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Abstract—Game logic was introduced by Rohit Parikh in the
1980s as a generalisation of propositional dynamic logic (PDL) for
reasoning about outcomes that players can force in determined
2-player games. Semantically, the generalisation from programs
to games is mirrored by moving from Kripke models to monotone
neighbourhood models. Parikh proposed a natural PDL-style
Hilbert system which was easily proved to be sound, but its
completeness has thus far remained an open problem.

In this paper, we introduce a cut-free sequent calculus for
game logic, and two cut-free sequent calculi that manipulate
annotated formulas, one for game logic and one for the monotone
µ-calculus, the variant of the polymodal µ-calculus where the
semantics is given by monotone neighbourhood models instead
of Kripke structures. We show these systems are sound and
complete, and that completeness of Parikh’s axiomatization
follows. Our approach builds on recent ideas and results by
Afshari & Leigh (LICS 2017) in that we obtain completeness
via a sequence of proof transformations between the systems. A
crucial ingredient is a validity-preserving translation from game
logic to the monotone µ-calculus.

I. INTRODUCTION

A. Game logic, background and motivations

Game logic was introduced by Parikh in the 1980s [1] as
a modal logic for reasoning about the outcomes that players
can force in determined 2-player games. We refer to the two
players as Angel and Demon, following [2]. A modal formula
〈γ〉ϕ should be read as, “Angel has a strategy in the game γ
to ensure an outcome in which ϕ holds”.

Syntactically, Parikh’s game logic is an extension of propo-
sitional dynamic logic (PDL) [3] as games are composed
from atomic games and constructors that denote sequential
composition of games, as well as choice, iteration and test for
Angel, and finally the dual operator which denotes swapping
the roles of the two players. In Parikh’s original language, the
strategic ability of Demon is thus only implicitly expressed
through the dual operator, and PDL programs can be viewed
as 1-player games (played by Angel). Semantically, the gen-
eralisation from 1-player games to 2-player games is obtained
by moving from Kripke structures to monotone neighbourhood
structures. Game logic is thus a non-normal, monotone modal
logic.

Just as PDL can be translated into the (normal) modal
µ-calculus [4], game logic can be naturally translated into
the monotone modal µ-calculus [5], and from there into the

normal modal µ-calculus for the language that has two normal
modalities for each monotone modality [6]. This was already
sketched by Parikh in [1], and later improved in [2], [5] to
show that the satisfiability of game logic is in EXPTIME. We
refer to [1] and the survey [2] for applications of game logic
and further results.

B. A landscape of logics for games

Parikh’s game logic is probably the first of a family of logics
designed to reason about different aspects of games. Since
then, modal logics for multi-player games that can express
strategic powers of groups of agents have appeared such as
ATL [7] and Coalition Logic [8]. There are also logics that
focus on 2-player games but go beyond game logic such as
strategy logics [9], [10], which treat strategies as first-order
objects, and dGL [11] which combines game operations and
first-order quantification for hybrid games.

C. The challenge of completeness for game logic

It is a long-standing open question whether a complete proof
system for game logic exists. The completeness result for dGL
in [11] is of a rather different nature, since it concerns the
completeness of a non-recursively enumerable logic relative
to some oracle logic. Parikh proposed in [1] a natural-looking
PDL-like Hilbert system Par, but a proof of its completeness
has thus far remained an open problem. Only (relatively easy)
partial results were known: completeness for the dual-free
fragment [1], and for the iteration-free fragment [2], [5].
Giving a completeness proof similar to the one for PDL from
[12] using canonical models seems impossible for the full
language of game logic as such a proof essentially involves
a filtration argument. It is not difficult to see, however, that
game logic is not well-behaved with respect to filtrations.

The difficulty of showing completeness for the entire lan-
guage of game logic can perhaps be explained by the fact that
in the presence of both angelic iteration and dual, game logic
(when interpreted over Kripke frames) spans all levels of the
alternation hierarchy of the (normal) modal µ-calculus [13].
This is in stark contrast with PDL, LTL and CTL∗ which
are all contained in low levels of the alternation hierarchy.
Over Kripke models, game logic is thus a highly expressive
fragment of the modal µ-calculus for which completeness is
highly involved. The classical automata-based approach to the
completeness of the µ-calculus from [14], [15] relies on thec©2019 IEEE.



existence of “disjunctive” normal forms in the language of the
µ-calculus. It is unlikely that a similar normal form can be
defined for the more rigid game logic syntax, as occurrences
of the ×-operator introduce greatest fixpoint operators that are
invariably tied to conjunctions.

D. Main results and approach

In this paper, we introduce three cut-free sequent calculi,
two for game logic and one for the monotone µ-calculus, that
we show all to be sound and complete. The first of these is the
system for game logic G which is a cut-free sequent calculus
with deep inference rules. We show that G is complete, and
that this implies completeness of Parikh’s Hilbert system.
One of the rules in G is a so-called strengthened induction
rule, which is inspired by the strengthened induction rule
in [16], and somewhat similar to Kozen’s context rule [14,
Proposition 5.7(vi)]. Our approach relies on game logic being
able to express this rule. Just as it is convenient to work with
µ-calculus formulas in negation normal form, the system G
works on game logic formulas in normal form, where negation
may only be applied to atomic propositions, and the dual game
operator only to atomic games. Consequently, the system G
is defined for the normal form language LNF which contains
demonic game constructors as primitives. Given a game logic
formula ϕ, nf(ϕ) is the formula obtained by bringing ϕ into
dual and negation normal form.

The second system for game logic, called CloG, is a cut-
free sequent calculus with a closure rule. In CloG, game logic
formulas from LNF are annotated with names for formulas
of the form 〈γ×〉ϕ. These names keep track of unfoldings
of these greatest fixpoint formulas, and together with the
closure rule they facilitate the detection of repeated unfolding
of greatest fixpoints formulas in the same context (which
closes the proof tree branch). Technically, this is achieved by
imposing side conditions on the closure rule in CloG. These
side conditions involve an order 4 on the set F consisting
of game logic formulas of the form 〈γ∗〉ϕ or 〈γ×〉ϕ. These
game logic fixpoint formulas will be in 1-1 correspondence
with fixpoint variables when we translate into the monotone
µ-calculus.

The third system, CloM, is a cut-free sequent calculus
for the monotone µ-calculus, also with a closure rule and
name annotations. This system is a monotone variant of the
system Clo for the normal modal µ-calculus introduced in [16].
In CloM, the side conditions are expressed with the usual
(priority/subsumption) order ≤ on fixpoint variables where
x ≤ y means that x is of higher priority than y.

Our approach to proving soundness and completeness builds
on recent work by Afshari & Leigh. In [16] they presented a
cut-free sequent calculus for the normal modal µ-calculus, and
proved its completeness via a series of transformations through
other proof systems, including the system Clo, and ending at
the complete tableaux systems with names developed in [17]

and [18]. We prove completeness of the systems G, CloG and
CloM by showing that we can transform derivations as follows:

Par
1)←− G

2)←− CloG
3)←− CloM

4)←− Clo

1) First, the transformation of G-derivations to Par-
derivations goes via an intermediate Hilbert system ParFull,
which is an extension of Par to the full language which has
angelic as well as explicit demonic operations and freely-
placed duals and negations. These transformations are rela-
tively straightforward using that Par essentially has cut via
modus ponens.

2) The transformation of CloG-derivations to G-derivations
requires non-trivial adaptations of the analogous result in [16,
Theorem VI.1]. It uses a translation (−)

• that replaces anno-
tations on game logic formulas with certain “deep insertions
of demonic tests”, which are the game logic analogues of the
“deep disjunctions” of [16].

3) The transformation of CloM-derivations into CloG-
derivations relies on a novel translation (−)] from game logic
into the monotone µ-calculus. This translation is truth- and
validity-preserving, it commutes with fixpoint unfolding, and
crucially, it reflects the order on fixpoint variables in ϕ] into
the order on fixpoint formulas in F . Note that the translation
of game logic from [2] goes into the two-variable fragment of
modal µ-calculus, and it is therefore not useful for the proof
transformations in this paper. Indeed, we see the translation
(−)] as one of our main technical contributions.

4) Finally, we obtain completeness of CloM from the
completeness of Clo [16] by transforming Clo-derivations into
CloM-derivations via a validity-preserving translation (−)t

which is the fixpoint extension of a well-known translation
of monotone modal logic into normal modal logic [6].

To summarise, completeness of Parikh’s system Par is
obtained by the following argument. Assume that ϕ is a
game logic formula that is valid over monotone neighbourhood
models. As the above mentioned translations are validity-
preserving, the normal modal µ-calculus formula ((nf(ϕ))])t

is valid over Kripke models. By completeness of Clo, there
is a Clo-derivation of ((nf(ϕ))])t. By the above sequence of
transformations, we obtain a Par-derivation of ϕ.

E. Outline
The paper is organised as follows. In Section II we recall the

basic definitions of game logic, we introduce Parikh’s Hilbert-
style axiomatisation Par, we present the cut-free Gentzen style
system G and show that G-derivations can be transformed
into Par-derivations (Thm 11). In Section III, we introduce
the annotated proof system CloG for game logic and show
how CloG-derivations can be translated into G-derivations
(Thm. 15). In Section IV we define the annotated system
CloM for the monotone µ-calculus and prove its soundness
and completeness by connecting it to the Clo-system from [16]
using the standard simulation of monotone modal logic with
a binormal modal logic. In Section V, we show how CloM-
derivations can be transformed into corresponding CloG-
derivations using the translation (−)] of game logic into the
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monotone µ-calculus (Thm. 26). In Section VI, we apply the
transformation results to prove soundness and completeness
of CloG, G and Par. Finally, in Section VII we conclude and
discuss related and future work. Due to space limitations we
only provide proofs of key results. All proofs that have been
omitted from the main text can be found in the appendix.

II. TWO DERIVATION SYSTEMS

A. Game logic: basics

Throughout, we assume fixed countable sets P0 and G0

of atomic propositions and atomic games, respectively. Over
these sets we shall define three distinct languages of game
logic. Parikh’s original language LPar only allows the angelic
version of game constructors, while dual and negation may
occur freely, The normal form language LNF allows both
angelic and demonic game constructors, while negation and
duals may only occur in front of atoms. The full language
LFull allows all connectives and game constructors from the
other two languages, and freely placed duals and negations.

Definition 1. The languages LPar and LNF consist of the
formulas and games generated by the following grammars:

LPar 3 ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈γ〉ϕ, γ ∈ GPar

GPar 3 γ ::= g | γ ; γ | γ t γ | γ∗ | γd | ϕ?, ϕ ∈ LPar

LNF 3 ϕ ::= p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈γ〉ϕ, γ ∈ GNF

GNF 3 γ ::= g | gd | γ ; γ | γ t γ | γ u γ | γ∗ | γ×
| ϕ? | ϕ!, ϕ ∈ LNF

LFull 3 ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈γ〉ϕ, γ ∈ GFull

GFull 3 γ ::= g | γ ; γ | γ t γ | γ u γ | γ∗ | γ× | γd
| ϕ?, ϕ ∈ LFull

where p ∈ P0 and g ∈ G0. In LPar and LFull we admit the
connectives →,∧,↔ as the usual abbreviations.

The game operations should be read as follows. The compo-
sition γ ; δ means first play γ, then play δ. The angelic choice
γ t δ is the game where Angel decides whether to play γ or
δ. The angelic iteration γ∗ is the game in which γ is played a
finite, possibly zero, number of times, with Angel at the start
and after each round deciding whether to stop or play one
more round of γ. The angelic test ψ? is the game in which ϕ
is evaluated, and Angel immediately “loses” if ψ is false, and
otherwise play continues. The dual game γd is the game in
which the roles of the two players are interchanged, i.e., the
strategies of Angel in γd are exactly the strategies of Demon
in γ, and vice versa. The definitions of the demonic operations
are such that (cf. [2]):

γ u δ = (γd t δd)d, γ× = ((γd)∗)d, ψ! = ((¬ψ)?)d (1)

The interpretation of the demonic operations is obtained by
replacing “Angel” with “Demon” in the above. However, since
a modal formula 〈γ〉ϕ expresses the strategic ability of Angel
in γ, 〈γ u δ〉ϕ means that Angel has a strategy to achieve ϕ
in both γ and δ, and 〈γ×〉ϕ means that Angel has a strategy
for maintaining ϕ indefinitely when playing γ repeatedly, and
not knowing when the iteration terminates. Finally, ψ! is the

game in which Angel immediately “wins” if ψ is true. Hence,
〈ψ!〉ϕ is true if at least one of ψ and ϕ is true.

We will often refer to formulas and games jointly as terms.
We denote the subterm relation by E, using C for the strict
version. For example, g× C 〈g× ;h〉p and hC (〈h〉p?) ; g.

Formulas of the form 〈γ∗〉ϕ or 〈γ×〉ϕ will play the role of
fixpoint variables on the game logic side. In particular, we need
to define an order ≺ on them, but it is not immediately clear
how to do that. For example, a naive approach based on the
subformula-relation will not work, since we need that, e.g.,
〈(g× t h)×〉p ≺ 〈g×〉p. Our solution is to use the converse
subterm relation on the game terms that label the modalities.

Definition 2. We define the set of least, greatest, respectively
all, fixpoint formulas in LNF as follows:

F ∗ := {〈γ∗〉ϕ | γ ∈ GNF, ϕ ∈ LNF},
F× := {〈γ×〉ϕ | γ ∈ GNF, ϕ ∈ LNF},
F := F ∗ ∪ F×.

We define an order ≺ on F by setting 〈γ◦〉ϕ ≺ 〈δ†〉ψ for
◦, † ∈ {∗,×} if δ† C γ◦. We write 〈γ◦〉ϕ 4 〈δ†〉ψ if δ† ≺ γ◦
or δ† = γ◦.

It should be clear that ≺ is transitive and irreflexive.

We need the following notion of (Fischer-Ladner) closure.

Definition 3. The closure Cl(ξ) of a formula ξ ∈ LNF is the
smallest subset of LNF that contains ξ and is closed under
subformulas as well as the following rules: If 〈γ∗〉ϕ ∈ Cl(ξ)
then ϕ ∨ 〈γ〉〈γ∗〉ϕ ∈ Cl(ξ). If 〈γ×〉ϕ ∈ Cl(ξ) then ϕ ∧
〈γ〉〈γ×〉ϕ ∈ Cl(ξ). If 〈ψ?〉ϕ ∈ Cl(ξ) then ψ ∈ Cl(ξ). If
〈ψ!〉ϕ ∈ Cl(ξ) then ψ ∈ Cl(ξ). The sets F (ξ), F ∗(ξ), F×(ξ)
of all/least/greatest fixpoint formulas of a formula ξ ∈ LNF are
given as F (ξ) := F ∩ Cl(ξ), etc.

The simplest way to define the semantics of these languages
is as follows [2]. We denote byM(S) the set of all monotone
maps f : ℘(S) → ℘(S). An effectivity function for a game γ
on a set S is then a Eγ ∈M(S), and s ∈ Eγ(Y ) means that
at position s, Angel is effective for Y in γ, i.e., Angel has a
strategy in γ that ensures that the outcome of γ is in Y .

Definition 4. A game model is a triple S = (S,E, V ) such
that V : P0 → ℘(S) is a valuation and E : G0 → M(S)
assigns an effectivity function on S to every atomic g ∈ G0.
By a mutual induction on formulas and games, we define the
meaning JϕKS of a formula ϕ in a model S, and the effectivity
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function Eγ in S for complex games γ as follows:

JpKS := V (p)
J¬pKS := S \ p
Jϕ ∨ ψKS := JϕKS ∪ JψKS
Jϕ ∧ ψKS := JϕKS ∩ JψKS
J〈γ〉ϕKS := Eγ(JϕKS)

Eg(X) := E(g)(X)
E(γd)(X) := S \ Eγ(S \X)
Eγ ; δ(X) := Eγ(Eδ(X))
Eγtδ(X) := Eγ(X) ∪ Eδ(X)
Eγuδ(X) := Eγ(X) ∩ Eδ(X)
E(γ∗)(X) := lfpY.X ∪ Eγ(Y )
E(γ×)(X) := gfpY.X ∩ Eγ(Y )
E(ϕ?)(X) := JϕKS ∩X
E(ϕ!)(X) := JϕKS ∪X

Notions like satisfiability, equivalence, etc., are defined in the
standard way. In particular, a game formula ϕ is valid, nota-
tion: |= ϕ, if JϕKS = S, for every game model S = (S,E, V ).

Proposition 5. There are recursively defined, truth-preserving
translations

nf(−) : LFull → LNF

pa(−) : LFull → LPar

As a corollary of this, negation is definable in LNF. We shall
need the following explicit definition in the sequel.

