(r), r a role name.

DL semantics is given in terms of interpretations. An interpretation takes that form
I = (∆I , ·I) where ∆I is a non-empty set called the domain and ·I is the interpretation
function which maps each concept name A to a subset AI ⊆ ∆I and each role name r to a
binary relation rI ⊆ rI × rI . Note that an interpretation is simply a notational variant of a
relational FO-structure that interprets only unary and binary relations. The interpretation
function is extended to compound concepts in the standard way, as given in Figure 2. An
intepretation is a model of a TBox T if it satisfies all statements in T , that is,

• C v D ∈ T implies CI ⊆ DI ;
• r v s ∈ T implies rI ⊆ sI ;
• trans(r) ∈ T implies that rI is transitive.

For roles r, s, we write T |= r v s if every model I of T satisfies rI ⊆ sI .
In description logic, data is typically stored in so-called ABoxes. For uniformity with

MDDLog, we use instances instead, identifying unary relations with concept names, binary
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(¬C)I = ∆I \ CI

(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

(∃r.C)I = {d ∈ ∆I | ∃e ∈ CI : (d, e) ∈ rI}
(∃r−.C)I = {d ∈ ∆I | ∃e ∈ CI : (e, d) ∈ rI}

(∀r.C)I = {d ∈ ∆I | ∀e ∈ ∆I : (d, e) ∈ rI ⇒ e ∈ CI}
(∀r−.C)I = {d ∈ ∆I | ∀e ∈ ∆I : (e, d) ∈ rI ⇒ e ∈ CI}.

Figure 2: Semantics of ALCI-concepts

relations with role names, and disallowing relations of any other arity. An interpretation
I is a model of an instance I if A(a) ∈ I implies a ∈ AI and r(a, b) ∈ I implies (a, b) ∈ rI .
We say that an instance I is consistent with a TBox T if I and T have a joint model.

An ontology-mediated query (OMQ) over a schema SE is a triple (T ,SE , q) where T
is a TBox formulated in a description logic and q is a query. The TBox can introduce
symbols that are not in SE , which allows it to enrich the schema available for formulating
the query q. In fact, q can use symbols from SE , additional symbols from T , and also
completely fresh symbols (which is useful only in very rare cases). As the TBox language,
we may use any of the description logics introduced above. Since all these logics admit only
unary and binary relations, we assume that these are the only allowed arities in schemas
throughout Section 8. As the actual query language, we use UCQs and CQs. The OMQ
languages that these choices give rise to are denoted with (ALC,CQ), (SHI,UCQ), and
so on. In the actual query, we generally disallow the use of role names r such that for
some role name s, trans(s) ∈ T and T |= s v r. In fact, admitting such roles in the
query poses serious additional complications, which are outside the scope of this paper;
see e.g. [BEL+10, GPT13]. To make the restriction explicit, we add a superscript ·− to
OMQ languages when the DL used permits transitivity statements in the TBox, such as in
(SHI,UCQ)−.

The semantics of an OMQ is given in terms of certain answers. Let I be an SE-instance
and a a tuple of constants from I. We write I |= Q(a) and call a a certain answer to Q on
I if for all models I of I and T , we have I |= q(a). The latter denotes satisfaction of q(a)
in I in the usual sense of first-order logic.

Example 8.1. Let Q = (T ,SE , q) be the following OMQ, formulated in (ALC,CQ):

T = { ∃hasAbn.CTest v Smoker t ∃hasRisk.MTC, (1)

∃hasAbn.CTest u ∃hasRisk.MEN2 v ∃hasRisk.MTC, (2)
PCCPatient v ∃hasRisk.MEN2 (3)

∃hasRelative.∃hasRisk.MEN2 v ∃hasRisk.MEN2 } (4)

SE = { hasAbn, CTest, Smoker, hasRelative, PCCPatient }
q(x) = hasRisk(x, y) ∧ MTC(y).

The TBox T describes the risk of somebody having medullary thyroid cancer (MTC) in the
presence of an abnormal calcitonin test (CTest). While abnormal calcitonin levels are a
marker for MTC, there can also be false positives, for example due to smoking (Line 1 of T ).
However, in the presence of a high risk for the genetic syndrome MEN2, high calcitonin levels
immediately raise an MTC suspicion (Line 2). Pheochromocitoma patients (PCCPatient)
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have a high MEN2 risk (Line 3). As MEN2 is caused by a genetic mutation, the risk carries
within families (Line 4). On the SE-instance

hasAbn(john, t), CTest(t), Smoker(john), hasRelative(john, anna), PCCPatient(anna),

the only certain answer to Q is john.

An OMQ Q = (T ,SE , q) is FO-rewritable if there is an FO query ϕ(x) over schema SE
(and possibly involving equality), called an FO-rewriting of Q, such that for all SE-instances
I and a ⊆ dom(I), we have I |= Q(a) iff I |= ϕ(a). Other notions of rewritability such as
UCQ-rewritability and MDLog-rewritability are defined accordingly.

