
1

Dichotomies in Ontology-MediatedQuerying with the
Guarded Fragment

ANDRÉ HERNICH, University of Liverpool, UK
CARSTEN LUTZ, University of Bremen, Germany
FABIO PAPACCHINI, University of Liverpool, UK
FRANK WOLTER, University of Liverpool, UK

We study ontology-mediated querying in the case where ontologies are formulated in the guarded fragment
of first-order logic (GF) or extensions thereof with counting and where the actual queries are (unions of)
conjunctive queries. Our aim is to classify the data complexity and Datalog rewritability of query evaluation
depending on the ontology O, where query evaluation w.r.t. O is in PTime (resp. Datalog rewritable) if
all queries can be evaluated in PTime w.r.t. O (resp. rewritten into Datalog under O), and coNP-hard if at
least one query is coNP-hard w.r.t. O. We identify several fragments of GF that enjoy a dichotomy between
Datalog-rewritability (which implies PTime) and coNP-hardness as well as several other fragments that enjoy
a dichotomy between PTime and coNP-hardness, but for which PTime does not imply Datalog-rewritability.
For the latter, we establish and exploit a connection to constraint satisfaction problems. We also identify
fragments for which there is no dichotomy between PTime and coNP. To prove this, we establish a non-trivial
variation of Ladner’s theorem on the existence of NP-intermediate problems. Finally, we study the decidability
of whether a given ontology enjoys PTime query evaluation, presenting both positive and negative results,
depending on the fragment.

Additional Key Words and Phrases: Ontology-Based Data Access; Query Evaluation; Dichotomies

ACM Reference Format:
André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter. 2019. Dichotomies in Ontology-Mediated
Querying with the Guarded Fragment. ACM Trans. Comput. Logic 1, 1, Article 1 (April 2019), 69 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Ontology-mediated querying is a paradigm of data access in which incomplete data is enriched
with an ontology to provide domain knowledge and to enable more complete answers to queries,
see [14, 47, 67] for recent surveys. In this context, an ontology-mediated query (OMQ) is a pair
Q = (O,q) with O an ontology and q an actual query. Relevant ontology languages include
decidable fragments of first-order logic such as description logics (DLs) [7, 8] and decidable classes
of tuple-generating dependencies (TGDs), also known as Datalog± and as existential rules [20, 64].
Prominent choices for the actual query language are conjunctive queries (CQs) and unions thereof
(UCQs). A lot of research has been undertaken to understand the complexity of OMQ evaluation and
the rewritability of OMQs into more conventional database query languages such as Datalog, see for

An extended abstract of this paper was published in the Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, PODS 2017 [43].
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
1529-3785/2019/4-ART1 $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1:2 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

example [21, 22, 38–40, 45, 65]. Regarding the former, the two most important complexity measures
are combined complexity and data complexity. In combined complexity, the data and the OMQ
are both considered to be inputs. In data complexity, in contrast, only the data is the input while
the OMQ is fixed. It is often conceived as a minimum requirement for practical efficiency that the
data complexity of OMQ evaluation should be in PTime. Rewritability into conventional database
languages is studied, on the one hand, since this can be an approach to efficient query execution
in practice. On the other hand, rewritability is thoroughly intertwined with data complexity and,
in particular, every ontology-mediated query that is rewritability into Datalog has PTime data
complexity.

Fine-Grained Complexity. The importance of PTime data complexity is conflicting with the
fact that many desirable features of ontology languages result in OMQ evaluation to become at
least coNP-hard [17, 19, 21, 48, 70]. This has led to the design of ontology languages such as the
description logics DL-Lite, EL, and Horn-SHIQ [4, 6, 44] that have limited expressive power,
but guarantee PTime (or lower) data complexity and even rewritability into (versions of) Datalog.
In practical applications, however, ontology engineers often need to use language features that
are only available in computationally expensive ontology languages, but they typically do so in a
way such that one may hope for hardness to be avoided by the concrete ontologies that are being
designed. Initiated in [57, 59], this observation has led to studies of data complexity and rewritability
that are more fine-grained than the analysis of entire ontology languages. The approach taken in
[59] analyzes the data complexity on the level of individual ontologies O, universally quantifying
over the actual query: query evaluation w.r.t. an ontology O is in PTime if every OMQ (O,q) can
be evaluated in PTime and it is coNP-hard if there is at least one OMQ (O,q) that is coNP-hard
to evaluate. In this way, one can identify tractable ontologies within ontology languages that are,
in general, computationally hard. An even more fine-grained approach is taken in [15], where
quantification over the query is avoided and one aims to classify the complexity of each OMQ.
Both approaches are reasonable. In this paper, we follow the first one which is preferable when the
queries to be answered are not fixed at the design time of the ontology, in line with the common
view that ontologies are general purpose artifacts to be used in more than a single application.

As a concrete example for the subtlety of fine-grained complexity classification, consider the
following statements in the ontology:

∀x (Hand(x) → ∃=5y hasFinger(x ,y)) (1)
∀x (Hand(x) → ∃y (hasFinger(x ,y) ∧ Thumb(y))) (2)

The language features used here can in principle express coNP-hard properties. But are the concrete
statements (1) and (2) computationally costly? It turns out that an ontology that contains only
statement (1) enjoys PTime query evaluation and the same is true for an ontology that contains
only statement (2). In contrast, an ontology that contains both (1) and (2) is coNP-hard. Such subtle
differences cannot be captured when data complexity is studied on the level of ontology languages,
at least when basic compositionality conditions are desired.

Aim of Paper. An overarching framework for many ontology languages, tractable or not, is
provided by the guarded fragment of first-order logic (GF) [2, 41, 42, 66] and its extension with
counting quantifiers and other forms of counting [46, 68]. In particular, most description logics fall
within GF or its extensions with counting. Sometimes, also GF itself is considered as an ontology
language for ontology-mediated querying [9, 69]. Subsuming many relevant ontology languages,
GF and its extensions are well suited for general studies of the data complexity and rewritability
of ontology-mediated queries, in the sense of fine-grained complexity on the level of ontologies

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

Dichotomies in Ontology-MediatedQuerying with the Guarded Fragment 1:3

discussed above. For example, any dichotomy result obtained for the data complexity of ontology-
mediated querying with GF and its extensions is inherited by all DLs that fall within these logics.
The main aim of this paper is to identify as large as possible fragments of GF (and of extensions of GF

with different forms of counting) that result in a dichotomy between PTime and coNP when used as

ontology languages, considering conjunctive queries (CQs) and unions thereof (UCQs) as the actual

query language.We additionally aim to provide insight into the following questions:

(1) Which fragments of GF (with and without counting) do not admit a dichotomy between
PTime and coNP?

(2) What is the relationship between PTime data complexity and rewritability into Datalog—and
into Datalog with inequality in rule bodies in case we start from GF with forms of counting?

(3) Is it decidable whether a given ontology enjoys PTime data complexity?

We concentrate on a fragment of GF that is invariant under disjoint union, which we call uGF, and
on fragments thereof and their extension with forms of counting. The primary definition of uGF
is syntactical: a uGF ontology is a set of sentences of the form ∀x⃗ (R (x⃗) → φ (x⃗)) where R (x⃗) is a
guard (possibly equality) and φ (x⃗) is a GF formula that does not contain sentences as subformulas
and in which equality is not used as a guard. However, uGF is not just some fragment that is closed
under disjoint union, but it is characterized by this semantic property in the following sense: we
show that a sentence φ of GF is invariant under disjoint union if and only if it is equivalent to a
sentence of uGF.

The reason for concentrating on uGF is two-fold. On the one hand, the expressive power of GF
that does not fall within uGF seems to be of marginal importance for ontology engineering and
almost all DLs that fall within GF also fall within uGF; an exception are DLs with the universal role.
On the other hand, going beyond uGF brings in significant technical complications that appear
to make the technical development very cumbersome. We will point out the concrete advantages
of uGF over GF throughout the paper and confine ourselves to an example here: for every uGF
ontology O, UCQ evaluation w.r.t. O is in PTime if and only if CQ evaluation is, but there are GF
ontologies for which this is not the case. We do not intend to make strong claims about the practical
utility of uGF as an ontology language; it’s main virtue is that it encompasses many relevant DLs
and thus many relevant ontologies, in this way providing a suitable and general framework for a
fine-grained complexity analysis.

Obtained Results. Our dichotomy results are obtained by two different approaches: via direct,
fully self-contained proofs based on a carefully designed technical machinery that centers on
the notions of materializability and unraveling tolerance discussed in more detail below, and
via reduction to CSP. In the latter approach, we take advantage of the recently established CSP
dichotomy between PTime and NP-complete, formerly known as the Feder-Vardi conjecture [33]
and in 2017 confirmed independently in [18] and [74] using algebraic methods; see [49] for an
overview of the state of the art just before the proof of the conjecture. Apart from admitting much
more transparent proofs, the first approach also establishes stronger guarantees. Whenever it is
applicable, it additionally allows us to prove that PTime query evaluation coincides with rewritability
into Datalog, admitting inequality in the rule bodies whenever we start from a fragment with
equality or counting. To reflect this, we refer to dichotomies established by the first approach as
strong dichotomies. For other fragments, we observe a close connection to CSPs—expressed via
the notion of CSP-hardness whose (subtle) definition is omitted here and given in the paper. What
is important, however, is that for CSP-hard fragments a dichotomy between PTime and coNP-
complete implies the CSP dichotomy whose proof requires highly intricate algebraic considerations.
In the case of CSP-hardness (and also when we establish that there is no dichotomy between PTime

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

1:4 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

No Dichotomy

CSP-Hard
Dichotomy open

CSP-Hard
Dichotomy

Strong
Dichotomy

uGF−2 (2, f)
ALCIF ℓ depth 2
ALCF depth 3 [59]

uGF2 (1,=) uGF2 (1, f) ALCF ℓ depth 2

uGF2 (2) – uGF2
ALC depth 3 [59]

uGF− (1,=) uGF(1) uGF−2 (2)
uGC−2 (1,=)

ALCHIQ depth 1
ALCHIF depth 2

Fig. 1. Summary of results—Number in brackets indicates depth, f presence of partial functions, ·2 restriction
to two variables, ·− restricts outermost guards to be equality, F globally function roles, Fℓ concepts (≤ 1R).

and coNP-complete), PTime query evaluation does provably not coincide with rewritability into
Datalog.
The main results established in this paper are summarized in Figure 1. We first explain the

fragments shown in the figure and then survey the obtained results. A main parameter that we
vary is the depth of uGF sentences ∀x⃗ (R (x⃗) → φ (x⃗)), defined as the quantifier depth of φ (x⃗) and
thus not counting the outermost universal quantifier. In real world ontologies, the depth is typically
very small, mostly only one and very rarely larger than two. In Figure 1, the depth is the first
parameter displayed in brackets. As usual, the subscript ·2 indicates the restriction to two variables
while a superscript ·− means that the guard R (x⃗) in the outermost universal quantifier can only
be equality, = means that equality is allowed in non-guard positions, f indicates the ability to
declare binary relation symbols to be interpreted as partial functions, and GC2 denotes the two
variable guarded fragment extended with counting quantifiers, as studied for example in [46, 68].
While guarded fragments are displayed in black, description logics (DLs) are shown in gray. We use
standard DL names except that ‘F ’ denotes globally functional roles while ‘Fℓ ’ refers to (locally)
counting concepts of the form (≤ 1R). We do not explain DL names at this point and instead refer
the reader to Section 2.3 and the textbook [8].
The bottommost row of Figure 1 displays fragments for which there is a strong dichotomy

between PTime and coNP, the second row shows cases that admit a mutual reduction with the
CSP dichotomy, the third row has fragments that are CSP-hard, but for which a dichotomy remains
open, and the topmost part is for fragments that provably have no dichotomy (unless PTime = NP).
Informally, the bottommost row thus states upper bounds while the topmost two rows state lower
bounds; the second row from the bottom states both upper and lower bounds and this is why we
use a range of logics there. The vertical lines indicate that the linked results are closely related,
often indicating a fundamental difficulty in further generalizing an upper bound. For example,
uGF(1) enjoys strong dichotomy while uGF2 (2) and uGF2 (1,=) are CSP-hard and thus the former
result is optimal in the sense that it can neither be generalized to depth two nor to the case where
equality is not restricted to guards. All displayed results hold both when CQs and when UCQs are
used as the actual query; here, the use of uGF rather than GF as an ontology language pays off as
there are GF ontologies for which CQ evaluation is in PTime while UCQ-evaluation is coNP-hard.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

Dichotomies in Ontology-MediatedQuerying with the Guarded Fragment 1:5

The results shown in Figure 1 close a number of open problems from [59] such as that ALCI
ontologies of depth 2 enjoy a strong dichotomy.

We also prove a number of results that are not reflected in Figure 1. In particular we show that for
ALCHIQ ontologies of depth 1, it is decidable and ExpTime-complete whether a given ontology
O admits PTime query evaluation, which is equivalent to rewritability into Datalog with inequality
in rule bodies, and whether query evaluation w.r.t. O is coNP-hard. For uGC−2 (1,=), we show a
NExpTime upper bound. Moreover, for ontologies formulated in uGF−2 (2, f) and in ALCIF ℓ of
depth 2, we prove these problems to be undecidable.