Definition 6. By a mutual induction we define the comple-
mentation ϕ := nf(¬ϕ) of an LNF-formula ϕ, and the dual
game γ̃ of an LNF-game γ:

p := ¬p
¬p := p

ϕ ∨ ψ := ϕ ∧ ψ
ϕ ∧ ψ := ϕ ∨ ψ
〈γ〉ϕ := 〈γ̃〉ϕ

g̃ := gd

(̃gd) := g

γ̃ ; δ := γ̃ ; δ̃

γ̃ t δ := γ̃ u δ̃
γ̃ u δ := γ̃ t δ̃
(̃γ∗) := (γ̃)×

(̃γ×) := (γ̃)∗

(̃ϕ?) := ϕ!

(̃ϕ!) := ϕ?

The following proposition is proved by a straightforward
induction. We leave the details to the reader.

Proposition 7. In any game model S = (S,E, V ) we have

JϕKS = S \ JϕKS and Eγ̃ = Eγd

for any formula ϕ ∈ LNF and game γ ∈ GNF.

B. Parikh’s Hilbert-style system

The first axiom system for game logic was proposed and
conjectured to be complete by Parikh [1]. This is a Hilbert-
style system for the language LPar that axiomatises the angelic
iteration with what Parikh calls Bar Induction. We will refer
to this system as Par, and it is shown in Figure 1 below. For
ϕ ∈ LPar, we write Par ` ϕ if there is a Par-derivation of ϕ.

Par Axioms:
1) All propositional tau-

tologies.
2) 〈γ ; δ〉ϕ↔ 〈γ〉〈δ〉ϕ
3) 〈γ t δ〉ϕ↔ 〈γ〉ϕ∨〈δ〉ϕ
4) 〈γ∗〉ϕ↔ ϕ ∨ 〈γ〉〈γ∗〉ϕ
5) 〈ψ?〉ϕ↔ ψ ∧ ϕ
6) 〈γd〉ϕ↔ ¬〈γ〉¬ϕ

Par Rules:

ϕ ϕ→ ψ
MP

ψ

ϕ→ ψ
Mon〈γ〉ϕ→ 〈γ〉ψ

〈γ〉ϕ→ ϕ
BarInd〈γ∗〉ϕ→ ϕ

Fig. 1. Axioms and rules of Par.

The system Par is easily seen to be sound. A main contri-
bution of our paper is that we confirm Parikh’s completeness
conjecture. We prove Theorem 8 in section VI below.

Theorem 8 (Soundness and Completeness of Par). For every
formula ϕ ∈ LPar, we have: Par ` ϕ iff |= ϕ.

C. The cut-free sequent system G for game logic

We now introduce a cut-free (Tait-style) sequent system
G for game logic formulas in normal form. A sequent is
thus defined as a finite set of LNF-formulas (to be read
disjunctively). For a finite set Φ ⊆ LNF, we define Φ ∈ LNF

as the normal form
∨

Φ of ¬(
∨

Φ).
The system G consists of several parts. Its core is the

sequent calculus version of monotone modal logic as shown
in Figure 2. In order to reason about game operators, in Fig. 3

Ax
Φ,Φ

Φ
weak

Φ, ϕ
ϕ, ψ

modm〈g〉ϕ, 〈gd〉ψ
Φ, ϕ, ψ

∨
Φ, ϕ ∨ ψ

Φ, ϕ Φ, ψ
∧

Φ, ϕ ∧ ψ

Fig. 2. The basic rules of the sequent calculus mon-ML for Game Logic.

we list some rules, each of which directly mirrors the semantic
meaning of one game constructor.

Φ, ϕ ∨ 〈γ〉〈γ∗〉ϕ
∗

Φ, 〈γ∗〉ϕ

Φ, ϕ ∧ 〈γ〉〈γ×〉ϕ
×

Φ, 〈γ×〉ϕ

Φ, 〈γ〉ϕ ∨ 〈δ〉ϕ
t

Φ, 〈γ t δ〉ϕ

Φ, 〈γ〉ϕ ∧ 〈δ〉ϕ
u

Φ, 〈γ u δ〉ϕ

Φ, ψ ∧ ϕ
?

Φ, 〈ψ?〉ϕ

Φ, ψ ∨ ϕ
!

Φ, 〈ψ!〉ϕ

Fig. 3. The sequent calculus rules GameOp for game operations.

In the third part of the G proof system we have the three
“deep” derivation rules given in Figure 4. These rules are
needed for technical reasons, as will become clear in some
of the proofs further on.

The final ingredient of G is the strengthened induction rule
inds in Figure 5. This rule, just like the homonymous rule
in [16] on which it is based, detects unfoldings of greatest
fixpoints in the same context. This may become clearer when
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Φ, ψ(γ)
Mong

dΦ, ψ(χ! ; γ)

Φ, ψ(ϕ)
Monf

dΦ, ψ(〈χ!〉ϕ)

Φ, ψ(〈γ〉〈δ〉ϕ)
;d

Φ, ψ(〈γ ; δ〉ϕ)

Fig. 4. Deep rules for Game Logic: DeepG. The notation ψ(ϕ) should be
read as follows: ψ is a context, i.e., a formula with a unique occurrence of a
proposition letter p, and ψ(ϕ) is the formula obtained by substituting p for
ϕ in ψ.

we show in Theorem 15 how inds is used to translate the
closure rule of the system CloG. In this sense, inds plays a role
similar to the context rule [14, Proposition 5.7(vi)] in Kozen’s
completeness proof for the aconjunctive fragment of the modal
µ-calculus. Only, Kozen’s proof is based on satisfiability and
the context rule therefore deals with least fixpoint unfoldings.
Our approach is based on validity, and inds therefore detects
greatest fixpoint unfoldings.

Φ, ϕ ∧ 〈γ〉〈(Φ! ; γ)×〉〈Φ!〉ϕ
inds

Φ, 〈γ×〉ϕ

Fig. 5. Strengthened induction rule for Game Logic.

To obtain a more concrete understanding of the inds rule,
think of the formula 〈γ×〉ϕ as a greatest fixpoint formula
νx.ϕ ∧ 〈γ〉x. The “standard” fixpoint rule for γ× would read
as follows: “from ψ → ϕ ∧ 〈γ〉ψ infer ψ → 〈γ×〉ϕ”, or,
formulated as a Tait-style sequent rule:

Φ, ϕ ∧ 〈γ〉Φ
ind

Φ, 〈γ×〉ϕ

Now, observing that 〈Φ!〉ϕ ≡ Φ∨ϕ, one may see that inds is
indeed a variation of ind.

Some further understanding of the rule inds may be gained
by establishing its soundness. For this purpose we may reason
by contraposition, showing that the refutability of the conclu-
sion of inds implies the refutability of its premise. It is not hard
to see that this boils down to proving the following statement,
which is formulated using the dual formulas and games.

Proposition 9. If χ ∧ 〈γ∗〉ϕ is satisfiable, then so is either
χ ∧ ϕ or χ ∧ 〈γ〉〈(χ? ; γ)∗〉〈χ?〉ϕ.

In words, this Proposition states the following. Suppose that
there is a situation where χ holds and where Angel has a
strategy in the game γ∗ ensuring the outcome ϕ. Suppose
furthermore that χ and ϕ cannot be true simultaneously. Then
there is a situation where χ holds, and where Angel has a
strategy in γ∗ which not only ensures that ϕ holds afterwards,
but also guarantees that while playing γ∗, after each round of
playing γ, the formula χ holds.

The completeness of G will follow from the completeness
of the system CloG, which we introduce in the next section.
The proof of Theorem 10 will be outlined in Section VI.

Theorem 10 (Soundness and Completeness of G). For all ξ ∈
LNF, we have: G ` ξ iff |= ξ.

The following theorem states the transformation results
between G and Par that are needed for transferring soundness
from Par to G, and completeness from G to Par.

Theorem 11. We have:

1) For all ϕ ∈ LPar, if G ` nf(ϕ) then Par ` ϕ.
2) For all ξ ∈ LNF, if G ` ξ then Par ` pa(ξ).

III. AN ANNOTATED PROOF SYSTEM

The completeness of G will follow from the completeness
of the annotated tableau system CloG which we introduce now.

A. The CloG system for Game Logic

In CloG, formulas are annotated with names that are used
to detect repeated unfoldings of greatest fixpoint formulas in
the same context. With each greatest fixpoint formula ϕ ∈
F× we associate a countable set Nϕ of names for ϕ. We
assume that Nϕ ∩Nψ = ∅ if ϕ 6= ψ. The set of all names is
N =

⋃
ϕ∈F× Nϕ. Names will typically be denoted by x, y, . . .

or with subscripts x0, x1, . . .. Names inherit the order 4 on
the set F of fixpoint formulas: For all x ∈ Nϕ, y ∈ Nψ ,
we define x 4 y iff ϕ 4 ψ. For a sequence of names a =
x0, x1, . . . , xn−1 ∈ N∗ and a fixpoint formula ϕ ∈ F , we will
write a 4 ϕ if for all xi occurring in a, xi ∈ Nψ such that
ψ 4 ϕ. The empty sequence is denoted by ε. An annotation
is a sequence a = x0, x1, . . . , xn−1 ∈ N∗ that is non-repeating
and monotone w.r.t. 4, i.e., for all i < n − 1, xi 4 xi+1.
An annotated game logic formula ϕa consists of a formula
ϕ ∈ LNF and an annotation a ∈ N∗. Annotated CloG-sequents
are finite sets of annotated game logic formulas, and will be
denoted by Φ,Ψ, etc.

The system CloG derives CloG-sequents using the axiom
and rules in Figure 6. The closure rule clox discharges all
occurrences of the sequent Φ, 〈γ×〉ϕax appearing as an as-
sumption above the proof node where the rule is applied.
The side conditions ensure that no fixpoint formula of higher
priority than 〈γ×〉ϕ is unfolded between the application of
clox and its discharged assumption.

A CloG-proof is a finite tree of CloG-inferences in which
each leaf is labelled by an axiom or a discharged assumption.
Intuitively, a CloG-proof can be understood as a finitary repre-
sentation of a non-wellfounded/circular proof. The discharged
assumptions are the nodes where the circularity is detected.
For a formula ξ ∈ LNF, we write CloG ` ξ to mean that there
is a CloG-proof of ξε. Note that CloG is analytic in the sense
that any CloG-proof of ξε will contain only formulas from
Cl(ξ), and names for fixpoint formulas in F×(ξ).

Completeness of CloG will follow from the completeness
of the system CloM, which we introduce in Section IV-B. We
prove Theorem 12 in Section VI.

Theorem 12 (Soundness and Completeness of CloG). For all
ξ ∈ LNF, we have CloG ` ξ iff |= ξ.
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Ax1
pε, (¬p)ε

Φ, ϕa, ψa

∨
Φ, (ϕ ∨ ψ)a

ϕa, ψb

modm
(〈g〉ϕ)a, (〈gd〉ψ)b

Φ, ϕa Φ, ψa

∧
Φ, (ϕ ∧ ψ)a

Φ, (〈γ〉ϕ ∨ 〈δ〉ϕ)a

t
Φ, (〈γ t δ〉ϕ)a

Φ, (〈γ〉ϕ ∧ 〈δ〉ϕ)a

u
Φ, (〈γ u δ〉ϕ)a

Φ
weak

Φ, ϕa

Φ, ϕab,
exp

Φ, ϕaxb

Φ, (〈γ〉〈δ〉ϕ)a

;
Φ, (〈γ ; δ〉ϕ)a

Φ, (ϕ ∨ 〈γ〉〈γ∗〉ϕ)a

(a 4 〈γ∗〉ϕ) ∗
Φ, (〈γ∗〉ϕ)a

Φ, (ϕ ∧ 〈γ〉〈γ×〉ϕ)a

(a 4 〈γ×〉ϕ) ×
Φ, (〈γ×〉ϕ)a

Φ, (ψ ∧ ϕ)a

?
Φ, (〈ψ?〉ϕ)a

Φ, (ψ ∨ ϕ)a

!
Φ, (〈ψ!〉ϕ)a

[Φ, 〈γ×〉ϕax]x

...
Φ, (ϕ ∧ 〈γ〉〈γ×〉ϕ)ax

(a 4 x ∈ N〈γ×〉ϕ, x /∈ Φ, a) clox
Φ, (〈γ×〉ϕ)a

Fig. 6. The axiom and rules of the system CloG. In the side condition of
clox, “x /∈ Φ, a” means that x does not occur in Φ or a.

B. Removing annotations with the bullet translation

In order to translate CloG-proofs into G-proofs, we must
remove annotations. First, we introduce some notation. We let

〈〈γ〉〉ϕ :=

{
〈〈γ1〉〉〈〈γ2〉〉ϕ if γ = γ1 ; γ2

〈γ〉ϕ otherwise

That is, if γ = γ1 ; · · · ; γk, and none of the game terms γi is
itself a composition, then 〈〈γ〉〉ϕ = 〈γ1〉 · · · 〈γk〉ϕ.

Given a sequence ~ϕ = ϕ1, . . . , ϕn of formulas and a game
term γ, we define

ϕ!
←−

:= ϕn! ;(. . . (ϕ1!) . . . )

ϕ! · γ
←−−−

:= ϕn! ;(. . . (ϕ1! ; γ) . . . ).

We can now define the translation (−)
• which removes

annotations. Intuitively, what this translation does is to weaken
fixpoint formulas by adding dual tests corresponding to for-
mulas associated with names in the annotation of a fixpoint
formula. This will be used to “remember” contexts in which
greatest fixpoint formulas have been unfolded. The translation
needs to be set up carefully, so that it can be used to transform
CloG-proofs to G-proofs. In particular, it is tailored to fit with
the strengthened induction rule in G.

Definition 13. Assume that we have an assignment {χx | x ∈
N} of a game logic formula χx ∈ LNF to each name x. We
define the bullet translation (−)

• from annotated game logic

formulas to LNF by ϕε• = ϕ, and for non-empty annotations
a as follows:

pa• := p,

(¬p)a• := ¬p,
(ϕ ∨ ψ)

a• := ϕa• ∨ ψa•,

(ϕ ∧ ψ)
a• := ϕa• ∧ ψa•,

(〈γ〉ϕ)
a• := 〈〈β(γ, a, ϕ)〉〉ϕa•,

β(g, a, ϕ) := g,

β(gd, a, ϕ) := gd,

β(ψ?, a, ϕ) := (ψa•)?,

β(ψ!, a, ϕ) := (ψa•)!,

β(γ∗, a, ϕ) := γ∗,

β(γ ; δ, a, ϕ) := β(γ, a, 〈δ〉ϕ) ;β(δ, a, ϕ),

β(γ t δ, a, ϕ) := β(γ, a, ϕ) t β(δ, a, ϕ),

β(γ u δ, a, ϕ) := β(γ, a, ϕ) u β(δ, a, ϕ).

The crucial clause of the translation is the case for the demonic
iteration. If a = bx1 · · · xnc, where x1, . . . , xn are all the names
for 〈γ×〉ϕ in a, then we define

β(γ×, bx1 · · · xnc, ϕ) := (χ! · γ
←−−−

)×; χ!
←−

where ~χ := χx1
, . . . , χxn . Note that as a special case we have

β(γ×, a, ϕ) = γ× if there are no names for 〈γ×〉ϕ in a.

The bullet translation only affects the outermost fixpoint
operators of a game term. This does, however, not mean that
there is only ever one fixpoint affected in a formula. For in-
stance when following the trace of the formula 〈(g ;(h×))×〉p
in some CloG-proof the fixpoint might unravel such that we
obtain the formula 〈h×〉〈(g ;(h×))×〉p. Applying the bullet
translation to this formula might affect the outermost fixpoints
of both modalities.

The following lemma shows how the bullet translation
applies to annotated fixpoint formulas. It is needed in the proof
of Theorem 15 below.

Lemma 14. Let a = bx1 . . . xn where x1, . . . , xn are all the
names in a for 〈γ×〉ϕ ∈ F×. Then we have:

(〈γ×〉ϕ)
a•

= 〈(χ! · γ
←−−−

)×〉〈〈χ!
←−
〉〉ϕb• and (2)

(ϕ ∧ 〈γ〉〈γ×〉ϕ)
a•

= ϕb• ∧ 〈〈γ〉〉〈(χ! · γ
←−−−

)×〉〈〈χ!
←−
〉〉ϕb• (3)

C. Embedding CloG into G

We are now ready to show how CloG-derivations can be
transformed to G-derivations. This will be used in Section VI
to transfer completeness from CloG to G and soundness from
G to CloG.

Theorem 15. For all ξ ∈ LNF, if CloG ` ξ then G ` ξ.

