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ABSTRACT

Ontology-mediated querying and querying in the presence of con-

straints are two key database problems where tuple-generating

dependencies (TGDs) play a central role. In ontology-mediated

querying, TGDs can formalize the ontology and thus derive ad-

ditional facts from the given data, while in querying in the pres-

ence of constraints, they restrict the set of admissible databases.

In this work, we study the limits of efficient query evaluation in

the context of the above two problems, focusing on guarded and

frontier-guarded TGDs and on UCQs as the actual queries. We

show that a class of ontology-mediated queries (OMQs) based on

guarded TGDs can be evaluated in FPT iff the OMQs in the class

are equivalent to OMQs in which the actual query has bounded

treewidth, up to some reasonable assumptions. For querying in the

presence of constraints, we consider classes of constraint-query

specifications (CQSs) that bundle a set of constraints with an actual

query. We show a dichotomy result for CQSs based on guarded

TGDs that parallels the one for OMQs except that, additionally, FPT

coincides with PTime combined complexity. The proof is based on

a novel connection between OMQ and CQS evaluation. Using a

direct proof, we also show a similar dichotomy result, again up to

some reasonable assumptions, for CQSs based on frontier-guarded

TGDs with a bounded number of atoms in TGD heads. Our results

on CQSs can be viewed as extensions of Grohe’s well-known char-

acterization of the tractable classes of CQs (without constraints).

Like Grohe’s characterization, all the above results assume that the

arity of relation symbols is bounded by a constant. We also study

the associated meta problems, i.e., whether a given OMQ or CQS is

equivalent to one in which the actual query has bounded treewidth.
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1 INTRODUCTION

Tuple-generating dependencies (TGDs) are a prominent rule-based

formalism at the core of several areas that are of central impor-

tance to databases and artificial intelligence. They are first-order

implications of the form ∀𝑥∀𝑦
(
𝜙 (𝑥,𝑦) → ∃𝑧𝜓 (𝑥, 𝑧)

)
, where 𝜙

and 𝜓 are conjunctions of relational atoms, and they essentially

state that some tuples (facts) in a relational instance imply the

presence of some other tuples in that instance (hence the name

“tuple-generating”). In query evaluation over relational databases,

TGDs have two facets: (1) they can be used as ontology axioms

that allow us to derive additional facts from the given data, which

supports more complete query answers, and (2) they can be used

as integrity constraints that restrict the set of admissible databases,

which paves the way to constraint-aware query optimization. In

fact, TGDs were originally introduced as a unifying framework for

the large range of relational constraints introduced in the 1970s

and the 1980s [1].

The Two Facets of TGDs. When a set of TGDs is used as an

ontology, it is often bundled with an actual database query, typically

a union of conjunctive queries (UCQ), to form a composite ontology-

mediated query (OMQ) [11, 12]. As mentioned above, adding the

ontology serves the purpose of delivering more complete answers

to queries. It also enriches the vocabulary available for querying as

it may introduce new relation symbols that are not part of the data

schema. An OMQ language is a pair (C,Q), with C being a class

of TGDs and Q a query language, which collects all the OMQs in

which the ontology is formulated in C and the actual query comes

from Q [12]. The main problem of concern for an OMQ language

(C,Q) is OMQ evaluation under an open-world semantics, i.e., we

are looking for answers to the actual query fromQ that are logically

entailed by the input database and the ontology from C.
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On the other hand, when a set of TGDs is used as relational in-

tegrity constraints, the TGDs together with the actual query can be

bundled together into what we call a constraint-query specification

(CQS). A class of CQSs is a pair (C,Q), where, as in OMQs, C is

a class of TGDs and Q a query language. In this setting, however,

the problem of interest is CQS evaluation under a closed-world

semantics, i.e., we are looking for answers to the query fromQ over

the input database, which is promised to comply with the set of

constraints from C. In other words, we directly evaluate the query

over the database, which we know to satisfy the set of constraints.

TGDs and Guardedness. It is well-known that OMQ evaluation

in (TGD,UCQ), where TGD is the class of all TGDs, and UCQ the

class of union of conjunctive queries, is an undecidable problem;

see, e.g., [14]. This has led to intense research activity for identi-

fying restrictions on TGDs that ensure the decidability of OMQ

evaluation; see, e.g., [3, 14, 16, 28] – the list is by no means exhaus-

tive. One of the most robust syntactic paradigms that emerged from

this extensive effort, which is central to our work, is guardedness. A

TGD is guarded if the left-hand of the implication, called the body,

has an atom that contains (or guards) all the universally quanti-

fied variables [14]; let G be the class of guarded TGDs. A natural

generalization is to guard only the variables that appear also in

the right-hand side, called the head, which leads to the class of

frontier-guarded TGDs FG [3]. The complexity of OMQ evaluation

in (C,UCQ), where C ∈ {G, FG}, is by now well-understood. In

both cases, it is 2ExpTime-complete [2, 14], and it remains hard

even in the case of bounded-arity schemas, i.e., 2ExpTime-complete

in (FG,UCQ) [2], and ExpTime-complete in (G,UCQ) [14].
Although guarded and frontier-guarded TGDs have been pro-

posed as ontology languages, they can also naturally serve as classes

of integrity constraints [9]. Note, for example, that the important

class of referential integrity constraints (or inclusion dependencies)

is a very special case of guarded TGDs. Now, the complexity of CQS

evaluation in (C,UCQ), where C ∈ {G, FG}, coincides with that of

query evaluation for UCQ: it is NP-complete, even for schemas of

bounded arity [17]. This holds since CQS evaluation in (C,UCQ)
is, in fact, a refinement of the query evaluation problem for UCQ,
with the additional promise that the input database satisfies a given

(but potentially empty) set of integrity constrains coming from C.

The Limits of Efficiency. Thus both OMQ evaluation and CQS

evaluation in (C,UCQ), where C ∈ {G, FG}, are computationally

hard problems. However, there are subclasses of (C,UCQ), seen
either as an OMQ language or a class of CQSs, for which the evalu-

ation problem is efficient in the sense of being tractable or being

fixed-parameter tractable (FPT) where the parameter is the size of

the OMQ (resp., CQS). In particular, with UCQ𝑘 being the class of

UCQs of treewidth at most𝑘 , we know that: (1) for each𝑘 ≥ 1, OMQ

evaluation in (G,UCQ𝑘 ) is in FPT (actually, this is shown in this

work – Proposition 3.3), and (2) for each 𝑘 ≥ 1, CQS evaluation in

(FG,UCQ𝑘 ) is in PTime. Both statements rely on the well-known

result that query evaluation for UCQs of bounded treewidth is

tractable [18]. In view of this, it is natural to ask whether we can pre-

cisely characterize the limits of efficient OMQ and CQS evaluation.

The goal of this work is to provide such efficiency characterizations.

A seminal result by Grohe precisely characterizes the (recursively

enumerable) classes of CQs over schemas of bounded arity that

can be evaluated in polynomial time (under the assumption that

FPT ≠ W[1]) [26]: this is the case if and only if for some 𝑘 ≥ 1,

every CQ in the class is equivalent to a CQ of treewidth 𝑘 . Grohe’s

result also establishes that PTime and FPT coincide for evaluating

classes of CQs. This naturally generalizes to UCQs.

Efficiency characterizations in the same spirit have been recently

obtained for OMQ languages based on description logics (DLs). In

particular, [7] precisely characterizes the (recursively enumerable)

classes of OMQs from (ELHI⊥,UCQ), where ELHI⊥ is an im-

portant DL, essentially a fragment of guarded TGDs. Here, OMQ

evaluation is in FPT (assuming FPT ≠ W[1]) if and only if for some

𝑘 ≥ 1, every OMQ in the class is equivalent to an OMQ of treewidth

𝑘 , i.e., an OMQ such that the UCQ in it is of treewidth 𝑘 . Note that

the equivalence is now on the level of OMQs rather than on the

level of UCQs. The same work [7] precisely characterizes the (recur-

sively enumerable) classes of OMQs from (ELH⊥,UCQ), where
ELH⊥ is a key fragment of ELHI⊥ that underpins the OWL 2 EL

profile of the OWL 2 recommendation [30]. Here, evaluation is in

PTime (again assuming FPT ≠ W[1]) if and only if for some 𝑘 ≥ 1,

every OMQ in the class is equivalent to an OMQ of treewidth𝑘 . This

also shows that PTime and FPT coincide for evaluating classes of

OMQs from (ELH⊥,UCQ). The classification of (ELH⊥,UCQ),
however, is subject to the condition that the ontology does not

introduce relations beyond those admitted in the database.

Our Results. Our main results are as follows, under the widely

believed complexity-theoretic assumption that FPT ≠ W[1]:

(1) For a recursively enumerable class of OMQs from (G,UCQ)
over a schema of bounded arity, evaluation is in FPT if and

only if there is 𝑘 ≥ 1 such that each OMQ in the class is

equivalent to one from (G,UCQ𝑘 ) (Theorem 5.3).

(2) For a recursively enumerable class of CQSs from (G,UCQ)
over a schema of bounded arity, evaluation is in PTime if

and only if evaluation is in FPT if and only if there is 𝑘 ≥ 1

such that each CQS in the class is equivalent to one from

(G,UCQ𝑘 ) (Theorem 5.7).

(3) Our final result concerns CQSs from (FG,UCQ) in which the
TGDs have a bounded number of at most𝑚 ≥ 1 head atoms;

let FG𝑚 be the obtained class. For a recursively enumerable

class of CQSs from (FG𝑚,UCQ) over a schema of bounded

arity, evaluation is in PTime if and only if evaluation is in FPT

if and only if there is 𝑘 ≥ 1 such that each CQS in the class

is equivalent to one from (FG𝑚,UCQ𝑘 ) (Theorem 5.12).

It is not surprising that characterization (1) talks only about

FPT and not PTime complexity since we know from [14] that the

ExpTime-hardness of OMQ evaluation in (G,UCQ) in the case of

schemas of bounded arity holds even if the actual query is an atomic

query of the simplest form, i.e., a propositional atom. Moreover,

it turns out that the notion of being equivalent to an OMQ of

bounded treewdith is not enough for characterizing evaluation in

FPT for frontier-guarded TGDs. We can show that OMQ evaluation

in (FG,UCQ𝑘 ) isW[1]-hard – this is actually easily inherited from

the fact that Boolean CQ evaluation isW[1]-hard [31].

For all the above characterizations, if the efficiency condition

fails, i.e., there is no integer𝑘 ≥ 1 such that each OMQ or CQS in the

considered class is equivalent to one in which the actual query falls



within UCQ𝑘 , then the evaluation problem is W[1]-hard. Showing

these lower bounds is actually the most challenging task underlying

our efficiency characterizations. Together with the assumption that

FPT ≠ W[1], they establish that efficient evaluation implies the

efficiency condition. For (1) and (3), this is done via an fpt-reduction

from the parameterized version of the 𝑘-clique problem, a well-

known W[1]-hard problem, building on Grohe’s result which also

relies on an fpt-reduction from 𝑘-clique. For (2), we exploit a novel

connection between OMQ evaluation and CQS evaluation, which is

of independent interest. In fact, we provide an fpt-reduction from

OMQ evaluation to CQS evaluation.

At this point, we would like to stress that the fpt-reductions un-

derlying (1) and (3) are not merely adaptations of the fpt-reduction

by Grohe. For (1), the fact that the ontology can introduce additional

relations beyond the data schema causes serious challenges. More-

over, unlike the characterizations of [7] for OMQs based on DLs,

where only unary and binary relations are used, we need to deal

with relations of arity beyond two, which also causes additional

non-trivial complications that require novel ideas and techniques.

For (3), unlike Grohe, we are more constrained in defining the right

database as it must satisfy the given set of constraints. Moreover,

the useful notion of the core of a CQ, which was crucial for Grohe’s

proof, cannot be directly used in the presence of constraints.

We further study the complexity of the associated meta problems

of deciding whether, for some fixed 𝑘 , a given OMQ or CQS is

equivalent to one in which the actual query falls within UCQ𝑘 .
We show that in all the considered cases, the problem is 2ExpTime-

complete (under the mild assumption that 𝑘 is at least the maximum

arity of the occurring relation symbols, minus one). Note that the

decidability of themeta problem is crucial to prove the lower bounds

described above, but it is also interesting in its own right.

2 PRELIMINARIES

We consider the disjoint countably infinite sets C and V of constants
and variables, respectively. We refer to constants and variables as

terms. For an integer 𝑛 ≥ 1, we may write [𝑛] for the set {1, . . . , 𝑛}.
Relational Databases. A (relational) schema S is a finite set of

relation symbols (or predicates) with associated arity. We write

ar(𝑅) for the arity of a predicate 𝑅, and ar(S) for the arity of S, that
is, the number max𝑅∈S{ar(𝑅)}. An atom over S is an expression of

the form 𝑅(𝑡), where 𝑅 ∈ S and 𝑡 is an ar(𝑅)-tuple of terms. An

instance over S, or simply S-instance, is a (possibly infinite) set of

atoms over S that contain only constants, while a database over S,
or simply S-database, is a finite S-instance. We write dom(𝐼 ) for the
set of constants in an instance 𝐼 . For a set 𝑇 ⊆ dom(𝐼 ), we denote
by 𝐼 |𝑇 the restriction of 𝐼 to atoms that mention only constants

from 𝑇 . A homomorphism from 𝐼 to an instance 𝐽 is a function

ℎ : dom(𝐼 ) → dom(𝐽 ) such that 𝑅(ℎ(𝑡)) ∈ 𝐽 for every 𝑅(𝑡) ∈ 𝐼 .

We write 𝐼 → 𝐽 for the fact that there is a homomorphism from 𝐼

to 𝐽 .

Conjunctive Queries.A conjunctive query (CQ) over a schema S is
a first-order formula of the form𝑞(𝑥) := ∃𝑦

(
𝑅1 (𝑥1)∧· · ·∧𝑅𝑚 (𝑥𝑚)

)
,

where each 𝑅𝑖 (𝑥𝑖 ), for 𝑖 ∈ [𝑚], is an atom over S that contains only
variables, each variable mentioned in the 𝑥𝑖s appears either in 𝑥

or 𝑦, and 𝑥 contains all the free variables of 𝑞 called the answer
variables. Every CQ 𝑞 can be naturally seen as a database 𝐷 [𝑞],

known as the canonical database of 𝑞, obtained by dropping the

existential quantifier prefix and viewing variables as constants. We

may simply write 𝑞 instead of 𝐷 [𝑞]. A homomorphism from a CQ

𝑞 to an instance 𝐼 is a homomorphism from 𝐷 [𝑞] to 𝐼 . A tuple

𝑐 ∈ dom(𝐼 ) |𝑥 | is an answer to 𝑄 over 𝐼 if there is a homomorphism

ℎ from 𝑞 to 𝐼 with ℎ(𝑥) = 𝑐 . The evaluation of 𝑞(𝑥) over 𝐼 , denoted
𝑞(𝐼 ), is the set of all answers to𝑄 over 𝐼 . We write CQ for the class

of CQs. A union of conjunctive queries (UCQ) over a schema S is a
first-order formula of the form 𝑞(𝑥) := 𝑞1 (𝑥) ∨ · · · ∨ 𝑞𝑛 (𝑥), where
𝑛 ≥ 1, and 𝑞𝑖 (𝑥), for 𝑖 ∈ [𝑛], is a CQ over S. The evaluation of 𝑞

over an instance 𝐼 , denoted 𝑞(𝐼 ), is the set of tuples ⋃
𝑖∈[𝑛] 𝑞𝑖 (𝐼 ).

Let UCQ be the class of UCQs. The arity of a (U)CQ is the number

of its answer variables. A (U)CQ of arity zero is called Boolean, and
it can have as an answer only the empty tuple. For a Boolean (U)CQ

𝑞, we may write 𝐼 |= 𝑞, if 𝑞(𝐼 ) = {()}, and 𝐼 ̸ |= 𝑞, otherwise.

Treewidth.A central notion in our work is that of treewidth, which

measures the degree of tree-likeness of a graph. Let 𝐺 = (𝑉 , 𝐸) be
an undirected graph. A tree decomposition of𝐺 is a pair 𝛿 = (𝑇𝛿 , 𝜒),
where𝑇𝛿 = (𝑉𝛿 , 𝐸𝛿 ) is a tree, and 𝜒 is a labeling function𝑉𝛿 → 2

𝑉
,

i.e., 𝜒 assigns a subset of 𝑉 to each node of 𝑇𝛿 , such that:

(1)

⋃
𝑡 ∈𝑉𝛿 𝜒 (𝑡) = 𝑉 .

(2) If {𝑢, 𝑣} ∈ 𝐸, then 𝑢, 𝑣 ∈ 𝜒 (𝑡) for some 𝑡 ∈ 𝑉𝛿 .
(3) For each 𝑣 ∈ 𝑉 , the set of nodes {𝑡 ∈ 𝑉𝛿 | 𝑣 ∈ 𝜒 (𝑡)} induces

a connected subtree of 𝑇𝛿 .

The width of 𝛿 is the number max𝑡 ∈𝑉𝛿 {|𝜒 (𝑡) |} − 1. If the edge-set

𝐸 of𝐺 is non-empty, then the treewidth of𝐺 is the minimum width

over all its tree decompositions; otherwise, it is defined to be one.

Each instance 𝐼 is associated with an undirected graph (without

self loops) 𝐺𝐼 = (𝑉 , 𝐸), called the Gaifman graph of 𝐼 , defined as

follows: 𝑉 = dom(𝐼 ), and {𝑎, 𝑏} ∈ 𝐸 iff there is an atom 𝑅(𝑡) ∈ 𝐼
that mentions both 𝑎 and𝑏. The treewidth of 𝐼 is the treewidth of𝐺𝐼

.

For 𝑘 ≥ 1, TW𝑘 is the class of instances of treewidth at most 𝑘 .

The evaluation problem for (U)CQs takes as input a (U)CQ 𝑞(𝑥),
a database 𝐷 , and a candidate answer 𝑐 , and asks whether 𝑐 ∈ 𝑞(𝐷).
It is well-known that (U)CQ evaluation is NP-complete [17]. On the

other hand, it becomes tractable by restricting the syntactic shape

of CQs. One of the most widely studied such restrictions is bounded

treewidth. Formally, a CQ 𝑞(𝑥) = ∃𝑦 𝜙 (𝑥,𝑦) has treewidth 𝑘 ≥ 1

if 𝐺
𝑞

|𝑦 has treewidth 𝑘 , where 𝐺
𝑞

|𝑦 is the subgraph of 𝐺𝑞
induced

by the elements of 𝑦. Note that the treewidth of 𝑞 is defined in a

more liberal way than usual. The standard definition considers the

treewitdh of𝐺𝑞
, while here the treewidth of𝑞 is onlymeasured with

respect to the subgraph of𝐺𝑞
induced by its existentially quantified

variables. A UCQ 𝑞 has treewidth 𝑘 if each of its disjuncts has

treewidth at most 𝑘 . We write CQ𝑘 (resp., UCQ𝑘 ) for the class of
CQs (resp. UCQs) of treewidth at most 𝑘 ≥ 1. The next well-known

result illustrates the usefulness of bounding the treewidth.

Proposition 2.1 ([18]). Fix 𝑘 ≥ 1. Given a database 𝐷 , an 𝑛-ary
query 𝑞 ∈ CQ𝑘 , and a tuple 𝑐 ∈ dom(𝐷)𝑛 , the problem of deciding
whether 𝑐 ∈ 𝑞(𝐷) can be solved in time 𝑂 ( | |𝐷 | |𝑘+1 · | |𝑞 | |).1

Tuple-generating Dependencies. A tuple-generating dependency
(TGD) 𝜎 over S is a constant-free first-order sentence of the form

1
As usual, given a syntactic object𝑂 , we write | |𝑂 | | for its size.



∀𝑥∀𝑦
(
𝜙 (𝑥,𝑦) → ∃𝑧𝜓 (𝑥, 𝑧)

)
, where 𝜙 is a possibly empty conjunc-

tion of atoms over S, while𝜓 is a non-empty conjunction of atoms

over S. For simplicity, we write 𝜎 as 𝜙 (𝑥,𝑦) → ∃𝑧𝜓 (𝑥, 𝑧), and use

comma instead of ∧ for joining atoms. We call 𝜙 and 𝜓 the body
and head of 𝜎 , denoted body(𝜎) and head(𝜎), respectively. The
frontier of 𝜎 , denoted fr(𝜎), is the set of variables 𝑥 , i.e., the vari-
ables that appear both in the body and the head of 𝜎 . The TGD 𝜎

above is logically equivalent to the expression∀𝑥 (𝑞𝜙 (𝑥) → 𝑞𝜓 (𝑥)),
where 𝑞𝜙 (𝑥) and 𝑞𝜓 (𝑥) are the CQs ∃𝑦 𝜙 (𝑥,𝑦) and ∃𝑧𝜓 (𝑥, 𝑧), re-
spectively. Therefore, an instance 𝐼 over S satisfies 𝜎 , denoted 𝐼 |= 𝜎 ,
if 𝑞𝜙 (𝐼 ) ⊆ 𝑞𝜓 (𝐼 ). An instance 𝐼 satisfies a set Σ of TGDs, denoted

𝐼 |= Σ, if 𝐼 |= 𝜎 for each 𝜎 ∈ Σ. Henceforth, whenever we refer to
a set of TGDs we mean a finite set. We write TGD for the class of

TGDs, that is, the family of all possible sets of TGDs.

Frontier-Guardedness. A TGD 𝜎 is guarded if either body(𝜎) is
empty, or there exists an atom 𝛼 in its body that contains all the

variables occurring in body(𝜎) [14]. Such an atom 𝛼 is the guard
of 𝜎 , denoted guard(𝜎). We write G for the class of guarded TGDs.

A natural generalization of guardedness is frontier-guardedness,

where only the frontier variables must be guarded. Formally, a

TGD 𝜎 is frontier-guarded if either body(𝜎) is empty or there exists

an atom 𝛼 in its body that contains all the variables of fr(𝜎) [3],
which we call again guard and denote as guard(𝜎). The class of
frontier-guarded TGDs is denoted by FG. Clearly, G ⊊ FG ⊊ TGD.

The Chase Procedure. The chase is a useful tool when reasoning

with TGDs [14, 22, 27, 29]. We first define a single chase step. Let 𝐼

be an instance over a schema S and 𝜎 a TGD of the form 𝜙 (𝑥,𝑦) →
∃𝑧𝜓 (𝑥, 𝑧) over S. We say that 𝜎 is applicable with in 𝐼 if there exists

a tuple (𝑐, 𝑐 ′) of constants in 𝐼 such that 𝜙 (𝑐, 𝑐 ′) ⊆ 𝐼 . In this case, the
result of applying 𝜎 in 𝐼 with (𝑐, 𝑐 ′) is the instance 𝐽 = 𝐼 ∪𝜓 (𝑐, 𝑐 ′′),
where 𝑐 ′′ is the tuple obtained from 𝑧 by simultaneously replacing

each variable 𝑧 with a fresh distinct constant not occurring in 𝐼 . For

such a single chase step, we write 𝐼
𝜎, (𝑐,𝑐′)
−−−−−−→ 𝐽 .

Let 𝐼 be an instance and Σ a set of TGDs. A chase sequence for 𝐼

under Σ is a sequence of chase steps 𝐼0
𝜎0, (𝑐0,𝑐

′
0
)

−−−−−−−−→ 𝐼1
𝜎1, (𝑐1,𝑐

′
1
)

−−−−−−−−→ 𝐼2 . . .

such that (1) 𝐼0 = 𝐼 , (2) 𝜎𝑖 ∈ Σ for each 𝑖 ≥ 0, and (3) 𝐽 |= Σ, where
𝐽 =

⋃
𝑖≥0

𝐼𝑖 . The instance 𝐽 is the (potentially infinite) result of
this chase sequence, which always exists. The chase sequence is

fair if whenever a TGD 𝜎 ∈ Σ is applicable in some 𝐼𝑖 with (𝑐, 𝑐 ′),
then 𝐼 𝑗

𝜎, (𝑐,𝑐′)
−−−−−−→ 𝐼 𝑗+1 is part of the sequence for some 𝑗 ≥ 𝑖 . Since

we consider the oblivious chase, i.e., a TGD is triggered whenever

its body is satisfied no matter whether its head is satisfied, every

fair chase sequence for 𝐼 under Σ leads to the same result (up to

isomorphism). Thus, we can refer to the result of the chase for 𝐼
under Σ, denoted chase(𝐼 , Σ). The key property of the chase follows:

Proposition 2.2. Consider an instance 𝐼 and a set Σ of TGDs. For
every instance 𝐽 such that 𝐽 ⊇ 𝐼 and 𝐽 |= Σ, chase(𝐼 , Σ) → 𝐽 via a
homomorphism that is the identity on dom(𝐼 ).

Parameterized Complexity. Parameterized complexity has a cen-

tral role in our work. A parameterized problem over an alphabet Λ
is a pair (𝑃, 𝜅), with 𝑃 ⊆ Λ∗

a decision problem and 𝜅 a parameter-
ization of 𝑃 , that is, a PTime computable function 𝜅 : Λ∗ → N. A
prime example is p-Clique, where 𝑃 is the set of all pairs (𝐺,𝑘) with
𝐺 an undirected graph that contains a 𝑘-clique and 𝜅 (𝐺,𝑘) = 𝑘 .

A problem (𝑃, 𝜅) is fixed-parameter tractable (fpt) if there is a
computable function 𝑓 : N → N and an algorithm that decides

𝑃 in time |𝑥 |𝑂 (1) · 𝑓 (𝜅 (𝑥)), where 𝑥 denotes the input. We use

FPT to denote the class of all parameterized problems that are fixed-

parameter tractable. Notice that FPT corresponds to a relaxation

of the usual notion of tractability: if 𝑃 is in PTime, then (𝑃, 𝜅) is
in FPT for any 𝜅, but the latter might also be the case when 𝑃 is

NP-hard.

An fpt-reduction from a problem (𝑃1, 𝜅1) over Λ1 to a problem

(𝑃2, 𝜅2) over Λ2 is a function 𝜌 : Λ∗
1
→ Λ∗

2
such that, for some

computable functions 𝑓 , 𝑔 : N→ N,
(1) 𝑥 ∈ 𝑃1 iff 𝜌 (𝑥) ∈ 𝑃2, for all 𝑥 ∈ Σ∗

1
;

(2) 𝜌 (𝑥) is computable in time | |𝑥 | |𝑂 (1) · 𝑓 (𝜅1 (𝑥)), for 𝑥 ∈ Λ∗
1
;

(3) 𝜅2 (𝜌 (𝑥)) ≤ 𝑔(𝜅1 (𝑥)), for all 𝑥 ∈ Λ∗
1
.

An important parameterized complexity class is W[1] ⊇ FPT.

Hardness forW[1] is defined in terms of fpt-reductions. It is gen-

erally believed that FPT ≠ W[1], the status of this problem being

comparable to that of PTime ≠ NP. If a parameterized problem

(𝑃, 𝜅) is W[1]-hard, then (𝑃, 𝜅) is not fpt unless FPT = W[1]. A

well-knownW[1]-hard problem is p-Clique [21].

3 THE TWO FACETS OF TGDS IN QUERYING

As discussed in Section 1, TGDs can be used as:

(1) Ontology axioms that enrich incomplete data with domain

knowledge, which leads to more complete answers.

(2) Integrity constraints that specify semantic properties satisfied

by all databases, which paves the way to constraint-aware

query optimization techniques.

Depending on how TGDs are used, we obtain different evaluation

problems, which we now formalize.

3.1 TGDs as Ontology Axioms

When a set of TGDs is used as ontology axioms, or an ontology, it

is typically seen, together with the actual query, as one compos-

ite query, called ontology-mediated query. Formally, an ontology-
mediated query (OMQ) is a triple𝑄 = (S, Σ, 𝑞), where S is a schema,

called data schema, which indicates that 𝑄 will be evaluated over

S-databases, Σ is a set of TGDs, called ontology, over an extended

schema T ⊇ S, and 𝑞 is a UCQ over T. In case S = T, we say that 𝑄

has full data schema. The arity of 𝑄 is defined as the arity of 𝑞. We

write 𝑄 (𝑥) to emphasize that the answer variables of 𝑞 are 𝑥 , and

say that 𝑄 is over T to mean that the extended schema of 𝑄 is T.
The evaluation of an OMQ 𝑄 (𝑥) = (S, Σ, 𝑞(𝑥)) over an S-

database 𝐷 consists of all the tuples that are an answer to 𝑞 for

all models of 𝐷 and Σ. A model of 𝐷 and Σ is an instance 𝐼 such

that 𝐼 ⊇ 𝐷 and 𝐼 |= Σ. A tuple 𝑐 ∈ dom(𝐷) |𝑥 | is an answer to 𝑄
over 𝐷 if 𝑐 ∈ 𝑞(𝐼 ) for each model 𝐼 of 𝐷 and Σ. The evaluation
of 𝑄 (𝑥) over 𝐷 , denoted 𝑄 (𝐷), is the set of all answers to 𝑄 over

𝐷 . By Proposition 2.2, and the monotonicity of UCQs, we get the

following useful result:

Proposition 3.1. For every OMQ 𝑄 = (S, Σ, 𝑞) ∈ (TGD,UCQ),
𝑄 (𝐷) = 𝑞(chase(𝐷, Σ)).

We write (C,Q) for the class of OMQs, called OMQ language, in
which the ontology is formulated in the class of TGDs C and the



actual query is coming from the class of queries Q; for example, we

may write (G,CQ), (FG,UCQ), (G,UCQ𝑘 ), for some 𝑘 ≥ 1, etc.

This brings us to the evaluation problem for OMQ languages O:

PROBLEM : OMQ-Evaluation(O)
INPUT : An OMQ 𝑄 = (S, Σ, 𝑞(𝑥)) ∈ O,

an S-database 𝐷 , and a tuple 𝑐 ∈ dom(𝐷) |𝑥 |
QUESTION : Is it the case that 𝑐 ∈ 𝑄 (𝐷)?

We are also interested in the parameterized version of the above

problem, dubbed p-OMQ-Evaluation(O), with the parameter being

the size of the OMQ 𝑄 , as customary in the literature [31]. Thus p-
OMQ-Evaluation(O) is in FPT if it can be solved in time | |𝐷 | |𝑂 (1) ·
𝑓 ( | |𝑄 | |) for some computable function 𝑓 : N→ N.

It is well-known that OMQ-Evaluation(TGD,CQ) is undecid-
able; see, e.g., [14]. On the other hand, if we focus onOMQs inwhich

the ontology is formulated as a set of frontier-guarded TGDs, then

the problem becomes decidable, in fact, it is 2ExpTime-complete [2].

At this point, one may wonder whether bounding the treewidth

of the CQs will have the same positive effect as in the case of CQ

evaluation (see Proposition 2.1). It is implicit in [14] that this is

not the case. The next result summarizes some key facts about the

evaluation problem for OMQs based on (frontier-)guarded TGDs.

Proposition 3.2. It holds that:
(1) OMQ-Evaluation(FG,UCQ) is 2ExpTime-complete even for

schemas of bounded arity.
(2) OMQ-Evaluation(G,UCQ) is 2ExpTime-complete, and be-

comes ExpTime-complete for schemas of bounded arity.
(3) For each 𝑘 ≥ 1, OMQ-Evaluation(G,CQ𝑘 ) is 2ExpTime-

complete, and still ExpTime-hard for schemas of bounded arity.

Since the parameterized version of the evaluation problem for

CQs is W[1]-hard [31], even for schemas of bounded arity, we

can immediately conclude that p-OMQ-Evaluation(G,CQ) isW[1]-

hard, even for schemas of bounded arity. Do we gain something if

we focus on UCQs of bounded treewidth? The answer is negative

for frontier-guarded TGDs, but affirmative for guarded TGDs.

Proposition 3.3. It holds that:
(1) p-OMQ-Evaluation(G,CQ) isW[1]-hard even for schemas of

bounded arity.
(2) p-OMQ-Evaluation(FG,CQ𝑘 ) isW[1]-hard even for schemas

of bounded arity.
(3) For each 𝑘 ≥ 1, p-OMQ-Evaluation(G,UCQ𝑘 ) is in FPT.

As discussed above, item (1) is a consequence of the fact that

the parameterized version of CQ evaluation is W[1]-hard, even for

schemas of bounded arity. Item (2) is a consequence of the fact that

the parameterized version of CQ evaluation is W[1]-hard, even for

Boolean CQs over a schema of bounded arity, while a Boolean CQ

∃𝑥 𝜙 (𝑥), 𝜙 (𝑥) → Ans can be added as a frontier-guarded TGD to

the ontology and replaced with the query Ans.

We now briefly explain how item (3) is shown. A TGD is called

linear if it has only one atom in its body, while the class of linear

TGDs is denoted L. The key ingredient underlying item (3) is that,

given an S-database 𝐷 and an OMQ 𝑄 = (S, Σ, 𝑞) from (G,UCQ),
𝑄 (𝐷) coincides with the evaluation of𝑞 over an initial finite portion
𝐶 of chase(𝐷∗, Σ∗), where 𝐷∗

can be computed from 𝐷 and Σ, and

Σ∗ ∈ L can be computed solely from Σ. Roughly, 𝐶 is the finite

instance obtained by keeping only the atoms of chase(𝐷∗, Σ∗) up to
a finite level that depends only on Σ and 𝑞, while the notion of level

indicates the distance of an atom in the chase from the starting

database. Furthermore, the instance 𝐶 can be computed in time

| |𝐷 | |𝑂 (1) · 𝑓 ( | |𝑄 | |) for some computable triple exponential function

𝑓 : N → N. Therefore, to decide whether a tuple 𝑐 over dom(𝐷)
belongs to 𝑄 (𝐷), it suffices to construct the finite instance 𝐶 , and

accept if 𝑐 belongs to 𝑞(𝐶); otherwise, reject. Since 𝑞 ∈ UCQ𝑘 , by
Proposition 2.1, the overall procedure takes time | |𝐷 | |𝑂 (1) ·𝑔( | |𝑄 | |)
for some computable triple exponential function 𝑔 : N→ N.

3.2 TGDs as Integrity Constraints

When a set of TGDs is used as integrity constraints, the problem that

we are interested in is simply a refinement of the standard query

evaluation problem, with the additional promise that the input

database satisfies the given set of TGDs. To this end, the evaluation

problem is parameterized, not only with the query language in

question, but also with the class of TGDs fromwhich the constraints

are coming. Formally, a constraint-query specification (CQS) over a

schema T is a pair 𝑆 = (Σ, 𝑞), where Σ is a set of TGDs over T, the
set of integrity constraints, and 𝑞 a UCQ over T. We overload the

notation and write (C,Q) for the class of CQSs in which the set of

integrity constraints is formulated in the class of TGDs C, and the

query is coming from the class of queries Q. It will be clear from
the context whether (C,Q) is an OMQ language or a class of CQSs.

The evaluation problem for CQSs follows:

PROBLEM : CQS-Evaluation(O)
INPUT : A CQS 𝑆 = (Σ, 𝑞(𝑥)) ∈ O over a schema T,

a T-database 𝐷 such that 𝐷 |= Σ, and

a tuple 𝑐 ∈ dom(𝐷) |𝑥 |
QUESTION : Is it the case that 𝑐 ∈ 𝑞(𝐷)?

We are also interested in the parameterized version of the above

problem, which we call p-CQS-Evaluation(O), with the parame-

ter being the size of the CQS 𝑆 . Therefore, p-CQS-Evaluation(O)
is in FPT if it can be solved in time | |𝐷 | |𝑂 (1) · 𝑓 ( | |𝑆 | |) for some

computable function 𝑓 : N→ N.
Recall that the evaluation problem for CQs is NP-hard [17],

while its parameterized version is W[1]-hard [31], even for

schemas of bounded arity. These lower bounds trivially transfer

to CQS-Evaluation(C,CQ) for any C as we can choose the set of

constraints to be empty. Evaluation of UCQs is in NP, while the

parameterized version is inW[1], and also these bounds transfer

since we can simply ignore the constraints for evaluating the query.