Practical Relevance. To get a first idea of the practical relevance of our results, we have analyzed
411 ontologies from the BioPortal repository [73]. After removing all constructors that do not fall
within ALCHIF , a remarkable 405 ontologies turned out to have depth 2 and thus belong to a
fragment with dichotomy (sometimes modulo a straightforward complexity-preserving rewriting).
For ALCHIQ, still 385 ontologies had depth 1 and so belonged to a fragment with dichotomy.
As our initial examples (1) and (2) illustrate, ontology languages with counting induce particular
subtleties regarding PTime query evaluation. To better understand the situation regarding counting
statements in practical ontologies, we have analyzed each single axiom of depth 1 that uses counting
in the BioPortal ontology. We found 5081 such axioms. For the vast majority of these (4975) we
established that query evaluation is in PTime, but only 2911 are preserved under direct products, a
necessary condition for being equivalent to a First-order Horn sentence [26]. Thus, at most 2911
axioms are equivalent to sentences contained in languages designed for tractable query evaluation.
While the restriction to single axioms is unrealistic in practice and should be extended to whole
ontologies, this nevertheless indicates that it can pay off to analyze the complexity on the level of
ontologies rather than on the level of ontology languages.

Techniques Used. We briefly highlight some of the techniques used to establish our results,
in particular for proving strong dichotomy. In the first approach to proving dichotomy results
mentioned above, an important role is played by the notions of materializability and unraveling
tolerance of an ontologyO, first introduced in [59]. Materializability means that for every instanceD,
there is a universal model A of D and O in the sense that A gives exactly the same answers to all
queries that are also given by D and O (under the certain answer semantics commonly adopted
for ontology-mediated querying). Unraveling tolerance of an ontology O means that when O
is combined with a query that is tree-like, then the resulting ontology-mediated query cannot
distinguish between an instance and its unraveling into a structure of bounded treewidth. We show
that non-materializability of O implies that query evaluation w.r.t. O is coNP-hard (a property
that fails when replacing uGF with GF) and that unraveling tolerance of O implies that query
evaluation w.r.t. O is rewritable into Datalog and thus in PTime. To establish strong dichotomy of a
fragment, we then prove that for the ontologies formulated in it, materializability implies unraveling
tolerance; depending on the fragment, these proofs can be technically rather subtle. We also make
the interesting observation that preservation of an ontology O under direct products implies
unraveling tolerance. As all first-order ontology languages that admit PTime query evaluation fall
within first-order Horn logic and first-order Horn logic is preserved under direct products [26],
unraveling tolerance provides a uniform explanation of the good computational behavior of these
languages.
In the second approach to proving dichotomy results mentioned above, we reduce ontology-

mediated querying to constraint satisfaction problems with a fixed template [33]. The reduction
can be rather subtle and requires the use of an extended version of CSPs that ‘admit precoloring’,
that is, in which some targets of the homomorphism into the CSP template can be preassigned
in the input. The same problems that make us use CSPs with precoloring also emerges when

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

1:6 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

proving non-dichotomy results, where it poses serious challenges. To tackle them, we establish a
variation of Ladner’s theorem, which establishes the existence of NP-intermediate problems, that
is, of problems that are neither in PTime nor NP-hard [52]. Instead of speaking about the word
problem for NP Turing machines, our variation shows that there is an NP-intermediate run fitting

problem, which is to decide whether a given partially described run of a Turing machine (that
informally corresponds to a precoloring in the CSP case) can be extended to a full run which is
accepting. We then prove the non-dichotomy results by first constructing an ontology that checks
whether a database instance has the shape of a grid and then adding an ontology that checks
whether the partial run encoded by the database instance can be extended to an accepting run. The
first ontology is also used to prove that materializability, rewritability into Datalog,, PTime query
evaluation, and coNP query evaluation are undecidable (unless PTime = NP), by a reduction of the
finite rectangle tiling problem.

Our strategy for proving that (in some cases) it is decidable whether an ontology admits PTime
query evaluation is as follows. We first establish that it suffices to decide materializability for
database instances that have the shape of a tree of depth one and are of size polynomial in the
size of the ontology. We then show how partial materializations can be composed to obtain full
materializations using a ‘mosaic technique’ from modal logic.

Overview of Paper. This paper is organized as follows. In Section 2, we introduce fundamental
notation and the relevant ontology languages including fragments of GF and uGF as well as several
description logics. We also introduce guarded bisimulations and guarded tree decompositions as
essential technical tools used throughout the paper; as many of our technical notions, they come in
a non-counting version and in a counting version. Section 3 introduces and studies materializability.
We show that materializability does not depend on whether we use CQs, UCQs, or rAQs as actual
queries where rAQs (for rooted acyclic queries) are a class of tree-like CQs. In contrast, whether a
concrete model of the instance and ontology is a materialization or not does depend on the query
language. We also analyze the relationship between universal models defined in terms of query
answers and universal models defined in terms of homomorphisms, as well as the relationship of
these notions to a certain disjunction property. Finally, we show that tractability of query evaluation
does not depend on the query language used. Section 4 is concerned with unraveling tolerance, our
main result being that unraveling tolerance implies rewritability into Datalog (with inequalities,
when appropriate). In addition, we show that preservation under direct products implies unraveling
tolerance. Section 5 brings together materializability and unraveling tolerance to establish strong
dichotomy results. In Section 6, we establish connections to CSP, proving both lower bounds
(that is, CSP-hardness) and upper bounds (that is, dichotomy results by reduction to CSP). For the
latter, we in fact make a detour via the logical generalization MMSNP of CSP introduced by Feder
and Vardi [33]. In Section 7, we establish undecidability results regarding PTime and coNP query
evaluation, Datalog rewritability, and materializability. The techniques developed here are the basis
for the non-dichotomy results proved in Section 8 where we also show non-dichotomy for the
run-fitting problem. Section 9 is the final technical section, concerned with fragments for which
PTime query evaluation is decidable.

2 PRELIMINARIES
We start with introducing the basics of ontology-mediated querying, then define the ontology
languages relevant to this paper and afterwards introduce several elementary technical notions in-
cluding guarded bisimulations and guarded tree decomposition.We also establish some fundamental
lemmas regarding the latter.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

Dichotomies in Ontology-MediatedQuerying with the Guarded Fragment 1:7

2.1 Basics of Ontology-MediatedQuerying
We assume a countably infinite set ∆ of constants and a set Σ of relation symbols that contains
a countably infinite set of relation symbols of any arity ≥ 1. A (database) instance D is a non-
empty set of facts R (a1, . . . ,ak), where R ∈ Σ, k is the arity of R, and a1, . . . ,ak ∈ ∆. We generally
assume that instances are finite, unless otherwise specified. An interpretation A is a non-empty (and
potentially infinite) set of facts. We use sig(A) and dom(A) to denote the set of relation symbols
and constants used in A, respectively. We generally assume that sig(A) is finite while dom(A) can
be infinite. Whenever convenient, interpretations A are presented in the form (A, (RA)R∈sig(A))

where A = dom(A) and RA is a k-ary relation on A for each R ∈ sig(A) of arity k . While instances
are syntactic objects used to represent a database, interpretations are semantic objects; though
from a formal perspective, every instance is also an interpretation. Formally, an interpretation A
is a model of an instance D, written A |= D, if D ⊆ A. By adopting this notion of being a model,
we make a strong open world assumption since interpretations can make true additional facts and
contain additional constants; moreover, it implies standard names [54], that is, every constant in
D is interpreted as itself in A. While this is not the standard semantics of constants in FO, it is
standard in ontology-mediated querying (and without counting, the two semantics result in the
same answers to all queries).
Assume that A and B are interpretations. A homomorphism h from A to B is a mapping from

dom(A) to dom(B) such that R (a1, . . . ,ak) ∈ A implies R (h(a1), . . . ,h(ak)) ∈ B for all a1, . . . ,ak ∈
dom(A) and R ∈ Σ of arity k . We say that h preserves a set D of constants if h(a) = a for all
a ∈ D and that h is an isomorphic embedding if it is injective and R (h(a1), . . . ,h(ak)) ∈ B implies
R (a1, . . . ,ak) ∈ A. An interpretation A ⊆ B is a subinterpretation of B if R (a1, . . . ,ak) ∈ B and
a1, . . . ,ak ∈ dom(A) implies R (a1, . . . ,ak) ∈ A; if dom(A) = A, we denote A by B|A and call it the
subinterpretation of B induced by A.

Conjunctive queries (CQs) q of arity k take the form q(x⃗) ← ϕ, where x⃗ = (x1, . . . ,xk) is the tuple
of answer variables of q, and ϕ is a conjunction of atomic formulas R (y1, . . . ,yn) with R ∈ Σ of arity
n and y1, . . . ,yn variables. As usual, we assume that every variable in x⃗ occurs in some atomic
formula of ϕ. Any CQ q(x⃗) ← ϕ can be regarded as an instance Dq , called the canonical database
of q, whose facts are exactly the atomic formulas of q with variables viewed as constants. A tuple
a⃗ = (a1, . . . ,ak) of constants is an answer to q(x1, . . . ,xk) in A, in symbols A |= q(a⃗), if there is a
homomorphism h from Dq to A such that h(xi) = ai for 1 ≤ i ≤ k . A union of conjunctive queries

(UCQ) q takes the form q1 (x⃗), . . . ,qn (x⃗), where each qi (x⃗) is a CQ. The qi are called disjuncts of
q. A tuple a⃗ of constants is an answer to q in A, denoted by A |= q(a⃗), if a⃗ is an answer to some
disjunct of q in A.
We now introduce the fundamentals of ontology-mediated querying. Let FO(=) denote the set

of all first-order sentences over signature Σ, admitting equality but neither constants nor function
symbols. An ontology language L is a set of FO(=) sentences and an L-ontology O is a finite set
of sentences from L. We introduce various concrete ontology languages throughout the paper,
including fragments of the guarded fragment as well as several description logics. An interpretation
A is a model of an ontology O, in symbols A |= O, if it satisfies all its sentences. An instance D
is consistent w.r.t. O if there is a model of D and O. We use sig(O) to denote the set of relation
symbols used in O.
An ontology-mediated query (OMQ) is a pair (O,q), where O is an ontology and q a UCQ. The

semantics of an ontology-mediated query is given in terms of certain answers, defined next. Assume
that q has arity k and D is an instance. Then a tuple a⃗ of length k in dom(D) is a certain answer

to q on D given O, in symbols O,D |= q(a⃗), if A |= q(a⃗) for all models A of D and O. The query
evaluation problem for an OMQ (O,q(x⃗)) is to decide, given an instanceD and a tuple a⃗ in dom(D)k ,

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

1:8 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

whether O,D |= q(a⃗). Note that ontology-mediated querying is a form of querying under (open
world) constraints, a traditional topic in database theory, see e.g. [11, 12] and references therein. It
is also related to deductive databases, see e.g. the monograph [63] and to query answering under
views [23, 24].

We use standard notation for Datalog programs [1, 25]. A Datalog
,
rule ρ takes the form

S (x⃗) ← R1 (x⃗1) ∧ · · · ∧ Rm (x⃗m)

where S is a relation symbol from Σ,m ≥ 1, and R1, . . . ,Rm are either relation symbols from Σ or
the symbol , for inequality. We call S (x⃗) the head of ρ and R1 (x⃗1) ∧ · · · ∧ Rm (x⃗m) its body. Every
variable in the head of ρ is required to occur in its body. A Datalog rule is a Datalog, rule that does
not use inequality. A Datalog

,
program is a finite set Π of Datalog, rules with a selected relation

symbol goal that does not occur in rule bodies in Π. The arity of Π is the arity of its goal relation
symbol; we say that Π is Boolean if it has arity zero. Relation symbols that occur in the head of at
least one rule of Π are intensional and all remaining relation symbols in Π are extensional. Note
that, by definition, goal is an intensional relation symbol. A Datalog program is a Datalog, program
that does not use inequality.

For every instanceD and Datalog, program Π, we call a model A ofD amodel of Π if A is a model
of all FO sentences∀x⃗1 · · · ∀x⃗m (R1 (x⃗1)∧· · ·∧Rm (x⃗m) → S (x⃗)) with S (x⃗) ← R1 (x⃗1)∧· · ·∧Rm (x⃗m) ∈
Π. We set D |= Π(a⃗) if goal(a⃗) ∈ A for all models A of D and Π.
An OMQ (O,q(x⃗)) is called Datalog-rewritable if there is a Datalog program Π such that for

all instances D and a⃗ ∈ dom(D), O,D |= q(a⃗) iff D |= Π(a⃗). Datalog,-rewritability is defined
accordingly. We are mainly interested in the following properties of ontologies.

Definition 2.1. Let O be an ontology and Q a class of queries. Then
• Q-evaluation w.r.t. O is in PTime if for every q ∈ Q, the query evaluation problem for (O,q)
is in PTime data complexity.
• Q-evaluation w.r.t. O is Datalog-rewritable (resp. Datalog,-rewritable) if for every q ∈ Q, the
OMQ (O,q) is Datalog-rewritable (resp. Datalog,-rewritable).
• Q-evaluation w.r.t. O is coNP-hard if there is a q ∈ Q such that the query evaluation problem
for (O,q) is coNP-hard in data complexity.

2.2 The Guarded Fragment of FO
As ontology languages, we consider fragments of the guarded fragment of FO, the two-variable
guarded fragment of FO with counting, and several description logics. We start with introducing
the former.