Note that the TBox T can be inconsistent with the input instance I, that is, there
could be no joint model of T and I. It can thus be a sensible alternative to work with
consistent FO-rewritability, considering only SE-instances I that are consistent w.r.t. T . This
can then be complemented with rewritability of inconsistency for T , that is, rewritability
of the Boolean OMQ (T ,SE ,∃xA(x)), A(x) a fresh concept name, which is true on an
SE-instance I iff I is inconsistent with T . It is not hard to prove, though, that consistent
Q-rewritability can be reduced to Q-rewritability in polynomial time for all OMQ languages
condidered in this paper and all Q ∈ {FO,MDLog,DLog}; see the corresponding proof
for query containment in [BL16]. Moreover, rewritability of consistency was studied in
[BtCLW14] and shown to be NExpTime-complete for all OMQ languages considered in this
paper.

8.2. Rewritability of OMQs. We now lift the results from earlier sections to OMQs.
There is a known equivalence-preserving translation from the relevant OMQ languages
to MDDLog, but it involves a double exponential blowup [BtCLW14] that most likely is
unavoidable.4 We refine this translation and carefully trace the parameters in which the
blowup occurs to show that, despite these blowups, the complexity of the relevant problems
does not increase. The following is our main result concerning OMQs.

Theorem 8.2. In all OMQ languages between (ALC,UCQ) and (SHI,UCQ)−, as well as
between (ALCI,CQ) and (SHI,CQ)−,

(1) FO-rewritability (equivalently: UCQ-rewritability) is 2NExpTime-complete; in fact,

there is an algorithm which, given an OMQ Q = (T ,SE , q), decides in time 22p(nq ·lognT )

whether Q is FO-rewritable;
(2) MDLog-rewritability is in 3ExpTime (and 2NExpTime-hard); in fact, there is an

algorithm which, given an OMQ Q = (T ,SE , q), decides in time 222p(nq ·lognT )

whether Q
is MDLog-rewritable

where nq and nT are the size of q and T and p is a polynomial.

Note that the runtime for deciding FO-rewritability stated in Theorem 8.2 is double
exponential only in the size of the actual query q (which tends to be very small) while it is
only single exponential in the size of the TBox (which can become large) and similarly for
MDLog-rewritability, only one exponential higher.

The lower bounds in Theorem 8.2 are from [BL16]. To prove the upper bounds, we first
give a refined translation from OMQs to MDDLog. A proof is provided in Appendix D.

4It was shown in [BtCLW14] that a single exponential blowup is unavoidable. Whether the blowup has to
be double exponential is an open problem.
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Theorem 8.3. For every OMQ Q = (T ,SE , q) from (SHI,UCQ)−, one can construct an
equivalent MDDLog program Π such that

(1) the size of Π is bounded by 22p(nq ·lognT )
;

(2) the IDB schema of Π is of size at most 2p(nq ·lognT );
(3) the rule size of Π is bounded by nq
where nq and nT are the size of q and T and p is a polynomial. The construction takes time
polynomial in the size of Π.

Let Q be an OMQ from (SHI,UCQ)−. Instead of deciding FO- or MDLog-rewritability
of Q, we can decide the same problem for the MDDLog program delivered by Theorem 8.3.
The bounds stated in Theorem 8.3, Lemmas 7.3 and 7.4, and Theorems 3.2 and 3.3, though,
only guarantee that we obtain a CSP template with 3-exponentially many elements, which
does not yield 2NExpTime upper bounds. However, it is possible to combine the construction
underlying Theorem 8.3 with those underlying Lemmas 7.3 and 7.4 and Theorem 3.2 to
obtain the following.

Lemma 8.4. Given an OMQ Q = (T ,SE , q) from (SHI,UCQ)− with T of size nT and
q of size nq, one can construct a simple MDDLog program ΠQ over an aggregation EDB
schema S′E such that

(1) Q is Q-rewritable iff ΠQ is Q-rewritable for every Q ∈ {FO,UCQ,MDLog};
(2) the size of ΠQ and the cardinality of S′E are bounded by 22p(nq ·lognT )

and the arity of
relations in S′E is bounded by max{nq, 2};

(3) the IDB schema of ΠQ is of size 2p(nq ·lognT )

where p is a polynomial. The construction takes time polynomial in the size of ΠQ.

A proof is provided in Appendix E. Constructing a CSP template from this refined
simple program and applying the decision procedures for rewritability of CSP templates, we
obtain the upper bounds stated in Theorem 3.3.

We remark that it is not possible to extend Theorem 8.2 to description logics with
functional roles or number restrictions since, in such DLs, FO-rewritability of OMQs is
undecidable [BtCLW14]. The proof can be adapted to MDLog-rewritability.

The results about the shape of rewritings stated in Theorem 7.8 (of course) also apply
to the OMQ case. Note that, in Points 1 and 2 of that theorem, we can then replace k with
max{nq, 2}. Moreover, the canonical DLog programs introduced for MDDLog in Section 7
can also be utilized for OMQs via the translation underlying the proof of Theorem 8.3.