It should thus also be clear that bounding the treewidth of CQs has

the same positive effect on evaluating CQSs as on CQ evaluation

(see Proposition 2.1), i.e., CQS-Evaluation(C,UCQ𝑘 ) is in PTime.

4 SEMANTIC TREE-LIKENESS

A seminal result by Grohe precisely characterizes the (recursively

enumerable) classes of CQs over schemas of bounded arity that

can be evaluated in polynomial time (under the assumption that

FPT ≠ W[1]). In fact, this result shows that the classes of CQs over

schemas of bounded arity that can be evaluated in polynomial time



are precisely those that are semantically tree-like, or, more formally,

are of bounded treewidth modulo equivalence. Moreover, the result

states that fpt does not add anything to standard tractability in the

considered setting. Before giving the statement, let us formalize the

notion of bounded treewidth modulo equivalence. Recall that two

CQs 𝑞, 𝑞′ over a schema S are equivalent if, for every S-database 𝐷 ,
𝑞(𝐷) = 𝑞′(𝐷). For each 𝑘 ≥ 1, let CQ≡

𝑘
be the class of all CQs that

are equivalent to a CQ from CQ𝑘 . Grohe’s result follows:

Theorem 4.1 (Grohe’s Theorem [26]). Fix 𝑟 ≥ 1. Let Q be a
recursively enumerable class of CQs over schemas of arity 𝑟 . The
following are equivalent, assuming FPT ≠ W[1]:

(1) The evaluation problem for Q is in PTime.
(2) The evaluation problem for Q is in FPT.
(3) There is 𝑘 ≥ 1 such that Q ⊆ CQ≡

𝑘
.

If either statement is false, then evaluation for Q is W[1]-hard.

Interestingly, it is decidable whether a CQ is equivalent to one

of treewidth 𝑘 . This is shown by exploiting the notion of core.

Recall that the core of a CQ 𝑞 is a ⊆-minimal subquery of 𝑞 that is

equivalent to 𝑞. It is known that, for each 𝑘 ≥ 1, a CQ 𝑞 belongs

to CQ≡
𝑘
iff its core is in CQ𝑘 , and that deciding this property is

NP-complete [20]. There is also a natural generalization of this

characterization and of Theorem 4.1 to the class of UCQs.

At this point, it is natural to ask whether it is possible to

obtain a characterization of the classes of OMQs (resp., CQSs)

based on (frontier-)guarded TGDs that can be efficiently evalu-

ated, in the same spirit as Grohe’s Theorem. In fact, our main

question is whether the natural generalization of the notion of

bounded treewidth modulo equivalence from CQs to OMQs (resp.,

CQSs) yields a decidable notion that exhausts tractability or fixed-

parameter tractability of OMQ-Evaluation (resp., CQS-Evaluation),
as in the case of Grohe’s Theorem.

4.1 Semantic Tree-likeness for OMQs

We first concentrate on OMQs and introduce the notion of UCQ𝑘 -
equivalence, meaning that an OMQ can be rewritten into an equiv-

alent one where the UCQ belongs to UCQ𝑘 . Let us clarify that for

OMQs the notion of equivalence is not applied at the level of the

actual query, but to the whole OMQ. Formally, given two OMQs

𝑄 and 𝑄 ′
, both with data schema S, 𝑄 is contained in 𝑄 ′

, written

𝑄 ⊆ 𝑄 ′
, if𝑄 (𝐷) ⊆ 𝑄 ′(𝐷) for every S-database 𝐷 . We then say that

𝑄 and𝑄 ′
are equivalent, denoted𝑄 ≡ 𝑄 ′

, if𝑄 ⊆ 𝑄 ′
and𝑄 ′ ⊆ 𝑄 . In

what follows, let C be a class of TGDs, i.e., C ⊆ TGD.

Definition 4.2 (UCQ𝑘 -equivalence for OMQs). An OMQ 𝑄 =

(S, Σ, 𝑞) ∈ (C,UCQ) is UCQ𝑘 -equivalent, for 𝑘 ≥ 1, if there exists

an OMQ 𝑄 ′ = (S, Σ′, 𝑞′) ∈ (C,UCQ𝑘 ) such that 𝑄 ≡ 𝑄 ′
. Given an

OMQ language O = (C,UCQ), for each 𝑘 ≥ 1, let O≡
𝑘
be the class

of all OMQs from O that are UCQ𝑘 -equivalent.

According to the above definition, we are allowed to rewrite both

the ontology and the UCQ. It is conceptually meaningful though

to consider also the setting where the ontology cannot be altered.

This leads to the uniform version of UCQ𝑘 -equivalence.

Definition 4.3 (Uniform UCQ𝑘 -equivalence for OMQs). An
OMQ 𝑄 = (S, Σ, 𝑞) ∈ (C,UCQ) is uniformly UCQ𝑘 -equivalent, for
𝑘 ≥ 1, if there is𝑄 ′ = (S, Σ, 𝑞′) ∈ (C,UCQ𝑘 ) such that𝑄 ≡ 𝑄 ′

. For

an OMQ language O = (C,UCQ) and 𝑘 ≥ 1, let O≡,𝑢
𝑘

be the class

of all OMQs from O that are uniformly UCQ𝑘 -equivalent.

The next example shows that both the ontology and the data

schema can have an impact on the treewidth.

Example 4.4. We first illustrate that the ontology can have an

impact on the treewidth. Consider the OMQ 𝑄1 = (S, Σ, 𝑞), where
S = {𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑃}
Σ = {𝑅2 (𝑥) → 𝑅4 (𝑥)}

𝑞() = 𝑃 (𝑥2, 𝑥1) ∧ 𝑃 (𝑥4, 𝑥1) ∧ 𝑃 (𝑥2, 𝑥3) ∧ 𝑃 (𝑥4, 𝑥3) ∧
𝑅1 (𝑥1) ∧ 𝑅2 (𝑥2) ∧ 𝑅3 (𝑥3) ∧ 𝑅4 (𝑥4) .

Note that S contains all the predicates in Σ and 𝑞, while 𝑞 is a

Boolean CQ (the existential quantifiers are omitted). Observe that

𝑞 is a core from CQ
2
, and thus can easily be seen to not belong to

UCQ≡
1
. However, 𝑄1 is equivalent to the OMQ (S, Σ, 𝑞′), where

𝑞′() = 𝑃 (𝑥2, 𝑥1) ∧ 𝑃 (𝑥2, 𝑥3) ∧ 𝑅1 (𝑥1) ∧ 𝑅2 (𝑥2) ∧ 𝑅3 (𝑥3) .
Since 𝑞′ ∈ CQ

1
, we get that 𝑄1 ∈ (G,UCQ)≡,𝑢

1
.

We proceed to show that the data schema can also have an impact.

Consider the OMQ 𝑄2 = (S′, Σ′, 𝑞) with full data schema, where

Σ′ = {𝑆 (𝑥) → 𝑅1 (𝑥), 𝑆 (𝑥) → 𝑅3 (𝑥)}.
It is not hard to see that 𝑄2 does not belong to (G,UCQ)≡

1
. If,

however, the predicate 𝑅1 is omitted from the signature, then 𝑄2 is

equivalent to the OMQ ({𝑆, 𝑃, 𝑅2, 𝑅3, 𝑅4}, Σ′, 𝑞′′), where
𝑞′′() = 𝑃 (𝑥2, 𝑥1) ∧ 𝑃 (𝑥4, 𝑥1) ∧𝑅1 (𝑥1) ∧𝑅2 (𝑥2) ∧𝑅3 (𝑥1) ∧𝑅4 (𝑥4),
and thus, it belongs to (G,UCQ)≡,𝑢

1
.

4.2 Semantic Tree-likeness for CQSs

We now introduce UCQ𝑘 -equivalence for CQSs. For this setting,
only the uniform version is relevant. Indeed, given a CQS 𝑆 = (Σ, 𝑞),
by altering the set of integrity constraints Σ, we effectively change

the semantics of 𝑆 which is, of course, not our intention. Given

two CQSs 𝑆 = (Σ, 𝑞) and 𝑆 ′ = (Σ, 𝑞′) over a schema T, we say that

𝑆 is contained in 𝑆 ′, denoted 𝑆 ⊆ 𝑆 ′, if 𝑞(𝐷) ⊆ 𝑞′(𝐷) for every
T-database 𝐷 that satisfies Σ. We then say that 𝑆 is equivalent to 𝑆 ′

if 𝑆 ⊆ 𝑆 ′ and 𝑆 ′ ⊆ 𝑆 . We may also write 𝑞 ⊆Σ 𝑞
′
(resp., 𝑞 ≡Σ 𝑞

′
) for

the fact that 𝑆 ⊆ 𝑆 ′ (resp., 𝑆 ≡ 𝑆 ′). We recall a known result about

containment among CQSs, which will be useful for our analysis:

Proposition 4.5. Let 𝑆1 = (Σ, 𝑞1 (𝑥)) and 𝑆2 = (Σ, 𝑞2 (𝑦)) be
CQSs from (TGD,UCQ) with |𝑥 | = |𝑦 |. Then 𝑆1 ⊆ 𝑆2 iff for each
𝑝1 ∈ 𝑞1, there exists 𝑝2 ∈ 𝑞2 such that 𝑥 ∈ 𝑝2 (chase(𝑝1, Σ)).

The notion of uniform UCQ𝑘 -equivalence for CQSs follows:

Definition 4.6 (Uniform UCQ𝑘 -equivalence for CQSs). A
CQS 𝑆 = (Σ, 𝑞) from (C,UCQ) is uniformly UCQ𝑘 -equivalent, for
𝑘 ≥ 1, if there exists a CQS 𝑆 ′ = (Σ, 𝑞′) from (C,UCQ𝑘 ) such that

𝑆 ≡ 𝑆 ′. Given a class of CQSs O, for 𝑘 ≥ 1, let O≡
𝑘
be the class of all

CQSs from O that are uniformly UCQ𝑘 -equivalent.
2

Observe that the first part of Example 4.4 also works when (Σ, 𝑞)
is viewed as a CQS. This illustrates the fact that integrity constraints

can have an impact on the treewidth.

2
We overload the notation again. It will be clear from the context whether O≡

𝑘
is an

OMQ language or a class of CQSs. We also avoid the superscript 𝑢 since for CQSs we

only consider the uniform version of UCQ𝑘 -equivalence.



5 OUR RESULTS IN A NUTSHELL

Having the relevant notions in place, we can now provide an answer

to our main question, that is, whether (uniform)UCQ𝑘 -equivalence
of OMQs (resp., uniform UCQ𝑘 -equivalence of CQSs) exhausts

tractability and fixed-parameter tractability of OMQ-Evaluation
(resp., CQS-Evaluation) in the same spirit as Grohe’s Theorem. In

this section, we give an overview of our results, observe interest-

ing connections between the OMQ and CQS settings, and study

the associated meta problems. Further details are deferred to the

subsequent sections.

5.1 The Guarded Case

Ontology-mediated Queries.We start with our results on OMQs

based on guarded TGDs. We first ask whether (uniform) UCQ𝑘 -
equivalence is decidable for (G,UCQ).

Theorem 5.1. For each 𝑘 , deciding whether a given OMQ 𝑄 from
(G,UCQ) over Twith 𝑘 ≥ ar(T)−1 is (uniformly)UCQ𝑘 -equivalent
is 2ExpTime-complete. If existant, an OMQ 𝑄 ′ ∈ (G,UCQ𝑘 ) such
that 𝑄 ≡ 𝑄 ′ can be computed in double exponential time.

The above complexity result exploits a characterization of when

an OMQ𝑄 from (G,UCQ) is (uniformly) UCQ𝑘 -equivalent, which
in turn relies on what we call aUCQ𝑘 -approximation, that is, an ap-

proximation of𝑄 from below in terms of an OMQ from (G,UCQ𝑘 ).
In a nutshell, a UCQ𝑘 -approximation of 𝑄 = (S, Σ, 𝑞) is an OMQ

𝑄𝑎
𝑘
= (S, Σ, 𝑞𝑎

𝑘
), where 𝑞𝑎

𝑘
belongs to UCQ𝑘 , that behaves like 𝑄

over S-databases of treewidth at most 𝑘 , i.e., for every S-database
𝐷 of treewidth at most 𝑘 , 𝑄 (𝐷) = 𝑄𝑎

𝑘
(𝐷). It follows that 𝑄𝑎

𝑘
is

equivalent to𝑄 if and only if𝑄 is UCQ𝑘 -equivalent. Let us say that
the definition of UCQ𝑘 -approximation in our setting is signficantly

more involved than in the case of description logics [7] because

there the chase only generates structures of treewidth one.

Proposition 5.2. Let 𝑄 be an OMQ from (G,UCQ) over T, and
let 𝑘 ≥ ar(T) − 1. The following are equivalent:

(1) 𝑄 is UCQ𝑘 -equivalent.
(2) 𝑄 is uniformly UCQ𝑘 -equivalent.
(3) 𝑄 ≡ 𝑄𝑎

𝑘
.

Since UCQ𝑘 -equivalence and uniform UCQ𝑘 -equivalence turn
out to be equivalent, we henceforth only use UCQ𝑘 -equivalence.
Note that Proposition 5.2 also provides an approach to deciding

UCQ𝑘 -equivalence, and thus to establishing Theorem 5.1: compute

the UCQ𝑘 -approximation 𝑄𝑎
𝑘
of 𝑄 and accept if 𝑄 ⊆ 𝑄𝑎

𝑘
(note

that 𝑄𝑎
𝑘
⊆ 𝑄 holds always); otherwise, reject. We can show that

𝑄𝑎
𝑘
can be computed in double exponential time and it is known

that OMQ containment for (G,UCQ) can be decided in double

exponential time [6]. A naive use of these observations yields only

a 4ExpTime upper bound, but it can be improved to 2ExpTime. The

lower bound is inherited from [7], where the same problem for

OMQs based on DLs has been studied.

We remark that the case 𝑘 < ar(T) − 1, excluded in Theorem 5.1

and Proposition 5.2, is somewhat esoteric as it involves relation

symbols whose arity is so high that they cannot be part of the UCQ

in a UCQ𝑘 -approximation (unless variables are reused). In fact, one

can provide a concrete example which illustrates that this case is

significantly different from the case 𝑘 ≥ ar(T) − 1; in particular,

Proposition 5.2 is provably wrong.

We now state our main result concerning guarded OMQs which

shows thatUCQ𝑘 -equivalence characterizes fpt for classes of OMQs

from (G,UCQ) over schemas of bounded arity.

Theorem 5.3 (Main Result I). Fix 𝑟 ≥ 1. LetO be a recursively
enumerable class of OMQs from (G,UCQ) over a schema of arity 𝑟 .
The following are equivalent, assuming FPT ≠ W[1]:

(1) p-OMQ-Evaluation(O) is in FPT.
(2) There is 𝑘 ≥ 1 such that O ⊆ (G,UCQ)≡

𝑘
.

If either statement is false, then p-OMQ-Evaluation(O) isW[1]-hard.

The easy direction is (2) implies (1), which exploits Theorem 5.1,

and the third item of Proposition 3.3. The hard task is to show that

(1) implies (2). To this end, since we assume that FPT ≠ W[1], it

suffices to show the following lower bound, which is our main

technical result on OMQs based on guarded TGDs:

Theorem 5.4. Fix 𝑟 ≥ 1. Let O be a recursively enumerable class
of OMQs from (G,UCQ) over a schema of arity 𝑟 , and, for each 𝑘 ≥ 1,
O ⊈ (G,UCQ)≡

𝑘
. Then, p-OMQ-Evaluation(O) isW[1]-hard.

In view of Proposition 3.2, which states that, for each 𝑘 ≥ 1,

OMQ-Evaluation(G,CQ𝑘 ) is ExpTime-hard, it is not surprising that
Theorem 5.3 does not state a pure tractability result. One may think

that the above result can be easily obtained by using Grohe’s con-

struction underlying the fpt-reduction from p-Clique that estab-
lishes the lower bound of Theorem 4.1. However, the fact that the

ontology can introduce additional relations that are not part of the

data schema causes serious challenges. A detailed sketch of our

proof is presented in Section 6.

Constraint Query Specifications. We now turn our attention

to CQSs based on guarded TGDs. Interestingly, there is a strong

connection between CQSs and OMQs with full data schema, which

allows us to transfer results from the OMQ to the CQS setting. Recall

that a full data schema consists of all the predicates occurring in

the ontology and the UCQ. Note that we can naturally convert a

CQS 𝑆 = (Σ, 𝑞) over a schema S into the OMQ (S, Σ, 𝑞) that has
full data schema, denoted omq(𝑆). The following result relates the

UCQ𝑘 -equivalence of CQSs to the UCQ𝑘 -equivalence of OMQs.

Proposition 5.5. Consider a CQS 𝑆 ∈ (G,UCQ) over T. For each
𝑘 ≥ ar(T) − 1, the following are equivalent:

(1) 𝑆 is uniformly UCQ𝑘 -equivalent.
(2) omq(𝑆) is UCQ𝑘 -equivalent.

From Theorem 5.1 and Proposition 5.5, we get a 2ExpTime upper

bound for deciding uniform UCQ𝑘 -equivalence for guarded CQSs,

while the lower bound is inherited from [8]. As in Theorem 5.1, 𝑘

should be greater than the arity of the schema, minus one.

Theorem 5.6. Let 𝑆 be a CQS from (G,UCQ) over a schema T. For
each𝑘 ≥ ar(T)−1, deciding whether 𝑆 is uniformlyUCQ𝑘 -equivalent
is 2ExpTime-complete.

Our main result concerning guarded CQSs shows that uniform

UCQ𝑘 -equivalence characterizes tractability and fpt for classes of

CQSs from (G,UCQ) over schemas of bounded arity.

Theorem 5.7 (MainResult II). Fix 𝑟 ≥ 1. LetO be a recursively
enumerable class of CQSs from (G,UCQ) over a schema of arity 𝑟 .
The following are equivalent, assuming FPT ≠ W[1]:



(1) CQS-Evaluation(O) is in PTime.
(2) p-CQS-Evaluation(O) is in FPT.
(3) There is 𝑘 ≥ 1 such that O ⊆ (G,UCQ)≡

𝑘
.

If either statement is false, then p-CQS-Evaluation(O) is W[1]-hard.

The fact that (3) implies (1) is shown in [8], while (1) implies (2)

holds by definition. The interesting task is to show that (2) implies

(3). To this end, we exploit the subsequent result which relates the

evaluation of CQSs to the evaluation of OMQs. Given a class O of

CQSs, we write omq(O) for the class of OMQs {omq(𝑆) | 𝑆 ∈ O}.
Proposition 5.8. Consider a class O of CQSs from (G,UCQ).

There exists an fpt-reduction from p-OMQ-Evaluation(omq(O)) to
p-CQS-Evaluation(O).

The reduction exploits the fact that guarded TGDs are finitely
controllable, which means that OMQ-Evaluation(G,UCQ) coin-
cides with OMQ-Evaluationfin(G,UCQ) that considers only finite
models [4]. Note that the reduction does not extend to frontier-

guarded TGDs since it requires the evaluation of TGD bodies to

be fpt. Actually, no such reduction is possible for frontier-guarded

TGDs (unless FPT = W[1]) since there exists a class O of CQSs

from (FG,UCQ
1
) such that p-OMQ-Evaluation(omq(O)) is W[1]-

hard, while p-CQS-Evaluation(O) is in FPT: O consists of CQSs

(Σ, ∃𝑥𝑅(𝑥)), where Σ contains TGDs of the form 𝜑 (𝑥,𝑦) → 𝑅(𝑥),
i.e., frontier-guarded TGDs with only one frontier variable. Now,

by Theorem 5.4, Proposition 5.5, and Proposition 5.8, we get the

following result, which establishes the direction (2) implies (3) of

Theorem 5.7 (since we assume that FPT ≠ W[1]).

Theorem 5.9. Fix 𝑟 ≥ 1. Let O be a recursively enumerable class
of CQSs from (G,UCQ) over a schema of arity 𝑟 , and, for each 𝑘 ≥ 1,
O ⊈ (G,UCQ)≡

𝑘
. Then, p-CQS-Evaluation(O) isW[1]-hard.

5.2 The Frontier-guarded Case

By item (2) of Proposition 3.3, the notion of (uniform) UCQ𝑘 -
equivalence does not provide a characterization of fpt for classes of

OMQs from (FG,UCQ). Such a characterization result for OMQs

based on frontier-guarded TGDs via an alternative notion of "being

equivalent to an OMQ of low treewidth" remains an interesting

open problem. The situation is different for querying in the pres-

ence of constraints. In fact, uniformUCQ𝑘 -equivalence allows us to
characterize tractability and fpt for classes of CQSs from (FG,UCQ)
over schemas of bounded arity 𝑟 provided that the number of atoms

in the head of TGDs is bounded by an integer 𝑚. The latter is

required in our proof for reasons that are explained in Section 7.

The first question is whether uniform UCQ𝑘 -equivalence for

CQSs based on frontier-guarded TGDs, with at most𝑚 ≥ 1 head

atoms, over schemas of arity 𝑟 ≥ 1, is decidable. We write FG𝑚 for

the class of frontier-guarded TGDs with at most𝑚 head atoms.

Theorem 5.10. Fix 𝑟,𝑚 ≥ 1. Let 𝑆 be a CQS from (FG𝑚,UCQ)
over a schema of arity 𝑟 . For each 𝑘 ≥ (𝑟 ·𝑚 − 1), deciding whether
𝑆 is uniformly UCQ𝑘 -equivalent is 2ExpTime-complete.

The above result exploits a characterization, analogous to Propo-

sition 5.2, of when a CQS from (FG𝑚,UCQ) over a schema of arity

𝑟 is uniformly UCQ𝑘 -equivalent via a suitable notion of UCQ𝑘 -
approximation. The fact that we consider schemas of arity 𝑟 , and

frontier-guarded TGDs with at most𝑚 atoms in the head, allows us

to show that chasing a database of treewidth 𝑘 , with 𝑘 ≥ 𝑟 ·𝑚 − 1,

will lead to an instance that has treewidth 𝑘 . This in turn allows

us to adopt a notion of UCQ𝑘 -approximation that is significantly

simpler than the one for guarded OMQs in Proposition 5.2. A con-
traction of a CQ 𝑞 is a CQ obtained from 𝑞 by identifying variables.

When an answer variable 𝑥 is identified with a non-answer vari-

able 𝑦, the resulting variable is 𝑥 , while the identification of two

answer variables is not allowed. The UCQ𝑘 -approximation of a

CQS 𝑆 = (Σ, 𝑞) ∈ (FG,UCQ) is the CQS 𝑆𝑎
𝑘
= (Σ, 𝑞𝑎

𝑘
), where 𝑞𝑎

𝑘
is

the UCQ that consists of all contractions of a CQ from 𝑞 that belong

to CQ𝑘 . We can then show the following:

Proposition 5.11. Fix 𝑟,𝑚 ≥ 1, 𝑘 ≥ 𝑟 ·𝑚−1. Let 𝑆 be a CQS from
(FG𝑚,UCQ) over a schema of arity 𝑟 . The following are equivalent:

(1) 𝑆 is uniformly UCQ𝑘 -equivalent.
(2) 𝑆 ≡ 𝑆𝑎

𝑘
.

From the above result, we get a procedure for deciding uni-

form UCQ𝑘 -equivalence: compute the UCQ𝑘 -approximation 𝑆𝑎
𝑘
=

(Σ, 𝑞𝑎
𝑘
) of 𝑆 = (Σ, 𝑞), and accept if 𝑆 ⊆ 𝑆𝑎

𝑘
(the other direction

holds by construction); otherwise, reject. Clearly, 𝑆𝑎
𝑘
can be com-

puted in exponential time, while 𝑞𝑎
𝑘
consists, in general, of expo-

nentially many CQs, each of polynomial size. By Proposition 4.5,

𝑆 ⊆ 𝑆𝑎
𝑘
iff for each CQ 𝑝 (𝑥) ∈ 𝑞, there exists 𝑝 ′ ∈ 𝑞𝑎

𝑘
such that

𝑥 ∈ 𝑝 ′(chase(𝑝, Σ)). Moreover, by Proposition 3.1 and item (1) of

Proposition 3.2, we get that checking whether 𝑥 ∈ 𝑝 ′(chase(𝑝, Σ))
is feasible in double exponential time. Summing up, to check

whether 𝑆 ⊆ 𝑆𝑎
𝑘
we need to perform exponentially many checks,

while each check is feasible in double exponential time. This leads to

the desired 2ExpTime upper bound, while a matching lower bound

is inherited from [8].

Our main result concerning frontier-guarded CQSs follows:

Theorem 5.12 (Main Result III). Fix 𝑟,𝑚 ≥ 1. Let O be a re-
cursively enumerable class of CQSs from (FG𝑚,UCQ) over a schema
of arity 𝑟 . The following are equivalent, assuming FPT ≠ W[1]:

(1) CQS-Evaluation(O) is in PTime.
(2) p-CQS-Evaluation(O) is in FPT.
(3) There is 𝑘 ≥ 1 such that O ⊆ (FG𝑚,UCQ)≡𝑘 .

If either statement is false, then p-CQS-Evaluation(O) is W[1]-hard.

As for Theorem 5.7, the fact that (3) implies (1) is shown in [8],

while (1) implies (2) holds by definition. Thus, the non-trivial task

is to show that (2) implies (3). To this end, since we assume that

FPT ≠ W[1], it suffices to show the following, which is our main

technical result on CQSs based on frontier-guarded TGDs:

Theorem 5.13. Fix 𝑟,𝑚 ≥ 1. Let O be a recursively enumerable
class of CQSs from (FG𝑚,UCQ) over a schema of arity 𝑟 , and, for
each 𝑘 ≥ 1, O ⊈ (FG,UCQ)≡

𝑘
. Then, p-CQS-Evaluation(O) isW[1]-

hard.

Unlike Theorem 5.9, the above result cannot benefit from results

on OMQs since (uniform) UCQ𝑘 -equivalence does not characterize
fpt for OMQs based on frontier-guarded TGDs. It is shown via a

reduction from p-Clique by following the same approach as for

the lower bound of Grohe’s Theorem, and exploiting the fact that

frontier-guarded TGDs are finitely controllable. Let us stress, how-

ever, that our fpt-reduction is not a merely adaptation of Grohe’s



reduction. Unlike Grohe, we are more constrained in defining the

right database as it must satisfy the given set of constraints. More-

over, the useful notion of the core of a CQ, which was crucial for

Grohe’s proof, cannot be directly used in the presence of constraints.

The Rest of the Paper.We proceed to give some details on how

our main lower bounds are shown. The lower bounds for guarded

OMQs and CQS, i.e., Theorems 5.4 and 5.9, respectively, are dis-

cussed in Section 6, while the lower bound for frontier-guarded

CQSs, i.e., Theorem 5.13, in Section 7.

6 GUARDEDNESS

6.1 Ontology-mediated Queries

We provide a proof sketch of Theorem 5.4, illustrating only the

main ideas and abstracting away many technical details. We rely

on a result by Grohe, stated here in a form tailored towards our

proof. For 𝑘, ℓ ≥ 1, the 𝑘 × ℓ-grid is the graph with vertex set

{(𝑖, 𝑗) | 1 ≤ 𝑖 ≤ 𝑘 and 1 ≤ 𝑗 ≤ ℓ}, and an edge between (𝑖, 𝑗) and
(𝑖 ′, 𝑗 ′) iff |𝑖 − 𝑖 ′ | + | 𝑗 − 𝑗 ′ | = 1. A minor of an undirected graph is

defined in the usual way, see, e.g., [26]. When 𝑘 is understood from

the context, we use 𝐾 to denote

(𝑘
2

)
. We say that a database 𝐷 is

connected if the graph 𝐺𝐷
is connected. A constant 𝑎 ∈ dom(𝐷) is

isolated in 𝐷 if there is only a single atom 𝑅(𝑎) ∈ 𝐷 with 𝑎 ∈ 𝑎.

Theorem 6.1 (Grohe). Given an undirected graph 𝐺 , a 𝑘 ≥ 1,
a connected S-database 𝐷 , and a set 𝐴 ⊆ dom(𝐷) such that the
restriction 𝐺𝐷

|𝐴 of the Gaifman graph of 𝐷 to vertices 𝐴 contains the
𝑘×𝐾-grid as aminor, one can construct in time 𝑓 (𝑘) ·poly( | |𝐺 | |, | |𝐷 | |)
an S-database 𝐷𝐺 with dom(𝐷) \𝐴 ⊆ dom(𝐷𝐺 ) such that:

(1) there is a surjective homomorphism ℎ0 from 𝐷𝐺 to 𝐷 that is
the identity on dom(𝐷) \𝐴,

(2) 𝐺 contains a 𝑘-clique iff there is a homomorphism ℎ from 𝐷

to 𝐷𝐺 such that ℎ is the identity on dom(𝐷) \𝐴 and ℎ0 (ℎ(·))
is the identity, and

(3) if 𝑅(𝑎1, . . . , 𝑎𝑛) ∈ 𝐷 , ℎ0 (𝑏𝑖 ) = 𝑎𝑖 for each 𝑖 ∈ [𝑛], and {𝑏𝑖 |
𝑎𝑖 non-isolated in 𝐷} is a clique in the Gaifman graph of 𝐷𝐺 ,
then 𝐷𝐺 contains an atom 𝑅(𝑐1, . . . , 𝑐𝑛) where 𝑐𝑖 = 𝑏𝑖 if 𝑎𝑖 is
non-isolated in 𝐷 and ℎ0 (𝑐𝑖 ) = 𝑎𝑖 for 𝑖 ∈ [𝑛].

The condition in item (3) is not considered in [26], but can easily

be verified to hold. It can be viewed as an ontoness requirement

for the homomorphism ℎ0 from item (1) as it says that for certain

atoms 𝑅(𝑎) ∈ 𝐷 , we must find certain atoms 𝑅(𝑐) ∈ 𝐷𝐺 with

ℎ0 (𝑐) = 𝑎. The set 𝐴 is not present in Grohe’s construction (that is,

he considers the case 𝐴 = dom(𝐷)), but we can show that it can be

taken into account by a minor change in the construction.

For the proof of Theorem 5.4, we are given a recursively enumer-

able class of OMQs O ⊆ (G,UCQ) such that O ⊈ (G,UCQ)≡
𝑘
for

all 𝑘 ≥ 1. As a preliminary, we show that for every OMQ 𝑄 ∈ O,
we can effectively find an equivalent OMQ𝑄 ′ ∈ (G∩FULL,UCQ)
over the same extended schema, where FULL is the class of full
TGDs, i.e., TGDs without existentially quantified variables. In other

words, we can rewrite away the existential quantifiers in TGD

heads. Although 𝑄 ′
need not be in O, we can switch between 𝑄

and 𝑄 ′
in the proof whenever we only care about 𝑄’s semantics.

To simplify this proof sketch, assume that no rewriting is needed

as all ontologies in O are already from G ∩ FULL, and assume that

O contains only Boolean OMQs where the actual queries are CQs.

The proof is by fpt-reduction from p-Clique, a W[1]-hard prob-

lem. Assume that 𝐺 is an undirected graph and 𝑘 ≥ 1 a clique size.

We aim to construct a database 𝐷𝐺 and find an OMQ 𝑄 ∈ O where

(∗) 𝐺 has a 𝑘-clique iff 𝐷𝐺 |= 𝑄 .
We first describe how to find 𝑄 . By Robertson and Seymour’s Ex-

cluded Grid Theorem, there exists an ℓ such that every graph of

treewidth exceeding ℓ contains the 𝑘 × 𝐾-grid as a minor [32]. We

may assume, w.l.o.g., that ℓ exceeds the fixed arity 𝑟 of relation

symbols that occur in O. Since O ⊈ (G,UCQ)≡
ℓ
, there is an OMQ

𝑄 = (S, Σ, 𝑞) from O that is not in (G,UCQ)≡
ℓ
, and we can find 𝑄

by enumerating O and relying on Theorem 5.1. It thus remains to

construct 𝐷𝐺 . In the special case where Σ is empty and S is full, this
can be done by replacing 𝑞 with its core and applying Theorem 6.1,

using 𝐷 [𝑞] for 𝐷 . Then, item (2) of that theorem corresponds to (∗).
In the general case, however, we cannot use 𝐷 [𝑞] for 𝐷 since

𝐷 [𝑞] might use relation symbols that are not in S and thus so

would the resulting 𝐷𝐺 . This, in fact, is what makes our proof

rather delicate and difficult. The general idea is to replace 𝐷 [𝑞]
with an S-database 𝐷0 such that 𝐷0 |= 𝑄 and (𝐷0)𝑢ℓ ̸ |= 𝑄 , where
(𝐷0)𝑢ℓ denotes the unraveling of 𝐷0 into a structure of treewidth ℓ .

Ideally, we would like to apply the Grohe construction to𝐷0 instead

of 𝐷 [𝑞]. However, we of course still have to attain (∗), which is

formulated in terms of 𝑄 (and thus, in terms of Σ and 𝑞) rather

than 𝐷0. This means that we need more from 𝐷0 than just the

stated properties and, in fact, we want chase(𝐷0, Σ) and 𝑞 to be

structurally as similar as possible. The following example illustrates

a structural dissimilarity.

Example 6.2. Assume that Σ is empty, that S is full, and that 𝑞 is

the 3 × 4-grid, that is,∧
𝑖∈{1,2,3}, 𝑗 ∈{1,2,3}

𝑋 (𝑥𝑖, 𝑗 , 𝑥𝑖+1, 𝑗 ) ∧
∧

𝑖∈{1,2,3,4}, 𝑗 ∈{1,2}
𝑌 (𝑥𝑖, 𝑗 , 𝑥𝑖, 𝑗+1).

Moreover, let𝐷0 be the following database, the 3×3-grid augmented

with reflexive 𝑋 -loops in the rightmost column:

{𝑋 (𝑎𝑖, 𝑗 , 𝑎𝑖+1, 𝑗 ) | 𝑖 ∈ {1, 2}, 𝑗 ∈ {1, 2, 3}} ∪
{𝑌 (𝑎𝑖, 𝑗 , 𝑎𝑖, 𝑗+1) | 𝑖 ∈ {1, 2, 3}, 𝑗 ∈ {1, 2}} ∪
{𝑋 (𝑎3, 𝑗 , 𝑎3, 𝑗 ) | 𝑗 ∈ {1, 2, 3}}.

Clearly, 𝐷0 |= 𝑄 and (𝐷0)𝑢
2
̸ |= 𝑄 .

Example 6.2 is a particularly simple case: the ontology is empty,

the data schema is full, and the query is a core. We could in fact

choose 𝐷0 = 𝐷 [𝑞]. In general, however, it might not be possible to

make 𝐷0 and 𝐷 [𝑞] isomorphic, and there might not even be some

𝐷0 such that 𝑞 maps injectively to 𝐷0. What we do is choosing 𝐷0

such that the following holds, where 𝐷 |=io 𝑝 means that 𝐷 |= 𝑝
and all homomorphisms from 𝑝 to 𝐷 are injective (‘io’ stands for

‘injectively only’):

(∗∗) if chase(𝐷0, Σ) |=io 𝑞𝑐 , where 𝑞𝑐 is a contraction of 𝑞, then

there is no S-database 𝐷 and contraction 𝑞′𝑐 of 𝑞 such that 𝐷

homorphically maps to 𝐷0, chase(𝐷, Σ) |=io 𝑞′𝑐 , and 𝑞𝑐 ≠ 𝑞′𝑐
is a contraction of 𝑞′𝑐 .

In Example 6.2, 𝐷0 does not satisfy this condition as witnessed by

choosing 𝐷 = 𝐷 [𝑞], where 𝑞𝑐 is the contraction of 𝑞 that identifies



𝑥3, 𝑗 with 𝑥4, 𝑗 for 𝑗 ∈ {1, 2, 3}, and𝑞′𝑐 = 𝑞. At this point, chase(𝐷0, Σ)
is still not as closely related to 𝑞 as we need it to be. In fact, 𝐷0

might contain parts that are superfluous for 𝐷0 |= 𝑄 , and parts in

which the atoms are unnecessarily entangled with each other. The

following example illustrates the latter.