Proof. Consider a game logic formula ξ and assume that π
is a proof of ξε in CloG. We assume that each application
of the clo-rule in π introduces a distinct name, i.e., for any
distinct pair of rule applications clox1 and clox2 in π we have
x1 6= x2. This assumption is w.l.o.g. as we can rename the
variable names occurring in π appropriately if needed. The
shape of the rules of CloG also imply that for each variable
name x occurring in π, there is a corresponding occurrence of
the clox-rule.

We now assign a formula χx to each variable name x
occurring in π. This assignment is defined by induction on the
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distance of the (unique) clox instance in π from the root of
π. Concretely, for a variable name x we consider the sequent
Φ consisting of the side formulas of the application of clox

in π and set χx := Φ•. Here the bullet translation of Φ is
well-defined as any variable name y occurring in Φ must have
been introduced by an instance of cloy that is closer to the root
of the proof tree than clox, so that the formula χy is already
defined by the induction hypothesis.

We now show how to transform the CloG-proof π of ξε into
a G-proof of ξ by demonstrating that (i) for all (discharged)
assumptions Φ of π there is a G-derivation of Φ•, and (ii) for
all CloG-rule applications Φ1/Φ2 in π there is a corresponding
G derivation of Φ2

• from assumptions in Φ1
•.

Consider first the bullet translation of an arbitrary dis-
charged assumption of an application of clox in π. Such a
translation is of the form Φ•, (〈γ×〉ϕ)

ax• for some annotated
sequent Φ and a game logic formula (〈γ×〉ϕ). Furthermore,
by definition we have χx = Φ•. Now consider the following
G proof:

Φ•, χx
weak

Φ•, χx, θ ∨
Φ•, χx ∨ θ

!
Φ•, 〈χx!〉θ

Φ•, χx
weak

Φ•, χx, 〈χ! · γ
←−−−

〉〈(χx! ;χ! · γ
←−−−

)×〉〈χx!〉θ
∨

Φ•, χx ∨ 〈χ! · γ
←−−−

〉〈(χx! ;χ! · γ
←−−−

)×〉〈χx!〉θ
!

Φ•, 〈χx!〉〈χ! · γ
←−−−

〉〈(χx! ;χ! · γ
←−−−

)×〉〈χx!〉θ
;d

Φ•, 〈χx! ;χ! · γ
←−−−

〉〈(χx! ;χ! · γ
←−−−

)×〉〈χx!〉θ
∧

Φ•, 〈χx!〉θ ∧ 〈χx! ;χ! · γ
←−−−

〉〈(χx! ;χ! · γ
←−−−

)×〉〈χx!〉θ
×

Φ•, 〈(χx! ;χ! · γ
←−−−

)×〉〈χx!〉θ

where θ := 〈〈χ!
←−
〉〉ϕa• and ~χ = χx1

, . . . , χxn with x1, . . . , xn

being all names of 〈γ×〉ϕ in a. The remaining assumption
in this G proof is the sequent Φ•, χx = Φ•,Φ•. But in fact
for any finite set Ψ = {ψ1, . . . , ψn} we can easily derive the
sequent Ψ,Ψ = Ψ, ψ1∧· · ·∧ψn in G using n instances of Ax
and weak followed by an application of ∧. Using Lemma 14
one can verify that

Φ•, 〈(χx! ;χ! · γ
←−−−

)×〉〈χx!〉θ = Φ•, (〈γ×〉ϕ)
ax•

which shows that we have constructed the required G deriva-
tion of the translated assumption.

We show claim (ii) above, ie., that for each rule application
in π there is a corresponding G derivation. We only consider
the rules exp and clo. For the other rules the reasoning is either
trivial or it follows from reasoning that is similar but simpler
as the one for clo.

Suppose that an instance of the exp-rule is applied in
π to obtain Φ, ϕaxb from Φ, ϕab. Let θ = 〈γ×〉ϕ′ be the
fixpoint formula corresponding to x and suppose w.l.o.g. that
θ ∈ F×(ϕ) and that the bullet translation ϕab• is of the form
ψ(〈〈(χ! · γ

←−−−
)×; χ!
←−
〉〉ψ′) where ~χ = χx1 . . . χxn are the context

formulas corresponding to the names x1, . . . , xn of θ that occur
in ab. Let ~χ′ = x1 . . . x . . . xn be the list of names of θ in axb.
Then ϕaxb• = ψ(〈〈(χ′! · γ

←−−−
)×;χ′!
←−
〉〉ψ′) and it is now easy to see

that this formula is derivable from ϕab• in G by applying the
Mong

d-rule twice for each occurrence of θ that got expanded
by the bullet translation.

Lastly, consider an application of the clo-rule in π that de-
rives from Φ, (ϕ ∧ 〈γ〉〈γ×〉ϕ)

ax the conclusion Φ, (〈γ×〉ϕ)a.
We need to construct a corresponding G derivation. First
observe that by Lemma 14 we have

(〈γ×〉ϕ)
a•

= 〈(χ! · γ
←−−−

)×〉〈〈χ!
←−
〉〉ϕb•,

where b and ~χ are chosen as in the previous case. Furthermore

(ϕ ∧ 〈γ〉〈γ×〉ϕ)
ax•

= ϕb• ∧ 〈〈γ〉〉〈(χx! ;χ! · γ
←−−−

)×〉〈χx!〉〈〈χ!
←−

)〉〉ϕb•,

= ϕb• ∧ 〈〈γ〉〉〈(Φ•! ;χ! · γ
←−−−

)×〉〈Φ•!〉〈〈χ!
←−

)〉〉ϕb•

where we again used Lemma 14 and the fact that χx = Φ•.
Now we build the following G derivation:

Φ•, ϕb• ∧ 〈〈γ〉〉〈(Φ•!;χ! · γ
←−−−

)×〉〈Φ•!〉〈〈χ!
←−
〉〉ϕb•

;d
Φ•, ϕb• ∧ 〈γ〉〈(Φ•!;χ! · γ

←−−−
)×〉〈Φ•!〉〈〈χ!

←−
〉〉ϕb•

Mong
d

Φ•, ϕb• ∧ 〈χ! · γ
←−−−

〉〈(Φ•!;χ! · γ
←−−−

)×〉〈Φ•!〉〈〈χ!
←−
〉〉ϕb•

Monf
d

Φ•, 〈〈χ!
←−
〉〉ϕb• ∧ 〈χ! · γ

←−−−
〉〈(Φ•!;χ! · γ

←−−−
)×〉〈Φ•!〉〈〈χ!

←−
〉〉ϕb•

inds
Φ•, 〈(χ! · γ

←−−−
)×〉〈〈χ!

←−
〉〉ϕb•,

Here, the double lines indicate that multiple applications
of the specified rule could be required to reach the next
sequent. Using the equations given above the proof tree, we
have given a G-derivation of Φ•, (〈γ×〉ϕ)

a• from assumption
Φ•, (ϕ ∧ 〈γ〉〈γ×〉ϕ)

ax•. This shows that for each instance of
clo there is a corresponding G-derivation as required.

IV. THE MONOTONE µ-CALCULUS

In this section we give the basic definitions of the monotone
µ-calculus, and we introduce an annotated proof system for it.

A. The monotone µ-calculus: syntax and semantics

Additionally to the sets P0 and G0 from Section II-A we
now also fix a countable set Var of fixpoint variables. We shall
only consider µ-calculus formulas in negation normal form.

Definition 16. The language LµNF of the monotone µ-calculus
consists of the formulas:

LµNF 3 A,B ::= p | ¬p | x | A ∨B | A ∧B
| 〈g〉A | 〈gd〉A | µx.A | νx.A

where p ∈ P0, g ∈ G0 and x ∈ Var .
We apply the usual notions concerning variable binding,

writing Var(A)/FVar(A) for the sets of all/all free variables
in A. A formula A is a sentence if FVar(A) = ∅.

This is essentially the language of a multi-modal µ-calculus,
except we write 〈gd〉ϕ instead of [g]ϕ in order to stay closer
to game logic syntax.

Given a LµNF-formula A, we define its (Fischer-Ladner) clo-
sure Cl(A) in the usual way (via subformulas and unfoldings).
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Our definition of the system CloM below crucially involves
the following priority order ≤A on Var(A), and a notion of
well-namedness from [16].

Definition 17. Let A be a µ-calculus formula and x, y ∈
Var(A). We write x <−A y if for some subformula of A of
the form σy.B where σ ∈ {µ, ν}, the variable x occurs freely
in σy.B. We denote by <A the transitive closure of <−A on
Var(A). We denote by ≤A the reflexive, transitive closure of
<−A on Var(A). We say that A is locally well-named if <A
is irreflexive.

We show examples of <−A in Examples 22 and 23 below.
The semantics of the monotone µ-calculus over the game

models from Section II-A is standard.

Definition 18. We define the meaning JAKSh of a formula
A ∈ LµNF in the game model S = (S,E, V ), relative to an
assignment h : Var → ℘(S), by a standard induction, where,
e.g., J〈gd〉AKSh := S \ Eg(S \ JAKSh), and

Jµx.AKSh := lfpX. JAKSh[x 7→X]

Jνx.AKSh := gfpX. JAKSh[x7→X].

Here h[x 7→ X] is the assignment h′ given by h′(x) := X
and h′(y) := h(y) for y 6= x.

The meaning of a sentence A in S does not depend on the
assignment, and so we denote this set as JAKS. Notions like
satisfiability, validity, etc., are all defined in the standard way.

B. The CloM-system for the monotone µ-calculus

The proof system CloM is the monotone analogue of the
annotated sequent system Clo for the µ-calculus from [16],
with one further difference. In order to prove our key Proposi-
tion 24 below, we need more control over the order on fixpoint
variables than allowed by the global order of [16]. Instead, we
will use the fixed order ≤C , for some ambient formula C, and
define CloM to be parametric in such a C.

So fix a well-named µ-calculus formula C. In the derivation
system CloMC , formulas are annotated with sequences of
names, as in the system CloG. To each variable x ∈ Var(C)
we link a set Nx of names for x , in such a way that
Nx ∩Ny = ∅ if x 6= y . As in Section III-A, we let the names
inherit the order ≤C over variables, introduce annotations,
and extend the relation ≤C to hold between annotations and
variables.

The proof rules of CloMC are in Figure 7. A CloMC-proof
is a finite tree of inferences in which each leaf is labelled by
an axiom or a discharged assumption. For a formula A ∈ LµNF,
we write CloM ` A if there is a CloMA-proof of Aε.

Analogous to CloG, the system CloM is analytic in the
sense that any CloMC-proof of Cε contains only formulas
from Cl(C) and names for variables in Var(C). Hence, the
order ≤C is defined for these names and variables.

We show that CloM is sound and complete for the semantics
of the monotone µ-calculus given in Definition 18 by reduction
to the soundness and completeness of the system Clo with
respect to Kripke models, which has been proven in [16].

Ax1
pε, (¬p)ε

Γ, Aa, Ba

∨
Γ, (A ∨B)a

Aa, Bb

modm〈g〉Aa, 〈gd〉Bb

Γ, Aa Γ, Ba

∧
Γ, (A ∧B)a

Γ
weak

Γ, Aa

Γ, A(µx.A(x))a

(a ≤C x ) µ
Γ, (µx.A(x))a

Γ, Aab,
exp

Γ, Aaxb

Γ, A(νx.A(x))a

(a ≤C x ) ν
Γ, (νx.A(x))a

[Γ, νx.A(x)ax]x

...
Γ, A(νx.A(x))ax

(a ≤C x ∈ Nx, x /∈ Γ, a) ν-clox
Γ, (νx.A(x))a

Fig. 7. The axiom and rules of the system CloMC .

The reduction uses a translation (−)t : LµNF → L
2µ
NF from

monotone µ-calculus into normal µ-calculus that is based on
well-known ideas, going back to [6], though our approach is
closer to the one from [19, Ch.10], for simulating monotone
modal logics with normal modal logics. The basic idea is
that an effectivity function E : ℘(S) → ℘(S) corresponds
to a monotone neighbourhood function N : S → ℘(℘(S))
which can be encoded with two Kripke relations on state space
S ∪ ℘(S): A relation RN ⊆ S × ℘(S) that relates states to
their neighbourhoods, and a relation R3 ⊆ ℘(S) × S that
relates neighbourhoods to their elements. Conversely, from
two Kripke relations on a state space S one can define a
monotone neighbourhood function N : S → ℘(℘(S)) using
the same idea. The language L2µ

NF is the modal µ-calculus
language that has two (normal) modalities 〈gN 〉 and 〈g3〉 for
each g ∈ G0. The translation of atomic formulas, Boolean
connectives and fixpoints is defined by straightforward re-
cursion. For modalities, we take (〈g〉A)t = 〈gN 〉[g3](At),
and (〈gd〉A)t = [gN ]〈g3〉(At). Using the model translatons
described above, we can show that (−)t preserves satisfiability
and validity.

Lemma 19. For all formulas C ∈ LµNF,

1) if C is satisfiable in a game model, then Ct is satisfiable
in a Kripke model for L2µ

NF.
2) if C is valid over game models, then Ct is valid over

Kripke models for L2µ
NF.

Lemma 19 gives the semantic part needed in the proof of
the following theorem.

Theorem 20 (Soundness and Completeness of CloM). For all
C ∈ LµNF, C is valid (on game models) iff CloM ` C.

A detailed proof of Theorem 20 is found in the appendix.
Here we only give a sketch. What remains is to show that we
can translate between proofs in CloM and proofs in the similar
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annotated proof system Clo [16] for the normal µ-calculus.
First, we note that the translation (−)t extends to anno-

tated formulas and sequents in the obvious manner. For both
directions, we transform proof trees starting from the root
going up. The most interesting case is in the construction of
a CloM-proof for A ∈ LµNF from a Clo-proof of At ∈ L2µ

NF

when the modal rule from Clo is applied. So suppose some
node v in a Clo-proof π is obtained from an application of
the (normal) modal rule, and v is labelled with a sequent Γt

where Γ is a sequent of annotated LµNF-formulas. Then Γt must
have the form 〈gN 〉[g3]A1, ..., 〈gN 〉[g3]An, [gN ]〈g3〉B, and
hence Γ must have the form 〈g〉C1, ..., 〈g〉Cn, 〈gd〉D where
Ct1 = A1, ..., C

t
n = An, Dt = B. By inspection of the rules

of Clo, and assuming that n ≥ 2 (since the other case is easier),
we see that the subtree of the Clo-proof π rooted at v must
have the following shape:

...
Ai, B

mod
[g3]Ai, 〈g3〉B

weak
[g3]A1, ..., [g3]An, 〈g3〉B

mod〈gN 〉[g3]A1, ..., 〈gN 〉[g3]An, [gN ]〈g3〉B
We mimic this by the following CloM-derivation steps:

Ci, D
mod

〈g〉Ci, 〈gd〉D
weak

〈g〉C1, ..., 〈g〉Cn, 〈gd〉D
The label of the top node of this derivation translates to Ai, B,
and so we can inductively continue the construction using the
corresponding smaller subtree of π.

V. GAME LOGIC AND THE MONOTONE µ-CALCULUS

In this section we define a novel translation from formulas
in game logic to formulas in the monotone µ-calculus, and
prove that if the translation of a formula is provable in CloM
then the formula is provable in CloG.

A. Translating Game Logic to the monotone µ-calculus

It is shown in [5, sec. 6.4.2] that game logic can be
translated into the two-variable fragment of the monotone µ-
calculus. However, we use more than two variables because
we need to keep track of the nesting of fixpoints. Before we
give the formal definition of our translation, we first explain
informally how we achieve this. Consider the translation of
a game logic formula ξ ∈ LNF. Formulas 〈γ◦〉ϕ ∈ F (ξ)
translate to fixpoint formulas of the form σx.A(x) on the µ-
calculus side. In order to synchronise the translation across
unfolding of fixpoint formulas, we syntactically encode 〈γ◦〉ϕ
into the fixpoint variable that it gives rise to in the translation
of ξ.