Regarding Datalog-rewritability of OMQs, we obtain a potentially incomplete decision
procedure by combining Theorem 8.3 with Lemmas 7.3 and 7.4 and the algorithm from
Section 6. It is possible to define a class of OMQs (T ,SE , q) that have equality and for
which this procedure is complete. Roughly, SE needs to contain a relation eq and T enforces
that for all models I of T and all (d, e) ∈ eqI , d and e satisfy exactly the same subconcepts
of T and exactly the same tree contractions of q and then taking a subquery. We refrain
from working out the details.

9. Dichotomy and Deciding PTime Query Evaluation

There was a recent breakthrough in research on CSPs, independently achieved by Bulatov
and by Zhuk, who have proved the long standing Feder-Vardi conjecture thus establishing a
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dichotomy between PTime and NP for the complexity of CSPs [Bul17, Zhu17]. Together
with results by Chen and Larose [CL17], this also implies that it is decidable and NP-
complete whether the CSP defined by a given template has PTime complexity. We observe
that, together with the translations given in this paper, we obtain several interesting results
on MMSNP, MDDLog, and OMQs.

In particular, we consider the (data) complexity of query evaluation, which is defined
in the expected way. For example, each OMQ Q = (T ,SE , q) gives rise to the following
query evaluation problem: given an SE-instance I and a tuple a ⊆ dom(I), decide whether
I |= Q(a). This problem is guaranteed to be in coNP when Q is from any of the OMQ
languages studied in this paper [BtCLW14], but of course there are also OMQs Q for which
it is in PTime or even simpler and from a practical perspective it is very important to
understand the exact complexity of evaluating the concrete queries that are relevant for the
application at hand. The definition of query evaluation is analogous for MDDLog and for
MMSNP; note that MMSNP only gives rise to Boolean queries and that there is an NP
upper bound for the complexity rather than a coNP one.

The question of PTime query evaluation also comes with an associated ‘meta prob-
lem’: given an OMQ Q (or a query from some other relevant language), decide whether Q
admits PTime query evaluation. We remark that the data complexity of OMQs as well
as the associated meta problem and dichotomy questions have received significant inter-
est [BtCLW14, LW17, LS17, HLW17, LSW15, LSW13, CDL+13]. The following theorem
summarizes our results regarding the complexity of query evaluation.

Theorem 9.1. In MDDLog and all OMQ languages between (ALC,UCQ) and (SHI,UCQ)−,
as well as between (ALCI,CQ) and (SHI,CQ)−,

(1) there is a dichotomy in the complexity of query evaluation between PTime and coNP;
(2) deciding PTime-query evaluation is 2NExpTime-complete.

The same holds for MMSNP, with coNP replaced by NP in Point (1).

Proof. For MMSNP, it is well-known that there is a dichotomy for query evaluation between
PTime and NP iff there is such a dichotomy for the complexity of CSPs. This gives
the MMSNP version of (1). In fact, it is even known that the constructions from the
proofs of Theorems 3.2 and 3.3, which transform an MMSNP sentence into a CSP, preserve
complexity up to polynomial time reductions [FV98, Kun13]. We thus obtain the upper
bound in the MMSNP version of (2). The lower bound is obtained from the reduction used
in [BL16] to show that the Datalog-rewritability of (the complement of) MMSNP sentences
is 2NExpTime-hard. The proof is by reduction of a tiling problem. Given such a tiling
problem, one constructs an MMSNP sentence ϕ such that ϕ is FO-rewritable if there is a
tiling and equivalent to 3-colorability (thus not Datalog-rewritable and NP-hard) otherwise.
Clearly, such a reduction also yields 2NExpTime-hardness of PTime query evaluation.

For the cases of MDDLog and for OMQs, lower bounds are obtained along the same lines,
that is, by observing that the lower bound constructions from [BL16] are directly applicable.
For the upper bounds and the dichotomies, we first observe that the construction in the
proofs of Lemma 7.4 preserves complexity up to polynomial time reductions (which is implicit
in the proof) and recall that the translation in Lemma 8.4 is even equivalence-preserving. It
thus remains to deal with Lemma 7.3. There, an n-ary MDDLog program Π is translated
into a family of Boolean MDDLog programs (with constants) Πc, c ∈ Cn where C is fixed
set of n constants. The claim formulated in the proof of Lemma 7.3 provides
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(1) a polynomial time reduction of evaluating Π to evaluating the programs Πc: given an
instance I and an a ⊆ Ind(I), to decide whether I |= Π(a) choose c with a ≈ c and
check whether I[c/a] |= Πc;

(2) for each c ∈ Cn, a polynomial time reduction of evaluating Πc to evaluating Π: given
an instance I, to decide whether I |= Πc check whether I |= Π(c).

It follows that Π can be evaluated in PTime iff all of the programs Πc can. This is enough
to transfer the upper bound for deciding PTime query evaluation. For dichotomy, we
additionally need that if one of the programs Πc is coNP-hard, then so is Π, which follows
from (2).