Example 6.3. Assume that 𝑞 takes the form of an 𝑛 ×𝑚-grid that

uses the binary relations 𝑋 and 𝑌 . Let S = {𝑋 ′, 𝑌 ′} and:
Σ = {𝑋 ′(𝑥,𝑦, 𝑧) → 𝑋 (𝑥,𝑦), 𝑌 ′(𝑥,𝑦, 𝑧) → 𝑌 (𝑥,𝑦)}.

Further, let 𝐷0 be the database

{𝑋 ′(𝑎𝑖, 𝑗 , 𝑎𝑖, 𝑗+1, 𝑏) | 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 < 𝑛} ∪
{𝑌 ′(𝑎𝑖, 𝑗 , 𝑎𝑖+1, 𝑗 , 𝑏) | 1 ≤ 𝑖 < 𝑚 and 1 ≤ 𝑗 ≤ 𝑛}.

Clearly, 𝐷0 |= 𝑄 . However, the following ‘untangled’ homomorphic

preimage 𝐷1 of 𝐷0 also satisfies 𝐷1 |= 𝑄 , and for our proof it is

much preferable to work with 𝐷1 rather than with 𝐷0:

{𝑋 ′(𝑎𝑖, 𝑗 , 𝑎𝑖, 𝑗+1, 𝑏𝑖 𝑗 ) | 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 < 𝑛} ∪
{𝑌 ′(𝑎𝑖, 𝑗 , 𝑎𝑖+1, 𝑗 , 𝑏

′
𝑖 𝑗
) | 1 ≤ 𝑖 < 𝑚 and 1 ≤ 𝑗 ≤ 𝑛}.

Again, the example illustrates only a very simple case. To relate

𝐷0 and 𝑞 even closer, we apply to𝐷0 a ‘diversification’ construction

that replaces each atom 𝑅(𝑎) ∈ 𝐷0 with a (potentially empty) set

of atoms 𝑅(𝑎1), . . . , 𝑅(𝑎𝑛), where each 𝑅(𝑎𝑖 ) can be obtained from

𝑅(𝑎) by replacing some constants with fresh isolated constants, and

then attaching to the new atoms a finite initial piece of the guarded

unraveling of 𝐷0 that starts at 𝑅(𝑎). The latter part is necessary
to not lose entailments of atoms through the ontology Σ; such
entailments are preserved by guarded unraveling, which like the

introduction of fresh constants is part of the ‘untangling’. We use

as 𝐷𝐺 the database obtained by applying the Grohe construction to

the result𝐷1 of diversifying𝐷0 in a maximal way such that𝐷1 |= 𝑄 .
It then remains to show that (∗) holds.

The “only if” direction is rather straightforward. For the “if” di-

rection, assume that𝐷𝐺 |= 𝑄 , that is, chase(𝐷𝐺 , Σ) |= 𝑞. Thus, there
is a contraction 𝑞′𝑐 of 𝑞 with chase(𝐷𝐺 , Σ) |=io 𝑞′𝑐 . The composition

𝑔 of a witnessing homomorphism with ℎ0 shows chase(𝐷, Σ) |= 𝑞,
and thus there is a contraction 𝑞𝑐 of 𝑞 with chase(𝐷, Σ) |=io 𝑞𝑐 .
Property (∗∗) is preserved by diversification, and thus by putting in

𝐷1 for𝐷0 and𝐷𝐺 for𝐷 , we obtain 𝑞𝑐 = 𝑞′𝑐 . It follows that 𝑔must be

injective and thus, so is ℎ0. We can also show that ℎ0 is ‘sufficiently

surjective and onto’ so that from the inverse of ℎ0, we can construct

a homomorphism ℎ from 𝐷1 to 𝐷𝐺 that satisfies the conditions

from Theorem 6.1, and then apply that theorem to conclude that 𝐺

contains a 𝑘-clique, as needed.

We remark that our proof is considerably more involved than the

one in [7], where ontologies are formulated in the description logic

ELHI, essentially a fragment of G. In particular, the presence of

relations of arity larger than two makes it necessary to use diversi-

fications, isolated constants, and condition (iii) from Theorem 6.1,

while none of this is necessary for the ELHI case.

6.2 Constraint Query Specifications

We now discuss the fpt-reduction of Proposition 5.8, which is under-

lying Theorem 5.9. Recall that this reduction relies on the fact that

guarded TGDs are finitely controllable. Recall also that the notion

of finite controllability is crucial for establishing our main technical

result on CQSs based on frontier-guarded TGDs (Theorem 5.13),

for which more details are given in the next section. Let us then

give some useful details around finite controllability.

Finite Controllability. Given an S-database 𝐷 , and a set Σ of

TGDs over S, we write fmods(𝐷, Σ) for the set of all finite models

of𝐷 and Σ. Finite controllability guarantees that, for computing the

set of tuples that are answers to a UCQ 𝑞 over every finite model

of 𝐷 and Σ, i.e., the set
⋂

𝑀 ∈fmods(𝐷,Σ) 𝑞(𝑀), it suffices to evaluate

𝑞 over the (possibly infinite) instance chase(𝐷, Σ).
Definition 6.4 (Finite Controllability). A class C of TGDs is

finitely controllable if, for every S-database 𝐷 , set Σ ∈ C of TGDs

over S, and UCQ 𝑞 over S, 𝑞(chase(𝐷, Σ)) = ⋂
𝑀 ∈fmods(𝐷,Σ) 𝑞(𝑀).

Actually, as we shall see, in our proofs we rely on a seemingly

stronger property than finite controllability. Roughly speaking, this

property states that, once we fix the number of variables that can

appear in UCQs, let say 𝑛 ≥ 0, given a database 𝐷 , and a set Σ of

TGDs, there exists a finite model 𝑀 of 𝐷 and Σ, which depends

on 𝑛, that allows us to compute the set of tuples 𝑞(chase(𝐷, Σ)),
i.e., 𝑞(chase(𝐷, Σ)) = 𝑞(𝑀), no matter what the UCQ looks like.

Definition 6.5 (Strong Finite Controllability). Consider a class
C of TGDs. We say that C is strongly finitely controllable if, for every
S-database 𝐷 , set Σ ∈ C of TGDs over S, and integer 𝑛 ≥ 0, there

exists an instance 𝑀 (𝐷, Σ, 𝑛) ∈ fmods(𝐷, Σ) such that, for each

UCQ𝑞 that has at most𝑛 variables,𝑞(chase(𝐷, Σ)) = 𝑞(𝑀 (𝐷, Σ, 𝑛)).
If there is a computable function that takes as input𝐷 , Σ, and 𝑛, and
outputs𝑀 (𝐷, Σ, 𝑛), then we say that a finite witness is realizable.

The next technical result, which is of independent interest, shows

that finite and strong finite controllability are equivalent properties.

Lemma 6.6. Consider a class C of TGDs. It holds that C is finitely
controllable iff C is strongly finitely controllable.

By using the above lemma and results on the guarded negation
fragment of first-order logic (GNFO) from [5], we can show that:

Theorem 6.7. The class FG is strongly finitely controllable. More-
over, finite witnesses are realizable.

In particular, every satisfiable GNFO sentence has a finite model.

This allows us to show that the class of frontier-guarded TGDs

is finitely controllable, and thus, by Lemma 6.6, it is also strongly

finitely controllable. Moreover, we know that if a GNFO sentence 𝜑

has a finite model, then it has a finite model of size 2
2
| |𝜑 | |𝑂 (1)

. This

allows us to show, in addition, that finite witnesses are realizable.

The FPT-Reduction. Let us now come back to Proposition 5.8. We

want to show the following: given a class of CQSsO from (G,UCQ),
there exists an fpt-reduction from p-OMQ-Evaluation(omq(O)) to
p-CQS-Evaluation(O). Consider 𝑄 = (S, Σ, 𝑞(𝑥)) from omq(O), an
S-database𝐷 , and a tuple 𝑐 ∈ dom(𝐷) |𝑥 | . We are going to construct

an S-database 𝐷∗
such that 𝐷∗ |= Σ, and 𝑐 ∈ 𝑄 (𝐷) iff 𝑐 ∈ 𝑞(𝐷∗), or,

equivalently (by Proposition 2.2), 𝑐 ∈ 𝑞(chase(𝐷, Σ)) iff 𝑐 ∈ 𝑞(𝐷∗).
We first define 𝐷+

as the database

𝐷 ∪ {𝑅(𝑎) ∈ chase(𝐷, Σ) | 𝑎 ⊆ dom(𝐷)}.
Let 𝐴 be the family of all maximal tuples 𝑎 over dom(𝐷) that are
guarded in 𝐷+

, i.e., there is an atom 𝑅( ¯𝑏) ∈ 𝐷+
such that 𝑎 ⊆ ¯𝑏.



Fix an arbitrary tuple 𝑎 ∈ 𝐴. Since, by Theorem 6.7, the class G is

strongly finitely controllable, and also finite witnesses are realizable,

we can compute an instance𝑀 (𝐷+
|𝑎, Σ, 𝑛) ∈ fmods(𝐷+

|𝑎, Σ), where
𝑛 is the number of variables in 𝑞, such that for each CQ 𝑞′ of arity
|𝑎 | with at most 𝑛 variables, it holds that

(∗) 𝑎 ∈ 𝑞′(𝑀 (𝐷+
|𝑎, Σ, 𝑛)) =⇒ 𝑎 ∈ 𝑞′(chase(𝐷+

|𝑎, Σ)).
W.l.o.g., we assume that dom(𝑀 (𝐷+

|𝑎, Σ, 𝑛)) ∩dom(𝑀 (𝐷+
| ¯𝑏 , Σ, 𝑛)) ⊆

dom(𝐷), for every two distinct tuples 𝑎, ¯𝑏 ∈ 𝐴. The database 𝐷∗
is

𝐷+ ∪
⋃
𝑎∈𝐴

𝑀 (𝐷+
|𝑎, Σ, 𝑛) .

The next lemma shows that 𝐷∗
is the desired database.

Lemma 6.8. It holds that:
(1) 𝐷∗ |= Σ.
(2) 𝑐 ∈ 𝑞(chase(𝐷, Σ)) iff 𝑐 ∈ 𝑞(𝐷∗).
(3) There exists a computable function 𝑓 : N→ N such that 𝐷∗

can be constructed in time | |𝐷 | |𝑂 (1) · 𝑓 ( | |𝑄 | |).
Item (1) can be shown by exploiting the fact that Σ is guarded.

Concerning item (2), the (⇒) direction is shown by exploiting the

universality of the chase (Proposition 2.2), while the (⇐) direction
by using the implication (∗). Finally, item (3) relies on the fact that

the database 𝐷+
can be constructed in time | |𝐷 | |𝑂 (1) · 𝑔( | |𝑄 | |) for

some computable function 𝑔 : N→ N, and on the observation that

|𝐴|, as well as the size of 𝐷 |𝑎 for some 𝑎 ∈ 𝐴, do not depend on 𝐷 .

7 FRONTIER-GUARDEDNESS

In this final section, we focus on the proof of Theorem 5.13. Consider

a recursively enumerable class O of CQSs from (FG𝑚,UCQ) over
a schema of arity 𝑟 such that, for each 𝑘 ≥ 1, O ⊈ (FG𝑚,UCQ)≡𝑘 .
Our goal is to show that CQS-Evaluation(O) is W[1]-hard. Note

that, unlike in the proof of Theorem 5.4, we cannot eliminate the

existential quantifiers. The reason is that in the OMQ case we only

need an equivalent OMQ while in the CQS case we would have

to replace the set of constraints Σ from FG with an equivalent set

Σ′ from FG ∩ FULL, but clearly such a Σ′ need not exist. As in

the proof of Grohe’s Theorem, we provide an fpt-reduction from

p-Clique (in fact, a restricted version of it as explained later). For

the sake of clarity, here we discuss the case where O consists only

of CQSs 𝑄 = (Σ, 𝑞) where 𝑞 is a Boolean CQ whose Gaifman graph

is connected. This can be extended to non-Boolean UCQs consisting

of non-connected CQs.

A Variation of Grohe’s Database. For technical reasons that we

clarify later, we do not use Grohe’s database used in [26] to establish

Theorem 4.1, nor the one that we used for showing Theorem 5.4.

Instead, we use a subset of Grohe’s database that satisfies several

good properties summarized in the next result.

Theorem 7.1 (Grohe). Given an undirected graph 𝐺 = (𝑉 , 𝐸),
𝑘 ≥ 1, databases 𝐷, 𝐷 ′ with 𝐷 ⊆ 𝐷 ′, and a set 𝐴 ⊆ dom(𝐷) such
that the restriction 𝐺𝐷

|𝐴 of the Gaifman graph of 𝐷 to vertices 𝐴
contains the 𝑘 × 𝐾-grid as a minor, one can construct in time 𝑓 (𝑘) ·
poly( | |𝐺 | |, | |𝐷 ′ | |) a database 𝐷∗ = 𝐷∗ (𝐺,𝐷, 𝐷 ′, 𝐴) such that:

(1) there is a surjective homomorphism ℎ0 from 𝐷∗ to 𝐷 ′,
(2) 𝐺 contains a 𝑘-clique iff there is a homomorphism ℎ from 𝐷

to 𝐷∗ such that ℎ0 (ℎ(·)) is the identity on 𝐴, and

(3) if𝐷 ′ |= Σ, and every clique of size at most 3 ·𝑟 in𝐺 is contained
in a clique of size 3 · 𝑟 ·𝑚, then 𝐷∗ |= Σ.

The condition in item (3) is not considered by Grohe in [26],

but can easily be verified to hold for our modified version of his

database. It is crucial for our proof as we need to ensure that the

database that the fpt-reduction constructs satisfies the given set Σ
of frontier-guarded TGDs.

A Crucial Lemma. Our proof borrows several ideas and tech-

niques from the proof of Grohe’s Theorem. However, the adaptation

of such techniques is non-trivial for a couple of reasons. First, we

cannot construct an arbitrary database, but need to construct one

that satisfies the given set Σ of frontier-guarded TGDs. Second, the

notion of core of a CQ, which is crucial for Grohe’s proof, cannot be

directly used in our context. Recall that, for 𝑘 ≥ 1, a CQ 𝑞 belongs

to CQ≡
𝑘
iff its core is in CQ𝑘 [20]. This allows Grohe to work with

the core of 𝑞 instead of 𝑞 itself, and thus, exploit the property that

a homomorphism from the core of 𝑞 to itself is injective. This is far

from being true in the presence of constraints. Instead, we need

a technical result, which, intuitively speaking, states that some

subsets of our CQs behave like cores for the sake of our proof.

Lemma 7.2. Fix ℓ ≥ 𝑟 ·𝑚. There exists a computable function that
takes as input a CQS 𝑆 = (Σ, 𝑞) ∈ (FG𝑚,CQ) that is not uniformly
CQℓ -equivalent, and outputs two CQs 𝑝 and 𝑝 ′, and a subset 𝑋 of the
variables of 𝑝 , such that the following hold:

(1) 𝑞 ≡Σ 𝑝 .
(2) 𝐷 [𝑝 ′] |= Σ.
(3) 𝐷 [𝑝] ⊆ 𝐷 [𝑝 ′].
(4) ℎ(𝑋 ) = 𝑋 , for every homomorphism ℎ from 𝑝 to 𝑝 ′.
(5) The treewidth of 𝐺𝑝

|𝑋 is larger than ℓ .

Let us now briefly comment on the reason why we have to

bound the number of head atoms in frontier-guarded TGDs for

our proof to work. In very rough terms, this is because the way in

which 𝑝 ′ is constructed is by generating from 𝑝 the finite model

𝑀 = 𝑀 (𝐷 [𝑝], Σ, 𝑛), for some 𝑛 ≥ 0, that is obtained from Defini-

tion 6.5 given the strong finite controllability of FG, as established
in Theorem 6.7. A property of this construction that is crucial for

the proof of Lemma 7.2 is that the treewidth of𝑀 is not larger than

that of 𝐷 [𝑝]. The only way in which we can ensure this property

to hold is by fixing the number of atoms in TGD heads.

Remarkably, this additional bound on the number of head atoms

is not needed for obtaining Theorem 5.7. This is because there

exists an fpt-reduction from the evaluation of CQSs from (G,UCQ)
to CQS from the same class in which there are are no existential

quantifiers in TGD heads – this is implicit in our proofs. When such

a reduction is possible, the CQ 𝑝 ′ can be obtained in a simpler way:

it suffices to chase 𝑝 using Σ, with 𝑝 being the CQ with a minimal

number of atoms among all the CQs that are equivalent to 𝑞 w.r.t. Σ.
Notice that no bound on the number of head atoms in the TGDs of

Σ is required in this case. Unfortunately, when Σ ∈ FG, a reduction
like the one described above is not possible. This prevents us from

applying the previous idea since chase(𝑝, Σ) may be infinite.

The FPT-Reduction. We now proceed to explain how Lemma 7.2

is applied in order to prove Theorem 5.13. Let (𝐺,𝑘) be an instance

of p-Clique. It is easy to see that we can assume, w.l.o.g., that every



clique of size at most 3 ·𝑟 in𝐺 is contained in a clique of size 3 ·𝑟 ·𝑚.

From the Excluded Grid Theorem [32], there is a computable integer

ℓ such that every simple graph 𝐺 of treewidth at least ℓ contains a

(𝑘 ×𝐾)-grid as a minor. By hypothesis on the class O, there exists a
CQS 𝑆 = (Σ, 𝑞) from O such that 𝑆 ∉ (FG𝑚,CQ)≡ℓ . We can assume,

w.l.o.g., that ℓ ≥ 𝑟 ·𝑚. We build from (𝐺,𝑘) the tuple (𝐷∗, Σ, 𝑞),
where 𝐷∗

is a database defined as follows. Since, by assumption,

ℓ ≥ 𝑟 ·𝑚, it is possible to compute from 𝑞 a CQ 𝑝 , a subset 𝑋 of

the variables of 𝑝 , and a CQ 𝑝 ′, that satisfy the properties stated in

Lemma 7.2. In particular, the treewidth of𝐺
𝑝

|𝑋 is at least ℓ , and hence,

𝐺
𝑝

|𝑋 contains the (𝑘 × 𝐾)-grid as a minor. We then define 𝐷∗
as

𝐷∗ (𝐺,𝐷 [𝑝], 𝐷 [𝑝 ′], 𝑋 ), where 𝐷 (𝐺,𝐷 [𝑝], 𝐷 [𝑝 ′], 𝑋 ) is the database
that is defined in Theorem 7.1 for 𝐷 = 𝐷 [𝑝], 𝐷 ′ = 𝐷 [𝑝 ′], and
𝐴 = 𝑋 .

It remains to show that the above is indeed an fpt-reduction from

p-Clique to CQS-Evaluation(O). To this end, we need to show that:

Lemma 7.3. The following statements hold:
(1) 𝐷∗ |= Σ.
(2) 𝐺 has a 𝑘-clique iff 𝐷∗ |= 𝑞.
(3) There are computable functions 𝑓 , 𝑔 : N → N such that

(𝐷, Σ, 𝑞) can be constructed in time | |𝐺 | |𝑂 (1) · 𝑓 (𝑘) and
( | |𝑞 | | + | |Σ| |) ≤ 𝑔(𝑘).

The proof of (1) follows from the last item in Theorem 7.1. We

now proceed to show item (2). Assume that𝐺 has a 𝑘-clique. Then,

by Theorem 7.1, there is a homomorphism ℎ from 𝑝 to 𝐷∗
such that

ℎ0 (ℎ(·)) is the identity. Hence𝐷∗ |= 𝑝 . But𝑞 ≡Σ 𝑝 , and thus,𝐷
∗ |= 𝑞

since, by item (1), we know that 𝐷∗ |= Σ. Conversely, assume that

𝐷∗ |= 𝑞, and thus 𝐷∗ |= 𝑝 . Then, there is a homomorphism ℎ

from 𝑝 to 𝐷∗
. It follows that ℎ0 (ℎ(·)) is a homomorphism from

𝑝 to 𝑝 ′. Consequently, by Lemma 7.2, we obtain that ℎ(𝑋 ) = 𝑋 .

Hence, there must exist some 𝑛 ≥ 0 such that 𝑔 = ℎ ◦ (ℎ0 ◦ ℎ)𝑛 is a

homomorphism from 𝑝 to 𝐷∗
with ℎ0 (𝑔(·)) being the identity on

𝑋 . Then, 𝐺 has a 𝑘-clique from item (2) of Theorem 7.1.

As for items (3) and (4), first notice that the CQS 𝑆 = (Σ, 𝑞) can
be computed by simply enumerating the CQSs fromO until we find

𝑆 since, by Theorem 5.10, we can check whether 𝑆 ∉ (FG,CQ)≡
ℓ
.

From 𝑞 we can construct the CQs 𝑝 and 𝑝 ′, as well as the set of
variables𝑋 , by applying Lemma 7.2. All these constructions depend

only on𝑘 . Theorem 7.1 states, on the other hand, that it is possible to

construct 𝐷 in time | |𝐺 | |𝑂 (1) · 𝑓 ′(𝑘) for some computable function

𝑓 ′ : N→ N. Putting all these together, we obtain the existence of

computable functions 𝑓 , 𝑔 : N→ N as needed.

8 CONCLUSIONS AND FUTUREWORK

We have studied the limits of efficient query evaluation in the con-

text of ontology-mediated querying and querying in the presence of

constraints, focusing on guarded and frontier-guarded TGDs, and

on UCQs as the actual queries. We have obtained novel efficiency

characterizations in the spirit of Grohe’s well-known characteriza-

tion of the tractable classes of CQs (without constraints).

An interesting open problem that emerges from this work is

whether our main result on guarded OMQs (Theorem 5.3) can be

generalized to frontier-guarded TGDs. Recall that the notion of be-

ing equivalent to an OMQ of bounded treewdith is not enough for

frontier-guarded TGDs. We would also like to investigate whether

in our main result on CQSs based on frontier-guarded TGDs (Theo-

rem 5.12) the bound on the number of head atoms can be dropped.

Recall that our results, similarly to Grohe’s characterization, assume

that the schema is of bounded arity. Establishing similar characteri-

zations for schemas of unbounded arity is an open problem.
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A PROOF OF PROPOSITION 3.3

The first two items are easy, and have been already discussed in

the main body of the paper. Here we focus on item (3). The proof

relies on two technical lemmas.

The first such lemma, which is implicit in [15], states that, given

an S-database 𝐷 and an OMQ 𝑄 = (S, Σ, 𝑞) from (L,UCQ), 𝑄 (𝐷)
coincides with the evaluation of 𝑞 over an initial finite portion 𝐶

of chase(𝐷, Σ). To formalize this, we need then notion of chase

level. Let 𝑠 = 𝐼0
𝜎0, (𝑡0,𝑢0)−−−−−−−−→ 𝐼1

𝜎1, (𝑡1,𝑢1)−−−−−−−−→ 𝐼2 . . . be a chase sequence

for a database 𝐷 under a set Σ of TGDs, where 𝜎𝑖 = 𝜙𝑖 (𝑥,𝑦) →
∃𝑧𝜓𝑖 (𝑥, 𝑧). The 𝑠-level of an atom 𝛼 ∈ chase(𝐷, Σ) is inductively
defined as follows: level𝑠 (𝛼) = 0 if 𝛼 ∈ 𝐷 , and level𝑠 (𝛼) = ℓ if

max{level𝑠 (𝛽) | 𝛽 ∈ 𝜙𝑖 (𝑡𝑖−1, 𝑢𝑖−1)} = ℓ − 1, where 𝑖 > 0 is such

that 𝛼 ∈ 𝐼𝑖 and 𝛼 ∉
⋃

0≤ 𝑗<𝑖 𝐼 𝑗 . Let chase
ℓ
𝑠 (𝐷, Σ) be the instance

{𝛼 ∈ ⋃
𝑖≥0

𝐼𝑖 | level𝑠 (𝛼) ≤ ℓ}. A chase sequence for 𝐷 under Σ is

level-wise if, for 𝑖 > 0, it produces all the atoms of 𝑠-level 𝑖 before

generating an atom of 𝑠-level 𝑖 + 1.
3

Lemma A.1. Consider a database 𝐷 , a set Σ ∈ L, and a UCQ 𝑞.
There exists a computable function 𝑔 : N→ N such that

𝑞(chase(𝐷, Σ)) = 𝑞

(
chase𝑔 ( | |Σ | |+ | |𝑞 | |)𝑠 (𝐷, Σ)

)
,

where 𝑠 is a level-wise chase sequence for 𝐷 under Σ. Furthermore,
the instance chase𝑔 ( | |Σ | |+ | |𝑞 | |)𝑠 (𝐷, Σ) can be computed in time | |𝐷 | | ·
𝑓 ( | |𝑄 | |) for some computable function 𝑓 : N→ N.

Proof. The existence of the computable function 𝑔, which is

actually an exponential function, has been shown in [15]. It remains

to show that chase𝑔 ( | |Σ | |+ | |𝑞 | |)𝑠 (𝐷, Σ) can be computed in time | |𝐷 | |·
𝑓 ( | |𝑄 | |) for some computable function 𝑓 : N → N; recall that 𝑠
is a level-wise chase sequence for 𝐷 under Σ. We first provide an

upper bound on the size of chase𝑔 ( | |Σ | |+ | |𝑞 | |)𝑠 (𝐷, Σ). Let 𝐻Σ be the

maximum number of atoms in the head of a TGD of Σ.

Lemma A.2. It holds that���chase𝑔 ( | |Σ | |+ | |𝑞 | |)𝑠 (𝐷, Σ)
��� ≤ |𝐷 | · ( |Σ| · 𝐻Σ + 1)𝑔 ( | |Σ | |+ | |𝑞 | |) .

Proof. We proceed by induction on the 𝑠-level 𝑖 ≥ 0.

Base case. It is clear that chase0

𝑠 (𝐷, Σ) = 𝐷 , and the claim follows.

Inductive step. Observe that, due to linearity, each TGD of Σ
can be triggered by an atom of chase𝑖−1

𝑠 (𝐷, Σ) at most once, and

generate 𝐻Σ new atoms. Hence,��chase𝑖𝑠 (𝐷, Σ)�� ≤
��chase𝑖−1

𝑠 (𝐷, Σ)
�� + |Σ| ·

��chase𝑖−1

𝑠 (𝐷, Σ)
�� · 𝐻Σ .

By induction hypothesis,��chase𝑖−1

𝑠 (𝐷, Σ)
�� ≤ |𝐷 | · ( |Σ| · 𝐻Σ + 1)𝑖−1 .

Therefore,��chase𝑖𝑠 (𝐷, Σ)��
≤ |𝐷 | · ( |Σ| · 𝐻Σ + 1)𝑖−1 + |Σ| · |𝐷 | · ( |Σ| · 𝐻Σ + 1)𝑖−1 · 𝐻Σ

= |𝐷 | · ( |Σ| · 𝐻Σ + 1)𝑖−1 · ( |Σ| · 𝐻Σ + 1)
= |𝐷 | · ( |Σ| · 𝐻Σ + 1)𝑖 ,

and the claim follows.

3
We keep the definition of level-wise chase sequences somewhat informal since it is

clear what the underlying intention is.

We can now show that chase𝑔 ( | |Σ | |+ | |𝑞 | |)𝑠 (𝐷, Σ) can be computed

in time | |𝐷 | | · 𝑓 ( | |𝑄 | |) for some computable function 𝑓 : N→ N. It
is easy to see that, for each 𝑖 > 0, chase𝑖𝑠 (𝐷, Σ) can be computed

from chase𝑖−1

𝑠 (𝐷, Σ) in time (assume that Σ is over the schema T)

|Σ| ·
��chase𝑖−1

𝑠 (𝐷, Σ)
�� · (ar(T) + 1) · 𝐻Σ · (ar(T) + 1).

Indeed, for each linear TGD 𝜎 ∈ Σ, we need to scan the instance

chase𝑖−1

𝑠 (𝐷, Σ), and checkwhether the atom body(𝜎)matcheswith

an atom of chase𝑖−1

𝑠 (𝐷, Σ), and, if this is the case, add to the in-

stance under construction 𝐻Σ new atoms. By Lemma A.2, for each

𝑖 ≥ 0,

chase𝑖𝑠 (𝐷, Σ) ≤ chase𝑔 ( | |Σ | |+ | |𝑞 | |)𝑠 (𝐷, Σ)
≤ |𝐷 | · ( |Σ| · 𝐻Σ + 1)𝑔 ( | |Σ | |+ | |𝑞 | |) .

Thus, chase𝑔 ( | |Σ | |+ | |𝑞 | |)𝑠 (𝐷, Σ) can be computed in time

|𝐷 | · 𝑔( | |Σ| | + | |𝑞 | |) · ( |Σ| · 𝐻Σ)𝑔 ( | |Σ | |+ | |𝑞 | |) · |Σ| · 𝐻Σ · (ar(T) + 1)2 .

This completes the proof of Lemma A.1.

The second technical lemma the we need to complete the proof

of item (3) of Proposition 3.3 follows:

Lemma A.3. Let 𝐷 be an S-database, and 𝑄 = (S, Σ, 𝑞) ∈
(G,UCQ). There exists a database 𝐷∗, and a set Σ∗ ∈ L such that

𝑄 (𝐷) = 𝑞(chase(𝐷∗, Σ∗)) .
Furthermore, 𝐷∗ can be computed in time | |𝐷 | |𝑂 (1) · 𝑓 ( | |𝑄 | |), and
Σ∗ in time 𝑔( | |𝑄 | |), for some computable functions 𝑓 , 𝑔 : N→ N.

Before giving the proof of the above result, let us explain how

Lemma A.1 and Lemma A.3 allow us to obtain item (3) of Proposi-

tion 3.3. Given an OMQ𝑄 = (S, Σ, 𝑞(𝑥)) ∈ (G,UCQ𝑘 ), for 𝑘 ≥ 1, an

S-database 𝐷 , and 𝑐 ∈ dom(𝐷) |𝑥 | , by Lemmas A.1 and A.3, we sim-

ply need to construct a finite instance 𝐼 in time | |𝐷 | |𝑂 (1) ·𝑓 ( | |𝑄 | |) for
some computable function 𝑓 : N→ N, and then check if 𝑐 ∈ 𝑞(𝐼 ).
Since 𝑞 ∈ UCQ𝑘 , by Proposition 2.1, the overall procedure takes

time | |𝐷 | |𝑂 (1) · 𝑔( | |𝑄 | |) for some computable function 𝑔 : N→ N.

A.1 Proof of Lemma A.3

The rest of this section is devoted to the proof of Lemma A.3. Con-

sider an S-database 𝐷 , and an OMQ 𝑄 = (S, Σ, 𝑞) ∈ (G,UCQ). We

proceed to construct a database 𝐷∗
, and a set Σ∗ ∈ L, by adapting

a construction from [23], such that 𝑄 (𝐷) = 𝑞(chase(𝐷∗, Σ∗)). Let
us first explain the high-level idea underlying 𝐷∗

and Σ∗.

The High-level Idea. A key notion when reasoning with guarded

TGDs is the type of an atom 𝛼 (w.r.t. 𝐷 and Σ), denoted type𝐷,Σ (𝛼),
defined as the set {𝛽 ∈ chase(𝐷, Σ) | dom(𝛽) ⊆ dom(𝛼)}. Roughly
speaking, the key property of the type is that the atoms that can

be derived during the chase from an atom 𝛼 used as a guard is

determined by its type; see [15] for further details. The main idea

underlying the construction of 𝐷∗
is to encode an atom 𝛼 ∈ 𝐷

and its type as a single atom of the form [𝜏] (·), where 𝜏 is es-

sentially a representation of the “shape” of 𝛼 and its type. For

example, given an atom 𝑅(𝑎, 𝑏) ∈ 𝐷 , and assuming that its type is

{𝑅(𝑎, 𝑏), 𝑆 (𝑏, 𝑎),𝑇 (𝑎),𝑇 (𝑏)}, we can encode 𝑅(𝑎, 𝑏) and its type as

the atom [𝑅(1, 2), {𝑆 (2, 1),𝑇 (1),𝑇 (2)}] (𝑎, 𝑏). When it comes to Σ∗,
the intention is, for a TGD 𝜎 ∈ Σ, to encode the shape of the type 𝜏



of the guard of 𝜎 in a predicate [𝜏], and then replace 𝜎 with a linear

TGD that uses in its body an atom of the form [𝜏] (·). However,
we need an effective way to compute the type of an atom 𝛼 by

completing its known part, which is inherited from the type of the

guard atom that generates 𝛼 , with atoms that mention the new

nulls invented in 𝛼 . This relies on the main property of the type

mentioned above. In particular, for each 𝛼 ∈ chase(𝐷, Σ) obtained
due to the application of the TGD 𝜎 = 𝜑 (𝑥,𝑦) → ∃𝑧𝜓 (𝑥, 𝑧) ∈ Σ
with the witness (𝑡,𝑢), we can construct type𝐷,Σ (𝛼) from𝜓 (𝑡, 𝑣),
where 𝑣 is a tuple of new null values, together with the restriction

of type𝐷,Σ (𝛼) to the terms 𝑡 . This is precisely how we are going to

generate new types from existing ones. Before giving the formal

construction, we need to introduce some auxiliary terminology.

Auxiliary Terminology. Let sch(Σ) be the set of predicates occur-
ring in Σ. For an atom𝛼 , let base(𝛼, Σ) be the set of all atoms that can

be formed using terms from dom(𝛼) and predicates from sch(Σ). A
Σ-type 𝜏 is a pair (𝛼,𝑇 ), where 𝛼 = 𝑅(𝑡1, . . . , 𝑡𝑛) with 𝑅 ∈ sch(Σ),
𝑡1 = 1 and 𝑡𝑖 ∈ {𝑡1, . . . , 𝑡𝑖−1, 𝑡𝑖−1 + 1} for each 𝑖 ∈ {2, . . . , 𝑛}, and
𝑇 ⊆ base({𝑅(𝑡1, . . . , 𝑡𝑛)}, Σ) \ {𝛼}. We write guard(𝜏) for the atom
𝛼 , and atoms(𝜏) for ({𝛼} ∪ 𝑇 ). The arity of 𝜏 , denoted ar(𝜏), is
the maximum integer occurring in guard(𝜏). Intuitively, 𝜏 encodes
the shape of a guard atom 𝛼 and a set of side atoms that are “cov-

ered” by 𝛼 . Consider a tuple 𝑢 = (𝑢1, . . . , 𝑢𝑛) that is isomorphic

to 𝑡 = (𝑡1, . . . , 𝑡𝑛), written 𝑢 ≃ 𝑡 , which means that 𝑢𝑖 = 𝑢 𝑗 iff

𝑡𝑖 = 𝑡 𝑗 . The instantiation of 𝜏 with 𝑢, denoted 𝜏 (𝑢), is the set

of atoms obtained from atoms(𝜏) after replacing each 𝑡𝑖 with 𝑢𝑖 .

The projection of 𝜏 over 𝑃 ⊆ {1, . . . , ar(𝜏)} is the set of atoms

Π𝑃 (𝜏) = {𝛽 ∈ atoms(𝜏) | dom(𝛽) ⊆ 𝑃}. The completion of an in-

stance 𝐼 w.r.t. Σ, denoted complete(𝐼 , Σ), is defined as the instance

{𝑅(𝑡) | 𝑡 ∈ dom(𝐼 )ar(𝑅) and {𝑅(𝑡)} → chase(𝐼 , Σ)}.
The Formal Construction. The new database is defined as

𝐷∗ =

 [𝜏] (𝑐)
������ 𝑅(𝑐) ∈ 𝐷
𝜏 = (𝑅(𝑡), ·) with 𝑐 ≃ 𝑡
𝜏 (𝑐) ⊆ complete(𝐷, Σ)

 .
The new set Σ∗ of linear TGDs is the union of Σ∗tg and Σ

∗
ex , where

(1) Σ∗tg is the type generator, i.e., is responsible for generating
new Σ-types from existing ones.

(2) Σ∗ex is the expander, it expands a derived Σ-type 𝜏 , i.e., it
explicitly constructs the atoms over sch(Σ) encoded by 𝜏 .