Guarded formulas [2] are obtained by starting from atomic formulas R (x⃗) over Σ and equalities
x = y and then using the Boolean connectives and guarded quantifiers of the form

∀y⃗ (α (x⃗ , y⃗) → φ (x⃗ , y⃗)), ∃y⃗ (α (x⃗ , y⃗) ∧ φ (x⃗ , y⃗))

where φ (x⃗ , y⃗) is a guarded formula with free variables among x⃗ , y⃗ and α (x⃗ , y⃗) is an atomic formula
or an equality x = y that contains all variables in x⃗ , y⃗. The formula α is called the guard of the

quantifier. To emphasize that we admit equality in non-guard positions we denote the set of all
guarded formulas by GF(=). The fragment in which no equality is admitted in non-guard positions
is denoted GF. For example, let

φ1 = ∀x (x = x → ∃y, z (R (x ,y, z) ∧ x = y)) and φ2 = ∀x (x = x → ∃y, z (R (x ,y, z) ∧ S (x ,y))).

Then φ1 is in GF(=) and not in GF while φ2 is in GF.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

Dichotomies in Ontology-MediatedQuerying with the Guarded Fragment 1:9

As discussed in the introduction, in this article we focus on the fragment uGF of GF, defined
next. The expressive power that we give up seems rather modest from an ontology engineering
point of view and in the next subsection we observe that several important DLs fall within uGF.
We use openGF to denote the fragment of GF(=) that consists of all open formulas whose

subformulas are all open and in which equality is not used as a guard. The fragment uGF(=) of
GF(=) is the set of sentences obtained from openGF by a single guarded universal quantifier : if φ (y⃗)
is in openGF, then ∀y⃗ (α (y⃗) → φ (y⃗)) is in uGF(=), where α (y⃗) is an atomic formula or an equality
y = y that contains all variables in y⃗. With uGF, we mean the fragment of uGF(=) in which equality
is only admitted as a guard for the outermost universal quantifier. For example, the formulas φ1
and φ2 above are uGF(=) and in uGF, respectively, while the following formulas are in GF, but not
in uGF(=):
(1) ∃x (A(x) ∧ ¬B (x)) because it starts with an existential quantifier;
(2) ∀x (A(x) → ∃y (A(y)∧¬B (y))) because it contains the sentence ∃y (A(y)∧¬B (y)) as a proper

subformula.
We often omit equality guards in uGF(=) sentences of the form ∀y (y = y → φ (y)) and simply write
∀yφ instead although syntactically the latter formula need not even fall within GF.

The foremost technical property of uGF(=) sentences φ is that they are invariant under disjoint
unions, that is, for all families Bi , i ∈ I , of interpretations with mutually disjoint domains, the
following holds: Bi |= φ for all i ∈ I if, and only if,

⋃
i ∈I Bi |= φ. Up to equivalence, this property

actually exactly characterizes uGF(=). The proof of the following result is given in the appendix.

Theorem 2.2. A sentence in GF(=) (resp. GF) is invariant under disjoint unions iff it is equivalent

to a sentence in uGF(=) (resp. uGF).

We next give some example ontologies that take the form of Boolean combinations of uGF
sentences and are not invariant under disjoint unions. We shall come back to these ontologies later
on to explain the technical convenience of uGF(=) compared to GF(=).

Example 2.3. Let
OUCQ/CQ = {∀x (A(x) ∨ B (x)) ∨ ∃xE (x)}

OMat/PTime = {∀xA(x) ∨ ∀xB (x)}.

Then OMat/PTime is not preserved under disjoint unions since D1 = {A(a)} and D2 = {B (b)} are
models of OMat/PTime but D1 ∪D2 refutes OMat/PTime; OUCQ/CQ does not reflect disjoint unions since
the disjoint union of D′1 = {E (a)} and D

′
2 = {F (b)} is a model of OUCQ/CQ but D′2 refutes OUCQ/CQ.

When studying uGF(=) and uGF ontologies, we are going to vary several parameters. The depth
of a formula φ in openGF is the nesting depth of guarded quantifiers in φ. Thus, an openGF formula
has depth 1 if no guarded quantifier occurs within the scope of another guarded quantifier. The
depth of a sentence ∀y⃗ (α (y⃗) → φ (y⃗)) in uGF(=) is the depth of φ (y⃗), thus the outermost guarded
quantifier does not contribute to the depth. The depth of a uGF(=) ontology is the maximum depth
of the sentences in it. We indicate restricted depth in brackets, writing e.g. uGF(1) to denote the
set of uGF sentences of depth at most 1 and uGF(2,=) to denote the set of all uGF(=) sentences of
depth at most 2. For example, the sentence

φ3 = ∀x ,y (R (x ,y) → (A(x) ∨ ∃zS (y, z)))

is in uGF(1) since the openGF formula A(x) ∨ ∃zS (y, z) has depth 1.
We observe that, modulo normalization, uGF(1) has the same expressive power as GF. A GF

sentence is in Scott normal form if it is a conjunction of sentences of one of the forms
∃x⃗ (α0 (x⃗) ∧ψ0 (x⃗)) ∀x⃗ (α0 (x⃗) → ψ0 (x⃗)) ∀x⃗ (α0 (x⃗) → ∃y⃗ (α1 (y⃗, z⃗) ∧ψ1 (y⃗, z⃗)))

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

1:10 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

where α0 (x⃗) and α1 (y⃗, z⃗) are atomic formulas or equalities and ψ0 (x⃗) and ψ1 (y⃗, z⃗) are quantifier
free. It follows from [41] that for every GF sentence φ one can construct in polynomial time a GF
sentence ψ in Scott normal form that is a conservative extension of φ, that is, ψ |= φ and every
model of φ can be expanded to a model ofψ by interpreting the fresh symbols inψ [41]. Replace
any sentence inψ of the form
• ∃x⃗ (α0 (x⃗) ∧ψ0 (x⃗)) by the sentence ∀x (x = x → ∃x⃗ (R (x , x⃗) ∧ α0 (x⃗) ∧ψ0 (x⃗))), where R is a
fresh relation symbol of arity |x⃗ | + 1, and x a fresh variable; and
• ∀x⃗ (α0 (x⃗) → ∃y⃗ (α1 (y⃗, z⃗)∧ψ1 (y⃗, z⃗))) in which ∃y⃗ (α1 (y⃗, z⃗)∧ψ1 (y⃗, z⃗)) is closed by the sentence
∀x⃗ (α0 (x⃗) → ∃y⃗ (R (x⃗ , y⃗) ∧ α1 (y⃗, z⃗) ∧ ψ1 (y⃗, z⃗))), where R is a fresh relation symbol of arity
|x⃗ | + |y⃗ |.

The set of conjuncts of the resulting formula is an ontology in uGF(1) and a conservative extension
of φ. Thus, the satisfiability and CQ evaluation problems for full GF can be reduced in polynomial
time to the corresponding problem for uGF(1).

We use uGF− (=) to denote the fragment of uGF(=) where only equality guards are admitted in the
outermost universal quantifier applied to an openGF formula, and uGF− denotes the corresponding
fragment of uGF. Thus, the sentence φ3 above is a uGF sentence of depth 1, but not a uGF− sentence
of depth 1. It is, however, equivalent to the following uGF− sentence of depth 1:

∀x (∃y (R (y,x) ∧ ¬A(y)) → ∃zS (x , z)).

An example of a uGF sentence of depth 1 that is not equivalent to a uGF− sentence of depth 1 is
given in the following example.

Example 2.4. Let

φ = ∀x ,y
(
R (x ,y) → (∃z (S (x , z) ∧A(z)) → ∃z (S (y, z) ∧ B (z)))

)
Then φ is a uGF sentence of depth 1 but easily seen to be not equivalent to any uGF− sentence of
depth 1.

Informally, uGF sentences of depth 1 can be thought of as uGF− sentences of ‘depth 1.5’ because
giving up ·− admits an additional level of ‘real’ quantification over guards that are not forced to be
equality.
The two-variable fragment of uGF(=) is denoted with uGF2 (=). More precisely, in uGF2 (=)

we admit only the two fixed variables x and y and disallow the use of relation symbols of arity
exceeding two. We also consider two extensions of uGF2 (=) and uGF2 with forms of counting.
First, uGF2 (f) denotes the extension of uGF2 with function symbols, that is, an uGF2 (f) ontology
is a finite set of uGF2 sentences and of functionality axioms ∀x∀y1∀y2 ((R (x ,y1) ∧ R (x ,y2)) →
(y1 = y2)), see also [41]. Second, we consider the extension uGC2 (=) of uGF2 (=) with counting
quantifiers. More precisely, the language openGC2 is defined in the same way as the two-variable
fragment of openGF, but in addition admits guarded counting quantifiers as in [46, 68]: if n ∈ N,
{z1, z2} = {x ,y}, α (z1, z2) ∈ {R (z1, z2),R (z2, z1)} for some R ∈ Σ, and φ (z1, z2) is in openGC2, then
∃≥nz1 (α (z1, z2) ∧ φ (z1, z2)) is in openGC2 (=). The ontology language uGC2 (=) is then defined in
the same way as uGF2 (=), using openGC2 instead of openGF2. Whenever convenient we regard
openGC2 and uGC2 as fragments of FO(=). The depth of formulas in uGC2 (=) is defined in the
expected way, that is, guarded counting quantifiers and guarded quantifiers both contribute to it.
The above restrictions can be freely combined and we use the obvious names to denote such

combinations. For example, uGF−2 (1, f) denotes the two-variable fragment of uGF with function
symbols and where all sentences must have depth 1 and the guard of the outermost quantifier must
be equality.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

Dichotomies in Ontology-MediatedQuerying with the Guarded Fragment 1:11

2.3 Description Logics
Description logics are a popular family of ontology languages that are closely related to the guarded
fragments of FO(=) introduced above [7]. In the following, we give a brief introduction to the
syntax and semantics of several relevant DLs and establish their relationship to these fragments. We
concentrate on the DL ALC and its extensions by inverse roles, role inclusions, qualified number
restrictions, functional roles, and local functionality. ALC-concepts are constructed according to
the rule

C,D := ⊤ | ⊥ | A | C ⊓ D | C ⊔ D | ¬C | ∃R.C | ∀R.C

where A and R range over unary and binary relation symbols, respectively. In DL parlance, unary
relation symbols are also called concept names and binary relation symbols are also called roles, but
in this paper we shall mostly speak of relation symbols.
DLs extended by inverse roles (denoted in the name of a DL by the letter I) admit, in addition,

inverse relation symbols denoted by R−, with R a relation symbol. InALCI, we thus have available
the additional expressions ∃R−.C and ∀R−.C for constructing concepts. DLs extended by qualified

number restrictions (denoted by Q) additionally admit concepts of the form (≥ n R C) and (≤ n R C),
where n ≥ 0 is a natural number, R a relation symbol or an inverse relation symbol (provided that
inverse relation symbols are admitted in the original DL), and C is a concept. When extending
a DL with local functionality (denoted by Fℓ) one can use only number restrictions of the form
(≤ 1 R ⊤). We abbreviate theALCIF ℓ concept (≤ 1 R ⊤) by (≤ 1R), (∃R.⊤) ⊓ (≤ 1R) by (= 1R),
and ¬(≤ 1R) by (≥ 2R), respectively.
In DLs, ontologies are formalized as finite sets of concept inclusions C ⊑ D, where C,D are

concepts. We use the concept equivalence C ≡ D as an abbreviation for C ⊑ D and D ⊑ C . In DLs
extended with functionality (denoted by F) one can also use functionality assertions func(R) in
the ontology, where R is a relation symbol or an inverse relation symbol (if present in the original
DL). Such an R is interpreted as a partial function. Extending a DL with role inclusions (denoted by
H) allows one to use expressions of the form R ⊑ S in the ontology, where R and S are relation
symbols or inverse relation symbols (if present in the original DL), and which state that R is a
subset of S . Note that while inverse roles, qualified number restrictions, and local functionality
affect the concept language, functionality assertions and role inclusions only take effect on the
level of ontologies. So when we work for example with ALCHF ℓ , then the concepts are formed
in ALCF ℓ and, additionally, role inclusions are admitted in the ontology.
The semantics of DLs is defined in terms of interpretations A. Given A, the interpretation CA

of a concept C , RA of a relation symbol R, and (R−)A of an inverse relation symbol R− is defined
inductively as follows:

⊤A = dom(A) ⊥A = ∅

RA = {(a,b) ∈ dom(A) | R (a,b) ∈ A} (R−)A = {(b,a) ∈ dom(A) | (a,b) ∈ RA }

AA = {a ∈ dom(A) | A(a) ∈ A} (¬C)A = dom(A) \CA

(C ⊓ D)A = CA ∩ DA (C ⊔ D)A = CA ∪ DA

(∃R.C)A = {a ∈ dom(A) | ∃b : (a,b) ∈ RA and b ∈ CA }
(∀R.C)A = {a ∈ dom(A) | ∀b : (a,b) ∈ RA implies b ∈ AA }

(≥ n R C)A = {a ∈ dom(A) | |{b | (a,b) ∈ RA and b ∈ CA }| ≥ n}

(≤ n R C)A = {a ∈ dom(A) | |{b | (a,b) ∈ RA and b ∈ CA }| ≤ n}

A satisfies a concept inclusionC ⊑ D ifCA ⊆ DA , a functionality assertion func(R) if RA is a partial
function, and a rule inclusion R ⊑ S if RA ⊆ SA .