10. Discussion

We have clarified the decidability status and computational complexity of FO- and MDLog-
rewritability in MMSNP, MDDLog, and various OMQ languages based on expressive de-
scription logics and conjunctive queries, and we also made several interesting observations
regarding dichotomies and the decidability and complexity of PTime query evaluation. For
Datalog-rewritability, we were only able to obtain partial results, namely a sound algorithm
that is complete on a certain class of inputs and potentially incomplete in general. This raises
several natural questions: is our algorithm actually complete in general? Does an analogue
of Lemma 4.4 (that is, rewritability on instances of high girth implies rewritability) hold for
Datalog as a target language? What is the complexity of deciding Datalog-rewritability in the
afore-mentioned languages? From an OMQ perspective, it would also be important to work
towards more practical approaches for computing (FO-, MDLog-, and DLog-) rewritings.
Given the high computational complexities involved, such approaches might have to be
incomplete to be practically feasible. However, the degree/nature of incompleteness should
then be characterized, and we expect the results in this paper to be helpful in such an
endeavour.
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Appendix A. Translating Boolean MDDLog to generalized CSP

A.1. From MDDLog to Simple MDDLog. Let Π be a Boolean MDDLog program over
schema SE and of diameter k. We first construct from Π an equivalent Boolean MDDLog
program ΠB such that the following conditions are satisfied:

(i) all rule bodies are biconnected, that is, when any single variable is removed from
the body (by deleting all atoms that contain it), then the resulting rule body is still
connected;

(ii) if R(x, . . . , x) occurs in a rule body with R EDB, then the body contains no other
EDB atoms.

A good way to think about what is achieved in this first step is that, when the resulting
program is evaluated on an instance of bounded treewidth, then it suffices to map the rule
bodies to individual bags while it is never necessary to cross ‘bag boundaries’.

To construct ΠB, we first extend Π with all contractions of rules in Π; we will refer to
this step as the collapsing step. We then split up rules that are not biconnected into multiple
rules by exhaustively executing the following rewriting steps:

• replace every rule p(y) ← q1(x1) ∧ q2(x2) where x1 and x2 share exactly one variable
x but both contain also other variables with the rules p1(y1) ∨ Q(x) ← q1(x1) and
p2(y2) ← Q(x) ∧ q2(x2), where Q is a fresh monadic IDB relation and pi(yi) is the
restriction of p(y) to atoms that are nullary or contain a variable from xi, i ∈ {1, 2};
• replace every rule p(y) ← q1(x1) ∧ q2(x2) where x1 and x2 share no variables and are

both non-empty with the rules p1(y1) ∨Q()← q1(x1) and p2(y2)← Q() ∧ q2(x2), where
Q() is a fresh nullary IDB relation and the pi(yi) are as above;
• replace every rule p(y)← R(x, . . . , x) ∧ q(x) where R is an EDB relation and q contains

at least one EDB atom and the variable x, with the rules Q(x) ← R(x, . . . , x) and
p(y)← Q(x) ∧ q(x), where Q is a fresh monadic IDB relation.

It is easy to see that the resulting program ΠB is equivalent to the original program Π and
that all ΠB satisfies Conditions (i) and (ii) above.

We next construct from ΠB the desired simple program ΠS by replacing, in every rule,
the EDB atoms in the rule body with a single EDB atom that represents the conjunction of
all atoms replaced. We thus introduce fresh EDB relations that represent conjunctions of
old EDB relations. Note that there can be implications between the new EDB relations that
we will have to take care of in the construction of ΠB.

Let QΠ denote the set of CQs that can be obtained from a rule body in ΠB by consistently
renaming variables, using only variables that occur in ΠB. Let SI be the IDB schema of ΠB .
For every q(x) ∈ QΠ, we write q(x)|SE

to denote the restriction of q(x) to SE-atoms, and
likewise for q(x)|SI

and IDB atoms. The EDB schema S′E of ΠS consists of the relations
Rq(x)|SE

, q(x) ∈ QΠ, whose arity is the number of variables in q(x) (which, by construction

of ΠB, is identical to the number of variables in q(x)|SE
). The program ΠS consists of the

following rules:

whenever p(y)← q1(x1) is a rule in ΠB, q2(x2) ∈ QΠ, and q1(x1) ⊆ q2(x2),
then ΠS contains the rule p(y)← Rq2(x2)(x2) ∧ q1(x1)|SI

The case where q1(x1) is identical to q2(x2) corresponds to adapting rules in ΠB to the new
EDB signature and the other cases take care of implications between EDB relations.
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Example A.1. Assume that ΠB contains the following rules, where A and r are EDB
relations:

P (x3)← A(x1) ∧ r(x1, x2) ∧ r(x2, x3) ∧ r(x3, x1)

goal()← r(x1, x2) ∧ r(x2, x3) ∧ r(x3, x1)∧
P (x1) ∧ P (x2) ∧ P (x3)

A new ternary EDB relation Rq2 is introduced for the EDB body atoms of the lower rule,
where q2 = r(x1, x2)∧r(x2, x3)∧r(x3, x1), and a new ternary EDB relation Rq1 is introduced
for the upper rule, q1 = A(x1) ∧ q2. In ΠS , the rules are replaced with

P (x3)← Rq1(x1, x2, x3)

goal()← Rq2(x1, x2, x3) ∧ P (x1) ∧ P (x2) ∧ P (x3)

goal()← Rq1(x1, x2, x3) ∧ P (x1) ∧ P (x2) ∧ P (x3)

Note that q2 ⊆ q1 and thus q1 logically implies q2, which results in two copies of the goal
rule to be generated.