The type generator is defined as follows. For each 𝜎 ∈ Σ

𝜑 (𝑥,𝑦) → ∃𝑧1 · · · ∃𝑧𝑚 𝑅1 (𝑢1), . . . , 𝑅𝑛 (𝑢𝑛)
with guard(𝜎) = 𝐺 (𝑢), and (𝑥 ∪ {𝑧𝑖 }𝑖∈[𝑚] ) the variables occurring
in head(𝜎), and for every Σ-type 𝜏 such that there is a homomor-

phism ℎ from 𝜑 (𝑥,𝑦) to atoms(𝜏) and ℎ(𝐺 (𝑢)) = guard(𝜏), we add
to Σ∗tg

[𝜏] (𝑢) → ∃𝑧1 · · · ∃𝑧𝑚 [𝜏1] (𝑢1), . . . , [𝜏𝑛] (𝑢𝑛),
where, having the function 𝑓 with

𝑓 (𝑡) =


ℎ(𝑡) if 𝑡 ∈ 𝑥

ar(Σ) + 𝑖 if 𝑡 = 𝑧𝑖 ,

as well as the function 𝜌 that renames the integers in atoms in order

to appear in increasing order starting from 1 (e.g., 𝜌 (𝑅(2, 2, 4, 1)) =

𝑅(1, 1, 2, 3)), for each 𝑖 ∈ [𝑛], with 𝛼𝑖 = 𝑅𝑖 (𝑓 (𝑢𝑖 )), the Σ-type 𝜏𝑖 is(
𝜌 (𝛼𝑖 ), {𝛽 ∈ complete(𝐼 , Σ) | dom(𝛽) ⊆ dom(𝜌 (𝛼𝑖 ))} \ {𝜌 (𝛼𝑖 )}

)
with

𝐼 = 𝜌 ({𝛼𝑖 }𝑖∈{1,...,𝑛} ∪ Π{ℎ (𝑥) |𝑥 ∈𝑥 } (𝜏)) .
The expander it actually constructs, for each Σ-type 𝜏 , the guard

atom of 𝜏 . More precisely, for each Σ-type 𝜏 , we add to Σ∗ex
[𝜏] (𝑥1, . . . , 𝑥𝑘 ) → 𝑅(𝑥1, . . . , 𝑥𝑘 ),

where 𝑅 is the 𝑘-ary predicate of guard(𝜏).
This completes the construction of Σ∗. It is clear that Σ∗ ∈ L. It

also not difficult to show, by exploiting the properties of the type,

that 𝑄 (𝐷) = 𝑞(chase(𝐷∗, Σ∗)), as needed. It remains to show that

𝐷∗
and Σ∗ can be constructed in the claimed times.

An FPT Construction. By construction, Σ∗ depends only on Σ,
and thus, it is clear that it can be computed in time 𝑔( | |𝑄 | |) for some

computable function 𝑔 : N→ N. On the other hand, 𝐷∗
depends

both on 𝐷 and Σ. It remains to show that 𝐷∗
can be computed in

time | |𝐷 | |𝑂 (1) · 𝑓 ( | |𝑄 | |) for some computable function 𝑓 : N→ N.
To this end, we first show the following auxiliary result:

Lemma A.4. For a database 𝐷 ′ and set Σ′ ∈ G∩FULL, the (finite)
instance chase(𝐷 ′, Σ′) can be constructed in time | |𝐷 ′ | |𝑂 (1) ·𝑔( | |Σ′ | |)
for some computable function 𝑔 : N→ N.

Proof. We provide similar analysis as in the proof of LemmaA.1.

Let us first establish an upper bound on the size of chase(𝐷 ′, Σ′).
We assume that Σ′ is over the schema T. We can show that:

|chase(𝐷 ′, Σ′) | ≤ |𝐷 ′ | · |T| · ar(T)ar(T) .
Observe that, due to guardedness, two constants 𝑐, 𝑑 ∈ dom(𝐷 ′)
can occur together in an atom of chase(𝐷 ′, Σ′) only if they already

occur together in an atom of 𝐷 ′
. Thus, for each 𝑛-tuple 𝑐 occurring

in 𝐷 ′
(i.e., there is an atom 𝑅(𝑐) in 𝐷 ′

), the chase can produce at

most 𝑛ar(T) new tuples of constants from 𝑐 , while each new such

tuple can be stored in a predicate of T. Since 𝑛 ≤ ar(T), we get that
chase(𝐷 ′, Σ′) can have at most |𝐷 ′ | · |T| · ar(T)ar(T) atoms.

We can now show that indeed chase(𝐷 ′, Σ′) can be constructed

in time | |𝐷 | |𝑂 (1) · 𝑔( | |𝑄 | |). Let 𝐵Σ′ (resp., 𝐻Σ′ ) be the maximum

number of atoms in the body (resp., head) of a TGD of Σ′. Observe
that, for 𝑖 ≥ 0, chase𝑖𝑠 (𝐷 ′, Σ′), where 𝑠 is a level-wise chase se-

quence for 𝐷 ′
under Σ′, can be computed from chase𝑖−1

𝑠 (𝐷 ′, Σ′)
in time

|Σ′ | ·
(��chase𝑖−1

𝑠

(
𝐷 ′, Σ′

) �� · (ar(T) + 1) + 𝐵Σ′ · (ar(T) + 1)+��chase𝑖−1

𝑠

(
𝐷 ′, Σ′

) �� · 𝐵Σ′ · (ar(T) + 1)
)
· 𝐻Σ′ · (ar(T) + 1).

Indeed, for each guarded TGD 𝜎 ∈ Σ′, we need to scan the instance

chase𝑖−1

𝑠 (𝐷 ′, Σ′), and check whether the atom guard(𝜎) matches

with an atom 𝛼 ∈ chase𝑖−1

𝑠 (𝐷 ′, Σ′). Note that the matching of

guard(𝜎) with 𝛼 uniquely determines the atoms 𝛼1, . . . , 𝛼𝑚 with

which the atoms of body(𝜎) apart from guard(𝜎) should match.

Then, for each such atom 𝛼𝑖 , we need to scan chase𝑖−1

𝑠 (𝐷 ′, Σ′), and
check that indeed it is present. If all the atoms 𝛼1, . . . , 𝛼𝑚 occur in

chase𝑖−1

𝑠 (𝐷 ′, Σ′), then we add 𝐻Σ′ new atoms.

As shown above, for each 𝑖 ≥ 0,��chase𝑖𝑠 (
𝐷 ′, Σ′

) �� ≤ |chase(𝐷 ′, Σ′) | ≤ |𝐷 ′ | · |T| · ar(T)ar(T) .



Since chase(𝐷 ′, Σ′) can have at most 𝑛 = |𝐷 ′ | · |T| · ar(T)ar(T)
𝑠-levels, it can be computed in time

𝑛 · |Σ′ | · (𝑛 · (ar(T) + 1) + 𝐵Σ′ · (ar(T) + 1)+
𝑛 · 𝐵Σ′ · (ar(T) + 1)) · 𝐻Σ′ · (ar(T) + 1).

Summing up, chase(𝐷 ′, Σ′) can be computed in time

| |𝐷 ′ | |2 · 𝑔( | |Σ′ | |)
for some computable function 𝑔 : N→ N, and the claim follows.

In view of Lemma A.4, to show that 𝐷∗
can be computed in time

| |𝐷 | |𝑂 (1) · 𝑓 ( | |𝑄 | |), it suffices to show that we can construct in time

𝑔( | |Σ| |) a set Σ̂ ∈ G ∩ FULL such that 𝐷∗ = chase(𝐷, Σ̂) |T, where
T consists of all the predicates of the form [𝜏], where 𝜏 is a Σ-type,
occurring in chase(𝐷, Σ̂). The set Σ̂ will simply:

(1) complete the database 𝐷 with all the atoms of chase(𝐷, Σ)
that mention only constants from dom(𝐷), i.e., add to 𝐷 the

set of atoms chase(𝐷, Σ) ∩ base(𝐷, Σ), and
(2) generate all the atoms of 𝐷∗

.

For achieving task (1) above, we exploit a result from [24], which

states the following: given a set Σ′ ∈ G, we can construct a set

𝜉 (Σ′) ∈ G ∩ FULL over sch(Σ′) such that, for every database 𝐷 ′
,

chase(𝐷 ′, 𝜉 (Σ′)) = chase(𝐷 ′, Σ′) ∩base(𝐷 ′, Σ′). Thus, task (1) can
be done via the set 𝜉 (Σ) ∈ G over sch(Σ).

Task (2) can be achieved via the set of TGDs Σtypes ∈ G ∩ FULL
defined as follows. For each Σ-type 𝜏 , we have a TGD

𝜏 (𝑥1, . . . , 𝑥𝑘 ) → [𝜏]
(
𝑥 𝑓𝜏 (1) , . . . , 𝑥 𝑓𝜏 (ℓ)

)
,

where 𝑘 = ar(𝜏), ℓ is the arity of the predicate of guard(𝜏), and,
assuming that (𝑖1, . . . , 𝑖ℓ ) is the tuple of guard(𝜏), 𝑓𝜏 (𝑖) = 𝑖 𝑗 , for

each 𝑗 ∈ [ℓ]. By abuse of notation, we use 𝜏 (𝑥1, . . . , 𝑥𝑘 ) to denote

the conjunction of atoms in the instantiation of 𝜏 with (𝑥1, . . . , 𝑥𝑘 ).
The set Σ̂ is defined as 𝜉 (Σ) ∪ Σtypes , which can be clearly con-

structed in time 𝑔( | |Σ| |) since it depends only on Σ.

B PROOF OF THEOREM 5.1

Given a CQ 𝑞, we write var(𝑞) for the set of variables in 𝑞. We may

also treat, as usual, a CQ 𝑞 as the set of atoms in 𝑞. The proofs in

this section rely on notions and results introduced in the proof of

Proposition 5.2, which we advise the reader to read first.

The 2ExpTime-hardness is inherited from [7], where the same

problem for OMQs based on DLs has been studied. It remains to es-

tablish the 2ExpTime upper bound. Let𝑄 = (S, Σ, 𝑞). Proposition 5.2
provides a procedure for deciding (uniform) UCQ𝑘 -equivalence:

(1) compute the UCQ𝑘 -approximation 𝑄𝑎
𝑘
= (S, Σ, 𝑞𝑎

𝑘
) of 𝑄 ;

(2) accept if 𝑄 ≡ 𝑄𝑎
𝑘
; otherwise, reject.

This yields decidability. It also shows that if 𝑄 is UCQ𝑘 -equivalent,
then an OMQ 𝑄 ′

from (G,UCQ𝑘 ) such that 𝑄 ≡ 𝑄 ′
can be con-

structed in double exponential time. Actually, to find 𝑄 ′
we can

simply construct the OMQ 𝑄𝑎
𝑘
.

Lemma B.1. 𝑄𝑎
𝑘
can be constructed in double exponential time.

Proof. For each disjunct 𝑝 of 𝑞, we first need to compute its

specializations (𝑝 ′,𝑉 ). It is easy to see that there are single ex-

ponentially many specialization that can be found in single expo-

nential time. For each specialization 𝑠 = (𝑝 ′,𝑉 ), we then have to

find all Σ-groundings 𝑔𝑠 (𝑥) of 𝑠 , and keep the ones of treewidth at

most 𝑘 . Note that we can form double exponentially many guarded

CQs, each of exponential size. Thus, there are double exponentially

many candidates for being a Σ-grounding of 𝑠 , each for exponential

size, that can be found in double exponential time. Now, in the

check whether such a candidate 𝑔 is indeed a Σ-grounding of 𝑠 , the

only non-trivial part is that we have to check for each maximally

[𝑉 ]-connected component 𝑝𝑖 of 𝑝
′[𝑉 ] whether 𝑝𝑖 → chase(𝑔𝑖 , Σ),

where 𝑔𝑖 is a guarded subquery of 𝑔 of exponential size, via a homo-

morphism that is the identity on var(𝑝𝑖 ) ∩𝑉 = {𝑦1, . . . , 𝑦𝑚}. This
boils down to the problem whether (𝑦1, . . . , 𝑦𝑚) ∈ 𝑝 ′

𝑖
(chase(𝑔𝑖 , Σ)),

where 𝑝 ′
𝑖
(𝑦1, . . . , 𝑦𝑚) consists of the atoms of 𝑝𝑖 . By item (2) of

Proposition 3.2, this can be checked in 2ExpTime. Actually, this is

not immediate from Proposition 3.2 since𝑔𝑖 might be of exponential

size. We additionally need to say that the double exponential bound

obtained from Proposition 3.2 is only polynomial in the size of the

database; implicit in [14]. Finally, checking whether a Σ-grounding
𝑔𝑠 of 𝑠 has treewidth at most 𝑘 is feasible in double exponential

time since 𝑔𝑠 is, in general, of exponential size.

Containment between OMQs from (G,UCQ) can be decided in

2ExpTime [6]. Since, however, 𝑞𝑎
𝑘
may consists of double exponen-

tially many CQs, it is not clear how to implement step (2) above in

2ExpTime and how to obtain the 2ExpTime upper bound in The-

orem 5.1 by a direct implementation of the above procedure. We

solve this problem in two steps. First, we replace 𝑄𝑎
𝑘
with an OMQ

𝑄 ′
𝑘
= (S, Σ′, 𝑞′

𝑘
) that is equivalent to 𝑄𝑎

𝑘
, and such that 𝑞′

𝑘
contains

only single exponentially many CQs, each of polynomial size. And

second, we modify the containment check from [6] in a mild way.

B.1 Replacing 𝑄𝑎
𝑘
with 𝑄 ′

𝑘

The OMQ 𝑄 ′
𝑘
= (S, Σ′, 𝑞′

𝑘
) is defined as follows. We introduce a

fresh unary relation symbol 𝐴 (that is not in S) and obtain Σ′ from
Σ by extending every TGD head with the atom 𝐴(𝑥) whenever 𝑥 is

an existentially quantified variable in that TGD head. Then 𝑞′
𝑘
is the

UCQ that includes 𝑝𝑐 for all specializations 𝑠 = (𝑝𝑐 ,𝑉 ) of a CQ 𝑝

in 𝑞 such that there exists a Σ-grounding of 𝑠 that is of treewidth at

most 𝑘 , extended by adding𝐴(𝑥) for every variable 𝑥 ∈ var(𝑝𝑐 ) \𝑉 .
It is clear that 𝑞′

𝑘
has only single exponentially many disjuncts,

each of polynomial size. Reusing the arguments from the proof

of Lemma B.1, it is also clear that 𝑄 ′
𝑘
can be constructed in dou-

ble exponential time. We further make the following important

observation, which rests on the assumption that 𝑘 ≥ ar(T) − 1.

Lemma B.2. Let 𝑠 = (𝑝𝑐 ,𝑉 ) be a specialization of a CQ in 𝑞. If
there is a Σ-grounding of 𝑠 that has treewidth at most 𝑘 , then all
Σ-groundings of 𝑠 have treewidth at most 𝑘 .

Proof. Let 𝑝1, ..., 𝑝𝑛 be the maximally [𝑉 ]-connected compo-

nents of 𝑝𝑐 [𝑉 ], let 𝑔𝑠 (𝑥) = ∃𝑧 (𝑔0 ∧𝑔1 ∧ · · · ∧𝑔𝑛) be a Σ-grounding
of 𝑠 , and let 𝛿 = (𝑇𝛿 , 𝜒), where 𝑇𝛿 = (𝑉𝛿 , 𝐸𝛿 ), be a tree decompo-

sition of 𝐺
𝑔𝑠
|𝑦 of width 𝑘 , 𝑦 the existentially quantified variables of

𝑔𝑠 (𝑥). For 𝑖 ∈ [𝑛], there must be a 𝑣𝑖 ∈ 𝑉𝛿 with var(𝑝𝑖 ) ∩𝑉 ⊆ 𝜒 (𝑣𝑖 ).
Now, let 𝑔′𝑠 (𝑥) = ∃𝑧 (𝑔0 ∧ 𝑔′

1
∧ · · · ∧ 𝑔′𝑛) be another Σ-grounding

of 𝑠 . Let 𝛿 ′ = (𝑇𝛿′, 𝜒 ′) be obtained from 𝛿 by dropping all variables

that occur in 𝑔𝑠 but not in 𝑔
′
𝑠 from every bag and adding, for 𝑖 ∈ [𝑛],

a fresh successor 𝑢𝑖 to 𝑣𝑖 and setting 𝜒 ′(𝑢𝑖 ) = var(𝑔′
𝑖
). It can be



verified that 𝛿 ′ is a tree decomposition of𝐺
𝑔′𝑠
|𝑦′ , 𝑦

′
the existentially

quantified variables of 𝑔′𝑠 . In particular, Condition (2) of tree decom-

positions is satisfied for every edge induced by an atom in some

𝑔′
𝑖
due to the presence of 𝑢𝑖 . Since 𝑔

′
𝑖
is guarded, the number of

variables in var(𝑔′
𝑖
) is bounded by ar(T). Since 𝑘 ≥ ar(T) − 1, the

width of 𝛿 ′ is bounded by 𝑘 , and the claim follows.

We now proceed to show that 𝑄𝑎
𝑘
and 𝑄 ′

𝑘
are indeed equivalent.

Lemma B.3. 𝑄𝑎
𝑘
≡ 𝑄 ′

𝑘
.

Proof. First assume that 𝑐 ∈ 𝑄 ′
𝑘
(𝐷) with𝐷 an S-database. Then,

there is a homomorphism ℎ from a CQ 𝑝 (𝑥) in 𝑞′
𝑘
to chase(𝐷, Σ′)

with ℎ(𝑥) = 𝑐 . Assume that 𝑝 was constructed for the specializa-

tion 𝑠 = (𝑝𝑐 ,𝑉 ), that is, 𝑝 is the extension of 𝑝𝑐 with 𝐴(𝑥) for
all 𝑥 ∈ var(𝑝𝑐 ) \ 𝑉 . By construction of Σ′, ℎ thus maps all vari-

ables in var(𝑝) \𝑉 to constants that the chase has introduced to

satisfy existential quantifiers in TGD heads. Let 𝑝1, . . . , 𝑝𝑛 be the

maximally [𝑉 ]-connected components of 𝑝𝑐 [𝑉 ]. It follows from
the facts that 𝑝𝑖 is [𝑉 ]-connected, and that ℎ maps all variables in

var(𝑝) \𝑉 to existential constants that we find a fact 𝛼𝑖 ∈ 𝐷 such

that the restriction of ℎ to the variables in 𝑝𝑖 is a homomorphism

to chase(type𝐷,Σ′ (𝛼𝑖 ), Σ′), for 𝑖 ∈ [𝑛]. Let the Σ-grounding 𝑔𝑠 of 𝑠
by obtained by using as 𝑔𝑖 the guarded full CQ that is obtained by

viewing type𝐷,Σ′ (𝛼𝑖 ) as a full CQ. Clearly, the restriction of ℎ to

the variables in 𝑉 can be extended to a homomorphism ℎ′ from 𝑔𝑠
to chase(𝐷, Σ′) by mapping the variables from the CQs 𝑔𝑖 that are

not in 𝑉 to constants from 𝛼𝑖 in the expected way. Since 𝑔𝑠 does

not contain the relation 𝐴, ℎ′ maps 𝑔𝑠 to chase(𝐷, Σ). It remains to

argue that 𝑔𝑠 is a CQ in 𝑞𝑎
𝑘
. Since 𝑝 is in 𝑞′

𝑘
, there is a Σ-grounding

of 𝑠 that is of treewidth at most 𝑘 . By Lemma B.2, this implies that

𝑔𝑠 is of treewidth at most 𝑘 and thus 𝑔𝑠 is in 𝑞
𝑎
𝑘
.

Conversely, assume that 𝑐 ∈ 𝑄𝑎
𝑘
(𝐷) with 𝐷 an S-database. Then,

there is a homomorphism ℎ from a CQ 𝑔𝑠 (𝑥) in 𝑞𝑎𝑘 to chase(𝐷, Σ)
with ℎ(𝑥) = 𝑐 . Let 𝑔𝑠 be a Σ-grounding of the specialization

𝑠 = (𝑝𝑐 ,𝑉 ) of a CQ 𝑝 in 𝑞. Then 𝑔𝑠 is of treewidth at most 𝑘 . Con-

sequently, 𝑠 gives rise to a corresponding CQ 𝑝 ′ in 𝑞′
𝑘
, that is, 𝑝 ′ is

the extension of 𝑝𝑐 with 𝐴(𝑥) for all 𝑥 ∈ var(𝑝𝑐 ) \𝑉 . Clearly, the
restriction of ℎ |𝑉 to the variables in𝑉 is a homomorphism from 𝑝 ′|𝑉
to chase(𝐷, Σ). Let 𝑝1, . . . , 𝑝𝑛 be the maximally [𝑉 ]-connected com-

ponents of 𝑝𝑐 [𝑉 ]. By definition of Σ-groundings, 𝑝𝑖 → chase(𝑔𝑖 , Σ)
via a homomorphism that is the identity on var(𝑝𝑖 ) ∩𝑉 , for 𝑖 ∈ [𝑛].
We can combine all these homomorphisms with ℎ |𝑉 to obtain a

homomorphism ℎ′ from 𝑝𝑐 to chase(𝐷, Σ) that maps all variables

outside of 𝑉 to constants that have been introduced by the chase

to satisfy existential quantifiers in TGD heads. By construction of

𝑝 ′ and Σ′, ℎ′ is also a homomorphism from 𝑝 ′ to chase(𝐷, Σ′).

B.2 Checking Equivalence

We now proceed to analyze the complexity of checking whether

𝑄 ≡ 𝑄 ′
𝑘
. By item (1) of Lemma C.7 and Lemma B.3, 𝑄 ′

𝑘
⊆ 𝑄 .

The non-trivial task is to check whether 𝑄 ⊆ 𝑄 ′
𝑘
. We know

from [6] that checking containment among OMQs from (G,UCQ)
is in 2ExpTime. In fact, [6] first provides a polynomial time re-

duction from containment among OMQs from (G,UCQ), denoted
Cont(G,UCQ), to containment among OMQs from (G,CQ), de-
noted Cont(G,CQ), and then devises an automata-based proce-

dure for Cont(G,CQ) that runs in double exponential time in the

combined size of the OMQs. However, 𝑄 ′
𝑘
might be of exponen-

tial size, which implies that if we first apply the reduction from

Cont(G,UCQ) to Cont(G,CQ), we get an OMQ that has a CQ of

exponential size, and then, by using the decision procedure for

Cont(G,CQ) from [6] as a black box, we only get a 3ExpTime up-

per bound. Nevertheless, it turns out that we can reuse the automata

constructions from [6] for Cont(G,CQ) in order to devise a proce-

dure that directly operates on OMQs from (G,UCQ) and decides

containment in time double exponential in the size of the ontology,

the schema, and the maximum size of the CQs in the UCQs in the

OMQs, but only single exponential in the number of disjuncts in

those UCQs. Having such a procedure in place, it is then clear that

checking whether𝑄 ⊆ 𝑄 ′
𝑘
is in 2ExpTime since, due to Lemma B.1,

and since although the UCQ in 𝑄 ′
𝑘
has exponentially many dis-

juncts, each one is of polynomial size. For the sake of completeness,

we recall the key ingredients underlying the automata-based pro-

cedure from [6], and then explain how we get the automata-based

procedure that directly operates on OMQs from (G,UCQ) that
leads to the desired upper bound.

The Automata-based Procedure for Cont(G,UCQ)
Let us first recall that we can focus, w.l.o.g., on Boolean OMQs

since there is an easy reduction, originally proposed in [10], of

containment for non-Boolean OMQs to containment for Boolean

OMQs. In what follows, we writeUCQ and CQmeaning the classes

of Boolean UCQs and Boolean CQs, respectively.

We know from [6] that, given two OMQs 𝑄1 and 𝑄2 from

(G,CQ), if 𝑄1 ⊈ 𝑄2, then this is witnessed via a “nearly acyclic”

database. To formalize this we need the notion of guarded tree de-

composition. A tree decomposition𝛿 = (𝑇𝛿 , 𝜒), where𝑇𝛿 = (𝑉𝛿 , 𝐸𝛿 ),
of 𝐺𝐷

for some database 𝐷 is called [𝑉 ]-guarded, where 𝑉 ⊆ 𝑉𝛿 ,
if for every node 𝑣 ∈ 𝑉𝛿 \𝑉 , there exists a fact 𝑅(𝑐1, . . . , 𝑐𝑛) ∈ 𝐷
such that 𝜒 (𝑣) ⊆ {𝑐1, . . . , 𝑐𝑛}, i.e., 𝜒 (𝑣) is guarded in 𝐷 . We write

root(𝛿) for the root node of 𝛿 , and 𝐷𝛿 (𝑣), for 𝑣 ∈ 𝑉𝛿 , for the sub-
set of 𝐷 induced by 𝜒 (𝑣). An S-database is called a 𝐶-tree, where
𝐶 ⊆ 𝐷 , if there exists a tree decomposition 𝛿 of 𝐺𝐷

such that: (i)

𝐷𝛿 (root(𝛿)) = 𝐶 , and (ii) 𝛿 is [{root(𝛿)}]-guarded. Roughly, if a
database 𝐷 is a 𝐶-tree, then 𝐶 can be viewed as the cyclic part of

𝐷 , while the rest of 𝐷 is acyclic. In [6], it has been shown that for

containment purposes we can focus on databased that are 𝐶-trees

with the size of𝐶 bounded and depending only on the left-hand side

OMQ. Note, however, that the result of [6] talks only about OMQs

from (G,CQ). A careful inspection of the proof given in [6] reveals

that the following statement for OMQs from (G,UCQ) holds:

Lemma B.4. Let 𝑄1 = (S, Σ1, 𝑞1) and 𝑄2 = (S, Σ2, 𝑞2) be OMQs
from (G,UCQ). The following are equivalent:

(1) 𝑄1 ⊈ 𝑄2.
(2) There exists a 𝐶-tree S-database 𝐷 with | |dom(𝐶) | | ≤ ar(S ∪

sch(Σ1)) · max𝑝∈𝑞1
{| |𝑝 | |} such that 𝑄1 (𝐷) ⊈ 𝑄2 (𝐷).

The goal is to devise a two-way alternating parity tree automaton

(2ATA) that checks for the second item of Lemma B.4. To this end,

we need a convenient encoding of a𝐶-tree database as a tree over a

finite alphabet that can be accepted by a 2ATA. As shown in [6], this

can be done by exploiting standard encodings of bounded treewidth



databases. In a nutshell, a 𝐶-tree S-database 𝐷 can be encoded as

a finite ΓS,ℓ -labeled tree, with | |dom(𝐶) | | ≤ ℓ and ΓS,ℓ being an

alphabet of double exponential size in ar(S), and exponential in

| |S| | and ℓ ; the actual encoding is not important for our discussion.

Of course, it is possible that a ΓS,ℓ -labeled tree does not encode a

𝐶-tree database. Thus, some additional consistency properties are

needed, which are also not important for our discussion. A ΓS,ℓ -
labeled tree is consistent if it satisfies those syntactic properties, and
it can be shown that a consistent ΓS,ℓ -labeled tree 𝐿 can be decoded

into an S-database, denoted [𝐿], that is a𝐶-tree with | |dom(𝐶) | | ≤ ℓ .

Therefore, by Lemma B.4, we get the following:

Lemma B.5. Let 𝑄1 = (S, Σ1, 𝑞1) and 𝑄2 = (S, Σ2, 𝑞2) be OMQs
from (G,UCQ). The following are equivalent:

(1) 𝑄1 ⊈ 𝑄2.
(2) There exists a consistent ΓS,ℓ -labeled tree 𝐿, where ℓ = ar(S ∪

sch(Σ1)) · max𝑝∈𝑞1
{| |𝑝 | |}, such that 𝑄1 ( [𝐿]) ⊈ 𝑄2 ( [𝐿]).

It should be clear now that the goal is to devise a 2ATA 𝐴 over

finite trees such that its language, denoted 𝐿(𝐴), is the set of ΓS,ℓ -
labeled tree 𝐿, where ℓ ≤ ar(S∪sch(Σ1)) ·max𝑝∈𝑞1

{| |𝑝 | |}, such that
𝑄1 ( [𝐿]) ⊈ 𝑄2 ( [𝐿]). Having such an automaton in place, checking

whether 𝑄1 ⊆ 𝑄2 boils down to checking whether 𝐿(𝐴) is empty,

which can be done in exponential time in the number of states of

𝐴, and in polynomial time in the size of the input alphabet. Thus,

to obtain the desired 2ExpTime upper bound, we need to construct

𝐴 in double exponential time, while the number of its states should

be at most exponential. To construct the desired 2ATA we are going

to exploit the automata constructions from [6].

First, we need a way to check consistency of labeled trees, which,

as shown in [6], can be done via an automaton.

Lemma B.6. Consider a schema S, and an integer ℓ > 0. There is
a 2ATA 𝐶S,ℓ that accepts a ΓS,ℓ -labeled tree 𝐿 iff 𝐿 is consistent. The
number of states of𝐶S,ℓ is logarithmic in the size of ΓS,ℓ . Furthermore,
𝐶S,ℓ can be constructed in polynomial time in the size of ΓS,ℓ .

We also know from [6] that, given an OMQ 𝑄 from (G,CQ), we
can devise an automaton that accepts labeled trees which corre-

spond to databases that make 𝑄 true.

Lemma B.7. Let 𝑄 = (S, Σ, 𝑞) ∈ (G,CQ). There is a 2ATA 𝐴𝑄,ℓ ,
where ℓ > 0, that accepts a consistent ΓS,ℓ -labeled tree 𝐿 iff [𝐿] |= 𝑄 .
𝐴𝑄,ℓ has exponentially many states in | |𝑄 | | and ℓ , and it can be
constructed in double exponential time in | |𝑄 | | and ℓ .

We are now ready to devise the desired 2ATA. To this end, we

are going to exploit Lemmas B.5 to B.7, and some well-known

facts about 2ATAs. In particular, languages accepted by 2ATAs are

closed under union and complementation. Given two 2ATAs 𝐴1

and 𝐴2, we write 𝐴1 ∪𝐴2 or a 2ATA, which can be constructed in

polynomial time, that accepts the language 𝐿(𝐴1) ∪ 𝐿(𝐴2). More-

over, we write 𝐴 for the 2ATA, which can also be constructed

in polynomial time, that accepts the complement of 𝐿(𝐴). Impor-

tantly, the number of states of 𝐴1 ∪ 𝐴2 is the sum of the num-

bers of states of 𝐴1 and 𝐴2 plus one. Given 𝑄1 = (S, Σ1, 𝑞1) and
𝑄2 = (S, Σ2, 𝑞2) from (G,UCQ), we write𝑄max

1,2
for the largest OMQ

among

⋃
𝑝∈𝑞1

(S, Σ1, 𝑝) ∪
⋃

𝑝∈𝑞2
(S, Σ2, 𝑝).

Lemma B.8. Let 𝑄1 = (S, Σ1, 𝑞1) and 𝑄2 = (S, Σ2, 𝑞2) be OMQs
from (G,UCQ). There is a 2ATA 𝐴 such that

𝑄1 ⊆ 𝑄2 ⇐⇒ 𝐿(𝐴) = ∅.

𝐴 has exponentially many states in | |𝑄max

1,2
| | and ℓ , and polynomially

many states in | |𝑞1 | |+| |𝑞2 | |. It can be constructed in double exponential
time in | |𝑄max

1,2
| | and ℓ , and in polynomial time in | |𝑞1 | | + | |𝑞2 | |.

Proof. Let ℓ = ar(S∪ sch(Σ1)) ·max𝑝∈𝑞1
{| |𝑝 | |}. The 2ATA𝐴 is(

𝐶S,ℓ ∩
( ⋃
𝑝∈𝑞1

𝐴(S,Σ1,𝑝),ℓ

))
∩

( ⋃
𝑝∈𝑞2

𝐴(S,Σ2,𝑝),ℓ

)
.

Using Lemmas B.5, B.6, and B.7, the fact that union and comple-

mentation of 2ATA are feasible in polynomial time, and the stated

bound on the number of states in automata for union, it is easy to

verify that indeed 𝐴 is the desired 2ATA.

It is now easy to see, having Lemma B.8 in place, that indeed

checking whether 𝑄 ⊆ 𝑄 ′
𝑘
is feasible in double exponential time.

This actually follows from the fact that the UCQ of 𝑄 ′
𝑘
has ex-

ponentially many disjuncts, each of polynomial size, and the fact

that emptiness for 2ATA can be decided in exponential time in the

number of states of the automaton.

C PROOF OF PROPOSITION 5.2

UCQ𝑘 -approximations for OMQs from (G,UCQ) rely on the notion
of specialization of a CQ. We first introduce CQ specializations, and

give a lemma that illustrates their usefulness. We then define the

notion of grounding of a CQ specialization, and establish a technical

lemma that will allow us to define UCQ𝑘 -approximations. We then

establish our main technical result about UCQ𝑘 -approximations,

which in turn allows us to complete the proof of Proposition 5.2. In

what follows, given a CQ 𝑞, we write var(𝑞) for the set of variables
in 𝑞. We may also treat, as usual, a CQ 𝑞 as the set of atoms in 𝑞.

C.1 CQ Specializations

Recall that a contraction of a CQ 𝑞(𝑥) is a CQ 𝑝 (𝑥) that can be

obtained from 𝑞 by identifying variables. When an answer variable

𝑥 is identified with a non-answer variable 𝑦, the resulting variable

is 𝑥 ; the identification of two answer variables is not allowed. The

formal definition of CQ specialization follows:

Definition C.1. Consider a CQ 𝑞(𝑥). A specialization of 𝑞 is a pair
𝑠 = (𝑝,𝑉 ), where 𝑝 is a contraction of 𝑞, and 𝑥 ⊆ 𝑉 ⊆ var(𝑝).

Intuitively speaking, a specialization of a CQ 𝑞 describes a way

how 𝑞 can be homomorphically mapped to the chase of a database

𝐷 under a set Σ of TGDs. First, instead of mapping 𝑞 to chase(𝐷, Σ),
we injectively map 𝑝 to chase(𝐷, Σ), while the set of variables

𝑉 collects all the variables of 𝑝 that are mapped to constants of

dom(𝐷). The next result, which relies on the properties of the type

of an atom (see the proof of Lemma A.1 in Appendix ??) illustrates

the usefulness of CQ specializations. A CQ 𝑞 is [𝑉 ]-connected, for
𝑉 ⊆ var(𝑞), if 𝐺𝑞

|var(𝑞)\𝑉 , that is, the subgraph of 𝐺𝑞
induced by

var(𝑞) \𝑉 , is connected. We also write 𝑞 [𝑉 ] for the subquery of 𝑞

obtained after dropping the atoms of𝑞 |𝑉 , i.e., the atoms that contain

only variables of 𝑉 . Given a database 𝐷 , and a set Σ of TGDs, we

write chase↓(𝐷, Σ) for the ground part of chase(𝐷, Σ), that is, the
set consisting of all atoms in chase(𝐷, Σ) with only constants from

dom(𝐷).



Lemma C.2. Consider a database 𝐷 , a set Σ ∈ G, a CQ 𝑞(𝑥), and
a tuple 𝑐 ∈ dom(𝐷) |𝑥 | . The following are equivalent:

(1) 𝑐 ∈ 𝑞(chase(𝐷, Σ)).
(2) There exists a specialization 𝑠 = (𝑝,𝑉 ) of 𝑞 such that 𝑝 →

chase(𝐷, Σ) via an injective homomorphism 𝜇 with (i) 𝜇 (𝑥) =
𝑐 , (ii) 𝜇 (𝑝 |𝑉 ) ⊆ chase↓(𝐷, Σ), and (iii) for every maximally
[𝑉 ]-connected component 𝑝 ′ of 𝑝 [𝑉 ], there exists an atom
𝛼 ∈ 𝐷 such that dom(𝛼) ⊇ {𝜇 (𝑦) | 𝑦 ∈ var(𝑝 ′) ∩ 𝑉 } and
𝜇 (𝑝 ′) ⊆ chase(type𝐷,Σ (𝛼), Σ).