Definition 21. We define the translation (−)] : LNF → LµNF

by a mutual induction on formulas and games as follows:

p] := p
(¬p)] := ¬p

(ϕ ∧ ψ)] := ϕ] ∧ ψ]
(ϕ ∨ ψ)] := ϕ] ∨ ψ]
(〈γ〉ϕ)] := τϕγ (ϕ])

τϕg (A) := 〈g〉A
τϕ
gd

(A) := 〈gd〉A
τϕγuδ(A) := τϕγ (A) ∧ τϕδ (A)

τϕγtδ(A) := τϕγ (A) ∨ τϕδ (A)

τϕγ∗(A) := µx〈γ
∗〉ϕ.A ∨ τ 〈γ

∗〉ϕ
γ (x〈γ

∗〉ϕ)

τϕγ×(A) := νx〈γ
×〉ϕ.A ∧ τ 〈γ

×〉ϕ
γ (x〈γ

×〉ϕ)

τϕγ ; δ(A) := τ
〈δ〉ϕ
γ (τϕδ (A))

τϕψ?(A) := ψ] ∧A
τϕψ!(A) := ψ] ∨A

Example 22. For ϕ = 〈(a∗ ;(b× t c))×〉p, the translation is

ϕ] = νxϕ.p∧
µxψ.((νxθ.xϕ ∧ 〈b〉xθ) ∨ 〈c〉xϕ) ∨ 〈a〉xψ

with ψ = 〈a∗〉〈b× t c〉ϕ
θ = 〈b×〉ϕ

Applying the definitions of order on game logic fixpoint
formulas (Def. 2) and µ-calculus fixpoint variables (Def. 17),
we find that:

ϕ ≺ ψ, ϕ ≺ θ and xϕ <−
ϕ]
xψ, xϕ <−

ϕ]
xθ

Example 23. For ϕ = 〈(a∗; (〈b×〉p)?)×〉〈c∗〉q,

ϕ] = νxϕ. (µxψ.q ∨ 〈c〉xψ)∧
(µxζ .((νxθ.p ∧ 〈b〉xθ) ∧ xϕ) ∨ 〈a〉xζ)

with ψ = 〈c∗〉q
ζ = 〈a∗〉〈〈b×〉p)?〉ϕ, and
θ = 〈b×〉p

Applying the definitions of order on game logic fixpoint
formulas (Def. 2) and µ-calculus fixpoint variables (Def. 17),
we find that:

ϕ ≺ ζ, ϕ ≺ θ and xϕ <−
ϕ]
xζ

The above examples illustrate how the order on fixpoint
variables in µ-calculus is reflected in game logic fixpoints
along the translation, and that translations are always locally
well-named. These are the syntactic properties of (−)] that
are crucial to our proofs.

Proposition 24. For all ξ ∈ LNF the translation ξ] is locally
well-named, and for all ϕ,ψ ∈ F (ξ) we have xϕ, xψ ∈
Var(ξ]), and that xϕ ≤ξ] xψ implies ϕ 4 ψ.

On the semantic side, our translation is adequate in the sense
that it is truth- and validity preserving. Recall that LNF and
LµNF are both interpreted over game models, i.e., monotone
neighbourhood models.
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Proposition 25. For every ξ ∈ LNF and every game model S
it holds that JξKS = Jξ]KS.

Proof. By a straightforward induction.

B. From CloM to CloG

We now show how to construct a CloG-derivation of a game
logic formula ξ from a CloM-derivation of ξ].

For this purpose, we identify the set Nϕ of names for
ϕ ∈ F (ξ) with the set Nxϕ of names for the variable
xϕ ∈ Var(ξ]). This is possible since both sets are defined
to be arbitrary countable sets. We then extend the translation
(−)] to annotated formulas and sequents by taking

(ϕa)] := (ϕ])a and Φ] := {(ϕa)] | ϕa ∈ Φ}.

That is, the translation leaves annotations unchanged.

Theorem 26. For all ξ ∈ LNF, if CloM ` ξ] then CloG ` ξ.

Proof. We will prove the theorem by induction on the com-
plexity of proof trees, and for a proper development of the
induction we need to take care of derivations with open
branches because the clo-rule allows to discharge assumptions.
We shall write π : A `CloMC

Γ to say that π is a CloMC-
derivation of Γ from assumptions in A, and similarly for CloG-
derivations with open assumptions.

More precisely, we shall prove, by induction on the com-
plexity of CloM-derivations, that every CloMξ] -proof π satis-
fies the following property:

for every game logic sequent Φ: if π : A `CloM
ξ]

Φ]

then there is a CloG-proof π′ : G `CloG Φ where G] = A.
(∗)

Two preliminary remarks are in order before we dive into
the proof details. First, in the sequel we will often omit
the annotation of formulas, for the sake of readability. And
second, without loss of generality we may adopt the injectivity
assumption stating that for each formula A in Φ] there is
precisely one formula ϕ in Φ with ϕ] = A.

In the base case of our proof, the derivation π is either an
application of the axiom Ax1 or a one-node derivation of a
sequent Φ], where the set of assumptions of π is the singleton
set {Φ]}. In both cases it is straightforward to see that the
derivation π′, consisting of a single node labelled Φ, meets
the requirements stated in (∗).

For the inductive step, first observe that we may assume
that none of the formulas in Φ is of the form 〈γ ; δ〉ψ. Should
ϕ ∈ Φ be of this form then we could apply the rule ; and
subsequently work with the formula 〈γ〉〈δ〉ψ, for which it
holds that (〈γ〉〈δ〉ψ)] = (〈γ ; δ〉ψ)]. This can be repeated until
the resulting formula is of the required shape.

For the proof of the inductive step, we make a case
distinction as to the last applied rule in the CloM-derivation
π.

In case the last applied rule is the rule ∧, then Φ] must be
of the form Φ] = Γ, A0 ∧ A1 and the rule ∧ is applied to

the premises Γ, A0 and Γ, A1. By our injectivity assumption
there is precisely one formula ϕ in Φ such that Φ = Ψ, ϕ,
Ψ] = Γ and ϕ] = A0∧A1. But then it follows by the definition
of the translation (−)] and our assumption on the shape of
the formulas in Φ that there are three possibilities: either (i)
ϕ = ϕ0 ∧ ϕ1 such that ϕ]0 = A0 and ϕ]1 = A1, or (ii) ϕ =
〈γ0 u γ1〉ψ such that (〈γ0〉ψ)] = A0 and (〈γ1〉ψ)] = A1, or
(iii) ϕ = 〈ψ?〉χ such that ψ] = A0 and χ] = A1.

The other cases being similar, we only consider case (ii).
Here we have CloMξ] -proofs π0, π1 of the sequents Ψ], 〈γ0〉ψ]
and Ψ], 〈γ1〉ψ], from two respective sets of assumptions A0

and A1 such that A0 ∪A1 = A. Use the induction hypothesis
to obtain, for i = 0, 1, a set Gi of game logic sequents such
that G]i = Ai, as well as a CloG-proof π′i : Ai ` Ψ, 〈γi〉ψ. We
then apply the rule ∧ to get a proof of the sequent Ψ, 〈γ0〉ψ∧
〈γ1〉ψ, followed by the rule u to derive the sequent Φ =
Ψ, 〈γ0 u γ1〉ψ. Finally, the set of assumptions of the resulting
derivation π′ is the set G0 ∪ G1, which clearly satisfies the
condition that (G0 ∪ G1)] = A.

The cases where the last rule applied in π is one of ∨,
modm, or weak, are similarly easy to deal with; we omit the
details.

Now consider the case where π ends with an application
of the rule µ for a least fixpoint. We then have that Φ] =
Γ, µx.A(x)a, the premise of this application of µ is the sequent
Γ, A(µx.A(x))a, and the side condition a ≤ξ] x is fulfilled. As
explained above we can assume that there is a single formula ϕ
in Φ such that Φ = {Ψ, ϕ}, ϕ]Ψ = Γ and ϕ] = µx.A(x). As
we have already excluded the possibility that ϕ is a modality
whose main operator is the composition it follows from the
definition of the translation (−)] that ϕ = 〈γ∗〉ψ such that
A(x) = ψ]∨ τϕγ (x). Note that x = x〈γ

∗〉ψ by definition of the
translation (−)]. Some further calculations show that

A(µx.A(x)) = ψ] ∨ τϕγ (µx.A(x)) = (ψ ∨ 〈γ〉〈γ∗〉ψ)].

We can thus apply the induction hypothesis to obtain a
CloG-proof of the sequent Ψ, ψ ∨ 〈γ〉〈γ∗〉ψ, from a set of
assumptions G satisfying G] = A. We then want to use the
rule ∗ to obtain a proof of Φ = Ψ, ϕ = Ψ, 〈γ∗〉ψ from the
same set G of assumptions. To do so we need to ensure that
the side condition a 4 〈γ∗〉ψ is satisfied. Hence consider any
name y that occurs in a and let χ be the fixpoint formula such
that y ∈ Nχ. From the side condition a ≤ξ] x it follows that
y ≤ξ] x, and then from Proposition 24 that χ 4 〈γ∗〉ψ, and
hence we obtain the required y 4 〈γ∗〉ψ.

If the last rule applied in π is the fixpoint rule ν for the
greatest fixpoint then we can use a similar argument as in the
paragraph using × instead of ∗.

Finally, consider the case where the last rule applied in π
is ν-clox for some name x, discharging the assumption Ω =
Γ, νx.A(x)ax. We then may observe that Φ] = Γ, νx.A(x)a,
that the premise of this application of ν-clox is the sequent
Γ, A(νx.A(x))ax, and that the side conditions a ≤ξ] x and
x 6∈ Γ, a are fulfilled. As explained above we can assume
that there is a single formula ϕ in Φ such that Φ = {Ψ, ϕ},
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Ψ] = Γ and ϕ] = νx.A(x). And, similar to the case of the
rule µ discussed above, we may assume that ϕ = 〈γ×〉ψ for
γ and ψ such that A(x) = ψ] ∧ τϕγ (x), and that

A(νx.A(x)) = ψ] ∧ τϕγ (νx.A(x)) = (ψ ∧ 〈γ〉〈γ×〉ψ)].

We then apply the induction hypothesis and obtain a CloG-
derivation of the premise of the ν-clox-rule from assump-
tions G ∪ G′, where each sequent in G′ translates to Ω (the
assumption discharged by the application of the ν-clox-rule
with conclusion Φ]). It follows that every sequent in G′ must
be of the form Θ, ϕax

0 with Θ] = Γ and ϕ]0 = νx.A(x).
From ϕ]0 = νx.A(x) = ϕ] it follows that ϕ0 = ϕ (syntac-
tically), since we encode the formula ϕ = 〈γ×〉ψ into the
fixpoint variable x of its translation. That is, we may take
G′ = {Θ, 〈γ×〉ψax | Θ ∈ L} for some set L with L]Σ = {Γ}.
Note, however, that the sequents in L will generally not be
identical to Ψ, which means that we cannot simply finish our
proof with an application of the ν-clox-rule of the CloG-system
here. We need a more elaborate construction.

In fact we need to generalise the statement about Ψ and a
to the observation below, where we let S be the (finite!) set
of game logic sequents Σ such that Σ] = Γ.

CLAIM 1. For every Σ ∈ S there are game logic sequents GΣ

and LΣ such that (†1) G]Σ = A, L]Σ = {Γ} and (†2) for every
b = ax1 · · · xk, with x1, . . . , xk names for 〈γ×〉ψ, there is a
CloG-proof

ρb
Σ : GΣ ∪ {Θ, 〈γ×〉ψb | Θ ∈ LΣ} ` Σ, (ψ ∧ 〈γ〉〈γ×〉ψ)b

PROOF OF CLAIM Fix a sequent Σ ∈ S. Repeating the
argument that we just gave and that is directly based on the
inductive hypothesis, we obtain sets of game logic sequents
GΣ and LΣ satisfying condition (†1), together with a CloG-
derivation ρax

Σ of the sequent Σ, (ψ ∧ 〈γ〉〈γ×〉ψ)ax from the
assumptions GΣ ∪ {Θ, 〈γ×〉ψax | Θ ∈ LΣ}.

Now consider an annotation b = ax, where x = x1 · · · xk,
with k ≥ 1. We will transform the derivation ρax

Σ into the
desired derivation ρb

Σ in two stages. First, we simply replace
every occurrence of x as (part of) an annotation in ρax

Σ with
x. This transforms ρax

Σ into a structure ρ′ which is almost a
proper CloG-proof. The only problem concerns applications in
ρax

Σ of the expansion rule exp of the form ∆, ϕcd/∆, ϕcxd. In ρ′

we may not be allowed to derive ∆, ϕcxd from ∆, ϕcd by one
application of the expansion rule, but we can easily take care
of this problem in the second state of the construction, namely
by deriving ∆, ϕcxd from ∆, ϕcd by a series of applications of
the expansion rule. This finishes the proof of the claim. J

We will use derivations of the form ρb
Σ as building blocks

for our CloG-derivation of the sequent Ψ, 〈γ×〉ψa. The idea
is to first build up, step by step, a pseudo-derivation of
Ψ, 〈γ×〉ψa which differs from a proper CloG-proof in that not
all assumptions of prospective applications of the clo-rule are
discharged. Once we have completed the construction of this
pseudo-derivation, we transform it into a proper CloG-proof
by taking care of these undischarged assumptions. To do this

in a proper way we need to be precise about the annotations,
and we need to introduce some auxiliary definitions.

Most importantly, we define a pseudo-derivation to be
a proof in the derivation system CloG extended with the
derivation rule D:

Φ, (ϕ ∧ 〈γ〉〈γ×〉ϕ)ax

a 4 x ∈ N〈γ×〉ϕ, x /∈ Φ, a Dx
Φ, (〈γ×〉ϕ)a

Clearly, D is identical to the rule clo, apart from the fact that it
does not require that the assumptions of the form Ψ, 〈γ×〉ϕax

in the proof tree leading up to the premise of D are discharged.
We shall call a node t in a proof tree dangling if the rule
applied at t is D. Observe that a pseudo-derivation is a proper
CloG-derivation just in case it has no dangling nodes.

We now construct a pseudo-derivation for the sequent
Ψ, 〈γ×〉ψa. We shall make use of a set {xΣ | Σ ∈ S} of
special, fresh names, all associated with the fixpoint formula
〈γ×〉ψ. Our starting point of the construction is the one-node
derivation consisting of the sequent Ψ, 〈γ×〉ψa.

Now suppose that the current approximation σ of the
pseudo-derivation contains an assumption of the form
Σ, 〈γ×〉ψb, where Σ ∈ S and the annotation b is of the
form b = ax with xΣ not occurring in the sequence x =
xΣ1 · · · xΣk . By our Claim 1, we may take a CloG-proof ρbxΣ

Σ

of the sequent Σ, (ψ ∧ 〈γ〉〈γ×〉ψ)bxΣ from the assumptions
GΣ ∪ {Θ, 〈γ×〉ψbxΣ | Θ ∈ LΣ}. We adjoin copies of the
derivation ρbxΣ

Σ to the derivation tree, linking each leaf in the
current approximation σ which is labelled as indicated, to the
root of a copy of ρbxΣ

Σ through an application of the rule DxΣ
.

The above construction must terminate after finitely many
steps, basically as a consequence of the fact that the set S is
finite. Let ρ denote the pseudo-derivation that we arrive at in
this way, and let G be the set of assumptions of ρ that belong
to the set

⋃
{GΣ | Σ ∈ S}; clearly then we have that G] = A.

It is not difficult to verify that the pseudo-derivation ρ
satisfies the following conditions:

1) All leaves of ρ are labelled with an axiom, a sequent from
G, or else a sequent of the form Σ, 〈γ×〉ψb, where Σ ∈ S
and the annotation b is of the form b = axΣ1

· · · xΣk , with
Σ1 = Ψ, Σ ∈ {Σ1, . . . ,Σk}, and the Σi are all distinct.

2) If a leaf l is labelled Σ, 〈γ×〉ψb, where b = axΣ1
· · · xΣk ,

then the path from the root r of ρ to l passes through
nodes r = t1, . . . , tk, in that order, such that (a) every tj
is either dangling or the conclusion of an application of
the clo-rule, and (b) the name xΣi was introduced at the
successor of ti.

3) If t is a dangling node of ρ, labelled, say, with the
sequent Σ, 〈γ×〉ψb, and l is a leaf above t labelled with
Σ, 〈γ×〉ψc, then bxΣ is an initial segment of c.

Step by step we will now transform this pseudo-derivation
into a proper CloG-derivation. Clearly it suffices to prove that
we can turn any pseudo-derivation satisfying the conditions
1) – 3) into a pseudo-derivation that still satisfies mentioned
conditions, but has a smaller number of dangling nodes.

So let σ be such a pseudo-derivation, and pick a dangling
node, say, t, that has maximal distance to the root; this means
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in particular that there are no dangling nodes above t. Let t
and its successor be labelled with, respectively, the sequents
Σ, 〈γ×〉ψax and Σ, (ψ ∧ 〈γ〉〈γ×〉ψ)axxΣ , and let Lt be the set
of leaves above t that are labelled with a sequent of the form
Σ, 〈γ×〉ψb. Now make a case distinction.

If Lt is empty, the pseudo-derivation does not record a
proper circular dependency at t, so to speak. This is in fact
the simplest case: we obtain a pseudo-derivation σ′ from σ
by (a) replacing Dx with × as the rule applied at t, and (b)
simply erasing all occurrences of the name xΣ in the pseudo-
derivation above t.