Proof details for the following lemma can be found in [BL16]. Recall that k is the
diameter of the original MDDLog program Π.

Lemma A.2.

(1) If I is an SE-instance and I ′ the corresponding S′E-instance, then I |= Π iff I ′ |= ΠS;
(2) If I ′ is an S′E-instance and I the corresponding SE-instance, then

(a) I ′ |= ΠS implies I |= Π;
(b) I |= Π implies I ′ |= ΠS if the girth of I ′ exceeds k.

The following example demonstrates why the restriction to high girth instances in
Point 2b of Lemma A.2 is necessary, see also Example 3.1.

Example A.3. Consider the programs ΠB and ΠS from Example A.1. Take the S′E-instance
I ′ defined by

Rq1(a, a′, c′), Rq1(b, b′, a′), Rq1(c, c′, b′).

It can be verified that I ′ 6|= ΠS . But the corresponding SE-instance I is such that ΠB derives
the IDB relation P at a′, b′, and c′, and additionally I contains the facts

r(c′, b′), r(b′, a′), r(a′, c′)

which are not covered by any fact in I ′. Thus clearly I |= ΠB.

A.2. From Simple MDDLog to Generalized CSP. Let Π be a simple MDDLog program
over EDB schema SE and with IDB schema SI . For i ∈ {0, 1}, an i-type is a set t of relation
symbols from SI of arity at most i that does not contain goal() and that satisfies all rules
in Π which use only IDB relations of arity at most i and do not involve any EDB relations.

We build a template Tθ for each 0-type θ. The elements of Tθ are exactly the 1-types
that agree with θ on nullary IDB relations. Tθ consists of the following facts:

(1) P () for each nullary P ∈ θ.
(2) P (t) for each 1-type t and each monadic P ∈ t;
(3) R(t1, . . . , tn) for each relation R ∈ SE and all 1-types t1, . . . , tn such that Π does not

contain a rule

P (xi)← R(x1, . . . , xn) ∧ P1(xi1) ∧ · · · ∧ Pn(xin)

such that Pj ∈ tij for 1 ≤ j ≤ n, and P /∈ ti.
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The following was observed in [FV98].

Lemma A.4. For any SE-instance I, we have I |= Π iff I 6→ Tθ for all 0-types θ.

Appendix B. MDLog-Rewritability of Generalized CSP

In the proof of the subsequent theorem, we use obstructions of CSPs, which are defined in
Section 5.

Theorem B.1. Given a finite set of templates S, it can be decided in ExpTime whether
coCSP(S) is MDLog-rewritable.

Proof. Consider coCSP(S) over schema SE with S := {T1, . . . , Tn}. We start with observing
that we can assume that the templates in S are mutually homomorphically incomparable: if
this is not the case, we remove templates that are not homomorphically minimal and further
remove templates so that none of the remaining templates are homomorphically equivalent.
Clearly, this is equivalence preserving and can be done in ExpTime.

We aim to show that coCSP(S) is MDLog-rewritable if and only if coCSP(Ti) is for
all i ∈ {1, . . . , n}, which gives the desired ExpTime upper bound. The “if” direction is
immediate since the union of MDLog programs is expressible as an MDLog program. For the
“only if” direction, assume that coCSP(S) is MDLog-rewritable, and let Γ denote a concrete
rewriting. Consider a template Tj and let O(Tj) denote the set of all finite SE-instances of
treewidth (1, k) that do not homomorphically map to Tj where k is the maximum number
of variables that occur in a single rule of Γ. We will show that O(Tj) is an obstruction
set for Tj . It then follows from Theorem 23 of [FV98], which says that the existence of
an obstruction set of treewidth (1, k) for some fixed k implies MDLog-rewritability, that
coCSP(Tj) is MDLog-rewritable.

By definition of O(Tj), it is immediate that if O → I for some O ∈ O(Tj) and SE-
instance I, then I 6→ Tj . We now establish the converse. Assume that I 6→ Tj . Consider the
disjoint union U of I and Tj . Since the templates in S are homomorphically incomparable,
U 6→ Ti for all i ∈ {1, . . . , n}. Thus U |= Γ and there is a proof tree for goal() from U
and Γ. From that tree, we can read off an SE-instance J such that J → U , J has treewidth
(1, k), and J |= Γ. From the latter, we get J 6→ Tj . There must thus also be a connected
component O of J with O 6→ Tj . We clearly have O ∈ O(Tj). Since O → U , O 6→ Tj , and
O is connected, we moreover get O → I which finishes the proof.