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

1:12 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

The semantics of DL concepts C can alternatively be given by translation to openGC formulas
C† (x) with one free variable x and two variables overall. For simplicity, we only give the translation
explicitly for DLs without inverse roles:

⊤† (x) = ⊤ ⊥† (x) = ⊥

A† (x) = A(x) (¬C)† (x) = ¬(C† (x))

(C ⊓ D)† (x) = C† (x) ∧ D† (x) (C ⊔ D)† (x) = C† (x) ∨ D† (x)

(∃R.C)† (x) = ∃y (R (x ,y) ∧C† (y)) (∀R.C)† (x) = ∀y (R (x ,y) → C† (y))

(≥ n R C)† (x) = ∃≥ny (R (x ,y) ∧C† (y)) (≤ n R C)† (x) = ∃≤ny (R (x ,y) ∧C† (y))

A concept inclusionC ⊑ D then translates to the uGC2 sentence ∀x (C† (x) → D† (x)) and also with
inverse roles and when adding role hierarchies and functionality assertions, we remain within
uGC2.

The depth of a concept is the maximal nesting depth of its quantifiers. The depth of an ontology
is the maximum depth of concepts that occur in it. Thus, everyALC ontology of depth n is a uGF−2
ontology of depth n. When translating into uGF2 instead of into uGF−2 , the depth might decrease by
one because one can exploit the outermost quantifier (which does not contribute to the depth).

Example 2.5. The ALC concept inclusion ∃S .A ⊑ ∀R.∃S .B has depth 2, but it is equivalent to
the uGF2 (1) sentence

∀x ,y (R (x ,y) → ((∃S .A)† (x) → (∃S .B)† (y))

from Example 2.4.

In all of the DLs considered in this paper, any ontology O can straightforwardly be converted in
polynomial time into an ontology O∗ of depth 1 that is a conservative extension of O. In fact, many
DL algorithms for satisfiability and for query evaluation assume that the ontology is of depth one
and in a normalized form [10, 71].
We observe the following relationships between DLs and fragments of GC2. For a DL L and

fragment L ′ of GC2 we say that an L ontology O can be written as an L ′ ontology if the translation
given above translates O into an L ′ ontology. Then the following hold:
(1) every ALCHI ontology can be written as a uGF2 ontology. If the ontology has depth 2,

then it can be written as a uGF−2 (2) ontology.
(2) Every ALCHIF ontology can be written as a uGF−2 (f) ontology.
(3) Every ALCHIQ ontology can be written as a uGC2 ontology. If the ontology has depth 1,

then it can be written as a uGC−2 (1) ontology.
For any syntactic object O (such as an ontology or a query), we use |O | to denote the number of
symbols needed to writeO , counting relation symbols, variable names, and so on as a single symbol
and assuming that numbers in counting quantifiers and their DL counterpart, qualified number
restrictions, are coded in unary. The latter assumption is relevant only for the results obtained in
Section 9.

2.4 Guarded Bisimulations
We define guarded bisimulations, a standard tool for proving that two interpretations satisfy the
same guarded formulas [42]. Our use of the fragment uGF(=) of GF allows us to slightly modify the
standard notion by considering, in the back and forth conditions, only guarded sets that overlap
the current guarded set. To cover uGC2 (=) we introduce counting guarded bisimulations.

Let A be an interpretation. It will be convenient to use the notation [a⃗] = {a1, . . . ,an } to denote
the set of components of the tuple a⃗ = (a1, . . . ,an) ∈ dom(A)n . A set G ⊆ dom(A) is guarded in A

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

Dichotomies in Ontology-MediatedQuerying with the Guarded Fragment 1:13

ifG is a singleton or there are R ∈ Σ and R (a⃗) ∈ A such thatG = [a⃗]. By S (A), we denote the set of
all guarded sets in A. A tuple a⃗ ∈ dom(A)n is guarded in A if [a⃗] is a subset of some guarded set
in A.
For tuples a⃗ = (a1, . . . ,an) in A and b⃗ = (b1, . . . ,bn) in B we call a mapping p from [a⃗] to [b⃗]

with p (ai) = bi for 1 ≤ i ≤ n (written p : a⃗ 7→ b⃗) a partial isomorphism if p is an isomorphism from
A |[a⃗] to B|[b⃗]. A set I of partial isomorphisms p : a⃗ 7→ b⃗ from guarded tuples a⃗ in A to guarded

tuples b⃗ in B is called a connected guarded bisimulation if the following hold for all p : a⃗ 7→ b⃗ ∈ I :
(i) for every guarded tuple a⃗′ in A with [a⃗] ∩ [a⃗′] , ∅ there exists a guarded tuple b⃗ ′ in B and

p ′ : a⃗′ 7→ b⃗ ′ ∈ I such that p ′ and p coincide on [a⃗] ∩ [a⃗′].
(ii) for every guarded tuple b⃗ ′ in B with [b⃗] ∩ [b⃗ ′] , ∅ there exists a guarded tuple a⃗′ in A and

p ′ : a⃗′ 7→ b⃗ ′ ∈ I such that p ′−1 and p−1 coincide on [b⃗] ∩ [b⃗ ′].
We say that (A, a⃗) and (B, b⃗) are connected guarded bisimilar if there exists a connected guarded
bisimulation between A and B containing p : a⃗ 7→ b⃗. Connected guarded bisimulations differ from
the standard guarded bismulations [42] in additionally requiring [a⃗] ∩ [a⃗′] , ∅ in Condition (i) and
[b⃗] ∩ [b⃗ ′] , ∅ in Condition (ii). These conditions are intimately linked to the definition of uGF and
in particular to the fact that openGF formulas cannot contain sentences as subformulas.

Lemma 2.6. Let A and B be interpretations.

(1) If (A, a⃗) and (B, b⃗) are connected guarded bisimilar and φ (x⃗) is a formula in openGF, then

A |= φ (a⃗) iff B |= φ (b⃗).

(2) If for every guarded a⃗ in dom(A) there exists a guarded b⃗ in dom(B) such that (A, a⃗) and (B, b⃗)
are connected guarded bisimilar and vice versa, then A andB satisfy the same GF(=) sentences.1

For uGC2 (=) and its fragments, we work with interpretations A such that RA = ∅ for all R of
arity ≥ 3 (and say that A interprets relation symbols of arity at most two). Thus, guarded sets
contain at most two elements. To preserve counting guarded quantifiers we use the following
modified version of guarded bisimulations. A set I of partial isomorphisms p : a⃗ 7→ b⃗ between
guarded tuples a⃗ = (a1,a2) in A and b⃗ = (b1,b2) in B, respectively, is called a counting connected
guarded bisimulation if the following hold for all p : (a1,a2) 7→ (b1,b2) ∈ I :

(i) for every finite set X ⊆ dom(A) such that all (a1,a′2) with a′2 ∈ X are guarded tuples in A
there exists an injective mapping f fromX to dom(B) such thatp ′ : (a1,a′2) 7→ (b1, f (a

′
2)) ∈ I

for all a′2 ∈ X .
(ii) for every finite setY ⊆ dom(B) such that all (b1,b ′2) withb

′
2 ∈ Y are guarded tuples inB there

exists an injective mapping f from Y to dom(A) such that p ′ : (a1, f −1 (b ′2)) 7→ (b1,b
′
2) ∈ I

for all b ′2 ∈ Y .

We say that (A, a⃗) and (B, b⃗) are counting connected guarded bisimilar if there exists a counting
connected guarded bisimulation between A and B that contains p : a⃗ 7→ b⃗. The counting is
implemented by the injective mappings f in Conditions (i) and (ii). Note that we quantify only over
finite sets X and Y , which corresponds to the ability of counting quantifiers to distinguish between
different finite numbers of successors, but not between different infinite cardinalities.

Lemma 2.7. Let A and B interpret relation symbols of arity at most two.

(1) If (A, a⃗) and (B, b⃗) are counting connected guarded bisimilar and φ (x⃗) is a formula in openGC2,

then A |= φ (a⃗) iff B |= φ (b⃗).

1Although we are going to use this result only for uGF(=) sentences, it actually holds for GF(=) sentences as stated.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

1:14 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

(2) If for every guarded a⃗ in dom(A) there exists a guarded b⃗ in dom(B) such that (A, a⃗) and (B, b⃗)
are counting connected guarded bisimilar and vice versa, then A and B satisfy the same GC2 (=)
sentences.

The proof of the above lemmas is routine and thus omitted, see [56] for closely related results.

2.5 Guarded Tree Decompositions
We introduce guarded tree decompositions as also used for example in [42] and rooted acyclic
queries. A guarded tree decomposition of an interpretation A is a triple (T ,E, bag) with (T ,E) an
undirected tree and bag a function that assigns to every t ∈ T a guarded set bag(t) in A such that
(1) A =

⋃
t ∈T A |bag(t) ;

(2) {t ∈ T | a ∈ bag(t)} is connected in (T ,E), for every a ∈ dom(A).
When convenient, we assume that (T ,E) has a designated root r which allows us to view (T ,E) as
a directed tree. The difference between a classical tree decomposition [36] and a guarded one is
that in the latter, the elements in each bag must be a guarded set. While there is a classical tree
decomposition of every interpretation, albeit of potentially high width (that is, maximum bag size),
this is not the case for guarded tree decompositions. We say that A is guarded tree decomposable if
there exists a guarded tree decomposition of A.

We call (T ,E, bag) a connected guarded tree decomposition (cg-tree decomposition) if, in addition,
bag(t) ∩ bag(t ′) , ∅ for all (t , t ′) ∈ E. Note that an interpretation A can only have a connected
guarded tree decomposition if A viewed as a hypergraph is connected.
A CQ q ← ϕ is a rooted acyclic query (rAQ) if there exists a cg-tree decomposition (T ,E, bag)

of the instance Dq with root r such that bag(r) is the set of answer variables of q. Note that, by
definition, rAQs are non-Boolean queries.

Example 2.8. The CQ
q(x) ← ϕ, ϕ = R (x ,y) ∧ R (y, z) ∧ R (z,x)

is not an rAQ since Dq is not guarded tree decomposable. By adding the conjunct Q (x ,y, z) to ϕ
one obtains an rAQ.

We define the unraveling of an interpretation A at a maximally guarded set G in A into a cg-tree
decomposable interpretation B. The exact definition of unraveling depends on whether we are
working with uGF(=) or uGC2 (=). In the former case we want to achieve that there is a connected
guarded bisimulation from B to A. In the latter case we need a counting connected guarded
bisimulation and can restrict our attention to relation symbols of arity at most two. Intuitively, the
unravelings used here relate to (counting) connected guarded bisimulations in the same way in
which the classical unravelings of Kripke structures in modal logic relate to standard bisimulations
[42].

We first consider the case of uGF(=). Let T (A,G) be the set of nodes t = G0G1 · · ·Gn , where Gi ,
0 ≤ i ≤ n, are maximally guarded sets in A, G0 = G, and
(a) Gi , Gi+1,
(b) Gi ∩Gi+1 , ∅, and
(c) Gi−1 , Gi+1.
We associate with each t ∈ T (A,G) an interpretation Bag(t) with domain bag(t). Then we define
AuG , the uGF-unraveling of A at G, as

⋃
t ∈T (A,G) Bag(t) and note that (T (A,G),E, bag) is a cg-tree

decomposition of AuG , where (t , t
′) ∈ E if t ′ = tF for some F .

Take an infinite supply of copies of any a ∈ dom(A). We set a′↑ = a if a′ is a copy of a. We define
Bag(t) and its domain bag(t) by induction on the length of the sequence t . For t = G, Bag(t) is

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

Dichotomies in Ontology-MediatedQuerying with the Guarded Fragment 1:15

an interpretation whose domain bag(t) contains a copy a′ of each a ∈ G such that the mapping
a′ 7→ a′↑ is an isomorphism from Bag(t) onto the subinterpretation A |G of A induced by G. To
define Bag(t) when t = G0 · · ·Gn and n > 0, take for any a ∈ Gn \Gn−1 a fresh copy a′ of a and
define Bag(t) with domain bag(t) = {a′ | a ∈ Gn \Gn−1}∪{a

′ ∈ bag(G0 · · ·Gn−1) | a
′↑ ∈ Gn∩Gn−1}

such that the mapping a′ 7→ a′↑ is an isomorphism from Bag(t) onto A |Gn . The following example
illustrates the construction of AuG .

Example 2.9. (1) Consider the interpretation A depicted below with the maximally guarded sets
G1,G2,G3. Then the uGF-unraveling AuG1

of A atG1 is given by the chain depicted on the right-hand
side.

G1

G2

G3 G1 G2G3G2 G3

(2) Next consider the interpretation A depicted below which has the shape of a tree of depth one
with root a and has three maximally guarded sets G1,G2,G3. Then the uGF-unraveling AuG1

of A at
G1 consists of a tree of depth one of infinite outdegree.

G1

G2

G3

a

. . .

a

G1

G1

G2

G2

G3

G3

For any tuple b⃗ = (b1, . . . ,bn) in AuG we set b⃗↑ = (b↑1 , . . . ,b
↑
n). A guarded tuple b⃗ in AuG is called

a copy of a tuple a⃗ in A if b⃗↑ = a⃗.

Lemma 2.10. Let G be a maximally guarded set in A, [a⃗] = G, and let a⃗′ be a copy of a⃗ in bag(G).

Then the set I of all partial isomorphisms p : b⃗ 7→ b⃗↑ with [b⃗] guarded in the uGF-unraveling AuG is a

connected guarded bisimulation between (AuG , a⃗
′) and (A, a⃗). The mapping

⋃
p∈I p is a homomorphism

from AuG onto A.