C.2 Grounding Specializations

We now define the notion of grounding of a specialization (𝑝,𝑉 ) of
a CQ 𝑞. The intention is to replace each maximally [𝑉 ]-connected
component 𝑝 ′ of 𝑝 [𝑉 ] with a guarded set of atoms, which is ought

to be mapped to the ground part of the chase, that entails 𝑝 ′ under
the given set of TGDs. A CQ 𝑞 is guarded if it has an atom, denoted

guard(𝑞), that contains all the variables of var(𝑞), and full if all the
variables of var(𝑞) are answer variables.

Definition C.3. Consider a set Σ of TGDs over T, and a CQ 𝑞(𝑥)
over T. Let 𝑠 = (𝑝,𝑉 ) be a specialization of 𝑞 with 𝑝1, . . . , 𝑝𝑛 being

the maximally [𝑉 ]-connected components of 𝑝 [𝑉 ]. A Σ-grounding
of 𝑠 is a CQ 𝑔𝑠 (𝑥) over T of the form

∃𝑧 (𝑔0 ∧ 𝑔1 ∧ · · · ∧ 𝑔𝑛)
where

• 𝑔0 is the full CQ consisting of the atoms of 𝑝 |𝑉 ,
• for each 𝑖 ∈ [𝑛], 𝑔𝑖 is a guarded full CQ such that:

– var(𝑔𝑖 ) ⊆ (var(𝑝𝑖 ) ∩𝑉 ) ∪
{
𝑦𝑖

1
, . . . , 𝑦𝑖ar(T)−𝑚

}
⊂ V,

– var(𝑝𝑖 ) ∩𝑉 ⊆ var(guard(𝑔𝑖 )), and
– 𝑝𝑖 → chase(𝑔𝑖 , Σ) via a homomorphism that is the identity

on var(𝑝𝑖 ) ∩𝑉 , and
• 𝑧 =

(⋃
0≤𝑖≤𝑛 var(𝑔𝑖 )

)
\ 𝑥 .

Before giving the main lemma concerning groundings of CQ

specializations, let us establish a useful auxiliary claim.

Claim C.4. Let Σ be a set of TGDs over T, and 𝑞(𝑥) a CQ over T.
Let 𝑔𝑠 (𝑥) be a Σ-grounding of a specialization 𝑠 = (𝑝,𝑉 ) of 𝑞, and
assume that 𝑔𝑠 → 𝐼 , for an instance 𝐼 , via a homomorphism 𝜇. Then,
𝑝 → chase(𝐼 , Σ) via a homomorphism 𝜉 with 𝜇 (𝑥) = 𝜉 (𝑥).

Proof. Let 𝑝1, . . . , 𝑝𝑛 be the maximally [𝑉 ]-connected compo-

nents of 𝑝 [𝑉 ]. Assume that 𝑔𝑠 (𝑥) is of the form
∃𝑧 (𝑔0 ∧ 𝑔1 ∧ · · · ∧ 𝑔𝑛),

where 𝑔0 is the full CQ consisting of the atoms of 𝑝 |𝑉 , and for

each 𝑖 ∈ [𝑛], 𝑔𝑖 is a guarded full CQ with the properties given in

Definition C.3. Clearly, for each 𝑖 ∈ [𝑛], there exists a mapping

𝜆𝑖 that is the identity on var(𝑝𝑖 ) ∩𝑉 that maps 𝑝𝑖 to chase(𝑔𝑖 , Σ).
Since the sets of atoms 𝑝 |𝑉 , 𝑝1, . . . , 𝑝𝑛 share only variables of 𝑉 ,

we conclude that 𝜆 =
⋃

𝑖∈[𝑚] 𝜆𝑖 is a well-defined mapping that

maps 𝑝 to chase(𝑔𝑠 , Σ) with 𝜆(𝑥) = 𝑥 . Since, by hypothesis, 𝑔𝑠 → 𝐼

via some 𝜇, it is not difficult to show that chase(𝑔𝑠 , Σ) maps to

chase(𝐼 , Σ) via 𝜇 ′ that extends 𝜇, and thus, 𝜇 (𝑥) = 𝜇 ′(𝑥). Therefore,
𝜉 = 𝜇 ′ ◦ 𝜆 maps 𝑝 to chase(𝐼 , Σ) with 𝜇 (𝑥) = 𝜉 (𝑥), as needed.

We are now ready to show the main lemma about groundings of

CQ specializations.

Lemma C.5. Consider a database 𝐷 , a set Σ ∈ G over a schema T,
a CQ 𝑞(𝑥) over T, and 𝑐 ∈ dom(𝐷) |𝑥 | . The following are equivalent:

(1) 𝑐 ∈ 𝑞(chase(𝐷, Σ)).
(2) There exists a specialization 𝑠 of 𝑞 such that a Σ-grounding

𝑔𝑠 (𝑥) of 𝑠 maps to chase↓(𝐷, Σ) via an injective mapping 𝜇
with 𝜇 (𝑥) = 𝑐 .

Proof. (1) ⇒ (2) . By Lemma C.2, there is a specialization 𝑠 =

(𝑝,𝑉 ) of 𝑞(𝑥), with 𝑝1, . . . , 𝑝𝑛 being the maximally [𝑉 ]-connected
components of 𝑝 [𝑉 ], such that 𝑝 → chase(𝐷, Σ) via an injective

mapping 𝜆 with (i) 𝜆(𝑥) = 𝑐 , (ii) 𝜆(𝑝 |𝑉 ) ⊆ chase↓(𝐷, Σ), and (iii)

for every maximally [𝑉 ]-connected component 𝑝 ′ of 𝑝 [𝑉 ], there
exists an atom 𝛼 ∈ 𝐷 such that dom(𝛼) ⊇ {𝜆(𝑦) | 𝑦 ∈ var(𝑝 ′) ∩𝑉 }
and 𝜆(𝑝 ′) ⊆ chase(type𝐷,Σ (𝛼), Σ). Consider the CQ 𝑔𝑠 (𝑥) of the
form

∃𝑧 (𝑔0 ∧ 𝑔1 ∧ · · · ∧ 𝑔𝑛) ,
where 𝑔0 is the full CQ consisting of the atoms of 𝑝 |𝑉 , and, for each
𝑖 ∈ [𝑛], 𝑔𝑖 is the guarded full CQ obtained from type𝐷,Σ (𝛼𝑖 ) by
converting 𝜆(𝑦), where 𝑦 ∈ var(𝑝𝑖 ) ∩ 𝑉 , into the variable 𝑦, and

each constant 𝑐𝑖
𝑗
∈ {𝑐𝑖

1
, . . . , 𝑐𝑖

ℓ𝑖
} = dom(type𝐷,Σ (𝛼𝑖 )) \ {𝜆(𝑦) | 𝑦 ∈

var(𝑝𝑖 )∩𝑉 } into the variable𝑦𝑖𝑗 . Finally, let 𝑧 =
(⋃

0≤𝑖≤𝑛 var(𝑔𝑖 )
)
\𝑥 .

Clearly, 𝑔𝑠 (𝑥) is a Σ-grounding of 𝑠 . Moreover, the mapping 𝜇 =

𝜆∪{𝑦𝑖
𝑗
↦→ 𝑐𝑖

𝑗
}𝑖∈[𝑛], 𝑗 ∈[ℓ𝑖 ] maps injectively 𝑔𝑠 to chase↓(𝐷, Σ), since

type𝐷,Σ (𝛼𝑖 ) ⊆ chase↓(𝐷, Σ), with 𝜇 (𝑥) = 𝑐 .
(2) ⇒ (1) . Consider a specialization 𝑠 = (𝑝,𝑉 ) of 𝑞. Assume that

there exists a Σ-grounding 𝑔𝑠 (𝑥) of 𝑠 that maps to chase↓(𝐷, Σ) via
an injective mapping 𝜇 with 𝜇 (𝑥) = 𝑐; actually, the fact that 𝜇 is
injective is not crucial here. By Claim C.4, we get that 𝑝 maps to

chase(chase↓(𝐷, Σ), Σ) = chase(𝐷, Σ)
via a homomorphism 𝜉 with 𝜉 (𝑥) = 𝑐 . Clearly, by the definition of

contractions, there exists a homomorphism ℎ, which is the identity

on 𝑥 , that maps 𝑞 to 𝑝 . Therefore, 𝜆 = 𝜉 ◦ ℎ maps 𝑞 to chase(𝐷, Σ)
with 𝜆(𝑥) = 𝑐 , which implies that 𝑐 ∈ 𝑞(chase(𝐷, Σ)).

C.3 UCQ𝑘-approximations

We proceed to introduce the notion of UCQ𝑘 -approximation for

OMQs from (G,UCQ), which relies on the notion of grounding

of a CQ specialization. Roughly, the UCQ𝑘 -approximation of an

OMQ 𝑄 = (S, Σ, 𝑞), for 𝑘 ≥ 1, is the OMQ 𝑄𝑎
𝑘
obtained from 𝑄 by

replacing each disjunct 𝑝 of 𝑞 with the UCQ consisting of all the

Σ-groundings of all specializations of 𝑝 with treewidth at most 𝑘 .

Definition C.6. Consider an OMQ 𝑄 = (S, Σ, 𝑞) from (G,UCQ)
over a schema T. The UCQ𝑘 -approximation of 𝑄 , for 𝑘 ≥ 1, is the

OMQ 𝑄𝑎
𝑘
= (S, Σ, 𝑞𝑎

𝑘
), where 𝑞𝑎

𝑘
is obtained from 𝑞 by replacing

each disjunct 𝑝 of𝑞 with the UCQ consisting of all the Σ-groundings
over T of treewidth at most 𝑘 of all specializations of 𝑝 .

The main technical lemma concerning UCQ𝑘 -approximations

follows. This relies on the notion of 𝑘-unraveling of a database 𝐷

up to a certain tuple 𝑐 over dom(𝐷), which can be defined in the

same way as in [7]. In particular, the 𝑘-unraveling of 𝐷 up to 𝑐 , for
some 𝑘 ≥ ar(S) − 1, denoted 𝐷𝑘

𝑐 , is a possibly infinite S-instance
for which the following properties hold:



(1) The subgraph of𝐺𝐷𝑘
𝑐 induced by the elements of dom(𝐷𝑘

𝑐 )\𝑐
has treewidth 𝑘 .

(2) 𝐷𝑘
𝑐 → 𝐷 via a homomorphism that is the identity on 𝑐 .

(3) For every OMQ 𝑄 from (G,UCQ𝑘 ) with data schema S, 𝑐 ∈
𝑄 (𝐷) implies 𝑐 ∈ 𝑄 (𝐷𝑘

𝑐 ).
Let us stress that item (3) relies on the assumption that 𝑘 ≥ ar(S)−1

because, otherwise, there can be single atoms in 𝐷 that cannot be

part of any database of treewidth 𝑘 . In what follows, we say that

𝐷 has treewidth 𝑘 up to 𝑐 if the subgraph of 𝐺𝐷
induced by the

elements of dom(𝐷) \ 𝑐 has treewidth 𝑘 .

Lemma C.7. Let 𝑄 be an OMQ from (G,UCQ) over T with data
schema S ⊆ T, and 𝑄𝑎

𝑘
its UCQ𝑘 -approximation for 𝑘 ≥ ar(T) − 1.

(1) 𝑄𝑎
𝑘
⊆ 𝑄 .

(2) For every S-database 𝐷 and tuple 𝑐 over dom(𝐷) such that 𝐷
has treewidth at most 𝑘 up to 𝑐 , 𝑐 ∈ 𝑄 (𝐷) implies 𝑐 ∈ 𝑄𝑎

𝑘
(𝐷).

(3) For every OMQ 𝑄 ′ ∈ (G,UCQ𝑘 ) with data schema S such
that 𝑄 ′ ⊆ 𝑄 , it holds that 𝑄 ′ ⊆ 𝑄𝑎

𝑘
.

Proof. Let 𝑄 = (S, Σ, 𝑞(𝑥)), and 𝑄𝑎
𝑘
= (S, Σ, 𝑞𝑎

𝑘
(𝑥)).

Item (1). Consider an S-database 𝐷 , and a tuple 𝑐 ∈ dom(𝐷) |𝑥 | .
Assume that 𝑐 ∈ 𝑄𝑎

𝑘
(𝐷), or, equivalently, there is a disjunct 𝑝𝑎

𝑘
of

𝑞𝑎
𝑘
that maps to chase(𝐷, Σ) via a homomorphism 𝜇 with 𝜇 (𝑥) = 𝑐 .

By definition, 𝑝𝑎
𝑘
is a Σ-grounding of a specialization 𝑠 = (𝑝𝑐 ,𝑉 ) of

some disjunct 𝑝 of 𝑞. By Claim C.4, 𝑝𝑐 maps to

chase(chase(𝐷, Σ), Σ) = chase(𝐷, Σ)
via a homomorphism 𝜇 ′ with 𝜇 ′(𝑥) = 𝑐 . Since, by definition of

contractions, there exists a homomorphism ℎ, which is the identity

on 𝑥 , that maps 𝑝 to 𝑝𝑐 , we get that 𝜆 = 𝜇 ′◦ℎ maps 𝑝 to chase(𝐷, Σ)
with 𝜆(𝑥) = 𝑐 . Since 𝑝 is a disjunct of 𝑞, we get that 𝑐 ∈ 𝑄 (𝐷).

Item (2). Consider an S-database 𝐷 , and a tuple 𝑐 ∈ dom(𝐷) |𝑥 |
such that 𝐷 has treewidth at most 𝑘 up to 𝑐 . Assume that 𝑐 ∈ 𝑄 (𝐷).
Thus, there exists a disjunct 𝑝 of 𝑞 such that 𝑐 ∈ 𝑝 (chase(𝐷, Σ)). By
Lemma C.5, there is a specialization 𝑠 of 𝑝 such that a Σ-grounding
𝑔𝑠 (𝑥) of 𝑠 maps to chase↓(𝐷, Σ) via an injective mapping 𝜇 with

𝜇 (𝑥) = 𝑐 . Since𝐷 has treewidth at most 𝑘 up to 𝑐 , also chase↓(𝐷, Σ)
has treewdith at most 𝑘 up to 𝑐 . Consequently, 𝑔𝑠 has treewidth at

most 𝑘 , and thus is a disjunct of 𝑞𝑎
𝑘
. This implies that 𝑐 ∈ 𝑄𝑎

𝑘
(𝐷).

Item (3). Let𝑄 ′ = (S, Σ′, 𝑞′). Consider an S-database 𝐷 and tuple

of constants 𝑐 ∈ dom(𝐷) |𝑥 | , and assume that 𝑐 ∈ 𝑄 ′(𝐷). Since
𝑄 ′

belongs to (G,UCQ𝑘 ), we get that 𝑐 ∈ 𝑄 ′(𝐷𝑘
𝑐 ), and thus, 𝑐 ∈

𝑄 (𝐷𝑘
𝑐 ); recall that 𝐷𝑘

𝑐 is the 𝑘-unraveling of 𝐷 up to 𝑐 . From item

(2), we get that 𝑐 ∈ 𝑄𝑎
𝑘
(𝐷𝑘

𝑐 ), or, equivalently, there is 𝑝 ∈ 𝑞𝑎
𝑘
that

maps to chase(𝐷𝑘
𝑐 , Σ) via a homomorphism 𝜇 with 𝜇 (𝑥) = 𝑐 . We

also know that 𝐷𝑘
𝑐 maps to 𝐷 via a homomorphism 𝜆 with 𝜆(𝑐) = 𝑐 ,

which allows us to show that chase(𝐷𝑘
𝑐 , Σ) maps to chase(𝐷, Σ) via

an extension 𝜆′ of 𝜆. Therefore, 𝜉 = 𝜆′ ◦ 𝜇 maps 𝑝 to chase(𝐷, Σ)
with 𝜉 (𝑥) = 𝑐 , and thus, 𝑐 ∈ 𝑄𝑎

𝑘
(𝐷), as needed.

C.4 Finalizing the Proof of Proposition 5.2

Having Lemma C.7 in place, it is now easy to establish Proposi-

tion 5.2. Observe that (3) ⇒ (2) and (2) ⇒ (1) hold trivially.

It remains to show that (1) ⇒ (3). By hypothesis, there exists

an OMQ 𝑄 ′
from (G,UCQ𝑘 ) such that 𝑄 ≡ 𝑄 ′

. By item (3) of

Lemma C.7, 𝑄 ′ ⊆ 𝑄𝑎
𝑘
, which implies that 𝑄 ⊆ 𝑄𝑎

𝑘
. By item (1) of

Lemma C.7, we also get that 𝑄𝑎
𝑘
⊆ 𝑄 , and the claim follows.

C.5 The Case 𝑘 < ar(T) − 1

Notice that Theorem 5.1 and Proposition 5.2 only cover the case

where 𝑘 ≥ ar(T) − 1, and also Lemma C.7, which gives the main

technical properties of UCQ𝑘 -approximations, requires this condi-

tion. We view the case 𝑘 < ar(T) − 1 as a somewhat esoteric corner

case. In the context of Theorem 5.1, for example, we ask for an

equivalent OMQ from (G,UCQ𝑘 ) when the arity of some relations

𝑅 is so high that the actual UCQ in such an OMQ cannot contain a

fact 𝑅(𝑥1, . . . , 𝑥𝑛) unless some of the 𝑥𝑖 , 𝑥 𝑗 are identical. We show

that this case is also technically very different. In particular, our

UCQ𝑘 -approximations do not serve their purpose.

We consider the case where 𝑘 = 1, while ar(S) = 3 and ar(T) = 6

with S being the data schema and T being the extended schema. Let

S = {𝑇1,𝑇2} with both 𝑇1 and 𝑇2 ternary. We use the Boolean CQ

(for brevity, the existential quantifiers are omitted)

𝑞() = 𝑅(𝑥1, 𝑥2) ∧𝑅(𝑥1, 𝑥3) ∧𝑅(𝑥2, 𝑥4) ∧𝑅(𝑥3, 𝑥4) ∧𝐴1 (𝑥2) ∧𝐴2 (𝑥3)
which is a core of treewidth 2 > 𝑘 . Our ontology takes the form

Σ = {𝑇1 → 𝑞()} ∪ Σ1 ∪ Σ2

where Σ1 makes sure that there is an 𝑆-path of length 2
𝑛
whenever

there is a𝑇1-atom and Σ2 make sure that there is an 𝑆-path of length

2
𝑛 − 1 whenever there is a 𝑇2-atom, where 𝑆 is a binary relation

symbol. We need auxiliary relation symbols to establish these paths,

but we will make sure that they are of arity at least three so that

they cannot be ‘seen’ by UCQ1-approximations. Note that while

the presence of a 𝑇1-atom implies that 𝑞() is true, the presence of a
𝑇2-atom does not. In detail, Σ1 contains the following TGDs:

• 𝑇1 (𝑥1, 𝑥2, 𝑥3) → 𝐵0

𝑖
(𝑥1, 𝑥2, 𝑥3) for 1 ≤ 𝑖 ≤ 𝑛;

• for 1 ≤ 𝑖 ≤ 𝑛:
𝐵0

𝑖
(𝑥1, 𝑥2, 𝑥3) →∃𝑦1∃𝑦2∃𝑦3𝐺 (𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3)

∧ 𝑆 (𝑥1, 𝑦1)
• for all 𝑖 < 𝑛, where G abbreviates 𝐺 (𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3):
G ∧ ∧𝑖−1

𝑗=0
𝐵1

𝑗
(𝑥1, 𝑥2, 𝑥3) ∧ 𝐵1

𝑖
(𝑥1, 𝑥2, 𝑥3) →𝐵0

𝑗
(𝑦1, 𝑦2, 𝑦3)

G ∧ ∧𝑖−1

𝑗=0
𝐵1

𝑗
(𝑥1, 𝑥2, 𝑥3) ∧ 𝐵0

𝑖
(𝑥1, 𝑥2, 𝑥3) →𝐵1

𝑗
(𝑦1, 𝑦2, 𝑦3)

• for all 𝑖, 𝑗 with 𝑗 < 𝑖 < 𝑛, using the same abbreviation G:

G ∧ 𝐵0

𝑗
(𝑥1, 𝑥2, 𝑥3) ∧ 𝐵0

𝑖
(𝑥1, 𝑥2, 𝑥3) →𝐵0

𝑗
(𝑦1, 𝑦2, 𝑦3)

G ∧ 𝐵0

𝑗
(𝑥1, 𝑥2, 𝑥3) ∧ 𝐵1

𝑖
(𝑥1, 𝑥2, 𝑥3) →𝐵1

𝑗
(𝑦1, 𝑦2, 𝑦3).

We leave the definition of Σ2 to the reader.

This defines an OMQ 𝑄 = (S, Σ, 𝑞). It is not hard to see that 𝑄 is

equivalent to anOMQ𝑄 ′
from (G,UCQ

1
), namely to𝑄 ′ = (S, Σ, 𝑞′)

where 𝑞′() is the Boolean CQ that asks for the existence of an 𝑆-

path of length 2
𝑛
. Note that the size of 𝑄 ′

is exponential in the size

of 𝑄 . This cannot be avoided unless we use an ontology different

from Σ, that is, resort to non-uniform UCQ1-equivalence.

Lemma C.8. Let𝑄 ′′ = (S, Σ, 𝑞′′) ∈ (G,UCQ
1
) be equivalent to𝑄 .

Then 𝑞′′ must contain a CQ with at least 2
𝑛 atoms.



Proof. Take the S-database 𝐷1 = {𝑇1 (𝑐1, 𝑐2, 𝑐3)}. Then 𝑄 evalu-

ates to true on 𝐷1 and thus so does 𝑄 ′′
. Consequently, there is a

CQ 𝑝 in 𝑞′′ and a homomorphism ℎ from 𝑝 to chase(𝐷1, Σ). Since
𝑝 is of treewidth 1, it cannot contain any atoms 𝑃 (𝑥) with 𝑃 of

arity at least three and all variables in 𝑥 different, and thus ℎ is a

homomorphism from 𝑝 to chase(𝐷1, Σ)−, which is obtained from

chase(𝐷1, Σ) by removing all facts that use predicates of arity at

least three (by choice of 𝐷1 and definition of Σ, none of these facts
contains repeated constants) and which takes the form of an 𝑆-path

of length 2
𝑛
. We aim to show that 𝑝 has at least 2

𝑛
atoms. To this

end, it suffices to show that for every edge 𝑆 (𝑎1, 𝑎2) in the path

chase(𝐷1, Σ) \ {𝑇1 (𝑐1, 𝑐2, 𝑐3)}, there is an atom 𝑆 (𝑥1, 𝑥2) ∈ 𝑝 such

that ℎ(𝑥𝑖 ) = 𝑎𝑖 for 𝑖 ∈ {1, 2}. Assume that this is not the case.

Then cleary we also find a homomorphism from 𝑝 into an 𝑆-path

of length 2
𝑛 − 1, thus into chase(𝐷2, Σ) where 𝐷2 = {𝑇2 (𝑐1, 𝑐2, 𝑐3)}.

But 𝑄 evaluates to false on 𝐷2, which is a contradiction.

Lemma C.8 allows us to show that the UCQ𝑘 -approximations

𝑄𝑎
𝑘
do not behave as intended when 𝑘 < ar(T) − 1. In particular,

although the OMQ𝑄 = (S, Σ, 𝑞) defined above is UCQ
1
-equivalent,

we can show that is not equivalent to𝑄𝑎
1
. By Lemma C.8, we get that

for any𝑄 ′′ = (S, Σ, 𝑞′′) from (G,UCQ
1
) that is equivalent to𝑄 , 𝑞′′

necessarily contains a CQ of exponential size. On the other hand,

theUCQ
1
-approximation𝑄𝑎

1
of𝑄 contains only CQs of polynomial

size since ar(T) is a constant. Therefore, 𝑄 is not equivalent to 𝑄𝑎
1
.

For𝑘 < ar(T)−1, we conjecture that everyUCQ𝑘 -approximation

that is based on the same ontology as the original OMQ 𝑄 , and has

the fundamental property of being equivalent to 𝑄 when the later

is uniformly UCQ𝑘 -equivalent, must contain a CQ of double expo-

nential size. This is not true our notion of UCQ𝑘 -approximation in

Definition C.6, where each CQ is, in general, of exponential size.

D PROOF OF THEOREM 5.4

D.1 Preliminaries

We start by showing that existential quantifiers can be eliminated:

Theorem D.1. Consider an OMQ 𝑄 = (S, Σ, 𝑞) ∈ (G,UCQ),
where Σ and 𝑞 are over the schema T ⊇ S. We can construct an
OMQ 𝑄 ′ = (S, Σ𝑞′) ∈ (G ∩ FULL,UCQ), where Σ′ and 𝑞′ are over
T, such that, for every S-database 𝐷 , 𝑄 (𝐷) = 𝑄 ′(𝐷).

Before giving the proof of the above result, let us recall a key

property of linear TGDs, that is, UCQ-rewritability, shown in [15].

Proposition D.2. Given a set Σ ∈ L and a UCQ 𝑞, both over a
schema T, we can construct a UCQ 𝑞′ over T such that, for every
T-database 𝐷 , 𝑞(chase(𝐷, Σ)) = 𝑞′(𝐷).

We are now ready to give the proof.

Proof. (Theorem D.1) The desired OMQ 𝑄 ′
can be actually

extracted from the proof of Lemma A.3. From that proof, we know

that we can construct, for some schema T′ disjoint from T,
• a set Σ1 ∈ G ∩ FULL, over T,
• a set Σ2 ∈ G ∩ FULL over T ∪ T′, where the predicates of T
(resp., T′) occur only in the body (resp., head) of a TGD, and

• a set Σ3 ∈ L over T ∪ T′,
such that, for every S-database 𝐷 ,

𝑄 (𝐷) = 𝑞(chase(chase(𝐷, Σ1 ∪ Σ2), Σ3)).

Notice that we can further assume that Σ1 ∪ Σ2 consists of TGDs

with only one atom in the head; simply split a multi-head full TGD

into several single-head TGDs, one for each head atom, that have

the same body. Since Σ3 is set of linear TGDs, by Proposition D.2,

we can construct a UCQ 𝑞 over T ∪ T′ such that

𝑞(chase(chase(𝐷, Σ1 ∪ Σ2), Σ3)) = 𝑞(chase(𝐷, Σ1 ∪ Σ2)) .
To obtain the desired set Σ′ and UCQ 𝑞′, it remains to eliminate

the predicates of T′. This can be achieved by simply unfolding the

atoms in 𝑞 with a predicate from T′ using the single-head TGDs of

Σ2, and get a new UCQ 𝑞 over T. It is clear that

𝑞(chase(𝐷, Σ1 ∪ Σ2)) = 𝑞(chase(𝐷, Σ1)) .
Therefore, the claim follows with 𝑄 ′ = (S, Σ1, 𝑞).

Let S be a schema, 𝐷 an S-database, and 𝑎 ⊆ dom(𝐷) a guarded
set in 𝐷 . We aim to define a potentially infinite database 𝐷𝑎

, the

guarded unraveling of 𝐷 at 𝑎. In parallel with 𝐷𝑎
, we define a tree

decomposition (𝑇, 𝜒), 𝑇 = (𝑉 , 𝐸), of the Gaifman graph of 𝐷𝑎

whose width is the maximum arity of relation names in S minus

one.

Let 𝑉 be the set of sequences 𝑣 = 𝑎0 · · ·𝑎𝑛 of guarded sets in 𝐷

such that 𝑎0 = 𝑎 and 𝑎𝑖 ∩ 𝑎𝑖+1 ≠ ∅ for 0 ≤ 𝑖 < 𝑛. Further, let
𝐸 = {(𝑣, 𝑣 ′) ∈ 𝑉 ×𝑉 | 𝑣 ′ = 𝑣 ¯𝑏 for some

¯𝑏}.
We associate with each 𝑣 ∈ 𝑉 a database 𝐷 (𝑣) and then define 𝜒 (𝑣)
to be dom(𝐷 (𝑣)). This completes the definition of (𝑇, 𝜒) and allows
us to define 𝐷𝑎

as

⋃
𝑣∈𝑉 𝐷 (𝑣).

Take an infinite supply of copies of every 𝑎 ∈ dom(𝐷). Set 𝑏↑ = 𝑎
if 𝑏 is a copy of 𝑎, and 𝑎↑ = 𝑎. For 𝑣 ∈ 𝑉 , define 𝐷 (𝑣) and its domain

dom(𝐷 (𝑣)) by induction on the length of the sequence 𝑣 . For 𝑣 = 𝑎,

𝐷 (𝑣) is 𝐷 |𝑎 , the restriction of 𝐷 to those atoms with only constants

in 𝑎. To define 𝐷 (𝑣) when 𝑣 = 𝑎0 · · ·𝑎𝑛 with 𝑛 > 0, take for any

𝑎 ∈ 𝑎𝑛 \ 𝑎𝑛−1 a fresh copy 𝑎′ of 𝑎 and define 𝐷 (𝑣) with domain

dom(𝐷 (𝑣)) = {𝑏 ∈ dom(𝐷 (𝑎0 · · ·𝑎𝑛−1) | 𝑏↑ ∈ 𝑎𝑛 ∩ 𝑎𝑛−1} ∪
{𝑎′ | 𝑎 ∈ 𝑎𝑛 \ 𝑎𝑛−1}

such that 𝑏 ↦→ 𝑏↑ is an isomorphism from 𝐷 (𝑣) to 𝐷 |𝑎𝑛 .

Injective homomorphisms play a crucial role in our proof of

Theorem 5.4. Here, we make some basic observations pertaining

to such homomorphisms. For a database 𝐷 , a CQ 𝑞(𝑥), and a tuple

of distinct constants 𝑎, we write 𝐷 |=𝑖𝑜 𝑞(𝑎) if 𝐷 |= 𝑞(𝑎) and all

homomorphisms ℎ from 𝑞 to 𝐷 with ℎ(𝑥) = 𝑎 are injective. Note
that since the constants in 𝑎 are distinct, the condition ℎ(𝑥) = 𝑎
does not conflict with injectivity. Here, ‘io’ stands for ‘injectively

only’. The following is a simple observation, see [7] for a proof.

Lemma D.3. If 𝐷 |= 𝑞(𝑎), for 𝐷 a potentially infinite database, 𝑞
a CQ, and 𝑎 a tuple of distinct constants, then 𝐷 |=𝑖𝑜 𝑞𝑐 (𝑎) for some
contraction 𝑞𝑐 of 𝑞.

The next lemma is an important ingredient to the proof of Theo-

rem 5.4. We write 𝐷, 𝑎 → 𝐸, ¯𝑏 to indicate that there is a homomor-

phism ℎ from database 𝐷 to database 𝐸 with ℎ(𝑎) = ¯𝑏.

Lemma D.4. Let 𝑄 = (S, Σ, 𝑞) ∈ (G ∩ FULL,UCQ) and 𝑎 a tuple
of distinct constants. Then for every S-database 𝐷 with 𝐷 |= 𝑄 (𝑎),
there is an S-database 𝐷 such that the following are satisfied:



(1) 𝐷 |= 𝑄 (𝑎) and 𝐷, 𝑎 → 𝐷, 𝑎;
(2) if chase(𝐷, Σ) |=𝑖𝑜 𝑞𝑐 (𝑎), for 𝑞𝑐 a contraction of 𝑞, then there

is no S-database𝐷 ′ and contraction𝑞′𝑐 of𝑞 where𝐷
′, 𝑎 → 𝐷, 𝑎,

chase(𝐷 ′, Σ) |=𝑖𝑜 𝑞′𝑐 (𝑎), and 𝑞𝑐 ≠ 𝑞′𝑐 is a contraction of 𝑞′𝑐 .

Proof. We start with 𝐷 = 𝐷 . Then, of course, Condition 2 is not

guaranteed to be satisfied. We thus iteratively replace 𝐷 with more

suitable databases, as follows. As long as there are an S-database
𝐷 ′

and contractions 𝑞𝑐 , 𝑞
′
𝑐 of 𝑞 such that chase(𝐷, Σ) |=𝑖𝑜 𝑞𝑐 (𝑎),

𝐷 ′, 𝑎 → 𝐷, 𝑎, chase(𝐷 ′, Σ) |=𝑖𝑜 𝑞′𝑐 (𝑎), and 𝑞𝑐 ≠ 𝑞′𝑐 is a contraction
of 𝑞′𝑐 , replace 𝐷 by 𝐷 ′

. Informally, this iterative process terminates

since we lose at least one contraction 𝑞𝑐 of 𝑞 with chase(𝐷, Σ) |=𝑖𝑜
𝑞𝑐 (𝑎) in every step. We refer to [7] for details.

It is clear that the resulting 𝐷 satisfies Condition (2). Condi-

tion (1) is satisfied as well: we have chase(𝐷, Σ) |=𝑖𝑜 𝑞𝑐 (𝑎) for some

contraction 𝑞𝑐 of 𝑞, thus 𝐷 |= 𝑄 (𝑎).

Lemma D.5. Given an OMQ𝑄 = (S, Σ, 𝑞) from (G∩FULL,UCQ)
and an S-database 𝐷 , it is decidable whether Conditions 1 and 2 from
Lemma D.4 hold.

Proof. As Condition 1 is clearly decidable, we concentrate on

Condition 2. We start with a central observation. Let 𝑞′𝑐 be a

contraction of 𝑞 and let 𝑞′′𝑐 be the UCQ that consists of all con-

tractions of 𝑞′𝑐 that are distinct from 𝑞′𝑐 . Then checking whether

chase(𝐷 ′, Σ) |=𝑖𝑜 𝑞′𝑐 (𝑎), for some S-database 𝐷 ′
with 𝐷 ′, 𝑎 → 𝐷, 𝑎,

is equivalent to checking that the OMQs (S, Σ, 𝑞′𝑐 ) and (S, Σ, 𝑞′′𝑐 )
are not equivalent on S-databases 𝐷 ′

with 𝐷 ′, 𝑎 → 𝐷, 𝑎. As a con-

sequence, we can decide Condition 2 by checking that there are

no contractions 𝑞𝑐 , 𝑞
′
𝑐 of 𝑞 such that 𝑞𝑐 is a contraction of 𝑞′𝑐 ,

𝑞𝑐 ≠ 𝑞′𝑐 , chase(𝐷, Σ) |= 𝑞𝑐 (𝑎) and (S, Σ, 𝑞′′𝑐 ) are not equivalent

on S-databases 𝐷 ′
with 𝐷 ′, 𝑎 → 𝐷, 𝑎. Note that in the statement

‘chase(𝐷, Σ) |= 𝑞𝑐 (𝑎)’, we have dropped the ·𝑖𝑜 that is present in

Condition 2. This is not harmful since if chase(𝐷, Σ) |= 𝑞𝑐 (𝑎), but
chase(𝐷, Σ) ̸|=𝑖𝑜 𝑞𝑐 (𝑎), we can simply replace 𝑞𝑐 by a contraction

of itself that satisfies this stronger condition.

The width of an OMQ 𝑄 = (S, Σ, 𝑞) from (G ∩ FULL,UCQ),
denoted w(𝑄), is the maximum number of variables in the body of

a rule in Σ or in a CQ in 𝑞.

To establish decidability of Condition 2, it suffices to show that

given OMQs𝑄1 and𝑄2 from (G∩ FULL,UCQ) over schema S, an
S-database 𝐷 , and a tuple of constants 𝑎, it is decidable whether

there exists an S-database 𝐷 such that 𝐷 |= 𝑄1 (𝑎), 𝐷 ̸ |= 𝑄2 (𝑎), and
𝐷, 𝑎 → 𝐷, 𝑎. We note that this is the case iff there exists a database

with these properties that is of treewidth w(𝑄1).
For an OMQ 𝑄 = (S, Σ, 𝑞) from (G ∩ FULL,UCQ) we construct

a Guarded Second Order (GSO) [25] formula 𝜙𝑄 such that for every

S-database 𝐷 and tuple of constants 𝑎, 𝐷 |= 𝑄 (𝑎) iff 𝐷 |= 𝜙𝑄 (𝑎).
Let 𝐽1, . . . , 𝐽𝑛 be the relation symbols in Σ and reserve fresh relation

symbols 𝐽 ′
1
, . . . , 𝐽 ′𝑛 and 𝐽 ′′

1
, . . . , 𝐽 ′′𝑛 of the same arity. Further let:

• 𝜙 ′Σ (resp. 𝜙 ′′Σ ) be the conjunction of all TGDs in Σ, viewed
as universally quantified FO formulas, with each relation

symbol 𝐽𝑖 replaced by 𝐽 ′
𝑖
(resp. 𝐽 ′′

𝑖
);

• 𝜙S be a formulawhich says that if 𝐽𝑖 is in S, then the extension
of 𝐽𝑖 is included in that of 𝐽 ′

𝑖
;

• 𝜙! be a formula which says that the extension of each 𝐽 ′′
𝑖

is

included in the extension of 𝐽 ′
𝑖
, with at least one inclusion

being strict.