If Lt is non-empty, consider an arbitrary leaf l in Lt, and
let Σ, 〈γ×〉ψbl be the sequent labelling l. It follows from
condition 3 that bl is of the form axxΣcl for some sequence
cl. Now, extend σ to σ′ by attaching a successor l′ to each
l ∈ Lt (so l′ is a leaf in σ′, but l is not), and label each such
l′ with the sequent Σ, 〈γ×〉ψaxxΣ , so that we may obtain the
sequent of l from that of l′ by applications of the expansion
rule. We then obtain the desired pseudo-derivation from σ′ by
discharging the assumption Σ, 〈γ×〉ψaxxΣ at every leaf l′ with
l ∈ Lt, and simultaneously changing the proof rule applied at
node t into a (now legitimate) application of the cloxΣ

-rule.
In both cases it is not hard to verify that the structure σ′

is in fact a (pseudo-)derivation satisfying the clauses 1) – 3),
that the node t is not a dangling node of σ′, and that the
transformation of σ into σ′ has not created any new dangling
node.

Finally, as a result of these transformations we obtain, as
required, a CloG-derivation of the sequent Φ, 〈γ×〉ψ from the
collection of assumptions G for which we already saw that
G] = A.

This finishes the proof of Theorem 26, since the clo-rule
was the last rule to be considered in the induction step.

VI. SOUNDNESS AND COMPLETENESS VIA
TRANSFORMATIONS

We now prove the soundness and completeness of the proof
systems G (Theorem 10) and CloG (Theorem 12) as well
as the completeness of Par (Theorem 8). We do this using
the translations and transformations we introduced earlier. An
overview is given by the following diagram. Here, Clo is
the system from [16], and (LNF)Ann, (LµNF)Ann and (L2µ

NF)Ann

denote, respectively, the sets of annotated formulas of LNF,
LµNF and L2µ

NF.

Par G
Thm 11oo CloG

Thm. 15oo CloM
Thm. 26oo Clooo

LPar

nf(−)// LNF
pa(−)
oo (LNF)Ann

(−)•oo (−)] // (LµNF)Ann
(−)t // (L2µ

NF)Ann

The completeness of CloG and G is obtained from the
completeness of CloM, and the fact that Proposition 25 implies
that the translation (−)] preserves validity over game models.
Hence for all ξ ∈ LNF we find (†)

|= ξ
Prop. 25⇒ |= ξ]

Thm. 20⇒ CloM ` ξ] Thm. 26⇒ CloG ` ξ Thm. 15⇒ G ` ξ

From the completeness of G, we obtain the completeness
of Par as follows. For all ϕ ∈ LPar, we have

|= ϕ
Prop. 5⇔ |= nf(ϕ)

(†)⇒ G ` nf(ϕ)
Thm 11(1)⇒ Par ` ϕ

To prove the soundness of G and CloG, let ξ ∈ LNF. We
then have,

CloG ` ξ Thm 15⇒ G ` ξ Thm 11(2)⇒ Par ` pa(ξ)

By the soundness of Par, it follows that pa(ξ) is valid
over game models, and since pa(ξ) is equivalent with ξ by
Proposition 5, also ξ is valid over game models.

VII. CONCLUSION

In this paper we introduced two cut-free sequent calculi
for Parikh’s game logic and established their soundness and
completeness. From this result, we also obtained completeness
of the original Hilbert-style proof system for game logic. This
confirms a conjecture made by Parikh in [1]. The completeness
of these two systems was obtained by translating game logic
into the monotone µ-calculus, for which we also gave a
cut-free sequent calculus that we showed to be sound and
complete.

A. Discussion

Our proof makes essential use of ideas and results from
Afshari and Leigh’s paper [16]. In particular, the idea of
using the proof systems CloG and CloM to obtain cut-free
completeness is central here. An important reason that our
approach is possible is that these annotated proof systems
allow good control over the structure of proofs. In particular,
formal proofs in CloG and CloM only contain formulas that
are in the Fischer-Ladner closure of the formula at the root of
the proof. This means that if the root formula of an annotated
proof is the translation of a game logic formula, then indeed
the entire proof can in a sense be carried out within game
logic, modulo the translation. Also, the annotations provide a
powerful machinery for keeping track of unfoldings of fixpoint
formulas along traces in a proof tree. This is crucial in order
to decide where to apply the strengthened induction rule when
we construct cut-free sequent proofs from annotated ones.

B. Future research

Completeness for fixpoint logics is generally considered to
be difficult as witnessed by the long wait for a completeness
proof for the modal µ-calculus [14], [15] and game logic.
Our work demonstrates that the techniques from Afshari &
Leigh [16] can be transferred to other fixpoint logics, and we
expect that it is the beginning of a fruitful line of research into
cut-free complete proof systems for fixpoint logics.

More generally, we believe this approach can be used to
provide cut-free complete proof systems for coalgebraic µ-
calculi [20], [21], and for coalgebraic dynamic logics [22].
Also, there are many fragments of the modal µ-calculus that
could be studied by similar techniques. As one example, it
would be interesting to develop annotated proof systems for
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CTL∗, and see if this could help to simplify Reynold’s ax-
iomatization of CTL∗ [23]. It should also be checked whether
our proof can be adapted to provide a cut-free complete proof
system for PDL. An indication that this is possible is that the
deep rules in our system G are reminiscent of display calculi.
The latter have been successfully applied to obtain a complete
proof system for PDL [24].

Going the opposite direction, similar techniques could po-
tentially be applied to extensions of the µ-calculus, such
as the two-way µ-calculus [25], hybrid µ-calculus [26], and
alternating µ-calculus [7].

Finally, we would like to investigate applications of our cut-
free proof systems for game logic to prove interpolation.
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APPENDIX

A. Omitted proofs of Section II

Proposition 5 There are recursively defined, truth-preserving
translations

nf(−) : LFull → LNF

pa(−) : LFull → LPar

Below we give an explicit definition of the translations
nf(−) and pa(−), leaving it for the reader to check that
the translations land in the proper fragments and are truth-
preserving.

Translating from LPar to LNF is simply taking dual and
negation normal form.

Definition 27. We define the translation nf(−) : LFull → LNF

as follows:

nf(p) = p
nf(¬p) = ¬p
nf(¬¬ϕ) = nf(ϕ)
nf(¬(ϕ ∨ ψ)) = nf(¬ϕ) ∧ nf(¬ψ)
nf(¬(ϕ ∧ ψ)) = nf(¬ϕ) ∨ nf(¬ψ)
nf(¬〈γ〉ϕ) = 〈nf(γd)〉nf(¬ϕ)

nf(g) = g
nf(gd) = gd

nf((γd)d) = nf(γ)
nf((γ t δ)d) = nf(γd) u nf(δd)
nf((γ u δ)d) = nf(γd) t nf(δd)
nf((γ; δ)d) = nf(γd); nf(δd)
nf((γ∗)d) = nf(γd)×

nf((γ×)d) = nf(γd)∗

nf((ϕ?)d) = nf(¬ϕ)!
nf((ϕ!)d) = nf(¬ϕ)?

We translate from LNF to LPar by expanding demonic
operations as dual angelic ones.

Definition 28. We define the translation pa(−) : LFull → LPar

as follows:

pa(p) = p
pa(¬p) = ¬p
pa(ϕ ∧ ψ) = ¬(¬pa(ϕ) ∨ ¬pa(ψ)),
pa(ϕ ∨ ψ) = pa(ϕ) ∨ pa(ψ)
pa(〈γ〉ϕ) = 〈pa(γ)〉pa(ϕ)

pa(g) = g
pa(γd) = γd

pa(γ t δ) = pa(γ) t pa(δ)
pa(γ u δ) = (pa(γ)d t pa(δ)d)d,
pa(γ; δ) = pa(γ); pa(δ)
pa(γ∗) = pa(γ)∗

pa(γ×) = ((pa(γ)d)∗)d

pa(ϕ?) = pa(ϕ)?
pa(ϕ!) = ((¬pa(ϕ))?)d

B. Omitted proofs of Section III

1) Lemmas 14 and 34: We will work towards proving
Lemmas 14 and 34. To this end, we introduce some auxiliary
notions. For a ∈ N∗ and Γ ⊆ F×, let a�Γ denote the
subsequence of a of all names x in a such that x ∈ Nϕ
for ϕ ∈ Γ. Similarly, for X ⊆ N we write a�X to denote
the subsequence of a consisting of names from X . By minor
abuse of notation, we may write a ⊆ X to indicate that all
names occurring in a are in X .

We define the set S×(ϕ) ⊆ F×(ϕ) of surface level greatest
fixpoints of ϕ ∈ LNF as follows.

S×(p) = ∅
S×(¬p) = ∅

S×(ϕ ∧ ψ) = S×(ϕ) ∪ S×(ψ)

S×(ϕ ∨ ψ) = S×(ϕ) ∪ S×(ψ)

S×(〈γ〉ϕ) = S×(γ, ϕ) ∪ S×(ϕ)

S×(g, ϕ) = ∅
S×(gd, ϕ) = ∅
S×(γ∗, ϕ) = ∅
S×(γ×, ϕ) = {〈γ×〉ϕ}
S×(ψ?, ϕ) = S×(ψ)

S×(ψ!, ϕ) = S×(ψ)

S×(γ t δ, ϕ) = S×(γ, ϕ) ∪ S×(δ, ϕ)

S×(γ u δ, ϕ) = S×(γ, ϕ) ∪ S×(δ, ϕ)

S×(γ ; δ, ϕ) = S×(γ, 〈δ〉ϕ) ∪ S×(δ, ϕ)

In other words, S×(ϕ) are those 〈γ×〉ψ in
F×(ϕ) such that γ× is not a direct subterms of
another (angelic or demonic) iteration operator. For
example, S×(〈g× ;h×〉p) = {〈g×〉〈h×〉p, 〈h×〉p},
S×(〈g× t h×〉p) = {〈g×〉p, 〈h×〉p}, S×(〈(g×〉)∗p) = ∅,
and S×(〈(〈g×〉p?)×〉q) = {〈(〈g×〉p?)×〉q}. Note that
〈γ×〉ψ ∈ S×(ϕ) does not imply that 〈γ×〉ψ E ϕ.

Lemma 29. For all annotations a ∈ N∗, formulas ϕ ∈ LNF,
game terms γ ∈ GNF and X ⊆ N :

1) If a�S×(ϕ) ⊆ X , then ϕa• = ϕa�X•.
2) If a�S×(γ,ϕ) ⊆ X , then β(γ, a, ϕ) = β(γ, a�X , ϕ).

Proof. We prove the two claims by a mutual induction on the
subterm-relation, i.e., for any t ∈ LNF∪GNF the I.H. stipulates
that
• claim (1) holds for all formulas ψ such that ψ C t and
• claim (2) holds for all game terms δ such that δ C t.

For the first claim, the only interesting induction step is for
modal formulas 〈γ〉ϕ ∈ LNF. Suppose a�S×(〈γ〉ϕ) ⊆ X .
We have S×(γ, ϕ) ⊆ S×(〈γ〉ϕ) and thus a�S×(γ,ϕ) ⊆
a�S×(〈γ〉ϕ) ⊆ X . By the induction hypothesis of (2) on γ
we get:

β(γ, a, ϕ) = β(γ, a�X , ϕ)

Furthermore S×(ϕ) ⊆ S×(〈γ〉ϕ), so we have a�S×(ϕ) ⊆ X .
So by the induction hypothesis of (1) on ϕ we get:

ϕa• = ϕa�X•

Putting these observations together we get:

(〈γ〉ϕ)
a•

= 〈〈β(γ, a, ϕ)〉〉ϕa•

= 〈〈β(γ, a�X , ϕ)〉〉ϕa�X•

= 〈γ〉ϕa�X•
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as required.
We now turn to the induction on game terms, for item

(2): the atomic cases for γ = g or γ = gd are trivial, and
the induction steps for t,u are straightforward. For compo-
sition suppose that S×(γ ; δ, ϕ) ⊆ X . Since S×(γ ; δ, ϕ) =
S×(γ, 〈δ〉ϕ) ∪ S×(δ, ϕ) we have a�S×(γ,〈δ〉ϕ) ⊆ X and
a�S×(δ,ϕ) ⊆ X . So the induction hypothesis on γ and δ gives:

β(γ ; δ, a, ϕ) = β(γ, a, 〈δ〉ϕ) ;β(δ, a, ϕ)

= β(γ, a�X , 〈δ〉ϕ) ;β(δ, a�X , ϕ)

= β(γ ; δ, a�X , ϕ)

For angelic tests, suppose that a�S×(ψ?,ϕ) ⊆ X . Since
S×(ψ?, ϕ) = S×(ψ) ∪ S×(ϕ) we get a�S×(ψ) ⊆ X . Using
the induction hypothesis of (1) on the formula ψ, we now get:

β(ψ?, a, ϕ) = ψa•?

= ψa�X•?

= β(ψ?, a�X , ϕ)

The reasoning for ! is the same.
The induction step for ∗ is trivial since β(γ∗, a, ϕ) = γ∗ for

any annotation a. Finally, the induction step for × is handled
as follows: suppose that a�S×(γ×,ϕ) ⊆ X . Let x1, . . . , xn be
all the names in a for the fixpoint 〈γ×〉ϕ. Since S×(γ×, ϕ) =
{〈γ×〉ϕ}, this means that X contains x1, . . . , xn, and so these
are also all the names for 〈γ×〉ϕ in a�X . From this it is
immediate from the definition of β(−,−,−) that:

β(γ×, a, ϕ) = β(γ×, a�X , ϕ)

as required.

Lemma 30. For all δ, γ ∈ GNF and ϕ,ψ ∈ LNF:
1) If 〈δ×〉ψ ∈ S×(ϕ) then δ× C ϕ.
2) If 〈δ×〉ψ ∈ S×(γ, ϕ) then δ× E γ.

Proof. By a mutual induction on ϕ and γ The easy argument
is left to the reader.

Lemma 31. For all annotations a ∈ N∗, γ ∈ GNF, ϕ ∈ LNF

and ◦ ∈ {×, ∗}, if a 4 〈γ◦〉ϕ then β(γ, a, 〈γ◦〉ϕ) = γ.

Proof. By Lemma 29 (taking X = S×(γ, 〈γ◦〉ϕ)), we
have that β(γ, a, 〈γ◦〉ϕ) = β(γ, a�S×(γ,〈γ◦〉ϕ), 〈γ◦〉ϕ). Hence,
it suffices to show that a�S×(γ,〈γ◦〉ϕ) = ε, because
β(γ, ε, 〈γ◦〉ϕ) = γ.

So let x ∈ N〈δ×〉ψ be a name occurring in a. By the
assumption that a 4 〈γ◦〉ϕ, it follows that 〈δ×〉ψ 4 〈γ◦〉ϕ,
i.e., γ◦Eδ× and hence γCδ×, so it is not the case that δ×Eγ.
By Lemma 30(2) this entails that 〈δ×〉ψ /∈ S×(γ, 〈γ◦〉ϕ). We
have therefore shown that a�S×(γ,〈γ◦〉ϕ) = ε, which concludes
the proof.

We denote by C(ϕ), the number of occurrences of the
demonic iteration symbol × in the formula ϕ ∈ LNF. A
precise, inductive definition is left to the reader.

Lemma 32. For all ϕ,ψ ∈ LNF and γ ∈ GNF:
1) If ψ ∈ S×(ϕ) then C(ψ) ≤ C(ϕ).

2) If ψ ∈ S×(γ, ϕ) then C(ψ) ≤ C(γ) + C(ϕ)

Proof. The two items can be proved by a straightforward
mutual induction on the complexity of game terms γ and
formulas ϕ.

Lemma 33. Consider a sequence a = bx1 . . . xn where
x1, . . . , xn are all the names of a fixpoint 〈γ×〉ϕ. Then we
have that ϕb• = ϕa•

Proof. First, we observe that ϕa• = ϕa�S×(ϕ)•. This is an
instance of Lemma 29, if we take X to be the set of all
names associated with a fixpoint in S×(ϕ). It therefore suffices
to prove that x1, . . . , xn do not appear in a�S×(ϕ). Since
x1, . . . , xn are all the names for 〈γ×〉ϕ, it suffices to prove
〈γ×〉ϕ /∈ S×(ϕ). By Lemma 32(1), 〈γ×〉ϕ ∈ S×(ϕ) would
imply that C(〈γ×〉ϕ) ≤ C(ϕ), which is clearly impossi-
ble.

We are now ready to prove Lemma 14.