Appendix C. Proof of Theorem 7.8

Theorem 7.8. Let Π be an n-ary MDDLog program of diameter k. Then

(1) if Π is FO-rewritable, then it has a UCQ-rewriting in which each CQ has treewidth (1, k)
with n parameters;

(2) if Π is rewritable into MDLog with n parameters, then it has an MDLog-rewriting with
n parameters of diameter k.

Proof. We treat the two cases, FO-rewritability and MDLog-rewritability with parameters,
in parallel in a uniform way. To achieve uniformity, recall that FO-rewritability coincides
with UCQ-rewritability by Proposition 4.1 and observe that a UCQ-rewriting of treewidth
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(1, k) with n parameters can be converted into a non-recursive MDLog-rewriting with n
parameters of diameter k and vice versa. We work with the latter.

Assume that an n-ary MDDLog program Π over EDB schema SE is rewritable into
(non-recursive) MDLog with n parameters. We can convert

(1) Π into Boolean MDDLog programs Π1, . . . ,Πk with constants (Lemma 7.3),
(2) Π1, . . . ,Πk into Boolean MDDLog programs Π′1, . . . ,Π

′
k without constants (Lemma 7.4),

(3) Π′1, . . . ,Π
′
k into simple Boolean MDDLog programs Π′′1, . . . ,Π

′′
k (Theorem 3.2), and

(4) Π′′1, . . . ,Π
′′
k into CSP templates T1, . . . , Tk (Theorem 3.3)

such that all these programs and (complements of) templates are rewritable into (non-
recursive) MDLog. Moreover, in the proofs of the mentioned lemmas and theorems, it is
shown how to construct (non-recursive) MDLog-rewritings of Π′′1, . . . ,Π

′′
k from given ones of

T1, . . . , Tk, for Π′1, . . . ,Π
′
k from given ones of Π′′1, . . . ,Π

′′
k, and so on. We are going to analyze

these constructions in more detail.
We first note that for any (non-recursive) MDLog-rewritable CSP, there is a (non-

recursive) MDLog-rewriting where every rule body has at most one EDB atom that contains
all variables which occur in the rule body. Since each program Π′′i is actually equivalent to
the complement of the CSP template Ti in Step 4, the same is true for the programs Π′′i .
Thus, there is a (non-recursive) MDLog-rewriting Γ′′i of Π′′i in which

(†) each rule body has at most one EDB atom that contains all variables.

The translation of Π′i into Π′′i in Step 3 involves replacing the EDB schema SE with an
aggregation schema S′E . More precisely, S′E consists of relations Rq(x) where q(x) is obtained
from a rule body in Π′i by first contracting, then splitting up the body into biconnected
components, and finally dropping all IDB relations. When translating the rewriting Γ′′i of
Π′′i into a rewriting Γ′i of Π′i, this change in schema is reverted. By (†), the diameter of Γ′i
is thus bounded by the arity of relations in Γ′′i and that arity, in turn, is bounded by the
diameter of Π′i. What’s more important, though, is that we actually know what the rule
bodies in Γ′i look like:

(‡) every rule body in Γ′i is obtained from a rule body in Π′i by first contracting, then
splitting up the body into biconnected components, then dropping all IDB relations, and
finally decorating with some fresh IDB relations without introducing fresh variables.

Now consider the translation of Πi into Π′i in Step 2 and the corresponding translation of
Γ′i into a rewriting Γi of Πi. In the former, we dejoin rule bodies by (sometimes) replacing
different occurrences of the same variable x with different variables x1, x2 and adding the
atoms Rj(x1) and Rj(x2) for some j, thus increasing the diameter. In the latter, we rejoin
the dejoined rules in Γ′i in the sense that we replace variables x, y with the same constant cj
whenever the rule body contains the (EDB) atoms Rj(x) and Rj(y). It can be verified that
rejoining any rule body of the form (‡) results in a rule body whose diameter is bounded by
the diameter of Π′i. This gives the desired result since Step 1 preserves diameter.

Appendix D. Proof of Theorem 8.3

Theorem 8.3. For every OMQ Q = (T ,SE , q) from (SHI,UCQ)−, one can construct an
equivalent MDDLog program Π such that

(1) the size of Π is bounded by 22p(nq ·lognT )
;

(2) the IDB schema of Π is of size at most 2p(nq ·lognT );
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(3) the rule size of Π is bounded by nq
where nq and nT are the size of q and T and p is a polynomial. The construction takes time
polynomial in the size of Π.