The proof of Lemma 2.10 is straightforward and omitted. Note that Condition (b) in the construc-
tion of T (A,G) corresponds to the condition that we have a connected guarded bisimulation. None
of the Conditions (a)–(c) are required for the proof to go through. In fact, they are not part of the
standard definition of guarded unravelings [41, 42]. They eliminate, however, redundancies in the
standard guarded unraveling and, more importantly, ensure the existence of automorphisms of
AuG which will be crucial in the proof of Theorem 5.2 where we work with guarded unravelings of
instances to prove dichotomy results.
We now turn to unravelings for uGC2, which come with stronger a guarantees: the unraveled

interpretation is counting connected guarded bisimilar to the original interpretation. Example 2.9 (2)
shows that this needs not be the case for uGF-unravelings as defined above as they may introduce
too many copies of guarded sets intersecting with a given guarded set. To address this problem,
assume that A only interprets relation symbols of arity at most two and define the uGC2-unraveling

AuG of A at a maximally guarded set G in the same way as the uGF-unraveling except that the
Condition (c) is replaced by the stronger condition

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

1:16 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

(c’) Gi ∩Gi−1 , Gi ∩Gi+1.
It is straightforward to prove the following analogue of Lemma 2.10.

Lemma 2.11. Let A interpret relation symbols of arity at most two, let G be a maximally guarded

set in A, let [a⃗] = G, and let a⃗′ be a copy of a⃗ in bag(G). Then the set I of all partial isomorphisms

p : b⃗ 7→ b⃗↑ with [b⃗] guarded in the uGC2-unraveling A
u
G is a counting connected guarded bisimulation

between (AuG , a⃗
′) and (A, a⃗). The mapping

⋃
p∈I p is a homomorphism from AuG onto A.

We give a basic application of unravelings which is frequently used throughout the paper.
Let D be an instance, BG an interpretation, and G a guarded set in both D and BG such that
dom(BG) ∩dom(D) = G . Then the interpretationB = D∪BG is obtained fromD by hookingBG to

D at G. If BG , G ∈ G, is a family of cg-tree decomposable interpretations satisfying the conditions
above and dom(BG1) ∩ dom(BG2) = G1 ∩G2 for any two distinct guarded setsG1 andG2 in G, then
B = D ∪

⋃
G ∈G BG is called a forest model of D defined using G. If G is the set of all maximally

guarded sets in D, then we call B simply a forest model of D.

Lemma 2.12. Let O be a uGF(=) or uGC2 (=) ontology,D a possibly infinite instance, and A a model

of D and O. Then there exists a forest model B of D and O and a homomorphism h from B to A that

preserves dom(D).

Proof. Assume first a uGF(=) ontology O, an instance D, and a model A of O and D are given.
Take for any maximally guarded set G in D the uGF-unraveling BG := AuG of A at G and hook it to
D atG by identifying the nodes inG with their copies in bag(G). It can be shown using Lemma 2.6
and Lemma 2.10 that the union B of all BG is as required.

Assume now that O is a uGC2 (=) ontology, thatD is an instance, and that A is a model of O and
D. We may assume that D and A only interpret relation symbols of arity at most two.

To preserve counting guarded quantifiers the construction is slightly different. Let c ∈ dom(D)
and consider the uGC2-unraveling AuG of A at G, for every maximally guarded G in A with G ∩
dom(D) = {c}. To ensure that we do not add copies of successors of c inD to the unraveling we take
the modification BG of AuG in which the paths G0G1 · · ·Gn with G0 = G satisfy G1 ∩ dom(D) = ∅.
Now hook all these BG to D at c by identifying c with its copy in BG (in particular dom(BG) ∩
dom(D) = {c}). Define B as the union of A |dom(D) and all BG constructed for any c ∈ dom(D). It
can be shown using Lemma 2.7 and Lemma 2.11 that B is as required. □

3 MATERIALIZABILITY
We introduce and study materializability of ontologies as a necessary condition for query evaluation
to be in PTime. In brief, an ontology O is materializable if for every instance D, there is a model
A of O and D such that for all queries, the answers on A agree with the certain answers on D
given O. We show that this sometimes, but not always, coincides with the existence of universal
models defined in terms of homomorphisms. We then prove that in uGF(=) and in uGC2 (=), non-
materializability implies coNP-hardness of query evaluation. We also observe that, in contrast, an
analogous statement does not hold for GF. We then use these results to establish that for ontologies
formulated in uGF(=) or in uGC2 (=), PTime query evaluation, Datalog,-rewritability of query
evaluation, and coNP-hardness of query evaluation does not depend on the actual query language,
that is, all these properties agree for rAQs, CQs, and UCQs. Again, this is not the case for GF.

Definition 3.1 (Materializability). Let O be an FO(=)-ontology and Q a class of queries. Then
• an interpretation B is a Q-materialization of O and an instance D if it is a model of O and D
and for all q(x⃗) ∈ Q and a⃗ in dom(D), B |= q(a⃗) iff O,D |= q(a⃗).

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

Dichotomies in Ontology-MediatedQuerying with the Guarded Fragment 1:17

• LetM be a class of instances. Then O is Q-materializable forM if for every instanceD ∈ M
that is consistent w.r.t. O, there is a Q-materialization of O and D. IfM is the class of all
instances, we simply speak of Q-materializability of O.

We first observe that the materializability of ontologies does not depend on the query language
(although concrete materializations do). The intuitive reason is given by Lemma 2.12, namely that
we can restrict our attention to forest models, which essentially allows us to decompose CQs into
rAQs.

Theorem 3.2. Let O be a uGF(=) or uGC2 (=) ontology and M a class of instances. Then the

following conditions are equivalent:

(1) O is rAQ-materializable forM;

(2) O is CQ-materializable forM;

(3) O is UCQ-materializable forM.

Proof. We show the implications (1) ⇒ (2), (2) ⇒ (3), and (3) ⇒ (1). The implication (3) ⇒
(1) follows from the fact that every rAQ is a UCQ. (2) ⇒ (3) follows from the observation that
any interpretation B is a CQ-materialization of O and an instance D if, and only if, it is UCQ-
materialization of O and D. We now show (1)⇒ (2). Assume O is rAQ-materializable forM and
assume the instance D ∈ M is consistent w.r.t. O. Let A be a rAQ-materialization of O and D.
Consider a forest model B of D and O such that there is a homomorphism from B to A preserving
dom(D) (Lemma 2.12). Recall that B is obtained fromD by hooking cg-tree decomposable BG toD
at G, for any maximally guarded set G in D. We show that B is a CQ-materialization of O and D.
To this end it suffices to prove that for any finite subinterpretation B′ of B and any model A′ of O
and D there exists a homomorphism h from B′ to A′ that preserves dom(D) ∩ dom(B′). Assume
A′ and B′ are given. We may assume that dom(D) ⊆ dom(B′) and that B′ ∩BG is connected for
every maximally guarded setG inD. Then we can regard every B′ ∩BG as an rAQ qG with answer
variables G. From B |= qG (b⃗) for a suitable b⃗ with [b⃗] = G, we obtain A′ |= qG (b⃗) since B is an
rAQ-materialization of D and O. Let hG be the homomorphism witnessing A′ |= qG (b⃗). Then hG
is a homomorphism from B′ ∩ BG to A′ that preserves G. The union h of all hG , G a maximally
guarded set in D, is the desired homomorphism from B′ to A′ preserving dom(D) ∩ dom(B′). □

Because of Theorem 3.2, from now on we speak of materializability without reference to a
query language and of materializations instead of UCQ-materializations (which are then also
CQ-materializations and rAQ-materializations).
A notion closely related to materializations are universal models defined in terms if homomor-

phisms as used e.g. in data exchange [29, 32]. A model of an ontology O and an instance D is
hom-universal if there is a homomorphism preserving dom(D) into any model of O and D. We say
that an ontology O admits hom-universal models if there is a hom-universal model for O and any
instance D. It is well-known that hom-universal models are closely related to what we call UCQ-
materializations. In fact, we show that in uGC2 (=), materializability of an ontology O coincides
with O admitting hom-universal models (although for concrete models, being hom-universal is not
the same as being a materialization).

Lemma 3.3. A uGC2 (=) ontology is materializable iff it admits hom-universal models.

Proof. The direction ‘⇐’ is straightforward. Conversely, assume that O is materializable. Let D
be an instance that is consistent w.r.t. O. By Lemma 2.12 there exists a forest model B of D and O
that is a CQ-materialization of O andD. We may assume that B interprets relation symbols of arity
at most two. By selecting witnesses for existential formulas and dropping subtrees that are not

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

1:18 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

needed as witnesses, one can show that there existsB′ ⊆ B such thatB′ is a model of O andD and
for any guarded set G the number of guarded sets G ′ with G ∩G ′ , ∅ is finite (actually bounded
by the number of existentially quantified subformulas in O). We show that for any model A of O
andD there is a homomorphism from B′ into A that preserves dom(D). Let A be a model of O and
D. Again we may assume that A is a forest model such that for any guarded set G the number of
guarded sets G ′ with G ∩G ′ , ∅ is finite. Now, since B′ is a CQ-materialization of O and D, for
any finite subset F of dom(B′) there is a homomorphism hF from B′

|F to A preserving dom(D) ∩ F .
Let Fm be the set of all d ∈ dom(B′) such that there is a sequence of at mostm + 1 guarded sets
G0, . . . ,Gm with Gi ∩Gi+1 , ∅ for i < m, G0 ∩ dom(D) , ∅, and d ∈ Gm . Then each Fm is finite
and

⋃
m≥0 Fm = dom(B′). Using a standard pigeonhole argument one can construct an infinite

sequence of natural numbers n0 < n1 < · · · such that hFn0 ⊆ hFn1 ⊆ · · · . Then h =
⋃

i≥0 hFni is the
required homomorphism from B′ to A. □

Lemma 3.3 does does not hold for uGF(2) ontologies. In fact, we show in the appendix that there
exists a materializable ontology O in uGF(2) with three variables not admitting hom-universal
models such that CQ-evaluation w.r.t. O is in PTime. Thus, admitting hom-universal models is not
a necessary condition for query evaluation to be in PTime, in contrast to materializability.

Lemma 3.4. There exists a materializable ontology O in uGF(2) not admitting hom-universal models.

Moreover, CQ-evaluation w.r.t. O is in PTime.

We next aim to show that materializability of ontologies is a necessary condition for query
evaluation to be in PTime, unless PTime = NP. For proving this, it is more convenient to work with
a certain disjunction property instead of directly using materializability. We now introduce this
property and show the equivalence of the two notions. Let Q be a class of CQs, O an ontology, and
D an instance. For q1 (x⃗1), . . . ,qn (x⃗n) ∈ Q and tuples d⃗1, . . . , d⃗n inDwe write O,D |= q1 (d⃗1)∨ . . .∨
qn (d⃗n) if for every model A of O andD there exists 1 ≤ i ≤ n such that A |= qi (d⃗i). An ontology O
has the Q-disjunction property if for all instances D, queries q1 (x⃗1), . . . ,qn (x⃗n) ∈ Q and d⃗1, . . . , d⃗n
in D: if O,D |= q1 (d⃗1) ∨ . . . ∨ qn (d⃗n), then there exists 1 ≤ i ≤ n such that O,D |= qi (d⃗i).

Theorem 3.5. Let Q be a class of CQs and O an FO(=)-ontology. Then O is Q-materializable iff O

has the Q-disjunction property.

Proof. For the nontrivial ‘⇐’ direction, letD be an instance consistent w.r.t. O such that there is
no Q-materialization of O and D. Consider the set of FO(=) sentences Γ containing all ¬∃y⃗ϕ (d⃗, y⃗)
such that O,D ̸ |= q(d⃗) and q(x⃗) ← ϕ (x⃗ , y⃗) ∈ Q. Then O ∪D ∪ Γ is not satisfiable as any satisfying
interpretation would be a Q-materialization of O and D. By compactness of FO(=), there is a finite
subset Γ′ ⊆ Γ such that O ∪D ∪ Γ′ is not satisfiable. Then the set of all q(d⃗) corresponding to Γ′

refutes the Q-disjunction property for O. □

The following theorem links materializability to computational complexity, thus providing the
main reason for our interest into this notion. The proof is by reduction of 2+2-SAT [70], a variation
of a related proof from [59]. For some results established later on, it is important that we establish
the following for unary rAQs.

Theorem 3.6. Let O be an FO(=)-ontology that is invariant under disjoint unions. If O is not

materializable, then the evaluation of unary rAQs w.r.t. O is coNP-hard.

sketch. It was proved in [59] that if an ALC ontology O is not ELIQ-materializable, then
ELIQ-evaluation w.r.t. O is coNP-hard, where an ELIQ is a unary rAQ q(x⃗) such that the associated
instance Dq (x⃗) viewed as an undirected graph is a tree (instead of cg-tree decomposable) with

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

Dichotomies in Ontology-MediatedQuerying with the Guarded Fragment 1:19

a single answer variable at the root.2 The proof is by reduction from 2+2-SAT, the variant of
propositional satisfiability where the input is a set of clauses of the form (p1 ∨ p2 ∨ ¬n1 ∨ ¬n2),
each p1,p2,n1,n2 a propositional letter or a truth constant [70]. The proof of Theorem 3.6 can be
obtained from the proof in [59] by minor modifications, which we sketch in the following.
The proof crucially exploits that if O is not rAQ-materializable, then by Theorem 3.5 it does

not have the rAQ-disjunction property. In fact, we take an instance D, (not necessarily unary)
rAQs q1 (x⃗1), . . . ,qn (x⃗n) ∈ Q, and elements d⃗1, . . . , d⃗n of D that witness failure of the disjunction
property, copy them an appropriate number of times, and use the resulting set of gadgets to choose
a truth value for the variables in the input 2+2-SAT formula. The fact that O is invariant under
disjoint unions ensures that the choice of truth values for different variables is independent. A
main difference between ELIQs and rAQs is that rAQs can have more than one answer variable. A
straightforward way to handle this is to replace certain binary relations from the reduction in [59]
with relations of higher arity (these are ‘fresh’ relations introduced in the reduction, that is, they
do not occur in O). To deal with a rAQ of arity k , one would use a k + 1-ary relation. However, with
a tiny bit of extra effort, one can replace these relations with k binary relations. As in the original
construction in [59], one finally ends up with a query that is unary. □

We remark that, in the proof of Theorem 3.6, we use instances and rAQs that involve additional
fresh relation symbols, that is, relation symbols that do not occur in O. It suffices to use binary
fresh symbols and thus we stay within the assumed signature restrictions when working with uGF2
and uGC2. The ontology OMat/PTime from Example 2.3 shows that Theorem 3.6 does not hold for
GF ontologies, even if they are of depth 1 and use only a single variable. In fact, OMat/PTime is not
CQ-materializable, but CQ-evaluation is in PTime (which are both easy to see).