Proof of Lemma 14 For item (2), we apply the definition of
the bullet translation to obtain:

(〈γ×〉ϕ)
a•

= 〈〈β(γ×, a, ϕ)〉〉ϕa•

= 〈(χ! · γ
←−−−

)×〉〈〈χ!
←−
〉〉ϕa•

The result now follows since ϕa• = ϕb•, by Lemma 33.
For item (3), we apply the bullet translation again to get:

(ϕ ∧ 〈γ〉〈γ×〉ϕ)
a•

= ϕa• ∧ 〈〈β(γ, a, 〈γ×〉ϕ)〉〉〈〈β(γ×, a, ϕ)〉〉ϕa•

= ϕa• ∧ 〈〈β(γ, a, 〈γ×〉ϕ)〉〉〈(χ! · γ
←−−−

)×〉〈〈χ!
←−
〉〉ϕa•

= ϕb• ∧ 〈〈β(γ, a, 〈γ×〉ϕ)〉〉〈(χ! · γ
←−−−

)×〉〈〈χ!
←−
〉〉ϕb•

where for the last step we used Lemma 33 again. By
Lemma 31, we get β(γ, a, 〈γ×〉ϕ) = γ, and so we are done.

We also need the following simpler analogue of Lemma 14
for least fixpoints.

Lemma 34. For a least fixpoint formula 〈γ∗〉ϕ ∈ F ∗ and an
annotation a 4 〈γ∗〉ϕ, we have

(ϕ ∨ 〈γ〉〈γ∗〉ϕ)
a•

= ϕa• ∨ 〈γ〉〈γ∗〉ϕa•. (4)

Proof. We use the definition of the bullet translation to com-
pute as follows:

(ϕ ∨ 〈γ〉〈γ∗〉ϕ)
a•

= ϕa• ∨ 〈β(γ, a, 〈γ∗〉ϕ)〉〈β(γ∗, a, ϕ)〉ϕa•

= ϕa• ∨ 〈β(γ, a, 〈γ∗〉ϕ)〉〈γ∗〉ϕa•

By Lemma 31 we get β(γ, a, 〈γ∗〉ϕ) = γ, and so we are
done.
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2) Missing cases in Theorem 15: We now give more details
for the translation of some of the rules from CloG to G in the
proof of Theorem 15.

For the weakening rule this is trivial. The case of Ax1:
Φ = pε, pε is also immediate as Φ• = p, p which is an instance
of Ax. Equally straightforward to translate are the CloG rules
dealing with the Boolean and the (basic) modal operators. Here
one simply has to observe that these connectives commute
with the bullet translation. Concerning the rules for tests and
for angelic and demonic choice we consider only the demonic
choice operator in detail and leave the other similar cases to
the reader. Suppose we derive Φ, (〈γ u δ〉ϕ)a within the CloG
proof π via an application of the u-rule. The translation of the
assumption of the rule is Φ•, (〈γ〉ϕ)

a•∧(〈δ〉ϕ)
a•. Spelling out

the details of the bullet translation, this can be rewritten as
Φ•, 〈〈β(γ, a, ϕ)〉〉ϕa• ∧ 〈〈β(δ, a, ϕ)〉〉ϕa•. From here we obtain
the following G derivation steps:

Φ•, 〈〈β(γ, a, ϕ)〉〉ϕa• ∧ 〈〈β(δ, a, ϕ)〉〉ϕa•
(*)

Φ•, 〈β(γ, a, ϕ)〉ϕa• ∧ 〈β(δ, a, ϕ)〉ϕa•
u

Φ•, 〈β(γ u δ, a, ϕ)〉ϕa•

where (*) possibly involves applying the ;d-rule multiple
times. It is easy to see that the conclusion of the G derivation
is equal to Φ•, (〈γ u δ〉ϕ)

a• as required.
To see how to deal with the ∗-rule consider an application

of the rule in π of the form

Φ, (ϕ ∨ 〈γ〉〈γ∗〉ϕ)a

∗
Φ, (〈γ∗〉ϕ)a

The premise of this rule translates to Φ•, ϕa• ∨ 〈γ〉〈γ∗〉ϕa• -
this can be seen using Lemma 34 and the side condition of the
∗-rule. An application of the ∗-rule in G yields Φ•, 〈γ∗〉ϕa•

which in turn equals Φ•, (〈γ∗〉ϕ)
a• as required.

For the × rule consider a rule application

Φ, (ϕ ∧ 〈γ〉〈γ×〉ϕ)a

×
Φ, (〈γ×〉ϕ)a

By the side condition of the ×-rule we can assume that a is of
the form bx1 . . . xn where x1 . . . xn are all the names of 〈γ×〉ϕ
occurring in a. Applying Lemma 14 we get that the premise
of the rule translates to Φ•, ϕb• ∧ 〈〈γ〉〉〈(χ! · γ

←−−−
)×〉〈〈χ!

←−
〉〉ϕb•

where ~χ consists of the context sequents as in previous cases.
Consider now the following G derivation steps:

Φ•, ϕb• ∧ 〈〈γ〉〉〈(χ! · γ
←−−−

)×〉〈〈χ!
←−
〉〉ϕb•

;d
Φ•, ϕb• ∧ 〈γ〉〈(χ! · γ

←−−−
)×〉〈〈χ!

←−
〉〉ϕb•

Mong
d, Monf

d
Φ•, 〈〈χ!

←−
〉〉ϕb• ∧ 〈χ! · γ

←−−−
〉〈(χ! · γ
←−−−

)×〉〈〈χ!
←−
〉〉ϕb•

×
Φ•, 〈(χ! · γ

←−−−
)×〉〈〈χ!

←−
〉〉ϕb•,

where the double line indicates multiple applications of
the deep monotonicity rules. Observe now that the con-
clusion Φ•, 〈(χ! · γ

←−−−
)×〉〈〈χ!

←−
〉〉ϕb•, is by Lemma 14 equal to

Φ•, (〈γ×〉ϕ)
a• as required.

C. Omitted proofs of Section IV

This part of the appendix contains definitions and lemmas
that lead up to a detailed proof of Theorem 20.

First, we translate monotone µ-calculus into normal µ-
calculus by extending the translation from [6], [19] of mono-
tonic modal logic into normal bimodal logic. More precisely,
we define the language L2µ

NF to be the set of modal µ-calculus
formulas over the set of labels L = {gN | g ∈ G0}∪{g3 | g ∈
G0} defined in the usual way, and interpret L2µ

NF over Kripke
models that have an accessibility relation for each label in L.
We define the translation (−)t : LµNF → L

2µ
NF follows:

• pt = pt and (¬p)t = ¬p.
• For Boolean connectives: compositionally.
• (µx.A)t = µx.(At) and (νx.A)t = νx.(At),
• (〈g〉A)t = 〈gN 〉[g3](At),
• (〈gd〉A)t = [gN ]〈g3〉(At).

Proof of Lemma 19 Item 1) Given a game model S =
(S,E, V ) we construct a Kripke model St for L2µ

NF with state
space S ∪ ℘(S) and valuation V ′(p) = V (p), by taking

RgN = {(s, U) ∈ S × ℘(S) | U ∈ Eg(s)},
Rg3 = {(U, s) ∈ ℘(S)× S | s ∈ U}.

It is straightforward to show by induction that for all s ∈ S
and all C ∈ LµNF: s ∈ JCKS iff s ∈ JCtKS. It follows that (−)t

preserves satisfiability.
Item 2) Given a Kripke L2µ

NF- model K with state space W
and valuation V , we can construct a game model Km with the
same state space and valuation, and by defining for g ∈ G0 an
effectivity function Eg by

Eg(Z) = {w ∈W | ∃v ∈W (wRgN v and Rg3 [v] ⊆ Z)}.

It is again routine to show that for all Kripke models K and
for all C ∈ LµNF, we have: JCKKm = JCtKK.

From this it follows that if C is valid over game models
(for LµNF) then Ct is valid over Kripke models (for L2µ

NF).

We will now show how to transform derivations from the
system Clo [16] into CloM using the translation (−)t.

Lemma 35. For all C ∈ LµNF, if Clo ` Ct then CloMC ` C.

Proof. Given a Clo-proof π for Ct, we shall construct step by
step a tree rooted at a node labelled C in which every edge
is labelled by a proof rule of CloMC , every node is labelled
by a sequent or an expression [Γ]x marking the sequent Γ as
a discharged assumption. We also construct a map h sending
each node in the tree to some node in the proof tree π, such
that the label of h(u) is Γt if the label of u is Γ. Here, we
are extending the translation (−)t to annotated sequents in the
obvious way. Rather than performing an induction on the size
of proofs, the construction will simply proceed from the root
up, and will be carried out in such a way that the end result
will clearly be a CloMC-proof.

We start by creating a root node labelled with Cε and letting
h map this node to the root of the proof tree π. Whenever we
create a node in the construction that is mapped via h to a
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discharged assumption [Γt]x, we make sure to label that node
by the discharged assumption [Γ]x. Note that we can always
assume that for each A in the label of h(l), there is at most
one B in the label of l with Bt = A. (Otherwise, we just
apply the weakening rule.)

Now, given that we have constructed the tree up to some
point, but we do not yet have a proper CloMC-proof, we pick
a leaf l of the tree that is not a discharged assumption and not
an axiom of CloMC , and continue the construction by a case
distinction. Most of the cases are handled in a trivial manner,
and we only give two examples of the easy cases: if the leaf l is
mapped to a node h(l) labelled Γ, νx.Aa, and is the conclusion
to an instance of the ν-clox-rule with premise Γ, A(νx.A)a,
then there must be some Ψ, B such that Ψt = Γ, B = A and
l is labelled Ψ, νx.B. We add a new child of l which we label
Ψ, B(νx.B)ax. We let h map this child to the premise of h(l),
and label the edge by the rule ν-clox. For another example,
if the leaf l is mapped to h(l) labelled Γ, A ∧ B, and is the
conclusion to an instance of the ∧-rule with premises Γ, A
and Γ, B, then l must be labelled Ψ, C ∧ D where Ψt = Γ,
Ct = A and Dt = B. We add two new children of l which
we label Ψ, C and Ψ, D respectively. We extend the map h by
sending each child to its corresponding premise, and labelling
the edges by the ∧-rule.

The only non-trivial case is when the node h(l) is
a conclusion to an instance of the modal rule. This
is only possible if h(l) has a label of the form
〈gN 〉[g3]A1, ..., 〈gN 〉[g3]An, [gN ]〈g3〉B, where l is labelled
with the sequent 〈g〉C1, ..., 〈g〉Cn, 〈gd〉D and Ct1 =
A1, ..., C

t
n = An, Dt = B. By inspection of the rules of

Clo, and assuming that n ≥ 2 (since the other case is easier),
we can see that the subtree of the proof π rooted at the node
h(l) must have the following shape, since these are the only
rules that are applicable:

...
Ai, B

mod
[g3]Ai, 〈g3〉B

weak
[g3]A1, ..., [g3]An, 〈g3〉B

mod〈gN 〉[g3]A1, ..., 〈gN 〉[g3]An, [gN ]〈g3〉B
for some i ∈ {1, ..., n}. We thus continue the construction as
follows:

Ci, D
mod

〈g〉Ci, 〈gd〉D
weak

〈g〉C1, ..., 〈g〉Cn, 〈gd〉D
Finally, we extend the map h by sending the new leaf labelled
Ci, D to the node in the previous figure labelled Ai, B.

Lemma 36. For all C ∈ LµNF, if CloM ` C then Clo ` Ct.

Proof. The proof is very similar to the proof of Lemma 35
above. In this case –again starting from the root– we turn a
CloMC-proof π of a given formula C ∈ LµNF into a corre-
sponding Clo-proof of Ct. Unlike in the proof of Lemma 35

we only sketch the construction. First we note that all cases of
non-modal rules are even easier than in the proof of Lemma
35 as the non-modal CloMC-rules are instances of Clo-rules.

For the modal case suppose that we have constructed
a partial Clo-proof of Ct with a leaf labelled with
(〈g〉D1)t, (〈gd〉D2)t and that the corresponding node in the
CloMC-proof π labelled with 〈g〉D1, 〈gd〉D2 has been derived
via an application of the modal rule:

...
D1, D2

mod
〈g〉D1, 〈gd〉D2

By definition we have (〈g〉D1)t = 〈gN 〉[g3]Dt
1 and

(〈gd〉D2)t = [gN ]〈g3〉Dt
2. Therefore we can extend the Clo-

proof of Ct as follows:

Dt
1, D

t
2

mod
[g3]Dt

1, 〈g3〉Dt
2

mod〈gN 〉[g3]Dt
1, [gN ]〈g3〉Dt

2

This finishes the proof sketch.

Proof of Theorem 20 Soundness: Let C ∈ LµNF, such that
CloM ` C. Then by Lemma 36, Clo ` Ct and hence by the
soundness of Clo it follows that Ct is valid on all Kripke
models for L2µ

NF. Suppose now that C would not be valid in
all game models, i.e., there is a game modelM and a state w
in M such that M, w � C. Since (−)t preserves satisfiability
(Lemma 19(1)), it follows that C

t
is satisfiable in a Kripke

model for L2µ
NF. Finally, since C

t
is equivalent with Ct this

would imply that Ct is not valid, a contradiction.
Completeness: Assume that C is valid over game models.

Then by Lemma 19(2), Ct is valid over Kripke models for
L2µ

NF. From the completeness of Clo [16], it follows that Clo `
Ct, and hence by Lemma 35 that CloM ` C.

D. Omitted proofs of Section V

1) Proof of Proposition 24: This part of the appendix
contains a detailed proof for Proposition 24, which summarises
the most important properties of our translation from game
logic into the monotone µ-calculus.

We address the claims in the proposition with separate
lemmas. The first of this lemmas entails that xϕ ∈ Var(ξ])
for all ϕ ∈ F (ξ):

Lemma 37.
1) For all game logic formulas ϕ,ψ: If ψ ∈ F (ϕ) then

xψ ∈ Var(ϕ]).
2) For all game logic formulas χ, ψ and games γ: If ψ ∈

F (γ, χ) then xψ ∈ Var(τχγ (χ])).

Proof. Both items are are proven with a mutual induction over
the complexity of the formula ϕ and of the game term γ.
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Base case (1): If ϕ is of the form p or ¬p, then F (ϕ) = ∅,
hence (1) holds trivially. Base case (2): Similarly, if γ is is of
the form g or gd, then F (γ, ϕ) = ∅, hence (2) holds trivially.

Induction hypotheses: Assume (1) holds for all formulas
that are proper subterms of ϕ or γ. Assume (2) holds for all
games that are proper subterms of ϕ or γ.

Induction step (1): Suppose ϕ = ϕ1 ∨ ϕ2. We then have
that F (ϕ) = F (ϕ1) ∪ F (ϕ2). Let i ∈ {1, 2} and assume
ψ ∈ F (ϕi) then by IH for (1), we have xψ ∈ Var(ϕ]i) and
hence xψ ∈ Var(ϕ]) = Var(ϕ]1) ∪Var(ϕ]2).

The argument for ϕ = ϕ1 ∧ ϕ2 is similar.
Suppose now ϕ = 〈δ〉ϕ0. We then have F (ϕ) = F (δ, ϕ0)∪

F (ϕ0). For all ψ ∈ F (ϕ0), we have by the IH for (1) that xψ ∈
Var(ϕ]0), and since ϕ]0 is a subterm of (〈δ〉ϕ0)] = τϕ0

δ (ϕ]0),
it follows that Var(ϕ]0) ⊆ Var(ϕ]). For all ψ ∈ F (δ, ϕ0), we
have by the IH for (2) that xψ ∈ Var(τϕ0

δ (ϕ]0)) = Var(ϕ]).
Induction step (2): Let χ be an arbitrary game logic formula.

Suppose that γ = γ1tγ2. We then have F (γ, χ) = F (γ1, χ)∪
F (γ2, χ). Let i ∈ {1, 2} and assume that ψ ∈ F (γi, χ).
Then by IH for (2), we have that xψ ∈ Var(τχγi(χ

])) ⊆
Var(τχγ1

(χ]) ∨ τχγ2
(χ])) = Var(τχγ (χ])). The case for γ =

γ1 u γ2 is similar.
Suppose γ = γ1 ; γ2. We then have F (γ, χ) =

F (γ1, 〈γ2〉χ) ∪ F (γ2, χ). If ψ ∈ F (γ1, 〈γ2〉χ), then by
IH for (2), we have that xψ ∈ Var(τ

〈γ2〉χ
γ1 ((〈γ2〉χ)])) =

Var(τχγ1;γ2
(χ])). If ψ ∈ F (γ2, χ), then by IH for (2), we

have that xψ ∈ Var(τχγ2
(χ])) ⊆ Var(τ

〈γ2〉χ
γ1 (τχγ2

(χ]))) =
Var(τχγ1;γ2

(χ])).
Suppose γ = δ∗. We then have F (γ, χ) = {〈δ∗〉χ} ∪

F (δ, 〈δ∗〉χ). If ψ = 〈δ∗〉χ, we use that τχδ∗(χ
]) =

µx〈δ
∗〉χ.χ] ∨ τ

〈δ∗〉χ
δ (x〈δ

∗〉χ) and hence xψ = x〈δ
∗〉χ ∈

Var(τχδ∗(χ
])). If ψ ∈ F (δ, 〈δ∗〉χ), then by IH for (2), we

have that xψ ∈ Var(τ
〈δ∗〉χ
δ ((〈δ∗〉χ)])). It therefore suffices

to show that Var(τ
〈δ∗〉χ
δ ((〈δ∗〉χ)])) ⊆ Var(τχδ∗(χ

])) =

Var(µx〈δ
∗〉χ.χ]∨τ 〈δ

∗〉χ
δ (x〈δ

∗〉χ)). Since the context τ 〈δ
∗〉χ

δ (−)
occurs on both sides of the inclusion, it suffices to show
that Var((〈δ∗〉χ)]) ⊆ Var(τχδ∗(χ

])), and this holds since
(〈δ∗〉χ)] = τχδ∗(χ

]).
Suppose γ = ϕ?. By IH for (1) it follows that xψ ∈

Var(ϕ]). Since τχϕ?(χ]) = ϕ] ∨ χ], we have that xψ ∈
Var(τχϕ?(χ])).