Then 𝜙𝑄 is the following formula:
4

∃𝐽 ′
1
, . . . , 𝐽 ′𝑛 (𝜙S ∧ 𝜙Σ ∧ 𝑞 ∧ ∀𝐽 ′′

1
. . . 𝐽 ′′𝑛 (𝜙! → ¬𝜙 ′Σ)) .

Note that the extension of 𝐽 ′
1
, . . . , 𝐽 ′𝑛 represents the chase of the

input database with Σ.
We also take a formula 𝜙

𝐷
that evaluates to true exactly on

those S-databases 𝐷 such that 𝐷, 𝑎 → 𝐷, 𝑎. Then, we have to decide

whether there exists an S-database 𝐷 of treewidth at most w(𝑄1)
such that 𝐷 |= 𝜙𝑄1

∧ ¬𝜙𝑄2
∧ 𝜙

𝐷
. Note that on sparse structures,

GSO has the same expressive power as MSO [13]. As databases of

bounded treewidth are sparse [19], it follows that GSO over such

databases is decidable.

For 𝑘, ℓ ≥ 1, the 𝑘 × ℓ-grid is the (undirected) graph with vertex

set {(𝑖, 𝑗) | 1 ≤ 𝑖 ≤ 𝑘 and 1 ≤ 𝑗 ≤ ℓ} and an edge between (𝑖, 𝑗)
and (𝑖 ′, 𝑗 ′) iff |𝑖−𝑖 ′ | + | 𝑗 − 𝑗 ′ | = 1. A graph𝐻 is aminor of a graph𝐺
if 𝐻 is isomorphic to a graph that can be obtained from a subgraph

of𝐺 by contracting edges. Equivalently,𝐻 is a minor of𝐺 if there is

aminor map from𝐻 = (𝑉𝐻 , 𝐸𝐻 ) to𝐺 = (𝑉𝐸 , 𝐸𝐺 ), that is, a mapping

𝜇 : 𝑉𝐻 → 2
𝑉𝐺

with the following properties for all 𝑣,𝑤 ∈ 𝑉𝐻 :

• 𝜇 (𝑣) is non-empty and connected in 𝐺 ;

• 𝜇 (𝑣) and 𝜇 (𝑤) are disjoint whenever 𝑣 ≠ 𝑤 ;

• if {𝑣,𝑤} ∈ 𝐸𝐻 , then there are 𝑣 ′ ∈ 𝜇 (𝑣) and𝑤 ′ ∈ 𝜇 (𝑤) such
that {𝑣 ′,𝑤 ′} ∈ 𝐸𝐺 .

We say that 𝜇 is onto if

⋃
𝑣∈𝑉𝐻 𝜇 (𝑣) = 𝑉𝐺 . For a database 𝐷 , we

say that 𝑎 ∈ dom(𝐷) is isolated in 𝐷 if there is only a single atom

𝑅(𝑎) ∈ 𝐷 with 𝑎 ∈ 𝑎. When 𝑘 is understood from the context, we

use 𝐾 to denote

(𝑘
2

)
.

Note that Point (3) of the following theorem can be viewed as

a form of ontoness requirement for the homomorphism ℎ0 from

Point (1): for the fact 𝑅(𝑎1, . . . , 𝑎𝑛) ∈ 𝐷 mentioned in that condition,

it is possible to find a fact 𝑅(𝑐1, . . . , 𝑐𝑛) ∈ 𝐷𝐺 that maps to it.

Theorem 6.1 (Grohe). Given an undirected graph 𝐺 , a 𝑘 ≥ 1,
a connected S-database 𝐷 , and a set 𝐴 ⊆ dom(𝐷) such that the
restriction 𝐺𝐷

|𝐴 of the Gaifman graph of 𝐷 to vertices 𝐴 contains the
𝑘×𝐾-grid as aminor, one can construct in time 𝑓 (𝑘) ·poly( | |𝐺 | |, | |𝐷 | |)
an S-database 𝐷𝐺 with dom(𝐷) \𝐴 ⊆ dom(𝐷𝐺 ) such that:

(1) there is a surjective homomorphism ℎ0 from 𝐷𝐺 to 𝐷 that is
the identity on dom(𝐷) \𝐴,

(2) 𝐺 contains a 𝑘-clique iff there is a homomorphism ℎ from 𝐷

to 𝐷𝐺 such that ℎ is the identity on dom(𝐷) \𝐴 and ℎ0 (ℎ(·))
is the identity, and

(3) if 𝑅(𝑎1, . . . , 𝑎𝑛) ∈ 𝐷 , ℎ0 (𝑏𝑖 ) = 𝑎𝑖 for each 𝑖 ∈ [𝑛], and {𝑏𝑖 |
𝑎𝑖 non-isolated in 𝐷} is a clique in the Gaifman graph of 𝐷𝐺 ,
then 𝐷𝐺 contains an atom 𝑅(𝑐1, . . . , 𝑐𝑛) where 𝑐𝑖 = 𝑏𝑖 if 𝑎𝑖 is
non-isolated in 𝐷 and ℎ0 (𝑐𝑖 ) = 𝑎𝑖 for 𝑖 ∈ [𝑛].

Proof. The construction of 𝐷𝐺 is a slight extension of the orig-

inal construction from [26]. The extension is necessary because

we have to treat the constants from dom(𝐷) \𝐴 in a special way

whereas in [26] there is no set 𝐴 or, in other words, 𝐴 = dom(𝐷).
4
We use the variant of GSO whose the syntax is identical to that of Second Order

Logic, but the second-order quantifiers range only over guarded relations, see [25].



Let 𝜇 be a minor map from the 𝑘 × 𝐾-grid to 𝐺𝐷
|𝐴 . Since 𝐷 is con-

nected, we can assume w.l.o.g. that 𝜇 is onto. To attain Point (3) of

Theorem 6.1, we actually have to choose 𝜇 a bit more carefully. We

first proceed with the construction and argue that Points (1) and (2)

are satisfied, and then give details on Point (3). Fix a bijection 𝜌

between [𝐾] and the set of unordered pairs over [𝑘]. For 𝑝 ∈ [𝐾],
let 𝑖 ∈ 𝑝 be shorthand for 𝑖 ∈ 𝜌 (𝑝). Let 𝐺𝐷

|𝐴 = (𝑉 , 𝐸).
The domain of 𝐷𝐺 is

(dom(𝐷) \𝐴) ∪
{(𝑣, 𝑒, 𝑖, 𝑝, 𝑎) ∈ 𝑉 × 𝐸 × [𝑘] × [𝐾] ×𝐴 | (𝑣 ∈ 𝑒 ⇔ 𝑖 ∈ 𝑝), 𝑎 ∈ 𝜇 (𝑖, 𝑝)}.
Before we say what the atoms of 𝐷𝐺 are, let us define the homo-

morphism ℎ0 : dom(𝐷𝐺 ) → dom(𝐷) from Point (1) by taking the

identity on dom(𝐷) \𝐴 and the projection to the last component

for all other constants from dom(𝐷𝐺 ). We extend ℎ0 to tuples over

dom(𝐷𝐺 ) in the expected way.

We now define 𝐷𝐺 to contain every atom 𝑅( ¯𝑏), ¯𝑏 a tuple over

dom(𝐷𝐺 ), such that 𝑅(ℎ0 ( ¯𝑏)) ∈ 𝐷 and for all constants 𝑏, 𝑏 ′ in 𝑎
that are of the form 𝑏 = (𝑣, 𝑒, 𝑖, 𝑝, 𝑎) and 𝑏 ′ = (𝑣 ′, 𝑒 ′, 𝑖 ′, 𝑝 ′, 𝑎′),

(C1) 𝑖 = 𝑖 ′ implies 𝑣 = 𝑣 ′ and (C2) 𝑝 = 𝑝 ′ implies 𝑒 = 𝑒 ′.

This finishes the construction of 𝐷𝐺 .

Point (1) follows directly from the construction. The proof of

Point (2) is a slight variation of the proofs of Lemma 4.3 (for the

‘⇒’ direction) and Lemma 4.4 (for the ‘⇐’ direction) from [26]. In

fact, the homomorphism ℎ constructed in the proof of Lemma 4.3

simply needs to be extended to be the identity on dom(𝐷) \𝐴. In
Lemma 4.4, the assumption that 𝐷 is a core has been replaced here

with the condition that ℎ0 (ℎ(· · · )) is the identity. This, however, is
exactly what is derived from the assumption that 𝐷 is a core in the

original proof. No further changes to the proof are required despite

the presence of the elements in dom(𝐷) \𝐴.
For Point (3), assume that 𝑅(𝑎1, . . . , 𝑎𝑛) ∈ 𝐷 , ℎ0 (𝑏 𝑗 ) = 𝑎 𝑗 for

1 ≤ 𝑗 ≤ 𝑛, and 𝑆 = {𝑏 𝑗 | 𝑎 𝑗 non-isolated in 𝐷} is a clique in the

Gaifman graph of 𝐷𝐺 . As 𝐷 is connected, 𝑆 cannot be empty. We

can assume w.l.o.g that the minor map 𝜇 from the 𝑘 × 𝐾-grid onto

𝐺𝐷
|𝐴 is such that one of the following holds:

(1) there is an 𝑎ℓ that is non-isolated in 𝐷 such that 𝑎ℓ ∈ 𝐴

and if 𝑖, 𝑝 are such that 𝑎ℓ ∈ 𝜇 (𝑖, 𝑝), then all 𝑎 𝑗 ∈ 𝐴 that are

isolated in 𝐷 are also in 𝜇 (𝑖, 𝑝); in this case, 𝑏ℓ must take the

form (𝑣, 𝑒, 𝑖, 𝑝, 𝑎ℓ );
(2) there is no 𝑎ℓ that is non-isolated in 𝐷 such that 𝑎ℓ ∈ 𝐴 and

there are 𝑖, 𝑝 such that all 𝑎 𝑗 ∈ 𝐴 that are isolated in 𝐷 are

in 𝜇 (𝑖, 𝑝); in this case, choose 𝑣, 𝑒 arbitrarily such that 𝑣 ∈ 𝑒
iff 𝑖 ∈ 𝑝 .

Define 𝑐1, . . . , 𝑐𝑛 by setting

𝑐 𝑗 :=

{
(𝑣, 𝑒, 𝑖, 𝑝, 𝑎 𝑗 ) if 𝑎 𝑗 ∈ 𝐴 is isolated in 𝐷

𝑏 𝑗 otherwise.

It can be verified that (𝑣, 𝑒, 𝑖, 𝑝, 𝑎 𝑗 ) is a constant in 𝐷𝐺 if 𝑎 𝑗 ∈ 𝐴
is isolated in 𝐷 , due to our assumptions (1) and (2). Moreover,

ℎ0 (𝑐𝑖 ) = ℎ0 (𝑏𝑖 ) for 1 ≤ 𝑖 ≤ 𝑛 and Conditions (C1) and (C2) are

satisfied for the fact 𝑅(𝑐1, . . . , 𝑐𝑛), which is thus in 𝐷𝐺 . Finally,

ℎ0 (𝑐𝑖 ) = 𝑎𝑖 for 1 ≤ 𝑖 ≤ 𝑛, by definition of ℎ0.

D.2 The Reduction

Recall that our goal is to establish the following lower bound:

Theorem D.6. Fix 𝑟 ≥ 1. Let O be a recursively enumerable class
of OMQs from (G,UCQ) over a schema of arity 𝑟 , and, for each 𝑘 ≥ 1,
O ⊈ (G,UCQ)≡

𝑘
. Then, p-OMQ-Evaluation(O) isW[1]-hard.

The proof is by fpt-reduction from p-Clique, a W[1]-hard prob-

lem. Assume that 𝐺 is an undirected graph and 𝑘 ≥ 1 a clique size,

given as an input to the reduction. By Robertson and Seymour’s

Excluded Grid Theorem, there is an ℓ such that every graph of

treewidth exceeding ℓ contains the 𝑘 × 𝐾-grid as a minor [32]. We

may assume, w.l.o.g., that ℓ exceeds the fixed arity 𝑟 . By our as-

sumption on O, we find an OMQ 𝑄 = (S, Σ, 𝑞) from O that is not in

(G,UCQ)≡
ℓ
. Since the choice of 𝑄 is independent of 𝐺 and since it

is decidable whether an OMQ from (G,UCQ) is in (G,UCQ)≡
ℓ
by

Theorem 5.1, we can enumerate the OMQs from O until we find 𝑄 .

By Theorem D.1, we can assume, w.l.o.g., that 𝑄 = (S, Σ, 𝑞) is
from (G ∩ FULL,UCQ). It might of course be that the OMQ from

(G ∩ FULL,UCQ) is not in O, but we will see that this is not a

problem. Let 𝑞 = 𝑞1 ∨ · · · ∨ 𝑞𝑛 and let 𝑄𝑖 = (S, Σ, 𝑞𝑖 ) for 1 ≤ 𝑖 ≤ 𝑛.
We can assume w.l.o.g. that 𝑄𝑖 ⊈ 𝑄 𝑗 for all 𝑖 ≠ 𝑗 because if this

is not the case, then we can drop 𝑞 𝑗 from 𝑞 in 𝑄 and the resulting

OMQ is equivalent to 𝑄 . Also, we exhaustively replace CQs 𝑞𝑖 in 𝑄

with (𝑞𝑖 )𝑎ℓ as defined in the context of UCQℓ -approximations (see

Definition C.6), whenever the resulting OMQ is equivalent to 𝑄 .5

Since𝑄 is not in (G,UCQ)≡
ℓ
, the final OMQ must contain a 𝑞𝑤 that

has not been replaced by (𝑞𝑤)𝑎ℓ and, in particular, we must have

𝑄 ⊈ 𝑄 ′
where 𝑄 ′

is obtained from 𝑄 by replacing 𝑞𝑤 with (𝑞𝑤)𝑎ℓ .
We thus find an S-database 𝐷0 and tuple of constants 𝑎0 such that

𝐷0 |= 𝑄𝑤 (𝑎0), 𝐷0 ̸ |= (𝑄𝑤)𝑎ℓ (𝑎0), and 𝐷0 ̸ |= 𝑄𝑖 (𝑎0) for all 𝑖 ≠ 𝑤 . By

duplicating constants, we can achieve that all constants in 𝑎0 are

distinct. We also assume that Condition 2 of Lemma D.4 is satisfied

for 𝑄 = 𝑄𝑤 , 𝑞 = 𝑞𝑤 , 𝐷 = 𝐷0, and 𝑎 = 𝑎0. If it is not, we can apply

that lemma and replace 𝐷0 with the resulting 𝐷0. By Condition (1),

𝐷0 |= 𝑄𝑤 (𝑎0), 𝐷0 ̸ |= (𝑄𝑤)𝑎ℓ (𝑎0), and 𝐷0 ̸ |= 𝑄𝑖 (𝑎0) for all 𝑖 ≠ 𝑤 .

Since the properties of 𝐷0 are independent of 𝐺 and due to

Lemma D.5, we can find𝐷0 by enumeration. However,𝐷0 is still not

as required and needs to be manipulated further to make it suitable

for the reduction. Before we can carry out the actual manipulation,

we need some preliminaries.

Recall that for a guarded set 𝑎 ⊆ dom(𝐷0), 𝐷𝑎
0
denotes the

guarded unraveling of 𝐷0 starting at 𝑎. An atomic query (AQ) takes
the form 𝑅(𝑥), i.e., it has a single atom and no quantified variables.

Lemma D.7. 𝐷0 |= (S, Σ, 𝑝) (𝑎′) iff 𝐷𝑎
0
|= (S, Σ, 𝑝) (𝑎′) if 𝑝 is an

AQ and all constants in 𝑎′ are also in 𝑎.

Of course, 𝐷𝑎
0
can be infinite. By compactness, however, there is

a finite 𝐷𝑎 ⊆ 𝐷𝑎
0
such that Lemma D.7 is satisfied for all (finitely

many) AQs 𝑝 that use only symbols from Σ. For brevity, we say
that 𝐷𝑎 satisfies Lemma D.7 for all relevant AQs. We can find 𝐷𝑎

by constructing 𝐷𝑎
0
level by level and deciding after each such

extension whether we have found the desired database, by checking

the condition in Lemma D.7 for all relevant AQs.

A diversification of 𝐷0 is a database 𝐷 obtained from 𝐷0 by

replacing every atom 𝑅(𝑎) ∈ 𝐷0 with a (potentially empty) finite

5
We rely on the key property ofUCQℓ -approximations given by item (2) of Lemma C.7.



set of atoms 𝑅(𝑎′
1
), . . . , 𝑅(𝑎′𝑛) such that each 𝑎′

𝑖
is obtained from

𝑎 by replacing some constants that do not occur in 𝑎0 with fresh

constants. A constant 𝑎 ∈ dom(𝐷) is old if it already occurs in 𝐷0

and fresh otherwise. For a fresh constant 𝑏, we use 𝑏↑ to denote

the constant in 𝐷0 that it was introduced for. For old constants 𝑎,

𝑎↑ = 𝑎. This extends to tuples of constants from 𝐷 in a component-

wise fashion. Note that all fresh constants in 𝐷 are isolated in 𝐷

and that all constants from 𝑎0 still occur in 𝐷 as old constants. If

𝐷1 and 𝐷2 are diversifications of 𝐷0, we write 𝐷1 ⪯ 𝐷2 if there

is a homomorphism from 𝐷1 to 𝐷2 that is the identity on all old

constants.

Example D.8. Assume that𝐷 = {𝑅(𝑎, 𝑏, 𝑐), 𝑆 (𝑎, 𝑏, 𝑑)} and 𝑎0 = ().
Then 𝐷1 = {𝑅(𝑎, 𝑏 ′, 𝑐 ′), 𝑆 (𝑎, 𝑏, 𝑑)} and 𝐷2 = {𝑅(𝑎, 𝑏, 𝑐 ′), 𝑆 (𝑎, 𝑏, 𝑑)}
are diversifictions of 𝐷 and 𝐷1 ⪯ 𝐷2.

If 𝐷 is a diversification of 𝐷0, we use 𝐷
+
to denote the database

obtained from 𝐷 by adding each database 𝐷𝑎 such that for some

atom 𝑅(𝑎) in 𝐷 , we obtain 𝐷𝑎 from 𝐷𝑎↑ by renaming the constants

in 𝑎↑ to those in 𝑎. A constant 𝑎 ∈ dom(𝐷+) is old if it is an old

constant from dom(𝐷), and fresh otherwise.

For what follows, we choose a ⪯-minimal diversification 𝐷1 of

𝐷0 such that 𝐷+
1
|= 𝑄𝑤 (𝑎0).

Example D.9. Assume that 𝑞𝑤 is a Boolean CQ that takes the

form of an 𝑛 × 𝑚-grid using the binary relations 𝑋 and 𝑌 . Let

S = {𝑋 ′, 𝑌 ′} with both relations ternary and let Σ = {𝑋 ′(𝑥,𝑦, 𝑧) →
𝑋 (𝑥,𝑦), 𝑌 ′(𝑥,𝑦, 𝑧) → 𝑌 (𝑥,𝑦)}. Further let 𝐷0 be the database

{𝑋 ′(𝑎𝑖, 𝑗 , 𝑎𝑖, 𝑗+1, 𝑏) | 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 < 𝑛} ∪
{𝑌 ′(𝑎𝑖, 𝑗 , 𝑎𝑖+1, 𝑗 , 𝑏) | 1 ≤ 𝑖 < 𝑚 and 1 ≤ 𝑗 ≤ 𝑛}

Then the following database is a ⪯-minimal diversification of 𝐷0

such that 𝐷+
1
|= 𝑄𝑤 (𝑎0):

{𝑋 ′(𝑎𝑖, 𝑗 , 𝑎𝑖, 𝑗+1, 𝑏𝑖 𝑗 ) | 1 ≤ 𝑖 ≤ 𝑚 and 1 ≤ 𝑗 < 𝑛} ∪
{𝑌 ′(𝑎𝑖, 𝑗 , 𝑎𝑖+1, 𝑗 , 𝑏

′
𝑖 𝑗
) | 1 ≤ 𝑖 < 𝑚 and 1 ≤ 𝑗 ≤ 𝑛}.

We next observe some basic properties of 𝐷1.

Lemma D.10.

(1) 𝐷+
1
|= 𝑄𝑤 (𝑎0) and 𝐷+

1
̸ |= 𝑄𝑖 (𝑎0) for all 𝑖 ≠ 𝑤 ;

(2) 𝐷1 has treewidth exceeding ℓ up to 𝑎0;
(3) 𝐷+

1
satisfies Condition 2 of Lemma D.4.

Proof. For Point 1, we have 𝐷+
1
|= 𝑄𝑤 (𝑎0) by choice of 𝐷+

1
. By

construction of𝐷+
1
, we have𝐷+

1
, 𝑎0 → 𝐷0, 𝑎0 and thus𝐷

+
1
̸ |= 𝑄𝑖 (𝑎0)

for all 𝑖 ≠ 𝑤 . We proceed with Point 2, noting that we can argue

in the same way to show that 𝐷+
1
̸ |= (𝑄𝑤)𝑎ℓ (𝑎0). Thus Point 2 of

Lemma C.7 implies that the treewidth of (𝐷+
1
) up to 𝑎0 exceeds ℓ .

Note that the treewidth of 𝐷+
1
\ 𝐷1 is bounded by the fixed arity

𝑟 .6 As we assume ℓ > 𝑟 , 𝐷1 has treewidth exceeding ℓ up to 𝑎0.

Now for Point 3, that is, 𝐷+
1
satisfies Condition 2 of Lemma D.4.

Assume to the contrary that there are an S-database 𝐷 ′
and con-

tractions 𝑞𝑐 , 𝑞
′
𝑐 of 𝑞𝑤 such that chase(𝐷+

1
, Σ) |=𝑖𝑜 𝑞𝑐 (𝑎0), 𝐷 ′, 𝑎0 →

𝐷+
1
, 𝑎0, chase(𝐷 ′, Σ) |=𝑖𝑜 𝑞′𝑐 (𝑎0), and 𝑞𝑐 ≠ 𝑞′𝑐 is a contraction of 𝑞′𝑐 .

We use a case distinction:

6
This is no longer true of Σ is formulated in FG and this is in fact the reason why our

proof does not extended from G to FG.

• chase(𝐷0, Σ) |=𝑖𝑜 𝑞𝑐 (𝑎0).
From 𝐷 ′, 𝑎0 → 𝐷+

1
, 𝑎0 and 𝐷+

1
, 𝑎0 → 𝐷0, 𝑎0, we obtain

𝐷 ′, 𝑎0 → 𝐷0, 𝑎0. This together with chase(𝐷0, Σ) |=𝑖𝑜
𝑞𝑐 (𝑎0) and chase(𝐷 ′, Σ) |=𝑖𝑜 𝑞′𝑐 (𝑎0) yields a contradiction
to 𝐷0 satisfying Condition 2 of Lemma D.4.

• chase(𝐷0, Σ) ̸|=𝑖𝑜 𝑞𝑐 (𝑎0).
From chase(𝐷+

1
, Σ) |=𝑖𝑜 𝑞𝑐 (𝑎0) and 𝐷+

1
, 𝑎0 → 𝐷0, 𝑎0, we

obtain chase(𝐷0, Σ) |= 𝑞𝑐 (𝑎0). By Lemma D.3, there is a

contraction 𝑞′𝑐 of 𝑞𝑐 with chase(𝐷0, Σ) |=𝑖𝑜 𝑞′𝑐 (𝑎0). But then
we must have 𝑞′𝑐 = 𝑞𝑐 as otherwise we obtain a contradiction

to𝐷0 satisfying Condition 2 of Lemma D.4 (instantiated with

𝐷 = 𝐷 = 𝐷0). Contradiction.
This completes the proof of Lemma D.10.

The next lemma states a more intricate property of 𝐷1 that is

crucial for the remaining proof.

Lemma D.11. If ℎ is a homomorphism from 𝑞𝑤 (𝑥0) to
chase(𝐷1, Σ) with ℎ(x) = 𝑎0, 𝑅(𝑎) ∈ 𝐷1, and 𝑎1, 𝑎2 are old con-
stants in 𝑎, then there is a path 𝑥1, . . . , 𝑥𝑚 in the Gaifman graph of
𝐷 [𝑞𝑤] such that ℎ(𝑥1) = 𝑎1, ℎ(𝑥𝑚) = 𝑎2, and ℎ(𝑥2), . . . , ℎ(𝑥𝑚−1)
are in dom(𝐷𝑎).7

Proof. Assume to the contrary that there is a homomorphism

ℎ from 𝑞𝑤 (𝑥0) to chase(𝐷+
1
, Σ) with ℎ(𝑥0) = 𝑎0, an 𝑅(𝑎) ∈ 𝐷1, and

old constants 𝑎1, 𝑎2 in 𝑎 such that there is no path in the Gaifman

graph𝐺𝐷 [𝑞𝑤 ]
of 𝐷 [𝑞𝑤] as required by Lemma D.11. We argue that

we can then find an S-database𝐷2 with𝐷2 ≺ 𝐷1 and𝐷
+
2
|= 𝑄𝑤 (𝑎0),

in contradiction to the choice of 𝐷1.

Let 𝐷2 be obtained from 𝐷1 by replacing 𝑅(𝑎) with the atoms

𝑅(𝑎1), 𝑅(𝑎2) where 𝑎𝑖 is obtained from 𝑎 by replacing 𝑎𝑖 with a

fresh constant 𝑏𝑖 and each fresh constant with a new fresh constant.

Clearly,𝐷2 is a diversification of𝐷0 and𝐷2 ≺ 𝐷1. We convertℎ into

a homomorphism ℎ′ from 𝑞𝑤 to chase(𝐷+
2
, Σ) such that ℎ′(𝑥) = 𝑎0,

which contradicts the choice of 𝐷1.

As a preparation, let us discuss the construction of 𝐷+
1
and 𝐷+

2
.

During the construction of 𝐷+
1
, we have attached a copy 𝐷𝑎 of 𝐷𝑎↑

at 𝑎. In the construction of𝐷+
2
, we have attached copies𝐷𝑎1

and𝐷𝑎1

of the same 𝐷𝑎↑ at 𝑎1 and 𝑎2. The constants in dom(𝐷𝑎) \dom(𝐷1)
are the only constants in𝐷+

1
that may not be in𝐷+

2
. For 𝑖 ∈ {1, 2}, fix

an isomorphism 𝜄𝑖 between 𝐷𝑎 and 𝐷𝑎𝑖 . Note that 𝜄𝑖 is the identity

on 𝑎2−𝑖 and in fact on all old constants in 𝑎 except 𝑎𝑖 .

Now define ℎ′(𝑥) as follows, for every variable 𝑥 in 𝑞:

(1) if ℎ(𝑥) ∈ dom(𝐷+
1
) \ dom(𝐷𝑎), then ℎ′(𝑥) = ℎ(𝑥)

(2) if ℎ(𝑥) ∈ dom(𝐷𝑎):
(a) if 𝐺𝐷 [𝑞𝑤 ]

contains a path 𝑦1, . . . , 𝑦𝑝 such that ℎ(𝑦1) =

𝑎𝑖 for 𝑖 ∈ {1, 2}, 𝑦𝑝 = 𝑥 , and ℎ(𝑥2), . . . , ℎ(𝑥𝑝−1) are in

dom(𝐷𝑎), then ℎ′(𝑥) = 𝜄2−𝑖 (ℎ(𝑥));
(b) if ℎ(𝑥) is still undefined, then ℎ′(𝑥) = 𝜄1 (ℎ(𝑥)).

Note that ℎ′ is defined properly: due to our assumption that there

is no path as in Lemma D.11, the precondition of 2b cannot be

satisfied both for 𝑖 = 1 and for 𝑖 = 2. Also note that if 𝑆 (𝑥) ∈ 𝑞𝑤
with ℎ(𝑥) ⊆ adom(𝐷𝑎), then ℎ′(𝑥) = 𝜄𝑖 (ℎ(𝑥)), for some 𝑖 ∈ {1, 2}.

It remains to show that ℎ′ is a homomorphism from 𝑞𝑤 to

chase(𝐷+
2
, Σ). Let us first observe three helpful claims. Recall that

·↑ maps each constant in a diversification of 𝐷0, such as 𝐷1 and 𝐷2,

7
A special case is that there is an atom 𝑆 (𝑥) in 𝑞𝑤 such that 𝑎1 and 𝑎2 are both

in ℎ (𝑥) . Also note that it follows that all old constants are in the range of ℎ.



to the original constant that it was introduced for. The first claim

is a consequence of Lemma D.7 and the fact that since 𝐷1 and 𝐷2

are diversifications of 𝐷0, ·↑ defines a homomorphism from 𝐷 𝑗 to

𝐷0 each 𝑗 ∈ {1, 2} that can be extended to a homomorphism from

𝐷+
𝑗
to 𝐷0 and further from chase(𝐷+

𝑗
, Σ) to chase(𝐷0, Σ).

Claim 1. Let
¯𝑏 be a guarded set in 𝐷 𝑗 , 𝑗 ∈ {1, 2}. Then 𝑅( ¯𝑏) ∈

chase(𝐷+
𝑗
, Σ) iff 𝑅( ¯𝑏↑) ∈ chase(𝐷+

0
, Σ) for all facts 𝑅( ¯𝑏).

Here is the second claim.

Claim 2. Let
¯𝑏 be a guarded set in 𝐷𝑎 . Then 𝑅( ¯𝑏) ∈ chase(𝐷+

1
, Σ)

implies 𝑅(𝜄𝑖 ( ¯𝑏)) ∈ chase(𝐷+
2
, Σ) for all facts 𝑅( ¯𝑏) and 𝑖 ∈ {1, 2}.

Assume to the contrary that 𝑅(𝜄𝑖 ( ¯𝑏)) ∉ chase(𝐷+
2
, Σ). Set

𝐷 = chase(𝐷+
1
, Σ) |dom(𝐷+

1
)\dom(𝐷�̄�) ∪

{𝑅(𝜄−
𝑖
(𝑐)) | 𝑅(𝑐) ∈ chase(𝐷+

2
, Σ) |dom(𝐷�̄�𝑖

) }.
Using the fact that Σ is guarded, it can be shown that 𝐷 is a model

of Σ and of 𝐷+
1
. Moreover, 𝑅( ¯𝑏) ∉ 𝐷 and, consequently, 𝑅( ¯𝑏) ∉

chase(𝐷+
1
, Σ), which finishes the proof of the claim.

The proof of the third claim is identical to that of Claim 2.

Claim 3. Let 𝑐 be a guarded set in some tree 𝐷 ¯𝑏 in 𝐷+
1
,

¯𝑏 ≠ 𝑎. Then

𝑅(𝑐) ∈ chase(𝐷+
1
, Σ) implies 𝑅(𝑐) ∈ chase(𝐷+

2
, Σ) for all atoms

𝑅(𝑐).
Now for the proof that ℎ′ is a homomorphism from 𝑞𝑤 to

chase(𝐷+
2
, Σ). Let 𝑆 (𝑥) ∈ 𝑞𝑤 .

First assume that ℎ(𝑥) contains only constants from dom(𝐷1).
It follows from (two applications of) Claim 1 that 𝑆 (ℎ(𝑥)) ∈
chase(𝐷+

1
, Σ) implies 𝑆 (ℎ′(𝑥)) ∈ chase(𝐷+

2
, Σ).

Next assume that ℎ(𝑥) contains a constant from a tree dom(𝐷𝑐 ),
𝑐 ≠ 𝑎, that is not in dom(𝐷1). By construction of 𝐷+

1
and by def-

inition of the chase, this implies that ℎ(𝑥) ⊆ adom(𝐷𝑐 ). We can

thus apply Claim 3 to infer that 𝑆 (ℎ(𝑥)) ∈ chase(𝐷+
1
, Σ) implies

𝑆 (ℎ′(𝑥)) ∈ chase(𝐷+
2
, Σ).

Finally assume that ℎ(𝑥) contains a constant from dom(𝐷𝑎) \
dom(𝐷1). Then ℎ(𝑥) ⊆ adom(𝐷𝑎). Thus ℎ′(𝑥) = 𝜄𝑖 (ℎ(𝑥)) for some

𝑖 ∈ {1, 2}. We can thus apply Claim 2 to infer that 𝑆 (ℎ(𝑥)) ∈
chase(𝐷+

1
, Σ) implies 𝑆 (ℎ′(𝑥)) ∈ chase(𝐷+

2
, Σ).

Clearly, neither 𝐷1 nor 𝐷+
1
are guaranteed to be connected. In

particular, 𝐷0 might be disconnected and even if it is connected the

diversification might replace all constants in an atom with fresh

constants and in this way make 𝐷1 disconnected. By Point 2 of

Lemma D.10, however, the restriction of𝐺𝐷1
to dom(𝐷1) \𝑎0 has a

maximal connected component that is of treewidth exceeding ℓ . Let

𝐴 be the set of constants in that component. Moreover, let 𝐷 be the

maximal connected component of 𝐷1 that contains all constants

from 𝐴 (it might additionally contain constants from 𝑎0) and let

𝐷+
dis denote the part of 𝐷

+
1
that is disconnected from 𝐷 ⊆ 𝐷+

1
. By

choice of 𝐷 , 𝐴, and ℓ , the restriction of𝐺𝐷
to 𝐴 contains the 𝑘 ×𝐾-

grid as a minor. We can thus apply Theorem 6.1 to𝐺 , 𝑘 , and 𝐷 , and

𝐴, obtaining an S-database 𝐷𝐺 and a homomorphism ℎ0 from 𝐷𝐺

to 𝐷 such that Points 1 to 3 of that theorem are satisfied. Let

(1) 𝐷+
𝐺

be obtained by starting with 𝐷𝐺 and then disjointly

adding, for each guarded set 𝑎 in𝐷𝐺 such that the restriction

of ℎ0 to 𝑎 is injective, a copy of the database 𝐷ℎ0 (𝑎) that was
attached to 𝑅(ℎ0 (𝑎)) ∈ 𝐷1 during the construction of 𝐷+

1
,

identifying the root of this copy with 𝑎;8

(2) 𝐷∗
𝐺
be obtained by disjointly adding 𝐷+

dis.

The fpt-reduction of p-Clique then consists in computing𝑄 and𝐷∗
𝐺

from𝐺 and𝑘 ≥ 1. Wemean here the original𝑄 that is guaranteed to

be in O and where Σ is from G but not necessarily from G ∩ FULL.

D.3 Correctness of the Reduction

We show in the subsequent lemma that 𝐷∗
𝐺

|= 𝑄 (𝑎0) if and only if

𝐺 has a 𝑘-clique. Clearly, we can work with the version of𝑄 here in

which Σ is from G ∩ FULL since it is equivalent to the original 𝑄 .

Lemma D.12. 𝐺 has a 𝑘-clique iff 𝐷∗
𝐺

|= 𝑄 (𝑎0).

Proof. The ‘only if’ direction is easy. If𝐺 has a 𝑘-clique, then by

Point 2 of Theorem 6.1 and since 𝐴 contains none of the constants

from𝑎0, there is a homomorphismℎ from𝐷 to𝐷𝐺 such thatℎ(𝑎0) =
𝑎0 and ℎ0 (ℎ(·)) is the identity. It is straightforward to extend ℎ

to a homomorphism from 𝐷+
1
to 𝐷∗

𝐺
= 𝐷+

𝐺
⊎ 𝐷+

dis; in particular,

if 𝑅(𝑎) is an atom in 𝐷 , then the restriction of ℎ0 to 𝑎 must be

injective sinceℎ0 (ℎ(·)) is the identity and thus a copy of the subtree
that was attached to ℎ(𝑎) in the construction of 𝐷+

1
from 𝐷1 was

attached to ℎ(𝑎) in the construction of 𝐷+
𝐺
from 𝐷𝐺 . Consequently,

𝐷+
1
|= 𝑄𝑤 (𝑎0) implies 𝐷∗

𝐺
|= 𝑄𝑤 (𝑎0).