The next two theorems are the second main result of this section.

Theorem 3.7. For all uGF(=) ontologies O, the following are equivalent:
(1) rAQ-evaluation w.r.t. O is in PTime;
(2) CQ-evaluation w.r.t. O is in PTime;
(3) UCQ-evaluation w.r.t. O is in PTime.

This remains true when ‘in PTime’ is replaced with ‘Datalog
,
-rewritable’ and with ‘coNP-hard’ (and

with ‘Datalog-rewritable’ if O is a uGF ontology).

The proof is given in the appendix. For PTime membership and for rewritability, it suffices to
prove the implication (1)⇒ (3). The central idea is to use a decomposition of CQs into a quantifier
free CQ and a collection of rAQs that goes under various names such as splittings [55], forest
decompositions [13], and squid decompositions [19], see also [9]. To achieve this, we exploit that
O is materializable, by Theorem 3.6. For coNP-hardness, it suffices to prove (3)⇒ (1). We again use
the decomposition mentioned above and Theorem 3.6.

The following theorem states that the equivalences of Theorem 3.7 hold for uGC2 (=) ontologies
as well. For the proof of Theorem 6.6 below, it will be convenient to state the equivalence also for
unary rAQ-evaluation. The proof is a straightforward adaptation of the proof of Theorem 3.7.

Theorem 3.8. For all uGC2 (=) ontologies O, the statements (1) to (3) of Theorem 3.7 are equivalent

and also equivalent to

(4) unary rAQ-evaluation w.r.t. O is in PTime.
This remains true when ‘in PTime’ is replaced with ‘Datalog

,
-rewritable’ and with ‘coNP-hard’.

2In the context of ALC, relation symbols are at most binary and thus it should be clear what ‘tree’ means.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

1:20 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

Because of Theorems 3.7 and 3.8, when dealing with a uGF(=) or uGC2 (=) ontology we will
simply speak about PTime query evaluation, Datalog,-rewritability of query evaluation, and coNP-
hardness of query evaluation without specifying the actual query language, as all these properties
agree for rAQs, CQs, and UCQs. The ontology OUCQ/CQ from Example 2.3 shows that this does not
hold for GF ontologies, even if they use only a single variable and are of depth 1 up to an outermost
universal quantifier with an equality guard.

Lemma 3.9. CQ-evaluation w.r.t. OUCQ/CQ is in PTime. In contrast, UCQ-evaluation w.r.t. OUCQ/CQ

is coNP-hard.

Sketch. The lower bound essentially follows the construction in the proof of Theorem 3.6. For
the upper bound, fix a CQ q(x⃗), and consider an input instance D and a tuple a⃗ in D. If D |= q(a⃗),
then clearly OUCQ/CQ,D |= q(a⃗). Otherwise, ifD ̸ |= q(a⃗), then one can show that OUCQ/CQ,D ̸ |= q(a⃗).
There are three cases to consider. If ED is nonempty, then D is a model of OUCQ/CQ that falsifies
q(a⃗). If ED is empty, then for each of the two cases – q contains an atomic formula of the form E (y)
or not – we can build a model of D and OUCQ/CQ that falsifies q(a⃗). □

4 UNRAVELING TOLERANCE
While materializability of an ontology is a necessary condition for PTime query evaluation in
uGF(=) and uGC2 (=), we now identify a sufficient condition for Datalog,-rewritability (and thus
also for PTime query evaluation) called unraveling tolerance. Unraveling tolerance is defined using
the disjoint union of all unravelings of an instance at its maximally guarded sets, as defined in
Section 2.5. We shall later establish strong dichotomy results by showing that for the ontology
languages in question, materializability implies unraveling tolerance. We also identify a large class
of unraveling tolerant ontologies by proving that ontologies whose models are preserved under
direct products are unraveling tolerant. It follows, in particular, that every uGF(=) and uGC2 (=)
ontology that is expressible in Horn FO(=) is unraveling tolerant.

Similarly to the unraveling of an interpretation at a maximally guarded set, the global unraveling
of an instance depends on whether we work with uGF(=) or its two variable fragment with counting.

Definition 4.1 (Global Unraveling of Data Instance). Let D be an instance. The global uGF-

unraveling (resp. global uGC2-unraveling) Du of D is the disjoint union of all uGF-unravelings
(uGC2-unravelings)DuG ofD atG , whereG is a maximally guarded set inD (for the uGC2-unraveling,
we assume that D only interprets relation symbols of arity at most two).

We use the notation introduced for unravelings in Section 2.5 when talking about global unravel-
ings. Thus, for eachmaximally guarded setG inDwe have a cg-tree decomposition (T (D,G),E, bag)
ofDuG where T (D,G) is the set of sequencesG0 · · ·Gn of maximally guarded sets inD withG0 = G
and satisfying the following conditions introduced in Section 2.5: (a) G1 , Gi+1, (b)Gi ∩Gi+1 , ∅,
and (c) Gi−1 , Gi+1 or (a), (b), and (c′) Gi ∩Gi−1 , Gi ∩Gi+1, respectively. T (D) denotes the union
of all T (D,G), where G is a maximally guarded set in D. We set tail(G0 · · ·Gn) = Gn and call Gn
the tail of G0 · · ·Gn ∈ T (D). For t ∈ T (D), every a ∈ bag(t) is a copy of a unique a↑ ∈ tail(t).

Definition 4.2 (Unraveling Tolerance). A uGF(=) (resp. uGC2 (=)) ontology O is unraveling tolerant
if for every instance D, every rAQ q(x⃗), and every tuple a⃗ in D such that G = [a⃗] is maximally
guarded in D the following are equivalent:
(1) O,D |= q(a⃗);
(2) O,Du |= q(b⃗) where b⃗ is the copy of a⃗ in bag(G)

where Du is the global uGF-unraveling (resp. the global uGC2-unraveling) of D.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

Dichotomies in Ontology-MediatedQuerying with the Guarded Fragment 1:21

In Definition 4.2, one can equivalently replace the equivalence (1)⇔ (2) by the implication (1)⇒
(2). In fact, the following observation is shown in the appendix.

Lemma 4.3. The implication (2) ⇒ (1) in Definition 4.2 holds for every uGF(=) and uGC2 (=)
ontology and every rAQ.

Note that it is pointless to define unraveling tolerance using UCQs or CQs in place of rAQs since
the former query languages can trivially separate database instances from their (global) unraveling.
Conversely, it might seem that rAQs are not sufficiently powerful to achieve the separation. We
use the instance introduced in Example 2.9 to illustrate how rAQs are used to refute unraveling
tolerance.

Example 4.4. Consider the uGF ontology O that contains the sentences

∀x
(
A(x) → (∃y (R (x ,y) ∧A(y)) → E (x))

)
∀x

(
¬A(x) → (∃y (R (x ,y) ∧ ¬A(y)) → E (x))

)
∀x

(
E (x) → ((R (x ,y) ∨ R (y,x)) → E (y))

)
.

Assume thatD is an instance with A(b) < D for any b. Then O,D |= E (a) iff there is a R ∪R−1-path
from a to some c in an odd R-cycle in D. Thus, for the instance D from Example 2.9 (1) we have
O,D |= E (a) for every a ∈ dom(D), but O,Du ̸ |= E (a) for any a ∈ dom(Du).

We now show that unraveling tolerance implies that query evaluation is Datalog,-rewritable.

Theorem 4.5. If O is an unraveling tolerant uGF(=) or uGC2 (=) ontology, then rAQ-evaluation

w.r.t. O is Datalog
,
-rewritable (resp., Datalog-rewritable if O is formulated in uGF).

A detailed proof is given in the appendix. For the case that O is a uGF(=) ontology, the basic idea
is as follows. Suppose that O is unraveling tolerant, and that q(x⃗) is a rAQ. We have to construct a
Datalog, program Π that on any instance D computes the certain answers a⃗ of q on D given O.
We can w.l.o.g. restrict our attention to answers a⃗ such that the set of elements of a⃗ is maximally
guarded inD. By unraveling tolerance, it is enough to check if O,Du |= q(b⃗), where b⃗ is the copy of
a⃗ in bag(G) andDu is the uGF-unraveling ofD. The Datalog, program Π assigns to each maximally
guarded tuple a⃗ = (a1, . . . ,ak) inD a set of types where, roughly, a type is maximally consistent set
of uGF formulas with free variables in x1, . . . ,xk where variable xi represents the element ai and
that can be realized in some model of O. To achieve finiteness of types (and of Π), we restrict our
attention to subformulas of O and to a certain finite set of formulas induced by q. The Datalog,
program Π ensures the following:
(1) for any two maximally guarded tuples a⃗ = (a1, . . . ,ak), b⃗ = (b1, . . . ,bl) in D that share an

element and any type θ assigned to a⃗ there is a type θ ′ assigned to b⃗ that is compatible to θ
(intuitively, the two types agree on all formulas that only talk about elements shared by a⃗
and b⃗);

(2) a tuple a⃗ = (a1, . . . ,ak) is an answer to Π if all types assigned to a⃗ contain q(x1, . . . ,xk), or
some maximally guarded tuple b⃗ in D has no type assigned to it.

It can be shown that a⃗ is an answer to Π iff O,Du |= q(a⃗). A similar idea works for uGC2 (=)
ontologies, but the program is more complex.

We next show that ontologies whose models are preserved under direct products are unraveling
tolerant. This covers all ontologies in uGF(=) and uGC2 (=) that can be expressed in Horn FO(=) [26]
and all so-called Horn description logics, syntactically defined fragments of expressive DLs that
enjoy PTime query evaluation and that fall within Horn FO(=), see for example [31, 44, 50].

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

1:22 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

The direct product A =
∏

i ∈I Ai of a family Ai , i ∈ I , of interpretations is defined by setting

dom(A) = { f : I →
⋃

dom(Ai) | ∀i ∈ I : f (i) ∈ dom(Ai)}

A = {R (f1, . . . , fk) | ∀i ∈ I : R (f1 (i), . . . , fk (i)) ∈ Ai }

We regard the functions f ∈ dom(A) as constants and identify the constant function fa mapping
every i ∈ I to a ∈

⋂
i ∈I dom(Ai) with the constant a. An ontology O is preserved under direct

products if
∏

i ∈I Ai is a model of O whenever Ai , i ∈ I , is a family of models of O. We show
that if O is either a uGF(=) or uGC2 (=) ontology preserved under direct products, then O is
unraveling tolerant. First we introduce a natural equivalence relation and automorphisms on the
global unraveling Du of an instance D.
Let D be an instance. Define equivalence relations ∼ on T (D) and ∼u on Du by setting t ∼ t ′

if tail(t) = tail(t ′) and a ∼u b if a↑ = b↑, respectively. For any t , t ′ ∈ T (D) with t ∼ t ′ the
mapping ht,t ′ that sends every a ∈ bag(t) to the unique b ∈ bag(t ′) with a ∼u b is an isomorphism
from D|bag(t) to D|bag(t ′) , called the canonical isomorphism. Using the Conditions (a)–(c) from the
construction of (T (D),E) one can readily show that for any t , t ′ ∈ T (D) with t ∼ t ′ there is an
automorphism it,t ′ of (T (D),E) such that it,t ′ (t) = t ′ and it,t ′ (s) ∼ s for every s ∈ T (D). it,t ′ is
uniquely determined by t and t ′ on the connected componentT (D,G) of t inT (D) and induces the
mapping ĥt,t ′ from Du into Du defined by setting ĥt,t ′ =

⋃
s ∈T (D) hs,it,t ′ (s) .

Lemma 4.6. Let t , t ′ ∈ T (D) such that t ∼ t ′. Then ĥt,t ′ is an automorphism of Du .

Call ĥt,t ′ the canonical automorphism ofDu induced by t , t ′. Lemma 4.6 shall be a fundamental tool
for the constructions in Section 5. We apply it here to prove the announced result that preservation
under direct products implies unraveling tolerance.

Theorem 4.7. Let O be a uGF(=) or uGC2 (=) ontology preserved under direct products. Then O is

unraveling tolerant.