Proof. Let Q = (T ,SE , q0) be an OMQ from (SHI,UCQ) and let nq0 and nT be the size
of q0 and T , respectively. We use sub(T ) to denote the set of subconcepts of (concepts
occurring in) T . Moreover, let Γ be the set of all tree CQs that can be obtained from a CQ
in q0 by first existentially quantifying all answer variables, then contracting, and then taking
a subquery. Every q ∈ Γ can be viewed as a ALCI-concept provided that we additionally
choose a root x of the tree. We denote this concept with Cq,x. For example, the tree CQ
q = ∃x∃y∃z r(x, y) ∧ A(y) ∧ s(x, z) and choice of x as the root yields the ALCI-concept
Cq,x = ∃r.A u ∃s.>. Let con(q0) be the set of all these concepts Cq,x and let SI be the

schema that consists of monadic relation symbols PC and PC for each C ∈ sub(T )∪ con(q0)
and nullary relation symbols Pq and P q for each q ∈ Γ. We are going to construct an
MDDLog program Π over EDB schema SE and IDB schema SI that is equivalent to Q.

By a diagram, we mean a conjunction δ(x) of atoms over the schema SE ∪ SI . For an
interpretation I, we write I |= δ(x) if there is a homomorphism from δ(x) to I, that is, a
map h : x→ ∆I such that:

(1) A(x) ∈ δ with A ∈ SE implies h(x) ∈ AI ;
(2) r(x, y) ∈ δ with r ∈ SE implies (h(x), h(y)) ∈ AI ;
(3) Pq() ∈ δ implies I |= q and P q() ∈ δ implies I 6|= q;

(4) PC(x) ∈ δ implies h(x) ∈ CI and PC() ∈ δ implies h(x) /∈ CI .
We say that δ(x) is realizable if there is an model I of T with I |= δ(x). A diagram δ(x)
implies a CQ q(x′), with x′ a tuple of variables from x, if every homomorphism from δ(x)
to some model I of T is also a homomorphism from q(x′) to I. The MDDLog program Π
consists of the following rules:

(1) the rule Pq() ∨ P q()← true(x) for each q ∈ Γ;

(2) the rule PC(x) ∨ PC(x)← true(x) for each C ∈ sub(T ) ∪ con(q0);
(3) the rule ⊥ ← δ(x) for each non-realizable diagram δ(x) that contains a single variable x

and only atoms of the form PC(x), C ∈ sub(T ) ∪ con(q0);
(4) the rule ⊥ ← δ(x) for each non-realizable connected diagram δ(x) that contains at most

two variables and at most three atoms;
(5) the rule goal(x′) ← δ(x) for each diagram δ(x) that implies q0(x), has at most nq0

variable occurrences, and uses only relations of the following form: Pq, PC with C a
concept name that occurs in q0, and role names from SE that occur in q0.

To understand Π, a good first intuition is that rules of type 1 and 2 guess an interpretation
I, rules of type 3 and 4 take care that the independent guesses are consistent with each
other, with the facts in I and with the inclusions in the TBox T , and rules of type 5 ensure
that Π returns the answers to q0 in I.

However, this description is an oversimplification. Guessing I is not really possible
since I might have to contain additional domain elements to satisfy existential quantifiers
in T which may be involved in homomorphisms from (a CQ in) q0 to I, but new elements
cannot be introduced by MDDLog rules. Instead of introducing new elements, rules of type 1
and 2 thus only guess the tree CQs that are satisfied by those elements. Tree CQs suffice
because SHI has a tree-like model property and since we have disallowed the use of roles
in the query that have a transitive subrole. The notion of ‘diagram implies query’ used
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in the rules of type 5 takes care that the guessed tree CQs are taken into account when
looking for homomorphisms from q0 to the guessed model. This construction is identical
to the one used in the proof of Theorem 1 of [BtCLW13], with two exceptions. First, we
use predicates PC and PC for every concept C ∈ sub(T ) ∪ con(q0) while the mentioned
proof uses a predicate Pt for every subset t ⊆ sub(T )∪ con(q0). And second, our versions of
Rules 3-5 are formulated more carefully. It can be verified that the correctness proof given
in [BtCLW13] is not affected by these modifications. The modifications do make a difference
regarding the size of Π, though, which we analyse next.

It is not hard to see that, for some polynomial p, the number of rules of type 1 is
bounded by 2p(nq0 ), the number of rules of type 2 and of type 4 is bounded by 2p(nq0 ·lognT ),

the number of rules of type 3 is bounded by 22p(nq0 ·lognT )

, and the number of rules of type 5

is bounded by 22p(nq0 )

. Consequently, the overall number of rules is bounded by 22p(nq0 ·lognT )

and so is the size of Π. The bounds on the size of the IDB schema and number of rules in Π
stated in Theorem 8.3 are easily verified. It remains to argue that the construction can be
carried out in double exponential time. It suffices to observe two facts. First, consistency of
a given diagram δ(x) can be decided in ExpTime since the satisfiability of SHI concepts
w.r.t. TBoxes is in ExpTime [Tob01]. And second, for a given diagram δ(x) and CQ q(x′)
with x′ a tuple of variables from x, it can be decided in time single exponential in the size of
δ(x) and of T and double exponential in the size of q(x′) whether δ(x) implies q(x′). This
is a consequence of the fact that, in SHI, given an ABox A that may contain compound
concepts (in place of concept names), a TBox T , a CQ q(x) and a candidate answer a, it
can be decided in time single exponential in the size of A and T and double exponential in
the size of q whether a is a certain answer to q on A w.r.t. T [GLHS08].