For the ‘if’ direction, assume that 𝐷∗
𝐺

|= 𝑄 (𝑎0). The surjective
homomorphism ℎ0 from 𝐷𝐺 to 𝐷 given by Theorem 6.1 can be

extended to a homomorphism from 𝐷∗
𝐺

= 𝐷+
𝐺
⊎ 𝐷+

dis to 𝐷
+
1
and

from chase(𝐷∗
𝐺
, Σ) to chase(𝐷+

1
, Σ).9 For brevity, we denote this

extension also with ℎ0. For later use, we observe that

(P1) 𝑏 ∈ dom(𝐷𝐺 ) iff ℎ0 (𝑏) ∈ dom(𝐷);
(P2) 𝑏1, 𝑏2 are in the same tree of 𝐷+

𝐺
iff ℎ0 (𝑏1), ℎ0 (𝑏2) are in the

same tree of 𝐷+
1
.

So ℎ0 witnesses 𝐷
∗
𝐺
, 𝑎0 → 𝐷+

1
, 𝑎0. Thus 𝐷

+
1
̸ |= 𝑄𝑖 (𝑎0) for all 𝑖 ≠ 𝑤

implies 𝐷∗
𝐺

̸ |= 𝑄𝑖 (𝑎0) for all 𝑖 ≠ 𝑤 . It follows that 𝐷∗
𝐺

|= 𝑄𝑤 (𝑎0)
and thus chase(𝐷∗

𝐺
, Σ) |= 𝑞𝑤 (𝑎0).

By Lemma D.3, we find a contraction 𝑞𝑐 of 𝑞𝑤 such that

chase(𝐷∗
𝐺
, Σ) |=𝑖𝑜 𝑞𝑐 (𝑎0). As witnessed by ℎ0, chase(𝐷∗

𝐺
, Σ), 𝑎0 →

chase(𝐷+
1
, Σ), 𝑎0. Consequently chase(𝐷+

1
, Σ) |= 𝑞𝑐 (𝑎0). Thus we

find a contraction 𝑞′𝑐 of 𝑞𝑐 such that chase(𝐷+
1
, Σ) |=𝑖𝑜 𝑞′𝑐 (𝑎0). We

must have 𝑞𝑐 = 𝑞′𝑐 since 𝐷
+
1
satisfies Condition 2 of Lemma D.4, via

Lemma D.10.

Let ℎ be a homomorphism from 𝑞𝑐 to chase(𝐷∗
𝐺
, Σ). The com-

position 𝑔 = ℎ0 (ℎ(·)) is a homomorphism from 𝑞𝑐 to chase(𝐷+
1
, Σ).

Since chase(𝐷+
1
, Σ) |=𝑖𝑜 𝑞𝑐 , this homomorphism must be injective.

Consequently, also ℎ0 is injective.

Since ℎ0 is injective, we can construct a function ℎ−
0
as follows:

(1) start with the restriction of ℎ0 to the range of ℎ;

(2) take the inverse;

(3) restrict to old constants in 𝐷 .

8
The injectivity requirement implies that we can add these copies as they are, without

duplicating any constants in them.

9
The extension needs not be surjective.



It follows from Lemma D.11 that the range of ℎ0 includes all old

constants in 𝐷 , and thus so does the domain of ℎ−
0
. In particular,

it thus also contains all constants in 𝑎0. Trivially, ℎ0 (ℎ−
0
(·)) is the

identity andℎ−
0
is the identity on all constants from dom(𝐷)\𝐴 ⊆ 𝑎0

(since ℎ0 is the identity on such constants).

We are going to show that a certain extension of ℎ−
0
is a homo-

morphism from 𝐷 to 𝐷𝐺 that is the identity on dom(𝐷) \ 𝐴, and
thus Point 2 of Theorem 6.1 yields that 𝐺 contains a 𝑘-clique.

Let 𝑅(𝑎) ∈ 𝐷 . By definition of 𝑔 and since the range of 𝑔 contains

all old constants in 𝐷 , we find for each old 𝑎 ∈ 𝑎 a variable 𝑥𝑎 ∈ 𝑥
and a 𝑏𝑎 ∈ dom(𝐷∗

𝐺
) such that ℎ(𝑥𝑎) = 𝑏𝑎 and ℎ0 (𝑏𝑎) = 𝑎. Let

Γ be the set of all 𝑏𝑎 . By Lemma D.11, for any two old constants

𝑎1, 𝑎2 in 𝑎, there is a path 𝑥1, . . . , 𝑥𝑛 in the Gaifman graph of 𝐷 [𝑞𝑤]
such that 𝑔(𝑥1) = 𝑎1, 𝑔(𝑥𝑚) = 𝑎2, and 𝑔(𝑥2), . . . , 𝑔(𝑥𝑚−1) are in
dom(𝐷𝑎). By Properties P1 and P2, it follows that for any two 𝑏1, 𝑏2

in Γ, there is a path 𝑥1, . . . , 𝑥𝑛 in the Gaifman graph of 𝐷 [𝑞𝑤] such
thatℎ(𝑥1) = 𝑏1,ℎ(𝑥𝑚) = 𝑏2, andℎ(𝑥2), . . . , ℎ(𝑥𝑚−1) are in the same

tree of 𝐷+
𝐺
. The fact that ℎ0 maps all elements of Γ to constants in𝐷

and Property P1 further imply 𝑏1, 𝑏2 ∈ dom(𝐷𝐺 ). By construction

of 𝐷+
𝐺
, there must thus be a fact in 𝐷𝐺 that contains both 𝑏1 and

𝑏2 (the one for which the tree was added that ℎ(𝑥2), . . . , ℎ(𝑥𝑚−1)
are in). It follows that Γ forms a clique in the Gaifman graph of 𝐷𝐺 .

Since (the non-extended) ℎ0 is surjective, for each fresh 𝑎 ∈ 𝑎 we
find some 𝑏𝑎 ∈ dom(𝐷𝐺 ) such that ℎ0 (𝑏𝑎) = 𝑎. We can now apply

Point 3 of Theorem 6.1 to 𝑅(𝑎) and the 𝑏𝑎 to obtain an extension of

ℎ−
0
to the fresh constants in 𝑎 such that 𝑅(ℎ−

0
(𝑎)) ∈ 𝐷𝐺 . Note that

the set {𝑏𝑎 | 𝑎 non-isolated in 𝐷} can only contain old constants

since all fresh constants are isolated in𝐷 ; it is thus a subset of Γ and

forms a clique in the Gaifman graph of 𝐷𝐺 . The extension is such

that if 𝑎 is fresh and covered by the extension, then ℎ−
0
(𝑎) = 𝑐 for

some 𝑐 with ℎ0 (𝑐) = 𝑎. Thus, ℎ0 (ℎ−
0
(·)) is still the identity and ℎ−

0
is

still the identity on dom(𝐷) \𝐴. Also note that this extension can

be done independently for all 𝑅(𝑎) ∈ 𝐷 because all fresh constants

in 𝐷 are isolated in 𝐷 .

Finally, Point 2 of Theorem 6.1 yields that 𝐺 has a 𝑘-clique.

E PROOF OF PROPOSITION 5.5

Recall that, given two CQSs 𝑆 = (Σ, 𝑞) and 𝑆 ′ = (Σ, 𝑞′) over S, we
write 𝑆 ⊆ 𝑆 ′ if 𝑞(𝐷) ⊆ 𝑞′(𝐷) for every S-database 𝐷 that satisfies

Σ. We also write 𝑆 ≡ 𝑆 ′ if 𝑆 ⊆ 𝑆 ′ and 𝑆 ′ ⊆ 𝑆 . Analogously, we

define the notions that consider unrestricted (not necessarily finite)

instances. We write 𝑆 ⊆unr 𝑆 ′ if 𝑞(𝐼 ) ⊆ 𝑞′(𝐼 ) for every (possibly

infinite) S-instance 𝐼 that satisfies Σ, and 𝑆 ≡unr 𝑆 ′ if 𝑆 ⊆unr 𝑆 ′ and
𝑆 ′ ⊆unr 𝑆 . The next simple result states that for guarded TGDs the

notions ≡ and ≡unr
coincide, which, unsurprisingly, relies on the

fact that guarded TGDs are finitely controllable.

Lemma E.1. Consider two CQSs 𝑆 = (Σ, 𝑞(𝑥)) and 𝑆 ′ = (Σ, 𝑞′(𝑥 ′))
from (G,UCQ). Then, 𝑆 ≡ 𝑆 ′ iff 𝑆 ≡unr 𝑆 ′.

Proof. The (⇐) direction holds trivially. For the (⇒) direction,
assume that 𝑆 .unr 𝑆 ′. There are two cases: (i) 𝑆 ⊈unr 𝑆 ′, or (ii)
𝑆 ′ ⊈unr 𝑆 . We consider only the first case; the second case is shown

analogously. Since 𝑆 ⊈unr 𝑆 ′, we get that 𝑥 ∉ 𝑞′(chase(𝑞, Σ)). With

𝑄 ′
being the OMQ omq(𝑆 ′), we get that 𝑥 ∉ 𝑄 ′(𝐷 [𝑞]). Since, by

Lemma 6.6 and Theorem 6.7, guarded TGDs are finitely controllable,

we conclude that there exists a finite model𝑀 of 𝐷 [𝑞] and Σ such

that 𝑥 ∉ 𝑞′(𝑀). However, it holds trivially that 𝑥 ∈ 𝑞(𝑀), and thus,

𝑆 ⊈ 𝑆 ′, which in turn implies that 𝑆 . 𝑆 ′, as needed.

Having the above lemma in place, we can now give the proof of

Proposition 5.5. Assume that 𝑆 = (Σ, 𝑞) is over a schema S. Since,
by Proposition 5.2, an OMQ from (G,UCQ) is UCQ𝑘 -equivalent iff
it is uniformly UCQ𝑘 -equivalent, it suffices to show that, for each

𝑘 ≥ 1, the following are equivalent:

(1) There is 𝑞′ ∈ UCQ𝑘 over S such that 𝑆 ≡ (Σ, 𝑞′).
(2) There is 𝑞′ ∈ UCQ𝑘 over S such that omq(𝑆) ≡ (S, Σ, 𝑞′).

(1) ⇒ (2) . By hypothesis, there exists 𝑞′ ∈ UCQ𝑘 over S such
that 𝑆 ≡ (Σ, 𝑞′). It is easy to show that omq(𝑆) ≡ (S, Σ, 𝑞′); for
brevity, let 𝑄 = omq(𝑆) and 𝑄 ′ = (S, Σ, 𝑞′). Consider an arbitrary

S-database 𝐷 . Since, by construction, chase(𝐷, Σ) is a model of Σ,
and, by Lemma E.1, 𝑆 ≡unr (Σ, 𝑞′), we get that 𝑞(chase(𝐷, Σ)) =
𝑞′(chase(𝐷, Σ′)). Therefore, 𝑄 (𝐷) = 𝑄 ′(𝐷), as needed.

(2) ⇒ (1) . By hypothesis, there exists 𝑞′ ∈ UCQ𝑘 over S such
that omq(𝑆) ≡ (S, Σ, 𝑞′); again, let 𝑄 = omq(𝑆) and 𝑄 ′ = (S, Σ, 𝑞′).
Consider an arbitrary S-database 𝐷 such that 𝐷 is a model of Σ.
Observe that 𝑞(𝐷) = 𝑄 (𝐷) and 𝑞′(𝐷) = 𝑄 ′(𝐷). Since 𝑄 ≡ 𝑄 ′

, we

get that 𝑞(𝐷) = 𝑞′(𝐷), and the claim follows.

F PROOF OF PROPOSITION 5.8

Consider an OMQ 𝑄 = (S, Σ, 𝑞(𝑥)) from omq(O), an S-database 𝐷 ,
and a tuple 𝑐 ∈ dom(𝐷) |𝑥 | . We are going to construct an S-database
𝐷∗

such that 𝐷∗ |= Σ, and 𝑐 ∈ 𝑄 (𝐷) iff 𝑐 ∈ 𝑞(𝐷∗), or, equivalently
(due to Proposition 2.2), 𝑐 ∈ chase(𝐷, Σ) iff 𝑐 ∈ 𝑞(𝐷∗).

F.1 Construction of the Database 𝐷∗

Note that the definition of 𝐷∗
has been already given in the main

body of the paper (Section 6.2). However, we repeat it here for the

sake of readability. We first define 𝐷+
as the database

𝐷 ∪ {𝑅(𝑎) ∈ chase(𝐷, Σ) | 𝑎 ⊆ dom(𝐷)}.
Let 𝐴 be the family of all maximal tuples 𝑎 over dom(𝐷) that are
guarded in 𝐷+

, i.e., there is an atom 𝑅( ¯𝑏) ∈ 𝐷+
such that 𝑎 ⊆ ¯𝑏.

Fix an arbitrary tuple 𝑎 ∈ 𝐴. Since, by Theorem 6.7, the class G is

strongly finitely controllable, and also finite witnesses are realizable,

we can compute an instance𝑀 (𝐷+
|𝑎, Σ, 𝑛) ∈ fmods(𝐷+

|𝑎, Σ), where
𝑛 is the number of variables in 𝑞, such that for each CQ 𝑞′ of arity
|𝑎 | with at most 𝑛 variables, it holds that

(∗) 𝑎 ∈ 𝑞′(𝑀 (𝐷+
|𝑎, Σ, 𝑛)) =⇒ 𝑎 ∈ 𝑞′(chase(𝐷+

|𝑎, Σ)).
W.l.o.g., we assume that dom(𝑀 (𝐷+

|𝑎, Σ, 𝑛)) ∩dom(𝑀 (𝐷+
| ¯𝑏 , Σ, 𝑛)) ⊆

dom(𝐷), for every two distinct tuples 𝑎, ¯𝑏 ∈ 𝐴. The database 𝐷∗
is

𝐷+ ∪
⋃
𝑎∈𝐴

𝑀 (𝐷+
|𝑎, Σ, 𝑛) .

F.2 Correctness of the Reduction

The next lemma, which is actually Lemma 6.8 in the main body of

the paper, shows that 𝐷∗
is the desired database.

Lemma F.1. It holds that:
(1) 𝐷∗ |= Σ.
(2) 𝑐 ∈ chase(𝐷, Σ) iff 𝑐 ∈ 𝑞(𝐷∗).



(3) There exists a computable function 𝑓 : N→ N such that 𝐷∗

can be constructed in time | |𝐷 | |𝑂 (1) · 𝑓 ( | |𝑄 | |).

Proof. Item (1). Consider a TGD 𝜎 ∈ Σ of the form 𝜙 (𝑥,𝑦) →
∃𝑧𝜓 (𝑥, 𝑧), with guard(𝜎) = 𝑅(𝑢). Let 𝑞𝜙 = ∃𝑦 𝜙 (𝑥,𝑦) and 𝑞𝜓 =

∃𝑧𝜓 (𝑥, 𝑧). Fix an arbitrary tuple 𝑐 ∈ dom(𝐷∗) |𝑥 | , and assume that

𝑐 ∈ 𝑞𝜙 (𝐷∗). We need to show that 𝑐 ∈ 𝑞𝜓 (𝐷∗). Since 𝑐 ∈ 𝑞𝜙 (𝐷∗),
we get that𝜙 (𝑥,𝑦) → 𝐷∗

via a homomorphismℎ such thatℎ(𝑥) = 𝑐 .
Clearly, 𝑅(ℎ(𝑢)) ∈ 𝑀 (𝐷 |𝑎, Σ, 𝑛) for some tuple 𝑎 ∈ 𝐴 that contains

all the constants ℎ(𝑢) ∩ dom(𝐷). It is then easy to see that, due

to guardedness, ℎ(𝜙 (𝑥,𝑦)) ⊆ 𝑀 (𝐷 |𝑎, Σ, 𝑛). Since 𝑀 (𝐷 |𝑎, Σ, 𝑛) is
model of Σ, we get that 𝑐 ∈ 𝑞𝜓 (𝑀 (𝐷 |𝑎, Σ, 𝑛)). Therefore, due to the
monotonicity of CQs, 𝑐 ∈ 𝑞𝜓 (𝐷∗), as needed.

Item (2). Let us first concentrate on the (⇒) direction. Since
𝐷∗ |= Σ, we get that chase(𝐷, Σ) → 𝐷∗

via a homomorphism ℎ that

is the identity on dom(𝐷); the latter holds due to Proposition 2.2.

Moreover, by hypothesis, 𝑞 → chase(𝐷, Σ) via a homomorphism 𝜇

that maps the answer variables 𝑥 of 𝑞 to 𝑐 . Therefore, 𝜇◦ℎ maps 𝑞 to

𝐷∗
and 𝑥 to 𝑐 , which in turn implies that 𝑐 ∈ 𝑞(𝐷∗). We now show

the (⇐) direction. By hypothesis, 𝑞 → 𝐷∗
via a homomorphism ℎ

such that ℎ(𝑥) = 𝑐 . For each tuple 𝑎 ∈ 𝐴, let 𝑞𝑎 (𝑥𝑎) be the maximal

subquery of 𝑞 such that ℎ(𝑞𝑎) ⊆ 𝑀 (𝐷 |𝑎, Σ, 𝑛) and ℎ𝑎 (𝑥𝑎) = 𝑎, i.e.,
𝑥𝑎 are the variables of 𝑞𝑎 that are mapped to constants of dom(𝐷).
By (∗), we get that 𝑞𝑎 → chase(𝐷 |𝑎, Σ) via a homomorphism ℎ𝑎
that maps 𝑥𝑎 to 𝑎. It should be clear that

𝜇 =
⋃
𝑎∈𝐴

ℎ𝑎

is well-defined mapping that maps 𝑞 to chase(𝐷, Σ) with 𝜇 (𝑥) = 𝑐 .
This implies that 𝑐 ∈ 𝑞(chase(𝐷, Σ)), and the claim follows.

Item (3). This is shown by exploiting the fact that the database𝐷+

can be constructed in time | |𝐷 | |𝑂 (1) · 𝑔( | |𝑄 | |) for some computable

function 𝑔 : N→ N, and the fact that the cardinality of𝐴, as well as
the size of𝐷+

|𝑎 for some𝑎 ∈ 𝐴, do not depend on𝐷 . For showing that
𝐷+

can be constructed in the claimed time, we exploit Lemma A.4,

and the fact that we can construct a set 𝜉 (Σ) ∈ G∩FULL such that

𝐷+ = chase(𝐷, 𝜉 (Σ)); the latter is inherited from [24].

G PROOF OF PROPOSITION 5.11

Let 𝑆 = (Σ, 𝑞(𝑥)) be a CQS from (FG𝑚,UCQ) over a schema S of
arity 𝑟 . Via a proof similar to that of Proposition 5.5, we get that:

• 𝑆 is uniformly UCQ𝑘 -equivalent iff omq(𝑆) is.
• 𝑆 ≡ 𝑆𝑎

𝑘
iff omq(𝑆) ≡ omq(𝑆𝑎

𝑘
).

Let 𝑄𝑆 = omq(𝑆) and 𝑄𝑘
𝑆
= omq(𝑆𝑎

𝑘
). Thus, for showing Proposi-

tion 5.11, it suffices to show that the following are equivalent:

(1) 𝑄𝑆 is uniformly UCQ𝑘 -equivalent.

(2) 𝑄𝑆 ≡ 𝑄𝑘
𝑆
.

The proof of the next lemma is along the lines of the proof of

Lemma C.7. The only difference is that we rely on the following fact:

given a database 𝐷 of treewidth at most 𝑘 up to 𝑐 , chase(𝐷, Σ) has
treewdith at most 𝑘 up to 𝑐 . The latter heavily exploits the bound

𝑚 on the number of head atoms in the TGDs of Σ.

Lemma G.1. For every OMQ 𝑄 ′ = (S, Σ, 𝑞′) from (FG𝑚,UCQ)
such that 𝑄 ′ ⊆ 𝑄𝑆 , it holds that 𝑄 ′ ⊆ 𝑄𝑘

𝑆
.

Having Lemma G.1 in place, it is now easy to establish the above

equivalence, i.e.,𝑄𝑆 is uniformlyUCQ𝑘 -equivalent iff𝑄𝑆 ≡ 𝑄𝑘
𝑆
. Ob-

serve that the (⇐) direction holds trivially. It remains to show the

(⇒) direction. By hypothesis, there exists an OMQ 𝑄 ′ = (S, Σ, 𝑞′)
from (FG𝑚,UCQ𝑘 ) such that 𝑄𝑆 ≡ 𝑄 ′

. By Lemma G.1, 𝑄 ′ ⊆ 𝑄𝑘
𝑆
,

which in turn implies that 𝑄𝑆 ⊆ 𝑄𝑘
𝑆
. The fact that 𝑄𝑘

𝑆
⊆ 𝑄𝑆 holds

by construction, and the claim follows.

H PROOF OF THEOREM 5.13

We provide a complete proof of Theorem 5.13 here. Our proof does

not use Grohe’s database as defined in [26], but a variant of it which

we define below. We start by introducing several important notions.

Let 𝐺 = (𝑉 , 𝐸) and 𝐻 = (𝑉 ′, 𝐸 ′) be simple graphs. A minor map
from 𝐻 to 𝐺 is a mapping 𝜇 : 𝑉 ′ → 2

𝑉
such that:

(1) For every 𝑣 ′ ∈ 𝑉 ′
, 𝜇 (𝑣 ′) is nonempty and connected in 𝐺 .

(2) For every 𝑣 ′, 𝑢 ′ ∈ 𝑉 ′
, with 𝑣 ′ ≠ 𝑢 ′, 𝜇 (𝑣 ′), 𝜇 (𝑢 ′) are disjoint.

The sets of the form 𝜇 (𝑣 ′), for 𝑣 ′ ∈ 𝑉 ′
, are pairwise disjoint.

(3) For every edge {𝑣 ′, 𝑢 ′} ∈ 𝐸 ′, there are nodes 𝑣 ∈ 𝜇 (𝑣 ′) and
𝑢 ∈ 𝜇 (𝑢 ′) such that {𝑣,𝑢} ∈ 𝐸.

Such a minor map is said to be onto if, in addition,
⋃

𝑣′∈𝑉 ′ 𝜇 (𝑣 ′) = 𝑉 .
Let 𝐺 and 𝐻 be simple graphs. It is easy to see that 𝐻 is a minor

of 𝐺 iff there is a minor map 𝜇 from 𝐻 to 𝐺 . If, in addition, 𝐺 is

connected, then there exists an onto minor map 𝜇 from 𝐻 to 𝐺 .

H.1 A Variation of Grohe’s Database

Let 𝐺 = (𝑉 , 𝐸) be an undirected graph, 𝑘 ≥ 1 be an integer, and

𝐾 =
(𝑘
2

)
. Suppose that 𝐷 and 𝐷 ′

are S-databases with 𝐷 ⊆ 𝐷 ′
such

that there exists a set 𝐴 ⊆ dom(𝐷) for which there is a minor map

𝜇 from the (𝑘 × 𝐾)-grid onto 𝐺𝐷
|𝐴 . We fix a bijection 𝜒 that assigns

to each 2-element subset of [𝑘] a value in [𝐾]. We define a database

𝐷∗
:= 𝐷∗ (𝐺, 𝐷, 𝐷 ′, 𝐴, 𝜇) as follows.

The domain. Every element of𝐷∗
is either an element in dom(𝐷 ′)\

𝐴 or a tuple of the form (𝑣, 𝑒, 𝑖, 𝑝, 𝑧) where 𝑣 ∈ 𝑉 , 𝑒 ∈ 𝐸,

𝑖 ∈ [𝑘], 𝑝 is a two-element subset of [𝑘], and 𝑧 ∈ 𝐴. We note

here that dom(𝐷∗) does not necessarily contain all elements

of the previous form since some of them might not appear

in any of its atoms.

The facts. A labelled clique in 𝐺 is any partial mapping 𝜂 from

[𝑘] to 𝑉 such that, for every different 𝑖, 𝑗 in the domain

of 𝜂, we have that 𝜂 (𝑖) and 𝜂 ( 𝑗) are adjacent in 𝐺 . We say

that an element 𝑧 ∈ dom(𝐷 ′) is covered by a labelled clique

𝜂 if 𝑧 ∉ 𝐴, or there exist 𝑖, 𝑗, ℓ in domain of 𝜂 such that

𝑧 ∈ 𝜇 (𝑖, 𝜒 ({ 𝑗, ℓ})). Then, for every fact 𝑅(𝑧) ∈ 𝐷 ′
and every

labelled clique 𝜂 covering every element mentioned in 𝑧, it is

the case that 𝐷∗
contains the fact 𝑅(𝑧𝜂 ) where 𝑧𝜂 is obtained

by replacing, in 𝑧, every element 𝑧 ∈ 𝐴 with

(𝜂 (𝑖), {𝜂 ( 𝑗), 𝜂 (ℓ)}, 𝑖, { 𝑗, ℓ}, 𝑧),
where 𝜇 (𝑖, 𝜒{ 𝑗, ℓ}) = 𝑧.

Additionally, we define the projection

ℎ0 : dom(𝐷∗) → dom(𝐷 ′)
such that {

ℎ0 (𝑣, 𝑒, 𝑖, 𝑝, 𝑧) = 𝑧, if 𝑧 ∈ 𝐴, and
ℎ0 (𝑦) = 𝑦, otherwise.



Although we avoid to introduce Grohe’s original database [26],

it is useful to compare it with ours. In particular, consider the case

when 𝐷 = 𝐷 ′
and 𝐴 = dom(𝐷), and thus we have a database 𝐷∗ =

𝐷 (𝐺, 𝐷, 𝐷, dom(𝐷), 𝜇). Grohe’s database 𝐷
Grohe

= 𝐷
Grohe

(𝐺,𝐷, 𝜇)
then satisfies the following:

• dom(𝐷
Grohe

) is contained in the set of tuples of the form

(𝑣, 𝑒, 𝑖, 𝑝, 𝑧), for 𝑣 ∈ 𝑉 , 𝑒 ∈ 𝐸, 𝑖 ∈ [𝑘], 𝑝 is a two-element

subset of [𝑘], and 𝑧 ∈ dom(𝐷). Therefore, ℎ0 is well-defined

on dom(𝐷
Grohe

).
• Also, 𝐷∗ ⊆ 𝐷

Grohe
.

In addition, the following crucial property holds for 𝐷
Grohe

.

Lemma H.1. ([26]) Let ℎ be an homomorphism from 𝐷 to 𝐷
Grohe

such that ℎ0 ◦ ℎ is the identity. Then 𝐺 contains a 𝑘-clique.

Our variant still enjoys many of the good properties of Grohe’s

database, and some additional properties concerning the satisfaction

of frontier-guarded TGDs, as shown in the following Theorem

(which is essentially an equivalent reformulation of Theorem 7.1)

for the case when CQs allow for free variables.

Lemma H.2. Let 𝐺 , 𝑘 , 𝐷 , 𝐷 ′, 𝐴, 𝐷∗ = 𝐷∗ (𝐺, 𝐷, 𝐷 ′, 𝐴, 𝜇), and ℎ0

be as defined above. The following statements hold:
(1) There is a polynomial-time algorithm that, given 𝐺 , 𝐷 , 𝐷 ′, 𝐴,

and 𝜇, computes 𝐷∗.
(2) ℎ0 is a surjective homomorphism from 𝐷∗ to 𝐷 ′.
(3) 𝐺 contains a 𝑘-clique iff there is a homomorphism ℎ from 𝐷

to 𝐷∗ such that ℎ0 (ℎ(·)) is the identity on 𝐴.
(4) If𝐷 ′ |= Σ, and every clique of size at most 3 ·𝑟 in𝐺 is contained

in a clique of size 3 · 𝑟 ·𝑚, then 𝐷∗ |= Σ.

Proof. Items (1) and (2) follow directly from the definition of

𝐷∗
and ℎ0. However, for item (1) it is necessary to note that since

the arity of the schema S is bounded by the fixed integer 𝑟 , in the

construction of 𝐷 it is enough to consider only all labelled cliques

of size at most 𝑟 .

Let us prove (3). Although (⇐) can be obtained easily by mim-

icking the proof in [26], we shall give a proof using Lemma H.1.

Assume that ℎ is a homomorphism from 𝐷 to 𝐷∗
such that ℎ0 ◦ ℎ

is the identity on 𝐴. Then the restriction ℎ |𝐴 of ℎ to 𝐴 defines a

homomorphism from 𝐷 |𝐴 to 𝐷∗
such that ℎ0 ◦ ℎ |𝐴 is the iden-

tity. But then ℎ |𝐴 corresponds to a homomorphism from 𝐷 |𝐴 to

𝐷 (𝐺, 𝐷 |𝐴, 𝐷 |𝐴, dom(𝐷 |𝐴), 𝜇) with ℎ0 ◦ℎ |𝐴 being the identity. Since

𝐷 (𝐺, 𝐷 |𝐴, 𝐷 |𝐴, 𝐴, 𝜇) is contained in the original Grohe’s database,

𝐷
Grohe

(𝐺,𝐷 |𝐴, 𝜇), it follows from Lemma H.1 that 𝐺 contains a

𝑘-clique. For the converse (⇒) assume that 𝐺 has a 𝑘-clique, or

alternatively, that there is a labelled clique 𝜂 in 𝐺 with domain [𝑘].
Then 𝜂 covers all elements in dom(𝐷 ′) and, hence, the mapping

ℎ : dom(𝐷) → dom(𝐷∗) with ℎ(𝑧) = 𝑧𝜂 , for every 𝑧 ∈ dom(𝐷),
defines a homomorphism from 𝐷 to 𝐷∗

satisfying the conditions.

Let us finally show (4). Consider an arbitrary frontier-guarded

TGD 𝜙 (𝑥,𝑦) → ∃𝑧𝜓 (𝑥, 𝑧) in Σ, and let (𝑎, ¯𝑏) be an arbitrary tuple

in the evaluation of 𝜙 (𝑥,𝑦) over 𝐷∗
. Since ℎ0 is a homomorphism

from 𝐷∗
to 𝐷 ′

, we have that 𝐷 ′
contains all facts in 𝜙 (ℎ0 (𝑎, ¯𝑏)).

Therefore, since 𝐷 ′ |= Σ, there is a tuple ¯𝑑 of elements in dom(𝐷 ′),
for | ¯𝑑 | = |𝑧 |, such that 𝐷 ′

contains every atom in𝜓 (ℎ0 (𝑎), ¯𝑑). Since
there is an atom guarding 𝑥 in 𝜙 , it follows from the definition of

𝐷∗
that 𝑎 = ℎ0 (𝑎)𝜂 for some labelled clique 𝜂 covering ℎ0 (𝑎). In

addition, Σ ∈ FG𝑚 and hence (ℎ0 (𝑎), ¯𝑑) can have at most 𝑟 ·𝑚
elements. It follows from the assumptions of item (4) that there

is labelled clique 𝜂 ′ in 𝐺 , extending 𝜂, that covers all elements

mentioned by
¯𝑑 (in addition to all elements inℎ0 (𝑎) already covered

by 𝜂). Thus, 𝐷∗
contains every atom in𝜓 (ℎ0 (𝑎)𝜂′, ¯𝑑𝜂′) = 𝜓 (𝑎, ¯𝑑𝜂′).

H.2 A Crucial Lemma

Our proof borrows several ideas and techniques from the proof of

Grohe’s Theorem. However, the adaptation of such techniques is

non-trivial for the reasons that we have already discussed in Sec-

tion 5.2, and we briefly recall here again. First, we cannot construct

an arbitrary database 𝐷 , but we need to construct one that satisfies

the given set Σ of frontier-guarded TGDs. Second, the notion of

core of a CQ, which is crucial for the proof of Grohe, cannot be

directly used in our context. Instead, we need to develop a technical

lemma, which, intuitively speaking, states that some subsets of our

CQs behave like cores for the sake of our proof.

Lemma H.3. Fix ℓ ≥ 𝑟 ·𝑚. There is a computable function that
takes as input a CQS 𝑆 = (Σ, 𝑞(𝑥)) from (FG𝑚,CQ) that is not
uniformly CQℓ -equivalent, and a positive integer 𝑠 ≥ 1, and outputs
a CQ 𝑝 (𝑥), a subset 𝑋 of the existentially quantified variables of 𝑝 ,
and a CQ 𝑝 ′(𝑥), such that:

(1) 𝑞 ≡Σ 𝑝 .
(2) 𝐷 [𝑝 ′] |= Σ.
(3) 𝐷 [𝑝] ⊆ 𝐷 [𝑝 ′].
(4) For every homomorphism ℎ from 𝑝 to 𝑝 ′ with ℎ(𝑥) = 𝑥 , we

have that ℎ(𝑋 ) = 𝑋 .
(5) The treewidth of 𝐺𝑝

|𝑋 is larger than ℓ .
(6) For every CQ 𝑝 ′′(𝑥) with at most 𝑠 variables, if 𝑥 ∈ 𝑝 ′′(𝐷 [𝑝 ′])

then also 𝑥 ∈ 𝑝 ′′(chase(𝐷 [𝑝], Σ)).

Proof. Let us assume that 𝑆 is defined over schema S, that 𝑞(𝑥)
has 𝑛 > 0 variables, and that 𝑡 is the maximum number of variables

appearing in the body of some TGD in Σ. We set 𝑠 ′ = max {𝑠, 𝑛, 𝑡}.
First of all, we can compute by exhaustive search a CQ 𝑝 (𝑥)

with a minimum number of variables that satisfies 𝑞 ≡Σ 𝑝 . This

is because the notion ≡Σ is decidable, for Σ ∈ FG. In fact, to

check whether 𝑝 ⊆Σ 𝑞 one can construct the finite instance

𝑀 = 𝑀 (𝐷 [𝑝], Σ, 𝑛) from Definition 6.5, which exists by the strong

finite controllability of FG as stated in Theorem 6.7, and then

check whether 𝑥 ∈ 𝑞(𝑀). We know that the latter holds iff

𝑥 ∈ 𝑞(chase(𝐷 [𝑝], Σ)). From Proposition 4.5 we get that 𝑝 ⊆Σ 𝑞.

Analogously, one can check 𝑞 ⊆Σ 𝑝 .

We have then that item (1) holds by definition. We now explain

how to build 𝑝 ′ and 𝑋 . We need some preparation. First, we shall

assume that for every TGD 𝜎 in Σ the new TGD 𝜎 ′ obtained by

identifying two variables in the body of 𝜎 belongs also to Σ. We

can assume this without loss of generality because 𝜎 ′ is implied

by 𝜎 and, furthermore, there is an easy procedure that iteratively

adds to Σ all new TGDs that can be obtained by identifying two

variables in the body. Also, we build a new relational schema S′

and set Σ′ of frontier-guarded TGDs in the following way. Initially,

set S′ = S and Σ′ = Σ. Then, for each 𝜎 = 𝜙 (𝑥 ′, 𝑦) → ∃�̄�𝜓 (𝑥 ′, �̄�)
in Σ, for every partition 𝜒 ∧ 𝜒 ′ = 𝜙 of the atoms in 𝜙 , and for every

CQ 𝑞′(𝑧) = ∃𝑣 𝜒 (𝑣, 𝑧) obtained by quantifying existentially some



variables in 𝜒 , we include in S′ a new predicate 𝑇𝑞′ with the same

arity than 𝑧. Furthemore, for every atom 𝑅(𝑢) where 𝑅 ∈ S and

𝑢 might contain variables occurring in 𝜙 and new fresh variables,

we include in Σ′ two new TGDs 𝜎 ′ and 𝜎 ′′ (provided they are in

FG). TGD 𝜎 ′ is obtained by replacing, in 𝜙 , 𝜒 (𝑣, 𝑧) by𝑇𝑞′ (𝑧) ∧𝑅(𝑢),
whereas 𝜎 ′′ is the TGD 𝜙 (𝑣, 𝑧) ∧ 𝑅(𝑢) → 𝑇𝑞′ (𝑧).