Proof. Let D be an instance, G0 a maximally guarded set in D, and assume that [a⃗] = G0, b⃗ is a
copy of a⃗ in bag(G0), and that O,Du ̸ |= q(b⃗) for an rAQ q(x⃗). We have to show that O,D ̸ |= q(a⃗).
Let Ai , i ∈ I , be the family of at most countable forest models of O and D (up to isomorphisms).
Then A∗ =

∏
i ∈I Ai is a model of O and D (recall that we identify for every a ∈ dom(Du) the

constant function fa mapping all i ∈ I to f (i) = a with a). Moreover, A∗ ̸ |= q(b⃗) since there exists
i ∈ I such that Ai ̸ |= q(b⃗) (and the projection is a homomorphism from A∗ to Ai). Next observe that
for any t , t ′ ∈ T (D) such that t ∼ t ′, the automorphism ĥt,t ′ of Du from Lemma 4.6 can be lifted to
an automorphism hIt,t ′ of A

∗. In particular, for any t , t ′ with t ∼ t ′ there is an isomorphism from
the interpretation hooked to Du at bag(t) in A∗ onto the interpretation hooked to Du at bag(t ′) in
A∗ mapping every a ∈ bag(t) to the unique a′ with a ∼u a′ in bag(t ′).

Assume first that O is a uGF(=) ontology. Define a model A of D by taking for every maximally
guarded G in D a maximally guarded G ′ in Du with G ′↑ = G and hooking to D at G a copy of the
interpretation A∗G′ hooked to Du in A∗ at G ′ by identifying every a ∈ G ′ with a↑ ∈ G. Assume
[e⃗] = G ′. Using Lemma 2.10 and the automorphisms hIt,t ′ of A

∗ one can readily check that there is
a connected guarded bisimulation between (A∗, e⃗) and (A, e⃗↑). Thus, by Lemma 2.6, A is a model
of O. Moreover, as we can regard every rAQ as a formula in openGF, we also have A ̸ |= q(a⃗).
Assume now O is a uGC2 (=) ontology. Define a model A of D by hooking to D at every c↑ ∈

dom(D) a copy of the interpretation Ac hooked toDu in A∗ at c by identifying c with c↑. In addition,
add {R (c↑1 , c

↑

2) | R (c1, c2) ∈ A
∗
|dom(Du)

} to D. Using Lemma 2.11 and the automorphisms hIt,t ′ of A
∗

one can check that for every maximally guarded G ′ in Du and e⃗ with [e⃗] = G ′ there is a counting

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

Dichotomies in Ontology-MediatedQuerying with the Guarded Fragment 1:23

connected guarded bisimulation between (A∗, e⃗) and (A, e⃗↑). Thus, by Lemma 2.7, A is a model of
O. As we can regard q as a formula in openGF, we also have A ̸ |= q(a⃗). □

5 STRONG DICHOTOMIES
We prove dichotomies between Datalog,-rewritability and coNP-hardness of query evaluation
in the six ontology languages displayed in the bottommost row of Figure 1.3 This also implies
that, unless PTime = NP, Datalog,-rewritability coincides with PTime query evaluation. The
proof consists of showing that in the ontology languages under consideration, materializability
implies unraveling tolerance. It follows that PTime query evaluation also coincides with unraveling
tolerance and with materializability (again unless PTime = NP).
Let D be an instance. In what follows we make intense use of Lemma 4.6. In particular, we use

the following straightforward consequence.

Lemma 5.1. Let t , t ′ ∈ T (D), t ∼ t ′, and let O be an FO(=) ontology. Then the following hold.

(1) If [a⃗] ⊆ bag(t), then O,Du |= q(a⃗) iff O,Du |= q(ht,t ′ (a⃗)) holds for all rAQs q(x⃗);

(2) If A is a materialization of O and Du , then ĥt,t ′ is an automorphism of A |dom(Du) .

In fact, Point (1) of Lemma 5.1 is an immediate consequence of Lemma 4.6 and Point (2) is a
consequence of Point (1) by the definition of materializations and since every fact in A |dom(Du) \D

u

can be viewed as an answer to a rAQ.
We now establish the main result of this section. In anticipation of the decidability results to

be proved in Section 9, we actually state it in a form that is slightly stronger than announced:
already when O is materializable for the class of (possibly infinite) cg-tree decomposable instances
with sig(D) ⊆ sig(O), it must be unraveling tolerant. It can be established by an easy compactness
argument that materializability implies materializability for the mentioned class of instances, even
within full FO(=), so we also obtain the result announced originally.

Theorem 5.2. Let O be an ontology formulated in one of uGF(1), uGF− (1,=), uGF−2 (2), uGC
−
2 (1,=),

or an ALCHIF ontology of depth 2. If O is materializable for the class of (possibly infinite) cg-tree

decomposable instances D with sig(D) ⊆ sig(O), then O is unraveling tolerant.

Proof. We give the proof for uGC−2 (1,=). The remaining cases are considered in the appendix;
they are more involved but based on the same ideas. We first observe that if O is materializable for
the class of cg-tree decomposable instancesDwith sig(D) ⊆ sig(O), then it is materializable for the
class of all cg-tree decomposable instances without any signature restrictions. To show this, assume
that the former holds and letD be an arbitrary cg-tree decomposable instance consistent w.r.t. O. Let
red(Du) be the sig(O)-reduct of D. As O is invariant under disjoint unions and materializable for
the class of cg-tree decomposable instances D with sig(D) ⊆ sig(O) there exists a materialization
Bred of red(Du). Clearly {R | R (a⃗) ∈ Bred} ⊆ sig(O). Now let

B = Bred ∪ {R (a⃗) ∈ D
u | R < sig(O)}

One can show that B is a materialization of Du and O. This finishes the proof of the observation.

Now let O be an ontology in uGC−2 (1,=) and let D be an instance interpreting relation symbols
of arity at most two. Let Du be the global uGC2-unraveling of D. Let G0 be a maximal guarded set
in D, [a⃗] = G0, b⃗ the copy of a⃗ in bag(G0), and q0 an rAQ. Assume that O,Du ̸ |= q0 (b⃗). We aim to
show that O,D ̸ |= q0 (a⃗).

3In what follows we do not explicitly consider ALCHIQ ontologies of depth 1 since they can be equivalently rewritten
into ontologies formulated in uGC−2 (1, =).

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

1:24 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

By the observation above, there exists a materialization Bu of Du . We may assume that Bu is a
forest model. Take for any c ∈ dom(Du) the cg-tree decomposable interpretation Bc hooked to Du
at c . In particular, dom(Du) ∩ dom(Bc) = {c}. Fix for every equivalence class {d | c ∼u d } in Du a
c∗ ∼u c . We define a model B of D by
• hooking to D at every c↑ ∈ dom(D) a copy Bc↑

c∗ of the interpretation Bc∗ hooked to Du at c∗

in Bu (we assume dom(D) ∩ dom(Bc↑
c∗) = {c

↑}) and
• adding the atoms {R (c↑1 , c

↑

2) | R (c1, c2) ∈ B
u
|dom(Du)

}.
We show thatB is a model of O andD such thatB ̸ |= q0 (a⃗), as required. For the proof we uniformize

Bu . Define B∗ by hooking to Du at c a copy Bc
c∗ of the interpretation Bc∗ hooked to Du at c∗ in

Bu , for every c ∈ dom(Du), and adding B|dom(Du) . We assume dom(Du) ∩ dom(Bc
c∗) = {c}. We

show that B∗ is also a materialization of O and Du . By Lemma 5.1, B∗ |= q(a⃗) iff Bu |= q(a⃗)
holds for all guarded a⃗ in Du and all rAQs q. It remains to prove that B∗ is a model of O. For this
to hold, the restriction to sentences in uGC−2 (1,=) is crucial. Let φ ∈ O. Then φ is of the form
∀x (x = x → ψ (x)), where ψ (x) is a formula of depth 1 in openGC2. Consider a ∈ dom(B∗). We
have to show that B∗ |= ψ (a). We distinguish two cases:

Case 1. a ∈ dom(Bc
c∗) \ {c} for some c ∈ dom(Du). Let a′ be the element corresponding to a in Bc∗ .

Asψ has depth 1 and the interpretations Bu
| {c } and B

u
| {c∗ } are isomorphic by Lemma 5.1, we have

the following equivalences:

B
∗ |= ψ (a) ⇔ B

c
c∗ |= ψ (a) ⇔ Bc∗ |= ψ (a

′) ⇔ B
u |= ψ (a′)

and the claim follows from the assumption that Bu is a model of O.

Case 2. a ∈ dom(Du). Let N (c) = {c} ∪ {d | R (c,d) ∈ Du or R (d, c) ∈ Du }, for any c ∈ dom(Du).
By Lemma 5.1, the interpretations Bu

|N (c) and B
u
|N (c∗) are isomorphic for every c ∈ dom(Du). Thus,

asψ has depth 1:

B
∗ |= ψ (a) ⇔ B

∗
|N (a) ∪B

a
a∗ |= ψ (a) ⇔ B

u
|N (a∗) ∪Ba∗ |= ψ (a

∗) ⇔ B
u |= ψ (a∗)

and the claim follows from the assumption that Bu is a model of O.

We have shown that B∗ is a materialization of O and Du . Thus B∗ ̸ |= q0 (b⃗). Now let I be the
union of the set of partial isomorphisms between Du and D from Lemma 2.11 and the partial
isomorphisms between guarded sets induced by the obvious isomorphisms between Bc

c∗ , c ∈ D
u ,

and the copy ofBc↑
c∗ hooked toD at c↑ inB. I is a counting connected guarded bisimulation between

B∗ and B. Thus, by Lemma 2.11, B is a model of O. Also (B∗, b⃗) and (B, a⃗) are connected guarded
bisimilar and so B ̸ |= q0 (a⃗) since B∗ ̸ |= q0 (b⃗), by Lemma 2.11 and since q can be regarded as a
formula in openGF2. We have shown that O,D ̸ |= q0 (a⃗), as required. □

We can now prove the announced strong dichotomy result.

Theorem 5.3. Let O be an ontology formulated in one of uGF(1), uGF− (1,=), uGF−2 (2), uGC
−
2 (1,=),

or an ALCHIF ontology of depth 2. Then the following conditions are equivalent (unless PTime =
NP):
(1) O is materializable;

(2) O is materializable for the class of cg-tree decomposable instances D with sig(D) ⊆ sig(O);
(3) O is unraveling tolerant;

(4) query evaluation w.r.t. O is Datalog
,
-rewritable (and Datalog-rewritable if O is formulated in

uGF);

(5) query evaluation w.r.t. O is in PTime.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

Dichotomies in Ontology-MediatedQuerying with the Guarded Fragment 1:25

Otherwise, query evaluation w.r.t. O is coNP-hard.

Proof. (1)⇒ (2) is by a compactness argument. (2)⇒ (3) is Theorem 5.2. (3)⇒ (4) follows from
Theorem 4.5 and Theorems 3.7 and 3.8. (4)⇒ (5) is folklore. (5)⇒ (1) is Theorem 3.6 (assuming
PTime , NP). □

The qualification ‘with sig(D) ⊆ sig(O)’ in Point 2 of Theorem 5.3 can be dropped without
compromising the correctness of the theorem, and the same is true for Theorem 5.2. It will be
useful, though, in the decision procedures developed in Section 9.

6 CONNECTION TO CSP AND MMSNP
We establish the four CSP-hardness results displayed in the middle two rows of Figure 1 as well
as the dichotomy result stated in the second lowest row. In contrast to the dichotomies proved in
the previous section, this dichotomy is not ‘strong’ in the sense explained in the introduction, that
is, it is established using a reduction to the dichotomy of CSPs (via a detour through the logical
generalization MMSNP of CSP) rather than elementary proofs and it does not establish that PTime
query evaluation coincides with Datalog, rewritability. In fact, we use results on CSPs to show
that the latter two notions do not coincide for the ontology languages considered here.

Let A be an instance. The constraint satisfaction problem CSP(A) is to decide, given an instance
D with sig(D) ⊆ sig(A), whether there is a homomorphism from D to A, which we denote with
D→ A. In this context, A is called the template of CSP(A). The complement of CSP(A) is denoted
coCSP(A). We will generally assume that A interprets relation symbols of arity at most two and that
the template A admits precoloring, that is, for each a ∈ dom(A), there is a unary relation symbol
Pa such that Pa (b) ∈ A iff b = a [28]. It is known that for every template A, there is a template
A′ of this form such that CSP(A) has the same complexity as CSP(A′) up to polynomial time
reductions [5, 28]. Moreover, coCSP(A) is Datalog definable iff coCSP(A′) is Datalog definable [53].

Definition 6.1. Let L be an ontology language and Q a class of queries. Then Q-evaluation
w.r.t. L is CSP-hard if for every template A that admits precoloring and interprets relation symbols
of arity at most two, there exists an L ontology O such that
(1) there is a Boolean query q0 ∈ Q such that for every instanceD with sig(D) ⊆ sig(A):D↛ A

iff O,D |= q0.
(2) for every q ∈ Q, evaluating the OMQ (O,q) reduces in polynomial time to coCSP(A).

Observe that it follows from Point 1 that coCSP(A) reduces in polynomial time to evaluating the
OMQ (O,q0).

The following theorem summarizes our results on CSP-hardness.

Theorem 6.2. For any of the following ontology languages, CQ-evaluation w.r.t. L is CSP-hard:

uGF2 (1,=), uGF2 (2), uGF2 (1, f), and the class of ALCF ℓ ontologies of depth 2.

Proof. Wegive the proof for uGF2 (1,=) and then indicate themodifications needed for uGF2 (1, f)
andALCF ℓ ontologies of depth 2. For uGF2 (2), the result follows from a proof of the correspond-
ing result in [59] for ALC ontologies of depth 3.