The case for γ = ϕ! is similar.

To show that ξ] is locally well-named and that xϕ ≤ξ] xψ
implies ϕ 4 ψ we prove a series of lemmas leading to the
central property from Lemma 43 below.

Lemma 38. For all game logic formulas ϕ, all games γ and
all µ-calculus formulas A, we have that FVar(τϕγ (A)) ⊆
FVar(A), i.e., all free variables in τϕγ (A), occur free in A.

Proof. The proof is a simple induction on the complexity of
γ in the recursive clauses defining τϕγ (A).

Definition 39. A call triple is a triple (γ, ϕ,A) where γ is a
game term, ϕ is a game logic formula and A is a formula of

the monotone µ-calculus. The set of call triples is denoted by
CTr.

Definition 40. Given a game logic formula ξ, the set of
recursive calls of τ on ξ, denoted Cξ, is the least fixpoint of
the monotone map cξ : P(CTr) → P(CTr) defined by setting
t ∈ cξ(X), for X ⊆ CTr, iff:
• t = (γ, ϕ, ϕ]) for some subformula 〈γ〉ϕ of ξ, or
• t is of the form (γ, ϕ,A) or (γ′, ϕ,A) where (γ t
γ′, ϕ,A) ∈ X , or

• t is of the form (γ, ϕ,A) or (γ′, ϕ,A) where (γ u
γ′, ϕ,A) ∈ X , or

• t is of the form (γ, 〈γ×〉ϕ, x〈γ×〉ϕ) and there exists some
A for which (γ×, ϕ,A) ∈ X ,

• t is of the form (γ, 〈γ∗〉ϕ, x〈γ∗〉ϕ) and there exists some
A for which (γ∗, ϕ,A) ∈ X ,

• t is of the form (γ′, ϕ,A) or (γ, 〈γ′〉ϕ, τγ′ϕ (A)) for some
γ, γ′, ϕ and A such that ((γ ; γ′), ϕ,A) ∈ X .

Lemma 41. Let ξ be a game logic formula and let ηx〈δ
◦〉ϕ.B

be a subformula of ξ]. Then there exists some A such that

ηx〈δ
◦〉ϕ.B = τϕδ◦(A)

and, furthermore, (δ◦, ϕ,A) ∈ Cξ.

Proof. We show with mutual induction on the complexity on
subformula ψ of ξ and game terms γ occurring in ξ that

1) If ηx〈δ
◦〉ϕ.B is a subformula of ψ] then there exists

some A such that ηx〈δ
◦〉ϕ.B = τ δ

◦

ϕ (A) and, furthermore,
(δ◦, ϕ,A) ∈ Cξ.

2) If ηx〈δ
◦〉ϕ.B is a subformula of τχγ (D) and (γ, χ,D) ∈

Cξ then it is either a subformula of D or there exists
some A such that ηx〈δ

◦〉ϕ.B = τ δ
◦

ϕ (A) and, furthermore,
(δ◦, ϕ,A) ∈ Cξ.

In the inductive argument we distinguish the following cases:
• In the base case we have that either ψ = p, ψ = ¬p,
γ = g or γ = gd. The inductive claims are trivially
satisfied for all of these cases because ηx〈δ

◦〉ψ.B is not
a subformula of either ψ] or of τχγ .

• If ψ = χ1 ∧ χ2 or ψ = χ1 ∨ χ2 and ηx〈δ
◦〉ϕ.B is a

subformula of ψ] then ηx〈δ
◦〉ϕ.B is already a subformula

of χ]i for some i ∈ {1, 2}. It follows from (1) in the
inductive assumption for χi that there is some A such
that ηx〈δ

◦〉ϕ.B = τ δ
◦

ϕ (A) and that (δ◦, ϕ,A) ∈ Cξ. This
is already the inductive claim we needed to show.

• Consider the case where ψ = 〈γ〉χ and assume that
ηx〈δ

◦〉ϕ.B is a subformula of ψ] = τχγ (χ]). Because
〈γ〉χ is a subformula of ξ it follows from the definition
of Cξ that (γ, χ, χ]) ∈ Cξ. We can thus apply (2) from
inductive hypotheses to γ to obtain that either ηx〈δ

◦〉ϕ.B
is a subformula of χ] or there exists some A such that
ηx〈δ

◦〉ϕ.B = τ δ
◦

ϕ (A) and (δ◦, ϕ,A) ∈ Cξ. In the latter
case we are done and in the former we can apply (1)
from the inductive hypothesis to the subformula χ of ψ
and obtain the required properties as well.

• For the cases where γ = γ1 u γ2 or γ = γ1 t γ2

assume that ηx〈δ
◦〉ϕ.B is a subformula of τχγ (D) and
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that (γ, χ,D) ∈ Cξ. From the former it follows then
that ηx〈δ

◦〉ϕ.B is already a subformula of τχγi(D) for
some i ∈ {1, 2}. From the latter it follows with the
closure conditions of Cξ that (γi, χ,D) ∈ Cξ. We can
thus immediately apply (2) of the inductive hypothesis
for the respective γi to obtain the required property.

• The interesting case is where γ = ρ◦ with ◦ ∈ {∗,×}.
We only consider the case where ◦ = ∗. Assume that
(ρ∗, χ,D) ∈ Cξ and that ηx〈δ

◦〉ϕ.B is a subformula of

τχρ∗(D) = µx〈ρ
∗〉χ.D ∨ τ 〈ρ

∗〉ϕ
ρ (x〈ρ

∗〉χ).

There are three possibilities how the latter might be the
case.
First, ηx〈δ

◦〉ϕ.B might be equal to τχρ∗(D). In that case
ηx〈δ

◦〉ϕ.B is of the required shape and (ρ∗, χ,D) ∈ Cξ
holds by assumption.
Second, it might be that ηx〈δ

◦〉ϕ.B is a subformula of D,
in which case we are done immediately.
Third and last, ηx〈δ

◦〉ϕ.B might be a subformula of
τ
〈ρ∗〉χ
ρ (x〈ρ

∗〉χ). In that case we can apply (2) of the
inductive hypothesis to ρ because (ρ, 〈ρ∗〉χ, x〈ρ∗〉χ) ∈ Cξ
follows from the assumption that (ρ∗, χ,D) ∈ Cξ to-
gether with the closure conditions from the definition
of Cξ. Hence, it follows that either ηx〈δ

◦〉ϕ.B is a
subformula of x〈ρ

∗〉χ, which is impossible, or that there is
some A such that ηx〈δ

◦〉ϕ.B = τ δ
◦

ϕ (A) and, furthermore,
(δ◦, ϕ,A) ∈ Cξ. . The latter is exactly what we have to
show.

• For the case where γ = γ1 ; γ2 assume that ηx〈δ
◦〉ϕ.B

is a subformula of τχγ1 ; γ2
(D) = τ

〈γ2〉χ
γ1 (τχγ2

(D)) and
that (γ1 ; γ2, χ,D) ∈ Cξ. From the latter it follows
with the definition of Cξ that (γ1, 〈γ2〉χ, τχγ2

(D)) ∈ Cξ.
Hence, we can apply (2) of the induction hypothesis to
γ1 and obtain that either ηx〈δ

◦〉ϕ.B is already of the
required shape or it is a subterm of τχγ2

(D). In the latter
case we can use the fact that (γ2, χ,D) ∈ Cξ, which
also follows from (γ1 ; γ2, χ,D) ∈ Cξ, to apply the
induction hypothesis again, this time to γ2, and obtain
that ηx〈δ

◦〉ϕ.B is either of the required shape or that it is
a subterm of D. This is precisely what we need to show.

• Of the cases where γ = α? or γ = α! we just consider the
former because the latter goes analogously. Assume that
ηx〈δ

◦〉ϕ.B is a subformula of τχα?(D) = α] ∨D and that
(α?, χ,D) ∈ Cξ. The former means that ηx〈δ

◦〉ϕ.B is
either a subformula of D, in which case we are done, or it
is a subformula of α]. But if ηx〈δ

◦〉ϕ.B is a subformula of
α] we can apply (1) to the subformula α of ξ to conclude
that ηx〈δ

◦〉ϕ.B must be of the required shape.

Lemma 42. Let ξ be a game logic formula, let (γ, ϕ,A) be
a recursive call of τ on ξ and let x〈δ

◦〉ψ be a bound variable
of ξ]. If x〈δ

◦〉ψ is free in A, then γ is a proper subterm of δ◦.

Proof. We prove this by least fixpoint induction: let X be
the set of all call triples (γ, ϕ,A) such that, for every bound

variable x〈δ
◦〉ψ of ξ] such that x〈δ

◦〉ψ is free in A, we have
that γ is a strict subterm of δ. We show that cξ(X) ⊆ X ,
hence Cξ ⊆ X as required.

So suppose that the triple t is in cξ(X). We make a case
distinction:
• t = (γ, ϕ, ϕ]) for some subformula 〈γ〉ϕ of ξ. Then
t ∈ X since no bound variable of ξ appears free in ϕ],
which means that the defining condition of the set X
holds trivially.

• t is of the form (γ, ϕ,A) or (γ′, ϕ,A) where (γ t
γ′, ϕ,A) ∈ X . Given a bound variable x〈δ

◦〉ψ of ξ] such
that x〈δ

◦〉ψ is free in A, since (γ t γ′, ϕ,A) ∈ X it
follows that γ t γ′ is a proper subterm of δ◦. So clearly
this also holds for both γ and γ′. Hence (γ, ϕ,A) ∈ X
and (γ′, ϕ,A) ∈ X as required.

• The case where t is of the form (γ, ϕ,A) or (γ′, ϕ,A)
for (γ u γ′, ϕ,A) ∈ X is similar.

• Suppose t is of the form (γ, 〈γ×〉ϕ, x〈γ×〉ϕ) and there
exists some A for which (γ×, ϕ,A) ∈ X . Given a bound
variable x〈δ

◦〉ψ of ξ], the only possible way that x〈δ
◦〉ψ

can appear free in x〈γ
×〉ϕ is if x〈δ

◦〉ψ = x〈γ
×〉ϕ, so

〈δ◦〉ψ = 〈γ×〉ϕ and therefore δ◦ = γ×. Since γ is
a proper subterm of γ×, this means that the required
conclusion holds.

• The case where t is of the form (γ, 〈γ∗〉ϕ, x〈γ∗〉ϕ) is
similar.

• Suppose t is of the form (γ′, ϕ,A) for some γ, γ′, ϕ
and A such that ((γ ; γ′), ϕ,A) ∈ X . If x〈δ

◦〉ψ is a
bound variable of ξ] that appears free in A, then since
((γ ; γ′), ϕ,A) ∈ X it follows that γ ; γ′ is a proper
subterm of δ◦. Hence, so is γ′.

• Finally, suppose t is of the form (γ, 〈γ′〉ϕ, τγ′ϕ (A)) for
some γ, γ′, ϕ and A such that ((γ ; γ′), ϕ,A) ∈ X . If
x〈δ
◦〉ψ is a bound variable of ξ] that appears free in

τγ
′

ϕ (A), then by Lemma 38 x〈δ
◦〉ψ appears free in A as

well. Since ((γ ; γ′), ϕ,A) ∈ X it follows that γ ; γ′ is a
proper subterm of δ◦, hence so is γ.

We have shown that t ∈ cξ(X) implies t ∈ X , so the proof is
finished.

Lemma 43. Let ξ be a game logic formula and 〈γ◦〉ϕ, 〈δ†〉ψ ∈
F (ξ), where ◦, † ∈ {∗,×}. If x〈δ

†〉ψ <−
ξ]
x〈γ
◦〉ϕ then 〈δ†〉ψ ≺

〈γ◦〉ϕ.

Proof. We consider the case that γ◦ = γ×. The case where
◦ = ∗ is similar.

Assume that the variable x〈δ
†〉ψ is free in some subformula

νx〈γ
×〉ϕ.B of ξ]. By Lemma 41, there exists some A such

that
νx〈γ

×〉ϕ.B = τγ
×

ϕ (A)

and furthermore, (γ×, ϕ,A) ∈ Cξ. But we have:

τϕγ×(A) = νx〈γ
×〉ϕ.A ∧ τ 〈γ

×〉ϕ
γ (x〈γ

×〉ϕ),

so
νx〈γ

×〉ϕ.B = νx〈γ
×〉ϕ.A ∧ τ 〈γ

×〉ϕ
γ (x〈γ

×〉ϕ),
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so the variable x〈δ
†〉ψ must occur freely in either A or

in τ
〈γ×〉ϕ
γ (x〈γ

×〉ϕ). If the variable x〈δ
†〉ψ occurs freely in

τ
〈γ×〉ϕ
γ (x〈γ

×〉ϕ) then by Lemma 38, 〈γ×〉ϕ = 〈δ†〉ψ, hence
x〈γ
×〉ϕ = x〈δ

†〉ψ . But this contradicts our assumption that
x〈δ
†〉ψ <−

ξ]
x〈γ
×〉ϕ, since <−

ξ]
is an irreflexive relation.

So the only possibility is that x〈δ
†〉ψ occurs freely in A.

Since (γ×, ϕ,A) ∈ Cξ was a recursive call of τ on ξ, it
follows from Lemma 42 that γ× is a proper subterm of δ†.
Hence 〈δ†〉ψ ≺ 〈γ×〉ϕ as required.

Proof of Proposition 24 From Lemma 43 it follows that ξ] is
locally well-named: If ξ] was not locally well-named then the
transitive closure <ξ] of <−

ξ]
would be reflexive and hence by

Lemma 43 the relation ≺ would be reflexive as well. But ≺
is irreflexive, since the strict subterm relation is irreflexive.

That xϕ ≤ξ] xψ implies ϕ 4 ψ follows also from
Lemma 43 because ≤ξ] is the reflexive and transitive closure
of <−

ξ]
and 4 is transitive and reflexive, as it is defined via

the subterm relation.

E. Omitted proofs of Section VI

We prove completeness for Par from completeness of G
by going via an intermediate Hilbert system ParFull for the
language LFull. Note that LPar ⊆ LFull. The system ParFull

is defined as the extension of Par with the axioms and rules
listed in Figure 8 below.

Additional axioms:
• 〈γ u δ〉ϕ↔ 〈γ〉ϕ∧ 〈δ〉ϕ
• 〈γ×〉ϕ↔ ϕ ∧ 〈γ〉〈γ×〉ϕ
• 〈ψ!〉ϕ↔ ψ ∨ ϕ

Additional rule:

ϕ→ 〈γ〉ϕ
BarInd×

ϕ→ 〈γ×〉ϕ

Fig. 8. Additional axioms and rules of ParFull.

The next lemma shows that ParFull is a conservative exten-
sion of Par.

Lemma 44. For all ϕ ∈ LFull, if ParFull ` ϕ then Par ` pa(ϕ).

Proof. We need to check that the pa()-translation of every
axiom of ParFull is derivable in Par, and that the pa()-
translation of every instance of a rule of ParFull is admissible
in Par. We shall allow defined propositional connectives like
→,↔,∧ as abbreviations here.