The following claim follows easily from the definition.

Claim H.4. For every S-instance 𝐷 , and every atom 𝑅(𝑐) where
𝑅 ∈ S and 𝑐 only mentions elements from dom(𝐷),

𝑅(𝑐) ∈ chase(𝐷, Σ) ⇐⇒ 𝑅(𝑐) ∈ chase(𝐷, Σ′).
We use A to denote the collection of all subsets 𝐴 from dom(𝑝)

that are guarded, i.e., there exists an atom 𝑅(𝑎) of 𝑝 such that 𝑎

mentions all elements in 𝐴. For every 𝐴 ∈ A, let 𝐸𝐴 be the S′-
database that contains all facts 𝑅( ¯𝑏) ∈ chase(𝐷 [𝑝], Σ′) for which
it is the case that all elements from

¯𝑏 appear in 𝐴. Notice that, by

Theorem 6.7, each 𝐸𝐴 can be constructed from 𝐷 [𝑝], Σ′ and 𝐴. It
follows also from Theorem 6.7 that we can construct a finite S′-
instance𝑀𝐴 = 𝑀 (𝐸𝐴, Σ′, 𝑠 ′) with the property that, for every CQ

𝑝 ′′(𝑥 ′′) with at most 𝑠 ′ variables,

𝑎 ∈ 𝑝 ′′(𝑀𝐴) ⇐⇒ 𝑎 ∈ 𝑝 ′′(chase(𝐸𝐴, Σ′)),
for every tuple 𝑎 of elements in dom(𝐸𝐴) of the same arity as 𝑥 ′′.

Let us define 𝐷𝐴 by removing from 𝑀𝐴 those atoms that are

not over S. We can assume (renaming elements if necessary) that

dom(𝐷𝐴)∩dom(𝐷𝐴′) = 𝐴∩𝐴′
, for every𝐴,𝐴′ ∈ A.We then define

𝑝 ′ as ∪𝐴∈A𝐷𝐴 . We have by construction that 𝐷 [𝑝] ⊆ 𝐷 [𝑝 ′], i.e.,
item (3) holds.

We now show item (6). We actually prove something stronger:

Claim H.5. Let 𝑝 ′′(𝑥) be a CQ with at most 𝑠 variables and 𝑐 ∈
dom(𝑝) |𝑥 | such that 𝑐 ∈ 𝑝 ′′(𝐷 [𝑝 ′]). Then 𝑐 ∈ 𝑝 ′′(chase(𝐷 [𝑝], Σ)).

Proof. Assume that 𝑐 ∈ 𝑝 ′′(𝐷 [𝑝 ′]), i.e., there exists a homomor-

phismℎ from 𝑝 ′′ to 𝑝 ′ withℎ(𝑥) = 𝑐 . Let 𝑝 ′′(𝑥) = ∃𝑦𝜙 (𝑥,𝑦) and for
every𝐴 ∈ A, let 𝜙𝐴 be the conjunction of all atoms, 𝑅(𝑧), in 𝜙 such

that ℎ(𝑧) is entirely contained in dom(𝐷𝐴). Notice that if we define
𝑝 ′′
𝐴
as the CQ ∃𝑦𝐴𝜙𝐴 (𝑥𝐴, 𝑦𝐴), where 𝑥𝐴 and 𝑦𝐴 are all variables of

𝜙𝐴 occurring in 𝑥 and 𝑦, respectively, then 𝑝 ′′ ≡ ∧
𝐴∈A 𝑝 ′′

𝐴
.

Since ℎ(𝑥𝐴) ∈ 𝑝 ′′𝐴 (𝐷𝐴), we have by definition that also ℎ(𝑥𝐴) ∈
𝑝 ′′
𝐴
(𝑀𝐴). Since 𝑝 ′′𝐴 has at most 𝑠 ≤ 𝑠 ′ variables, it follows then

from the definition of 𝑀𝐴 that ℎ(𝑥𝐴) ∈ 𝑝 ′′
𝐴
(chase(𝐸𝐴, Σ′)), and

hence ℎ(𝑥𝐴) ∈ 𝑝 ′′𝐴 (chase(𝐷 [𝑝], Σ′)). Since 𝐴 was arbitrarily cho-

sen, we can then conclude that ℎ(𝑥) ∈ 𝑝 ′′(chase(𝐷 [𝑝], Σ′)). Con-
sequently, since 𝑝 ′′ only contains predicates in S it follows directly
from Claim H.4 that ℎ(𝑥) ∈ 𝑝 ′′

𝐴
(chase(𝐷 [𝑝], Σ)).

We then show that item (2) holds.

Claim H.6. It is the case that 𝐷 [𝑝 ′] |= Σ.

Proof. Let 𝜎 = 𝜙 (𝑥 ′, 𝑦) → ∃�̄� 𝜓 (𝑥 ′, �̄�) be any TGD in Σ and let

ℎ be any mapping of the variables in 𝜙 to elements in dom(𝑝 ′) such
that 𝜙 (ℎ(𝑥 ′), ℎ(𝑦)) ⊆ 𝑝 ′. Our goal is to show that ℎ(𝑥) belongs to
the evaluation of ∃�̄� 𝜓 (𝑥 ′, �̄�) in 𝐷 [𝑝 ′]. We can assume that ℎ is

injective (no two variables from 𝜙 are mapped to the same element

in dom(𝑝 ′)) since the non-injective case is reduced to the injective

one. Indeed, if ℎ is non-injective we only need to replace 𝜎 by the

TGD obtained by identifying variables in the body that are mapped

by ℎ to the same element (which by assumption also belongs to Σ′)
and also modify ℎ accordingly.

Since Σ ∈ FG, it follows that there exists some 𝐴 ∈ A such that

ℎ(𝑥 ′) is entirely contained in dom(𝐷𝐴). If ℎ(𝑦) is also contained in
dom(𝐷𝐴) then there is nothing else to prove since, by construction,

𝐷𝐴 satisfies Σ.
Assume, then, that ℎ(𝑦) is not contained in dom(𝐷𝐴). Let 𝑅(𝑎)

be the atom in 𝑝 that guards 𝐴. Let 𝑎 = (𝑎1, . . . , 𝑎𝑠 ) and let 𝑢 =

(𝑢1, . . . , 𝑢𝑠 ) be a tuple of variables where for every 1 ≤ 𝑖 ≤ 𝑠 , 𝑢𝑖 is
a new fresh variable if 𝑎𝑖 does not belong to the image of ℎ, and

𝑢𝑖 = ℎ
−1 (𝑎𝑖 ) otherwise (note that here we are using the fact that ℎ

is injective).

Let𝑦′ be a tuple containing all variables in𝑦 that are not mapped

by ℎ inside dom(𝐷𝐴), let 𝜒 (𝑦′, 𝑧) be the conjunction of all atoms in

𝜙 containing some variable in 𝑦′ (where 𝑧 is a tuple that contains
the rest of the variables in 𝜒), and let 𝑞′(𝑧) = ∃𝑦′𝜒 (𝑦′, 𝑧). Note that
ℎ(𝑧) ⊆ 𝐴 as, by construction, if a tuple in 𝑝 ′ contains elements in

dom(𝐷𝐴) \𝐴 then all of its elements must necessarily be contained

in𝐴. Since every element mentioned in ℎ(𝑧) belongs to𝐴, it follows
that the TGD 𝜎 ′ = 𝜒 (𝑧,𝑦) ∧ 𝑅(𝑢) → 𝑅𝑞′ (𝑧) is frontier-guared by

𝑅(𝑢) and, consequently, it belongs to Σ′. Let ℎ′ be the extension of

ℎ so that every fresh variable𝑢𝑖 in𝑢 is mapped byℎ′ to 𝑎𝑖 . Note that
the image of ℎ′ is contained in dom(𝑝 ′) and hence it follows, by ap-
plying TGD 𝜎 with mappingℎ′, that 𝑅𝑞′ (ℎ(𝑧)) ∈ (chase(𝐷 [𝑝], Σ′)).
Consequently, 𝑅𝑞′ (ℎ(𝑧)) belonts to 𝐸𝐴 and, hence, to𝑀𝐴 , as well.

Consider the TGD 𝜎 ′′ obtained by replacing 𝜒 (𝑦′, 𝑧) by 𝑅𝑞′ (𝑧) ∧
𝑅(𝑢) in the body, 𝜙 (𝑥 ′, 𝑦), of 𝜎 . That is, 𝜎 ′′ = 𝜒 ′(𝑥 ′, 𝑧) ∧ 𝑅𝑞′ (𝑧) ∧
𝑅(𝑢) → ∃�̄� 𝜓 (𝑥 ′, �̄�), where 𝜒 ′ is the set of all atoms in 𝜙 that are

not in 𝜒 . We shall prove that 𝜎 ′′ is frontier-guarded (and hence,

it belongs to Σ′). Clearly 𝑥 ′ is guarded by some atom in 𝜒 or 𝜒 ′.
In the latter case there is nothing else to prove so we can assume

that 𝜒 contains some atom guarding 𝑥 ′. By definition, this atom

contains some elements not in 𝐷𝐴 which implies that 𝑥 ′ is entirely
contained in 𝐴. Consequently 𝑥 ′ is guarded by 𝑅(𝑢).

Now, since 𝑅𝑞′ (ℎ(𝑧)) ∈ 𝑀𝐴 it follows, by applying 𝜎 ′′ with
mapping ℎ′, that ℎ(𝑥 ′) belongs to the evaluation of ∃�̄�𝜓 (𝑥 ′, �̄�)
over 𝑀𝐴 . Since all atoms in 𝜓 involve only predicates from S, it
follows that ℎ(𝑥 ′) belongs to the evaluation of ∃�̄�𝜓 (𝑥 ′, �̄�) over
𝐷𝐴 , and hence over 𝐷 [𝑝 ′].

Before continuing, we prove the following important properties

of the homomorphisms from 𝑝 to 𝑝 ′.

Claim H.7. Let ℎ be any homomorphism from 𝑝 to 𝑝 ′ with ℎ(𝑥) =
𝑥 . The following statements hold:

(a) It is the case that 𝑝 ≡Σ 𝑝
′
|dom(ℎ (𝑝)) .

(b) ℎ is injective.
(c) For every 𝐴 ∈ A, it is the case that (𝐷𝐴) |dom(ℎ (𝑝))∩dom(𝐷𝐴)

has treewidth at most 𝑟 ·𝑚.
(d) For every 𝑌 ⊆ dom(𝑝) \ 𝑥 , the treewidth of𝐺𝑝

|𝑌 is at most the

maximum between 𝑟 ·𝑚 and the treewidth of 𝐺𝑝

|ℎ (𝑌 )∩dom(𝑝) .

Proof. Consider first item (a). Clearly 𝑝 ′|dom(ℎ (𝑝)) ⊆Σ 𝑝 since ℎ

defines a homomorphism from 𝑝 to 𝑝 ′|dom(ℎ (𝑝)) . For the converse,

we have 𝑥 ∈ 𝑝 ′(𝐷 [𝑝 ′]) and, therefore, 𝑥 ∈ 𝑝 ′|dom(ℎ (𝑝)) (𝐷 [𝑝 ′]).
Since 𝑝 , and thus 𝑝 ′|dom(ℎ (𝑝)) , has at most has at most 𝑛 ≤ 𝑠 ′



variables, it follows from Claim H.5 that 𝑥 ∈ 𝑝 ′(chase(𝐷 [𝑝], Σ)),
i.e., 𝑝 ⊆Σ 𝑝 ′|dom(ℎ (𝑝)) . Item (b) holds due to the fact that 𝑝 ≡Σ

𝑝 ′|dom(ℎ (𝑝)) and the minimality condition we have imposed in the

definition of 𝑝 .

Let us prove item (c). Let𝐴 ∈ A. Since ℎ(𝑝) is of size at most 𝑛 ≤
𝑠 ′, it follows directly from the construction of 𝐷𝐴 that there exists a

homomorphism𝑔𝐴 from (𝐷𝐴) |dom(ℎ (𝑝))∩dom(𝐷𝐴) to chase(𝐸𝐴, Σ′)
that acts as the identity on 𝐴 ∩ dom(ℎ(𝑝)) (simply take the CQ

induced in 𝐷𝐴 by ℎ(𝑝) with all variables corresponding to elements

in 𝐴 ∩ dom(ℎ(𝑝)) being free). Let us denote by 𝐹𝐴 the subinstance

of chase(𝐸𝐴, Σ′) that contains only those atoms 𝑅(𝑎), for 𝑅 ∈ S,
such that all the elements mentioned in 𝑎 belong to the image of

𝑔𝐴 . We show next that there is a homomorphism 𝑓𝐴 from 𝐹𝐴 to

chase(𝑝, Σ) that acts as the identify on 𝐴.

Let 𝑝𝐴 (𝑥𝐴) be a CQ defined as the conjunction of atoms in 𝐹𝐴 ,

where every constant 𝑐 is replaced by a variable 𝑥𝑐 and 𝑥𝐴 is the

tuple of variables that represent the elements 𝑎 in dom(𝐹𝐴)∩𝐴. It is
then the case that 𝑎 ∈ 𝑝𝐴 (chase(𝐸𝐴, Σ′)). By definition of 𝐸𝐴 , this

means that 𝑎 ∈ 𝑝𝐴 (chase(𝑝, Σ′)). But 𝑝𝐴 only mentions relation

symbols in S, and hence it is the case that 𝑎 ∈ 𝑝𝐴 (chase(𝑝, Σ))
from Claim H.4. This implies our claim for the existence of 𝑓𝐴 as

described above.

Consequently, the mapping 𝑓 that sends every element 𝑎 in

dom(𝑝) to 𝑓𝐴 ◦ 𝑔𝐴 ◦ ℎ(𝑎), where 𝐴 is any set in A with 𝑎 ∈ 𝐴,

is well-defined and corresponds to a homomorphism from 𝑝 to

chase(𝑝, Σ). Clearly, chase(𝑝, Σ) |dom(𝑓 (𝑝)) ≡Σ 𝑝 and, hence, by the

minimality of 𝑝 it follows that 𝑓 is injective.

Let 𝐴 ∈ A. Since |dom(𝐸𝐴) | ≤ 𝑟 and Σ′ ∈ FG𝑚 , it follows di-

rectly that chase(𝐸𝐴, Σ′), and thus 𝐹𝐴 , has a treewidth at most

𝑟 · 𝑚. Since 𝑓 is injective, then 𝑔𝐴 is also injective. Therefore,

(𝐷𝐴) |dom(ℎ (𝑝))∩dom(𝐷𝐴) , which is the preimage of 𝑔𝐴 , also has

treewidth at most 𝑟 ·𝑚. This establishes item (c).

We now prove item (d). Let (𝑇, 𝜒) be a tree decomposition of

𝐺
𝑝′

|ℎ (𝑌 )∩dom(𝑝) . We shall extend it into a tree decomposition of

𝐺
𝑝′

|ℎ (𝑌 ) in the following way. Let 𝐴 ∈ A. We know from item (c)

that (𝐷𝐴) |dom(ℎ (𝑝))∩dom(𝐷𝐴) has treewidth at most 𝑟 · 𝑚. This

implies

𝐻𝐴 := 𝐺
𝑝′

|ℎ (𝑌 )∩dom(𝐷𝐴)
has a tree decomposition (𝑇𝐴, 𝜒𝐴) of width at most 𝑟 ·𝑚 (as 𝐴 is

guarded, and thus every pair of elements in 𝐺𝑝′ ∩ 𝐴 is linked by

an edge). Moreover, since 𝐴 is a guarded in dom(𝑝), the elements

in 𝐴 ∩ ℎ(𝑌 ) define a clique on 𝐻𝐴 . Hence, there is a node 𝑣 ∈ 𝑇𝐴
such that 𝐴 ∩ ℎ(𝑌 ) ⊆ 𝜒𝐴 (𝑣). Likewise, there is 𝑢 ∈ 𝑇 such that

𝐴∩ℎ(𝑌 ) ⊆ 𝜒 (𝑢). Thus, we can construct a new tree decomposition

by joining 𝑢 and 𝑣 with an edge. Iterating this process for all𝐴 ∈ A
we get a tree decomposition of𝐺

𝑝′

|ℎ (𝑌 ) whose width is the maximum

between 𝑟 ·𝑚 and the width of 𝑇 . Since ℎ is injective by item (b),

𝐺
𝑝

|𝑌 has a tree decomposition of the same width as 𝐺
𝑝′

|ℎ (𝑌 ) .

Let 𝑘 be the treewidth of𝐺𝑝
. Since 𝑞 ≡Σ 𝑝 and 𝑞 is not uniformly

CQℓ -equivalent, it follows that 𝑘 > ℓ . A set 𝑌 ⊆ dom(𝑝) \ 𝑥 is nice
if 𝐺

𝑝

|𝑌 has treewidth 𝑘 and |𝑌 | is minimal with such property. We

construct 𝑋 as the set containing all elements that belong to some

nice set. It follows directly from the definition that property (5)

holds. To finish, we show that property (4) is satisfied.

Claim H.8. Let ℎ be a homomorphism from 𝑝 to 𝑝 ′ with ℎ(𝑥) = 𝑥 .
Then ℎ(𝑋 ) = 𝑋

Proof. Let 𝑌 be any nice set. From Claim H.7(c), the treewidth

of 𝐺
𝑝

|𝑌 is at most the maximum between 𝑟 ,𝑚, and the treewidth

of 𝐺
𝑝

|ℎ (𝑌 )∩dom(𝑝) . Since 𝐺
𝑝

𝑌
has treewidth 𝑘 and 𝑘 > ℓ ≥ 𝑟 ·𝑚, the

treewidth of 𝐺
𝑝

|ℎ (𝑌 )∩dom(𝑝) is at least 𝑘 , implying that it is, in fact,

𝑘 since the treewidth of𝐺𝑝
is 𝑘 . By the minimality of |𝑌 |, it must

be the case then that ℎ(𝑌 ) ⊆ dom(𝑝). Therefore, ℎ(𝑌 ) is also a nice
set and, hence, ℎ(𝑌 ) ⊆ 𝑋 . Since ℎ is injective from Claim H.7(b), it

must be the case that ℎ(𝑋 ) = 𝑋 .

This finishes the proof of Lemma H.3.

We now proceed to explain how Lemma H.3 is applied in order

to prove Theorem 5.13.

H.3 The FPT-reduction

We have all the ingredients needed to define the fpt-reduction used

in the proof of Theorem 5.13. Let (𝐺,𝑘) be an instance of p-Clique.
It is easy to see that we can assume, without loss of generality, that

every clique of size at most 3 · 𝑟 in 𝐺 is contained in a clique of

size 3 · 𝑟 ·𝑚; recall that 𝑟 is the maximum arity of the predicates

occurring in CQSs of O, while𝑚 is the maximum number of atoms

in the head of the TGDs occurring in CQSs of O.

Claim H.9. p-Clique is W[1]-hard, even if restricted to instances
that satisfy the above restriction.

Henceforth, for 𝑘 ≥ 1 we let 𝐾 =
(𝑘
2

)
. From the Excluded Grid

Theorem [32], there is a computable function 𝐹 : N→ N such that,

for each 𝑘 ≥ 1 and simple graph 𝐺 of treewidth at least 𝐹 (𝑘), we
have that at least some connected component of𝐺 contains a (𝑘×𝐾)-
grid as a minor. By hypothesis on the class O, there exists a CQS
𝑆 = (Σ, 𝑞′(𝑥)) fromO such that 𝑆 ∉ (FG𝑚,UCQ)≡𝐹 (𝑘) , where 𝐹 is as

defined above. W.l.o.g., we assume that 𝐹 (𝑘) ≥ 𝑟 ·𝑚. We build from

(𝐺,𝑘) an instance (𝐷∗, Σ, 𝑞′(𝑥)) of p-CQS-Evaluation(O), where
𝐷∗

is a database defined as follows.

First, observe that there must be a CQ 𝑞(𝑥) in 𝑞′(𝑥) such that

(Σ, 𝑞(𝑥)) ∉ (FG𝑚,CQ)≡𝐹 (𝑘) , while 𝑞 ⊈Σ 𝑞 for every disjunct 𝑞 of

𝑞′ other than 𝑞. In fact, if we remove from 𝑞′ every disjunct that

is not maximal with respect to ⊆Σ, then we obtain an equivalent

UCQ𝑞′′(𝑥) under Σ. Therefore, (Σ, 𝑞′′(𝑥)) ∉ (FG𝑚,UCQ)≡𝐹 (𝑘) , and
hence, there is at least one disjunct 𝑞 in 𝑞′′ such that (Σ, 𝑞(𝑥)) ∉
(FG𝑚,CQ)≡𝐹 (𝑘) .

Since, by assumption, 𝐹 (𝑘) ≥ 𝑟 ·𝑚, it is possible to compute

from 𝑞(𝑥) and 𝑠 , where 𝑠 is the maximum number of variables over

all CQs of 𝑞′, a CQ 𝑝 (𝑥), a subset 𝑋 of the existentially quantified

variables of 𝑝 , and a CQ 𝑝 ′(𝑥), that satisfy the properties stated

in Lemma H.3 for ℓ = 𝐹 (𝑘). In particular, the treewidth of 𝐺
𝑝

|𝑋
is at least 𝐹 (𝑘), and hence, by the Excluded Grid Theorem, there

exists a connected component𝐻 of𝐺
𝑝

|𝑋 and a minor map 𝜇 from the

(𝑘×𝐾)-grid onto𝐻 . We then define𝐷∗
as𝐷∗ (𝐺,𝐷 [𝑝], 𝐷 [𝑝 ′], 𝑋, 𝜇),

where 𝐷∗ (𝐺,𝐷 [𝑝], 𝐷 [𝑝 ′], 𝑋, 𝜇) is our modified version of Grohe’s

database that satisfies the properties stated in Lemma H.2.



H.4 Correctness of the Reduction

It remains to show that the above is an fpt-reduction from p-Clique
to CQS-Evaluation(O). To this end, we need to show the following.

Lemma H.10. The following statements hold:
(1) 𝐷∗ |= Σ.
(2) 𝐺 has a 𝑘-clique iff 𝑥 ∈ 𝑞′(𝐷∗).
(3) There are computable functions 𝑓 , 𝑔 : N → N such that

(𝐷∗, Σ, 𝑞′(𝑥)) can be constructed in time 𝑓 (𝑘) · | |𝐺 | |𝑂 (1) and
( | |𝑞′ | | + | |Σ| |) ≤ 𝑔(𝑘).

Proof. The proof of (1) follows from the last item in Theo-

rem H.2 since 𝐷 [𝑝 ′] |= Σ and every clique of size at most 3 · 𝑟
in 𝐺 is contained in a clique of size 3 · 𝑟 ·𝑚. It is worth noticing

though that this holds for our variant of Grohe’s database, but not

necessarily for the one that Grohe originally defined in [26].

We now proceed to show item (2).

(⇒) Assume that 𝐺 has a 𝑘-clique. Then, by Lemma H.2,

there is a homomorphism ℎ from 𝑝 to 𝐷∗
such that ℎ0 ◦ ℎ

is the identity on 𝑋 . It follows directly from the definition

of 𝐷∗
that the mapping ℎ′ defined as ℎ′(𝑥) = ℎ(𝑥), when

𝑥 ∈ 𝑋 , and ℎ′(𝑥) = 𝑥 , otherwise, is also a homomorphism

from 𝑝 to 𝐷∗
. In particular, since 𝑋 contains only quantified

variables we have that ℎ′(𝑥) = 𝑥 , and hence 𝑥 ∈ 𝑝 (𝐷∗). But
𝑞 ≡Σ 𝑝 , and thus, 𝑥 ∈ 𝑞(𝐷∗) since, by item (1), 𝐷∗ |= Σ.
Therefore, 𝑥 ∈ 𝑞′(𝐷∗) as 𝑞 is a disjunct of 𝑞′.
(⇐) Conversely, assume that 𝑥 ∈ 𝑞′(𝐷∗). First observe that
𝑥 ∈ 𝑞(𝐷∗). By contradiction, assume otherwise. Then, there

is a CQ 𝑞(𝑥) in 𝑞′(𝑥), other than 𝑞, such that 𝑥 ∈ 𝑞(𝐷∗).
Clearly,𝐷∗

homomorphically maps to 𝑝 ′ via the mapping ℎ0,

and hence, there is a homomorphism from 𝑞 to 𝑝 ′ mapping

𝑥 to 𝑥 . By Lemma H.3, 𝑥 ∈ 𝑞(chase(𝑝, Σ)), which in turn

implies that 𝑝 ⊆Σ 𝑞; the latter holds due to Proposition 4.5.

Hence, 𝑞 ⊆Σ 𝑞 as 𝑝 ≡Σ 𝑞, which contradicts the way in

which 𝑞 has been chosen.

Now, since 𝑥 ∈ 𝑞(𝐷∗), we have that 𝑥 ∈ 𝑝 (𝐷∗) because
𝑞 ≡Σ 𝑝 and𝐷

∗ |= Σ. Then, there is a homomorphismℎ from 𝑝

to𝐷∗
withℎ(𝑥) = 𝑥 . It follows thatℎ0◦ℎ is a homomorphism

from 𝑝 to 𝑝 ′ that maps 𝑥 to 𝑥 . In consequence, from Lemma

H.3 we obtain that ℎ(𝑋 ) = 𝑋 . Therefore, there must exist

some𝑚 ≥ 0 such that 𝑔 = ℎ ◦ (ℎ0 ◦ℎ)𝑚 is a homomorphism

from 𝑝 to 𝐷∗
that satisfies that ℎ0 ◦ 𝑔 is the identity on 𝑋 . It

follows from Lemma H.2 that G has a 𝑘-clique.

As for item (3), first notice that the CQS 𝑆 = (Σ, 𝑞′) can be

computed by simply enumerating the CQSs from O until we find 𝑆

since, by Theorem 5.10, we can check whether 𝑆 ∉ (FG,UCQ)≡
𝐹 (𝑘) .

The same holds for 𝑞. From 𝑞 we can construct the CQs 𝑝 and 𝑝 ′,
as well as the set of variables 𝑋 , by applying Lemma H.3. We can

then compute 𝜇 via an exhaustive search over 𝐺𝑝′
. Notice that the

construction of 𝑞′, 𝑞, 𝑝 , 𝑝 ′, 𝑋 , and 𝜇 depends only on 𝑘 . Lemma H.2

states, on the other hand, that it is possible to construct 𝐷∗
in time

polynomial, given 𝑝 ′, 𝑝 , 𝑋 , 𝜇, and 𝐺 . Putting all these together,

we obtain the existence of computable functions 𝑓 , 𝑔 : N→ N as

required in item (3), and the claim follows.

I PROOF OF LEMMA 6.6

For brevity, let finans(𝑞, 𝐷, Σ) = ⋂
𝑀 ∈fmods(𝐷,Σ) 𝑞(𝑀).

(⇒) Consider an S-database 𝐷 , a set Σ ∈ C of TGDs over S, and
an integer 𝑛 ≥ 0. Assuming that dom(𝐷) = {𝑑1, . . . , 𝑑ℓ }, for ℓ ≥ 1,

let 𝐷+ = 𝐷 ∪ {Dom(𝑑1), . . . ,Dom(𝑑ℓ )}, and ¯𝑑 = (𝑑1, . . . , 𝑑ℓ ).

Lemma I.1. There exists an instance 𝑀∗ ∈ fmods(𝐷+, Σ) such
that, for every UCQ 𝑞∗ over S ∪ {Dom} of arity ℓ with at most 𝑛 + ℓ
variables, ¯𝑑 ∈ 𝑞∗ (𝑀∗) implies ¯𝑑 ∈ 𝑞∗ (chase(𝐷+, Σ))

Proof. Let 𝑞 be the UCQ of arity ℓ consisting of all the CQs 𝑞′

with at most 𝑛 + ℓ variables such that
¯𝑑 ∉ 𝑞′(chase(𝐷+, Σ)). Clearly,

¯𝑑 ∉ 𝑞(chase(𝐷+, Σ)). Since C is finitely controllable, we conclude

that
¯𝑑 ∉ finans(𝑞, 𝐷+, Σ). Thus, there exists an instance 𝑀∗ ∈

fmods(𝐷+, Σ) such that ¯𝑑 ∉ 𝑞(𝑀∗). Fix an arbitrary UCQ 𝑞∗ of arity
ℓ with at most 𝑛 + ℓ variables. Observe that ¯𝑑 ∉ 𝑞∗ (chase(𝐷+, Σ))
implies

¯𝑑 ∉ 𝑞∗ (𝑀∗) since, by construction, each CQ in 𝑞∗ occurs
also in 𝑞, and we know that

¯𝑑 ∉ 𝑞(𝑀∗). The claim follows.

We claim that the desired finite model𝑀 (𝐷, Σ, 𝑛) is the instance
𝑀∗

|S, where 𝑀
∗
is the (S ∪ {Dom})-instance of fmods(𝐷+, Σ) pro-

vided by Lemma I.1. To this end, we need to show that, for ev-

ery UCQ 𝑞(𝑥) over S of arity 𝑟 ≥ 0 with at most 𝑛 variables,

𝑞(chase(𝐷, Σ)) = 𝑞(𝑀∗
|S). Fix an arbitrary tuple 𝑐 ∈ dom(𝐷)𝑟 .

Clearly, 𝑐 ∈ 𝑞(chase(𝐷, Σ)) implies 𝑐 ∈ 𝑞(𝑀∗
|S) since𝑀

∗
|S is a model

of 𝐷 and Σ. Assume now that 𝑐 ∈ 𝑞(𝑀∗
|S). We proceed to show that

𝑐 ∈ 𝑞(chase(𝐷, Σ)). It is not difficult to see that there exists a UCQ

𝑞 of arity ℓ over (S∪ {Dom}) with at most 𝑛 + ℓ variables such that:

𝑐 ∈ 𝑞(𝑀∗
|S) =⇒ ¯𝑑 ∈ 𝑞(𝑀∗) (1)

¯𝑑 ∈ 𝑞(chase(𝐷+, Σ)) =⇒ 𝑐 ∈ 𝑞(chase(𝐷, Σ)) (2)

Since 𝑞 has at most 𝑛 + ℓ variables, by Lemma I.1, we get that

¯𝑑 ∈ 𝑞(𝑀∗) =⇒ ¯𝑑 ∈ 𝑞(chase(𝐷+, Σ)) (3)

Since, by hypothesis, 𝑐 ∈ 𝑞(𝑀∗
|S), from (1) we get that

¯𝑑 ∈ 𝑞(𝑀∗).
Thus, by (3), we get that

¯𝑑 ∈ 𝑞(chase(𝐷+, Σ)), and hence, by (2),

we conclude that 𝑐 ∈ 𝑞(chase(𝐷, Σ)), as needed.
(⇐) Consider an S-database 𝐷 , a set Σ ∈ C of TGDs over S,

and a UCQ 𝑞(𝑥) over S. Fix an arbitrary tuple 𝑐 ∈ dom(𝐷) |𝑥 | .
We need to show that 𝑐 ∈ 𝑞(chase(𝐷, Σ)) iff 𝑐 ∈ finans(𝑞, 𝐷, Σ).
Clearly, the (⇒) direction holds trivially. It remains to show that

𝑐 ∉ 𝑞(chase(𝐷, Σ)) implies 𝑐 ∉ finans(𝑞, 𝐷, Σ). Let 𝑛 ≥ 0 be the

number of variables occurring in 𝑞. Since C is strongly finitely

controllable, there exists 𝑀 (𝐷, Σ, 𝑛) ∈ fmods(𝐷, Σ) such that 𝑐 ∉

𝑞(𝑀 (𝐷, Σ, 𝑛)). This immediately implies that 𝑐 ∉ finans(𝑞, 𝐷, Σ).

J PROOF OF THEOREM 6.7

To show that FG is strongly finitely controllable, by Lemma 6.6, it

suffices to show that it is finitely controllable. This can be easily

shown by exploiting the fact that the guarded negation fragment of
first-order logic (GNFO) [5] enjoys the finite model property, i.e., if

a GNFO sentence has a model, then it has a finite one. But let us

first recall the guarded negation fragment.

GNFO restricts first-order logic by requiring that all occurrences

of negation are of the form 𝛼 ∧ ¬𝜑 , where 𝛼 is an atom containing



all the free variables of 𝜑 . Formally, the formulas of GNFO are

generated by the recursive definition

𝜑 ::= 𝑅(𝑡1, . . . , 𝑡𝑛) | 𝑡1 = 𝑡2 | 𝜑1 ∧ 𝜑2 | 𝜑1 ∨ 𝜑2 | ∃𝑥 𝜑 | 𝛼 ∧ ¬𝜑,
where each 𝑡𝑖 is a term (constant or variable), and in the last clause,

𝛼 is an atomic formula containing all free variables of 𝜑 . We know

that GNFO enjoys the finite model property, and we also have an

upper bound on the size of finite models:

Proposition J.1 ([5]). Consider a GNFO sentence 𝜑 . If 𝜑 has a

model, then it has a finite one of size 2
2
| |𝜑 | |𝑂 (1)

.

We proceed to show that FG is finitely controllable. Consider a

database 𝐷 , a set Σ ∈ FG, and a UCQ 𝑞(𝑥). We need to show that

𝑞(chase(𝐷, Σ)) =
⋂

𝑀 ∈fmods(𝐷,Σ)
𝑞(𝑀).

It should be clear that the (⊆) direction holds trivially. It remains

to show the (⊇) direction. Consider a tuple 𝑐 ∈ dom(𝐷) |𝑥 | . Our
goal is to devise a GNFO sentence Φ such that

(1) 𝑐 ∈ ⋂
𝑀 ∈fmods(𝐷,Σ) 𝑞(𝑀) =⇒ Φ does not have a finitemodel.

(2) Φ does not have a model =⇒ 𝑐 ∈ 𝑞(chase(𝐷, Σ)).
Having such a sentence in place we get the (⊇) direction since, by

Proposition J.1, we can conclude that if Φ does not have a finite

model, then it does not have a model at all, which in turn implies

that 𝑐 ∈ 𝑞(chase(𝐷, Σ)), as needed. Let us now explain how Φ is

constructed. We first observe that a frontier-guarded TGD 𝜎 of the

form 𝜑 (𝑥,𝑦) → ∃𝑥 𝜓 (𝑥, 𝑧) can be equivalently rewritten as

𝜙𝜎 = ¬
(
∃𝑥∃𝑦

(
𝜑 (𝑥,𝑦) ∧ ¬∃𝑧𝜓 (𝑥, 𝑧)

) )
,

which is a GNFO sentence since all the free variables of ∃𝑧𝜓 (𝑥, 𝑧)
occur in the guard of 𝜎 . We also observe that the sentence ¬𝑞(𝑐) is
trivially a GNFO sentence. Therefore,

Φ = 𝐷 ∧
∧
𝜎 ∈Σ

𝜙𝜎 ∧ ¬𝑞(𝑐),

which is clearly the desired GNFO sentence.

It remains to show that a finite witness is realizable, i.e., there

is a computable function that takes as input an S-database 𝐷 , a set
Σ ∈ FG over S, and an integer 𝑛 ≥ 0, and outputs the finite model

𝑀 (𝐷, Σ, 𝑛). In fact, this follows from the proof of Lemma 6.6 and

Proposition J.1. In the proof of Lemma 6.6, we actually show that

𝑀 (𝐷, Σ, 𝑛) is the model of a GNFO sentence 𝜑 , and thus, due to

Proposition J.1, we can assume that is of size 2
2
| |𝜑 | |𝑂 (1)

. Therefore,

we can compute the finite model𝑀 (𝐷, Σ, 𝑛) as follows:
(1) we first compute the set 𝑆𝑛 of all the non-isomorphic UCQs

over S with at most 𝑛 variables, which is clearly finite; and

(2) we enumerate all the non-isomorphic finite models𝑀 of 𝜑 of

size 2
2
| |𝜑 | |𝑂 (1)

, which are finitely many, until we find one such

that, for every 𝑞 ∈ 𝑆𝑛 , 𝑞(chase(𝐷, Σ)) = 𝑞(𝑀). Note that the
latter equality can be effectively checked since Σ ∈ FG.
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