Appendix E. Proof of Lemma 8.4

Lemma E.1. Given an OMQ Q = (T ,SE , q) from (SHI,UCQ)− with T of size nT and
q of size nq, one can construct a simple MDDLog program ΠQ over an aggregation EDB
schema S′E such that

(1) Q is Q-rewritable iff ΠQ is Q-rewritable for every Q ∈ {FO,UCQ,MDLog};
(2) the size of ΠQ and the cardinality of S′E are bounded by 22p(nq ·lognT )

and the arity of
relations in S′E is bounded by max{nq, 2};

(3) the IDB schema of ΠQ is of size 2p(nq ·lognT )

where p is a polynomial. The construction takes time polynomial in the size of ΠQ.

Proof. We convert Q into an MDDLog program Π0 as per Theorem 8.3 and then remove
the answer variables according to the constructions in the proofs of Lemmas 7.3 and 7.4,
which gives programs Π1 and Π2. Analyzing the latter constructions reveals that the number
of rules on Π1 is bounded by r · aa rules where r is the number of rules in Π0 and a is its
arity. Moreover, the rule size does not increase and neither the IDB schema nor the EDB
schema changes. The latter construction produces a program with r′ · ss rules where r′ is
the number of rules in Π1 and s is the rule size of Π1. Moreover, the IDB schema is not
changed and the rule size at most doubles. The EDB schema of the new program comprises a
fresh monadic relation symbols. It can thus be verified that the obtained Boolean MDDLog
program Π2 still satisfies Conditions 1-3 of Theorem 8.3 except that nq in the last point has
to be replaced by 2nq. We make this explicit for the reader’s convenience:



15:46 C. Feier, A. Kuusisto, and C. Lutz Vol. 15:2

(1) the size of Π2 is bounded by 22p(nq ·lognT )
;

(2) the IDB schema of Π2 is of size at most 2p(nq ·lognT );
(3) the rule size of Π2 is bounded by 2nq.

We next convert Π2 into a simple Boolean MDDLog program ΠQ according to Theorem 3.2.
Let us analyze the construction in detail to understand the size of ΠQ, of its EDB schema
S′E , and of its IDB schema S′I .

The initial variable identification step can be ignored. In fact, we start with at most

22p(nq ·lognT )
rules, each of size at most 2nq. Thus variable identification results in a factor

of (2nq)! regarding the program size and rule number, which is absorbed by 22p(nq ·lognT )
,

and the other relevant parameters do not change; in particular, the IDB schema remains
unchanged.

The next and central step is to make rules biconnected. Given that the rule size is
at most 2nq, this can split up each rule into at most 2nq rules. This is absorbed by the
bounds on program size and rule number. However, on first glance it might seem that we
end up with a double exponentially large IDB schema since we might have to split up a
double exponential number of rules, each time introducing at least one fresh IDB relation.
To argue that this is actually not the case, we distinguish rules of type 1-2 and 4-5 from
the construction of Π1 (proof of Theorem 8.3); note that the constructions in the proofs of
Lemmas 7.3 and 7.4 modify the rules only in a very mild way and thus for every rule in Π2

it is still clear which type it has.
We need not worry about rules of Type 1-2 and 4-5 since there are only 2p(|nq |·log|nT |)

many such rules, each of size at most 2nq, and thus the number of additional IDB relations

introduced for making them biconnected is also bounded by 2p(nq ·lognT ). Rules of type 3 in
Π0, on the other hand, are of a very restricted form, namely

⊥ ← PC1(x) ∧ · · · ∧ PCn(x)

with C1, . . . , Cn ∈ sub(T ) ∪ con(q0). These rules are biconnected and thus we are done
when Q is Boolean. In the non-Boolean case, rules of the above lead to the introduction of
additional rules in the construction in the proof of Lemma 7.4. This results in rules in Π2

that are of the form

⊥ ← PC1(x1) ∧Ri(x1) ∧ · · · ∧ PCn(xn) ∧Ri(xn)

where Ra is one of the fresh IDB relations introduced in the mentioned construction. The
latter rules have to be split up to be made biconnected. This will result in rules of the form

⊥ ← Q1() ∧ · · · ∧Qn() and Qi()← PC(x) ∧Ra(x)

Clearly, there are only 2p(nq ·lognT ) many rule bodies of the latter form and thus it suffices to
introduce at most the same number of fresh IDB relations Qi. Thus, the size of the IDB
schema of ΠQ is bounded by 2p(nq ·lognT ). Also note that, at this Point, the rule size has
(potentially) decreased and is bounded by max{nq, 2}. This is obvious for rules of Type 1-2
and 4-5, and also for the rules obtained from making rules of Type 3 biconnected, see above.

The last step is the change of EDB schema. It involves no blowups and we thus obtain
the bounds stated in Lemma 8.4. In particular, the arity of relations in S′E is bounded by
max{nq, 2} since it is bounded by the rule size of the program that we had obtained before
changing the EDB schema.
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