Case: 〈γ u δ〉ϕ ↔ 〈γ〉ϕ ∧ 〈δ〉ϕ. The translation of this
axiom becomes:

〈(pa(γ)d t pa(δ)d)d〉pa(ϕ)↔ 〈pa(γ)〉pa(ϕ) ∧ 〈pa(δ)〉pa(ϕ)

We derive this through the following chain of provable equiv-
alences in Par:

〈(pa(γ)d t pa(δ)d)d〉pa(ϕ)

⇔ ¬〈pa(γ)d t pa(δ)d〉¬pa(ϕ)

⇔ ¬(〈pa(γ)d〉¬pa(ϕ) ∨ 〈pa(δ)d〉¬pa(ϕ))

⇔ ¬〈pa(γ)d〉¬pa(ϕ) ∧ ¬〈pa(δ)d〉¬pa(ϕ)

⇔ ¬¬〈pa(γ)〉¬¬pa(ϕ) ∧ ¬¬〈pa(δ)〉¬¬pa(ϕ))

⇔ 〈pa(γ)〉pa(ϕ) ∧ 〈pa(δ)〉pa(ϕ))

Case: 〈γ×〉ϕ↔ ϕ∧〈γ〉〈γ×〉ϕ. The translation of this axiom
becomes:

〈((pa(γ)d)∗)d〉pa(ϕ)↔ pa(ϕ) ∧ 〈pa(γ)〉〈((pa(γ)d)∗)d〉pa(ϕ)

We derive this through the following chain of provable equiv-
alences in Par:

〈((pa(γ)d)∗)d〉pa(ϕ)

⇔ ¬〈(pa(γ)d)∗〉¬pa(ϕ)

⇔ ¬(¬pa(ϕ) ∨ 〈pa(γ)d〉〈(pa(γ)d)∗〉¬pa(ϕ))

⇔ ¬(¬pa(ϕ) ∨ ¬〈pa(γ)〉¬〈(pa(γ)d)∗〉¬pa(ϕ))

⇔ pa(ϕ) ∧ 〈pa(γ)〉¬〈(pa(γ)d)∗〉¬pa(ϕ)

⇔ pa(ϕ) ∧ 〈pa(γ)〉〈((pa(γ)d)∗)d〉pa(ϕ)

Case: 〈ψ!〉ϕ↔ ψ∨ϕ The translation of this axiom becomes:

〈(¬pa(ψ)?)d〉pa(ϕ)↔ pa(ψ) ∨ pa(ϕ)

We derive this through the following chain of provable equiv-
alences in Par:

〈(¬pa(ψ)?)d〉pa(ϕ)

⇔ ¬〈¬pa(ψ)?〉¬pa(ϕ)

⇔ ¬(¬pa(ψ) ∧ ¬pa(ϕ))
′ ⇔ pa(ψ) ∨ pa(ϕ)

Case:
ϕ→ 〈γ〉ϕ
ϕ→ 〈γ×〉ϕ

We show that the translation of this rule is derivable in Par.
It then follows that it is admissible. The translation of the
premise of this rule is pa(ϕ)→ 〈pa(γ)〉pa(ϕ), and the conclu-
sion becomes pa(ϕ)→ 〈((pa(γ)d)∗)d〉pa(ϕ). So suppose that
Par ` pa(ϕ)→ 〈pa(γ)〉pa(ϕ). Then Par ` ¬〈pa(γ)〉pa(ϕ)→
¬pa(ϕ), which gives Par ` 〈pa(γ)d〉¬pa(ϕ) → ¬pa(ϕ). Bar
Induction gives:

Par ` 〈(pa(γ)d)∗〉¬pa(ϕ)→ ¬pa(ϕ)

Contraposition now gives:

Par ` pa(ϕ)→ ¬〈(pa(γ)d)∗〉¬pa(ϕ),

and the desired conclusion follows by the equivalence
¬〈(pa(γ)d)∗〉¬pa(ϕ)⇔ 〈((pa(γ)d)∗)d〉pa(ϕ). This concludes
the proof.

The convenience of working in a Hilbert system for the full
language is that we can prove the following lemma.
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Lemma 45. For all ϕ ∈ LFull, ParFull ` ϕ↔ nf(ϕ).

Proof. Straightforward induction on the complexity of formu-
las.

Since we eventually want to connect G-provability of nf(ϕ)
with Par-provability of ϕ via ParFull, the following proposition
takes care of one of the steps.

Proposition 46. For all ϕ ∈ LPar, if ParFull ` nf(ϕ) then
Par ` ϕ.

Proof. Due to Lemma 45, it suffices to show that for all
ϕ ∈ LPar, if ParFull ` ϕ then Par ` ϕ. This follows from
Lemma 44. since, if ϕ ∈ LPar then pa(ϕ) = ϕ.

We now show that we can translate G-derivations into
ParFull-derivations.

Proposition 47. For all sequents Φ ⊆ LNF,

G ` Φ implies ParFull `
∨

Φ.

Consequently, for all ξ ∈ LNF, if G ` ξ then ParFull ` ξ.

Proof. To prove this proposition, we need to prove that the
disjunction of any axiom of G is derivable in ParFull, and that
every rule R of G is admissible in ParFull in the following
sense: if the disjunction of the premise of an instance of
R is derivable in ParFull, then so is the disjunction of the
corresponding conclusion. Axioms of G are taken care of by
Lemma 45, since they are of the form Φ,Φ, and the disjunction
of such a sequent is the nf()-translation of a propositional
tautology. For admissibility of the G-rules inds and Mong

d

is shown in Lemmas 49 and 48 below. The other cases are
straightforward, and we leave the details to the reader.

Lemma 48. The rule inds is admissible in the system ParFull:
if ParFull `

∨
Γ ∨ (ϕ ∧ 〈γ〉〈(Γ! ; γ)×〉〈Γ!〉ϕ) then ParFull `∨

Γ ∨ 〈γ×〉ϕ as well.

Proof. Suppose that:

ParFull `
∨

Γ ∨ (ϕ ∧ 〈γ〉〈(Γ! ; γ)×〉〈Γ!〉ϕ)

We show that ParFull `
∨

Γ∨〈γ×〉ϕ. Note that we can rewrite
the assumption as:

(∗) ParFull ` Γ→ (ϕ ∧ 〈γ〉〈(Γ! ; γ)×〉〈Γ!〉ϕ)

and the desired conclusion as: ParFull ` Γ→ 〈γ×〉ϕ.

CLAIM 2. ParFull ` Γ→ ϕ ∧ 〈γ〉〈(Γ! ; γ)×〉ϕ

PROOF OF CLAIM By our assumption (∗) we get ParFull `
Γ → ϕ, and since ParFull ` 〈Γ!〉ϕ ↔ Γ ∨ ϕ we get
ParFull ` 〈Γ!〉ϕ → ϕ. Together with Monotonicity applied
to the consequent in (∗), we get

ParFull ` Γ→ ϕ ∧ 〈γ〉〈(Γ! ; γ)×〉ϕ

as required. J

CLAIM 3. ParFull ` 〈(Γ! ; γ)×〉 → 〈γ×〉〈(Γ! ; γ)×〉

PROOF OF CLAIM First, by simply unfolding the fixpoint and
applying propositional reasoning we get:

ParFull ` 〈(Γ! ; γ)×〉 → 〈Γ! ; γ〉〈(Γ! ; γ)×〉

But the consequent of this implication is equivalent to:

Γ ∨ 〈γ〉〈(Γ! ; γ)×〉

By Claim 2 applied to the left disjunct of this formula we get:

ParFull ` 〈(Γ! ; γ)×〉 → 〈γ〉〈(Γ! ; γ)×〉

By the Bar Induction rule we get:

ParFull ` 〈(Γ! ; γ)×〉 → 〈γ×〉〈(Γ! ; γ)×〉

as required. J

CLAIM 4. ParFull ` Γ→ 〈(Γ! ; γ)×〉ϕ

PROOF OF CLAIM By Claim 2 we get ` Γ → ϕ ∧
〈γ〉〈(Γ! ; γ)×〉ϕ. By propositional reasoning we have:

ParFull ` 〈γ〉〈(Γ! ; γ)×〉ϕ→ Γ ∨ 〈γ〉〈(Γ! ; γ)×〉ϕ

But the consequent of this implication is equivalent to
〈Γ! ; γ〉〈(Γ! ; γ)×〉ϕ, so we get:

` Γ→ ϕ ∧ 〈Γ! ; γ〉〈(Γ! ; γ)×〉ϕ

But the consequent of this implication is just the unfolding of
the fixpoint 〈(Γ! ; γ)×〉ϕ, so we get:

ParFull ` Γ→ 〈(Γ! ; γ)×〉ϕ

as required. J

CLAIM 5. ParFull ` 〈(Γ! ; γ)×〉ϕ→ ϕ

PROOF OF CLAIM Just unfold the fixpoint 〈(Γ! ; γ)×〉ϕ to ϕ∧
〈Γ ; γ〉〈(Γ! ; γ)×〉ϕ. J

We can now prove the lemma: by Claim 4 we have:

(i) ParFull ` Γ→ 〈(Γ! ; γ)×〉ϕ

Combining (i) with Claim 3 we get:

(ii) ParFull ` Γ→ 〈γ×〉〈(Γ! ; γ)×〉ϕ

By Claim 5 and Monotonicity we get:

(iii) ParFull ` 〈γ×〉〈(Γ! ; γ)×〉ϕ→ 〈γ×〉ϕ

Putting (ii) and (iii) together we get:

ParFull ` Γ→ 〈γ×〉ϕ

as required.

Lemma 49. The rule Mong
d is derivable in the system ParFull.

Proof. We shall prove this by induction on the complexity of
formulas in dual normal form. To keep notation simple, in this
proof we abbreviate ParFull ` ϕ by ` ϕ, and ParFull ` ϕ→ ψ
by ϕ ` ψ. The induction hypothesis on a formula ϕ(δ) is that
ϕ(δ) ` ϕ(χ! ; δ).
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CLAIM 6. For every game term γ(δ) in dual normal form and
every formula ϕ, we can prove the following implication in
ParFull:

〈γ(δ)〉ϕ→ 〈γ(χ! ; δ)〉ϕ

provided that the main induction hypothesis holds for every
formula θ corresponding to a subterm θ! or θ? of γ(δ).

PROOF OF CLAIM We prove that the implication holds for
all ϕ by induction on the complexity of the game term γ(δ),
treating δ as an atomic case.

Atomic case, γ(δ) = δ. For all ϕ we have:

〈δ〉ϕ ` χ ∨ 〈δ〉ϕ ` 〈χ!〉〈δ〉ϕ ` 〈χ! ; δ〉ϕ

as required.

Atomic case for game terms g or gd: trivial.

Case for θ(δ)? or θ(δ)!: follows immediately from the
induction hypothesis on θ, since ` 〈θ(δ)?〉ϕ ↔ θ(δ) ∧ ϕ and
` 〈θ(δ)!〉ϕ↔ θ(δ) ∨ ϕ.

Case for t : the induction hypothesis on the subterms γ1(δ)
and γ2(δ) of (γ1 t γ2)(δ) gives ` 〈γ1(δ)〉ϕ → 〈γ1(χ! ; δ)〉ϕ
and ` 〈γ2(δ)〉ϕ→ 〈γ2(χ! ; δ)〉ϕ. We get:

〈γ1(δ) t γ2(δ)〉ϕ ` 〈γ1(δ)〉ϕ ∨ 〈γ2(δ)〉ϕ
` 〈γ1(χ! ; δ)〉ϕ ∨ 〈χ! ; γ2(δ)〉ϕ
` 〈γ1(χ! ; δ) t γ2(χ! ; δ)〉ϕ

as required.

Case for u: similar.

Case for ;: consider the formula 〈γ1(δ) ; γ2(δ)〉ϕ. The
induction hypothesis on γ2(δ) instantiated for the formula ϕ
gives

` 〈γ2(δ)〉ϕ→ 〈γ2(χ! ; δ)〉ϕ

By monotonicity we get:

` 〈γ1(δ)〉〈γ2(δ)〉ϕ→ 〈γ1(δ)〉〈γ2(χ! ; δ)〉ϕ

But the induction hypothesis on γ1(δ) instantiated for the
formula 〈γ2(χ! ; δ)〉ϕ gives:

〈γ1(δ)〉〈γ2(χ! ; δ)〉ϕ→ 〈γ1(χ! ; δ)〉〈γ2(χ! ; δ)〉ϕ

Putting these implications together we get:

` 〈γ1(δ)〉〈γ2(δ)〉ϕ→ 〈γ1(χ! ; δ)〉〈γ2(χ! ; δ)〉ϕ

The required result now follows from the reduction axioms
for ; applied to both the antecedent and the consequent in
this implication.

Case for ∗: by the induction hypothesis we have, for
every formula ψ, ` 〈γ(δ)〉ψ → 〈γ(χ! ; δ)〉ψ. We wish to
show that for all ϕ, we have ` 〈γ(δ)∗〉ϕ → 〈γ(χ! ; δ)∗〉ϕ.

By the induction hypothesis instantiated with the formula
ψ = 〈γ(χ! ; δ)∗〉ϕ we have

` 〈γ(δ)〉〈γ(χ! ; δ)∗〉ϕ→ 〈γ(χ! ; δ)〉〈γ(χ! ; δ)∗〉ϕ

But by the unfolding axiom for angelic iteration and proposi-
tional reasoning we get:

` 〈γ(χ! ; δ)〉〈γ(χ! ; δ)∗〉ϕ→ 〈γ(χ! ; δ)∗〉ϕ

Hence, putting these two implications together, we get:

` 〈γ(δ)〉〈γ(χ! ; δ)∗〉ϕ→ 〈γ(χ! ; δ)∗〉ϕ

By the Bar Induction rule for angelic iteration, we now get:

(†) ` 〈γ(δ)∗〉〈γ(χ! ; δ)∗〉ϕ→ 〈γ(χ! ; δ)∗〉ϕ

Applying unfolding and propositional reasoning again, we get:

` ϕ→ 〈γ(χ! ; δ)∗〉ϕ

By the monotonicity rule we get:

(‡) ` 〈γ(δ)∗〉ϕ→ 〈γ(δ)∗〉〈γ(χ! ; δ)∗〉ϕ

Putting together the implications (†) and (‡), we get:

` 〈γ(δ)∗〉ϕ→ 〈γ(χ! ; δ)∗〉ϕ

as required.

Case for ×: by the induction hypothesis we have, for
every formula ψ, ` 〈γ(δ)〉ψ → 〈γ(χ! ; δ)〉ψ. We wish to
show that for all ϕ, we have ` 〈γ(δ)×〉ϕ → 〈γ(χ! ; δ)×〉ϕ.
By the induction hypothesis instantiated with the formula
ψ = 〈γ(δ)×〉ϕ we have

` 〈γ(δ)〉〈γ(δ)×〉ϕ→ 〈γ(χ! ; δ)〉〈γ(δ)×〉ϕ

But by unfolding 〈γ(δ)×〉ϕ to ϕ ∧ 〈γ(δ)〉〈γ(δ)×〉ϕ, we see
that:

` 〈γ(δ)×〉ϕ→ 〈γ(δ)〉〈γ(δ)×〉ϕ

Putting together the implications we have established so far,
we get:

` 〈γ(δ)×〉ϕ→ 〈γ(χ! ; δ)〉〈γ(δ)×〉ϕ

By the Bar Induction rule for × we now get:

(†) ` 〈γ(δ)×〉ϕ→ 〈γ(χ! ; δ)×〉〈γ(δ)×〉ϕ

But we have ` 〈γ(δ)×〉ϕ→ ϕ, so by monotonicity we get:

(‡) ` 〈γ(χ! ; δ)×〉〈γ(δ)×〉ϕ→ 〈γ(χ! ; δ)×〉ϕ

Putting together (†) and (‡) we get:

` 〈γ(δ)×〉ϕ→ 〈γ(χ! ; δ)×〉ϕ

as required.
J

We can now complete the main induction: the atomic cases
for literals and induction steps for ∨,∧ are easy. The only
interesting step is for a formula of the form (〈γ〉ϕ)(δ) =
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〈γ(δ)〉ϕ(δ). By the induction hypothesis on ϕ(δ) we get
` ϕ(δ)→ ϕ(χ! ; δ), so by monotonicity we get

` 〈γ(χ! ; δ)〉ϕ(δ)→ 〈γ(χ! ; δ)〉ϕ(χ! ; δ)

By the induction hypothesis on all subformulas θ occurring in
subterms θ! or θ? of γ(δ), we can apply Claim 6 and get

` 〈γ(δ)〉ϕ(δ)→ 〈γ(χ! ; δ)〉ϕ(δ)

Putting together these implications we get:

` 〈γ(δ)〉ϕ(δ)→ 〈γ(χ! ; δ)〉ϕ(χ! ; δ)

as required.

We are now ready to prove the transformations between G
and Par.

Proof of Theorem 11 For item 1, let ϕ ∈ LPar such that
G ` nf(ϕ). By Proposition 47, ParFull ` nf(ϕ), and by
Proposition 46, we obtain Par ` ϕ.

For item 2, let ξ ∈ LNF such that G ` ξ. By Proposition 47,
ParFull ` ξ, and since LNF ⊆ LFull, we obtain Par ` pa(ξ)
from Lemma 44.
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