Let A be a template admitting precoloring and interpreting relation symbols of arity at most two.
Let Ra be a binary relation symbol for each a ∈ dom(A), and set

φ,a (x) = ∃y (Ra (x ,y) ∧ ¬(x = y))

φ=a (x) = ∃y (Ra (x ,y) ∧ (x = y))

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

1:26 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

Then O contains

∀x (
∧
a,a′
¬(φ,a (x) ∧ φ

,
a′ (x)) ∧

∨
a

φ,a (x))

∀x (A(x) → ¬φ,a (x)) when A(a) < A
∀x ,y (R (x ,y) → ¬(φ,a (x) ∧ φ

,
a′ (y))) when R (a,a′) < A

∀xφ=a (x) for all a ∈ dom(A)

where A and R range over symbols in sig(A) of the respective arity. A formula φ,a (x) being true at
a constant c in an instance D means that c is mapped to a ∈ dom(A) by a homomorphism from D
to A. The first sentence in O thus ensures that every node inD is mapped to exactly one node in A
and the second and third set of sentences ensure that we indeed obtain a homomorphism. The last
set of sentences enforces that φ=a (x) is true at every constant c . This makes the disjunction in the
first sentence ‘invisible’ to the query (in which inequality is not available), thus avoiding that O is
coNP-hard for trivial reasons. We show that O satisfies Conditions 1 and 2 from Definition 6.1,
where the query q0 used in Condition 1 is q0 ← N (x) with N a fresh unary relation symbol.

For Condition 1, assume D with sig(D) ⊆ sig(A) is given. We show that D → A iff O,D ̸ |= q0.
First let h be a homomorphism from D to A. Define a model B of D and O by adding to D for any
d ∈ dom(D) with h(d) = a an infinite chain

Ra (d0,d ,d1,d),Ra (d1,d ,d2,d), . . .

with d0,d = d and fresh constants di,d for all i > 0. Also add Ra (d,d) to D for all a ∈ dom(A),
d ∈ dom(D), and all constants used in the chains. Using the definition of O it is not difficult to
show that B is a model of O and D. There is no b with N (b) ∈ B and thus O,D ̸ |= q0, as required.
Now assume that O,D ̸ |= q0. Then there is a model B of O and D such that B ̸ |= q0. Define a
mapping h from D to A by setting h(d) = a iff there exists d ′ with d ′ , d and Ra (d,d ′) ∈ B. Using
the definition of O it is not difficult to show that h is well defined and a homomorphism. This
finishes the proof of Condition 1.
For Condition 2, let q be a CQ. We show that the query evaluation problem for (O,q) can be

reduced in polynomial time to coCSP(A). We first show that there is a polynomial time reduction
of the problem whether an instance D is consistent w.r.t. O to CSP(A). Assume D is given. Let
D• be the sig(A)-reduct of D extended with Pa (d) for any d with Ra (d,d

′) ∈ D for some d ′ , d .
Using the definition of O one can show that D is consistent w.r.t. O iff D• → A. This provides the
polynomial time reduction of consistency to CSP(A). Now letD′ = D∪ {Ra (d,d) | a ∈ dom(A),d ∈

dom(D)}. Clearly, the evaluation problem D′ |= q(d⃗) is in PTime. Observe that if an instance D is
consistent w.r.t. O, then one can construct a CQ-materialization B of O and D such that there is a
homomorphism from B to D′ preserving dom(D) and vice versa. It follows that O,D |= q(d⃗) iff
D is not consistent w.r.t. O or D′ |= q(d⃗) and we have obtained the polynomial time reduction of
query evaluation for (O,q) to coCSP(A).

For uGF2 (1, f), we modify the ontology O defined above as follows. First, we state that a binary
relation symbol F is a partial function satisfying ∀xF (x ,x). Now replace in O the formulas φ,a (x) by
∃y (Ra (x ,y) ∧ ¬F (x ,y)) and φ=a (x) by ∃y (Ra (x ,y) ∧ F (x ,y)), respectively. The resulting ontology
is in uGF2 (1, f) and one can prove in exactly the same way as above that it is as required.

To construct an ALCF ℓ ontology of depth 2 with the required properties, replace in O the
formulas φ,a (x) by ∃≥2yRa (x ,y) and φ=a (x) by ∃yRa (x ,y), respectively. The resulting ontology is
equivalent to anALCF ℓ ontology of depth 2 and one can prove in almost the same way as above
that it is as required. □

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

Dichotomies in Ontology-MediatedQuerying with the Guarded Fragment 1:27

It is known that there exist templates A such that CSP(A) is in PTime while coCSP(A) is not
Datalog definable [33]. By the reductions provided in [5, 53], there also exists such a template A
that additionally admits precoloring and interprets only relation symbols of arity at most two. As
a consequence of the results in [34], coCSP(A) is not Datalog, definable either. It now follows
directly from the definition that if a language L is CSP-hard, then there exists an ontology O in L
such that CQ-evaluation w.r.t. O is in PTime but not Datalog,-rewritable.

Theorem 6.3. In any of the following ontology languages L there exist ontologies that enjoy PTime
CQ-evaluation but are not Datalog

,
-rewritable: uGF2 (1,=), uGF2 (2), uGF2 (1, f), and the class of

ALCF ℓ ontologies of depth 2.

The ontology languages in Theorem 4.5 thus behave differently from the languages for which
we proved a dichotomy in Section 5.

We next establish a dichotomy between PTime and coNP-hardness for query evaluation in uGF2.
Our proof proceeds via reduction to the logical generalization MMSNP of CSP introduced by Feder
and Vardi [33], see also [16, 60, 62]. While MMSNP has higher expressive power than CSP, it has
the same complexity: for every MMSNP sentence φ, there is a template A such that evaluating φ
has the same complexity as CSP(A), up to polynomial time reductions [33, 51]. In particular, the
dichotomy between PTime and NP of CSPs is thus inherited by MMSNP. It is well-known that
MMSNP has the same expressive power as the complement of Boolean monadic disjunctive Datalog
[15]. Here, we prefer to work with the latter.

Monadic disjunctive Datalog (MDDLog) is a variation of Datalog (without inequality) in which
all intensional relation symbols are monadic and where rule heads might be disjunctive. Thus, a
monadic disjunctive Datalog (MDDLog) rule ρ has the form

S1 (x1) ∨ · · · ∨ Sm (xm) ← R1 (y⃗1) ∧ · · · ∧ Rn (y⃗n)

with n > 0 and m ≥ 0 and where S1, . . . , Sm are monadic relation symbols and R1, . . . ,Rn are
relation symbols of unrestricted arity. As expected, we refer to S1 (x⃗1) ∨ · · · ∨ Sm (x⃗m) as the head
of ρ, and to R1 (y⃗1) ∧ · · · ∧ Rn (y⃗n) as the body. As in Datalog, every variable that occurs in the head
of ρ is required to also occur in the body of ρ.

Amonadic disjunctive Datalog (MDDLog) program Π is a finite set of monadic disjunctive Datalog
rules with a selected relation symbol goal that does not occur in rule bodies and appears only
in non-disjunctive rules of the form goal(x⃗) ← R1 (x⃗1) ∧ · · · ∧ Rn (x⃗n). The arity of programs and
intensional and extensional relation symbols are defined as for Datalog, and so is the semantics.
When all extensional relation symbols inΠ are from the signature Σ, we say thatΠ is over extensional
signature Σ and assume that no other relation symbols occur in instances over which Π is evaluated.
We refer to [30] for more information on disjunctive Datalog. We will sometimes use body atoms of
the form true(x) that are vacuously true for all elements of the active domain. This is just syntactic
sugar since any rule with body atom true(x) can equivalently be replaced by a set of rules obtained
by replacing true(x) in all possible ways with an atom R (x1, . . . ,xn) where R is a relation symbol
from the extensional signature Σ and where xi = x for some i and all other xi are fresh variables.

The problem to evaluate Π is to decide, given a Σ-instance D and a1, . . . ,an ∈ dom(D), whether
D |= Π(a1, . . . ,an). This problem is in coNP for every MDDLog program Π. We note the following
dichotomy.

Theorem 6.4. Let Π be an MDDLog program. Then evaluating Π is in PTime or coNP-complete.

As explained above, for Boolean programs Theorem 6.4 is a consequence of the dichotomy
between PTime andNP for CSPs [18, 74] and the fact that Boolean MDDLog has the same expressive

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

1:28 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

power as the complement of MMSNP. Moreover, it was observed in [35] that a dichotomy for
Boolean MDDLog programs implies a dichotomy for MDDLog programs of unrestricted arity.

Our aim in this section is to establish the following result.

Theorem 6.5. Let O be a uGF2 ontology. Then query evaluation w.r.t. O is in PTime or coNP-
complete.

Due to Theorem 3.8, Theorem 6.5 can be established by proving a dichotomy for the class of
all OMQs (O,q) with O from uGF2 and q a unary rAQ. This is what we do in the following. Note,
however, that Theorem 6.6 below even applies to GF2 ontologies instead of only to uGF2 ontologies.
While this is stronger than what we need to establish Theorem 6.5, it remains open whether the
strong result in Theorem 6.6 also holds for CQs and UCQs rather than only for rAQs.

Theorem 6.6. For every OMQ (O,q) with O a GF2 ontology and q a unary rAQ, evaluation is in

PTime or coNP-complete.

Let (O,q) be an OMQwith O a GF2 ontology and q a rAQ with one answer variable. To show that
evaluating (O,q) is in PTime or coNP-hard, we construct an MDDLog program Π that is equivalent
to the OMQ (O,q) in the sense that for all instances D, the certain answers to (O,q) coincide with
the answers to Π. Together with Theorem 6.4, this yields Theorem 6.6.
Let Σ be the set of relation symbols that occur in O and q. Clearly, it suffices to consider

evaluation of (O,q) on instances that only contain symbols from Σ. From now on, we fix two
variables x and y and assume that x is the answer variable of q. We denote by cl(O,q) the smallest
set of formulas with at most x as their free variable that satisfies the following conditions: it
contains all subformulas of O with all free variables replaced with x and all subformulas of
q which have exactly one free variable, renamed to x , and it is closed under applying single
negation. Note that cl(O,q) contains q and all sentences from O. A type for O and q is a maximal
satisfiable subset t ⊆ cl(O,q). We use tp(O,q) to denote the set of all types for O and q. For an
interpretation A and an a ∈ dom(A), we use tA (a) to denote the type realized at a in A, that is,
tA (a) = {φ (x) ∈ cl(O,q) | A |= φ (a)} ∪ {φ () ∈ cl(O,q) | A |= φ ()}. Note that the types defined here
are similar but not identical to those used in the proof of Theorem 3.7.

A link is a (potentially empty) set of atomic formulas of the form R (x ,y) and R (y,x). Let A be an
interpretation. Then all a,b ∈ dom(D) give rise to a link

RD (a,b) := {R (x ,y) | R (a,b) ∈ D} ∪ {R (y,x) | R (b,a) ∈ D}.
A typed link is a triple t1,R, t2 with t1, t2 types and R a link. We say that t1,R, t2 is realizable if
there is a model A of O and (not necessarily distinct) a,b ∈ dom(A) with tA (a) = t1, RA (a,b) ⊇ R ,
and tA (b) = t2.
We now construct the desired MDDLog program Π. Introduce a fresh unary relation symbol

Pt for every type t , to be used as intensional relation symbols in Π. The program comprises the
following rules: ∨

t ∈tp(O,q)

Pt (x) ← true(x)

goal(x) ← Pt (x) whenever q ∈ t
⊥ ← Pt1 (x) ∧ R (x ,y) ∧ Pt2 (y) for all typed links t1,R, t2

that are not realizable
where R (x ,y) denotes the conjunction over all atoms in the link R.

Informally, these rules ‘guess’ of a model A of O and D that is partial in the sense that we only
explicitly represent the restriction of A to the constants in dom(D) while all relevant information

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

Dichotomies in Ontology-MediatedQuerying with the Guarded Fragment 1:29

about other constants in dom(A) is summarized in the types that we assign to the constants in
dom(D). The type t guessed via Pt in the first line determines which formulas from cl(O,q) are
made true at a constant in dom(D). The second line ensures that whenever the query is true at a
constant a in the guessed model, then a is returned as an answer. And the third line guarantees
that the guessed types ‘fit together’; as an example note that, when we have guessed Pt1 (a) with
A(x) ∈ t1, R (b,a) ∈ D, and cl(O,q) ∋ ϑ := ∃y R (x ,y) ∧ A(y), then we must guess a type t2 for
b with ϑ ∈ t2. Theorem 6.6 follows from the following lemma which we prove in detail in the
appendix.

Lemma 6.7. For all Σ-instances D and a ∈ dom(D), O,D |= q(a) iff D |= Π(a).

7 UNDECIDABILITY
We show that ontology languages which admit both sentences of depth 2 and relation symbols
interpreted as partial functions tend to be computationally problematic. In particular, the lan-
guages considered here do neither enjoy a dichotomy between PTime and coNP nor decidabil-
ity of meta problems such as whether query evaluation w.r.t. a given ontology O is in PTime,
Datalog,-rewritable, or coNP-hard, and whether O is materializable. In this section, we establish
the undecidability results. The technique introduced here is used in the subsequent section to prove
non-dichotomy results.

Theorem 7.1. For the ontology languages uGF
−
2 (2, f) and ALCIF ℓ of depth 2, it is undecidable

whether for a given ontology O,

(1) query evaluation w.r.t. O is in PTime, Datalog,-rewritable, or coNP-hard (unless PTime = NP);
(2) O is materializable.

The remainder of this section is devoted to the proof of Theorem 7.1. The proof is by reduction
of the undecidable rectangle tiling problem, defined as follows. An instance P = (T,H ,V) of the
rectangle tiling problem is given by a finite non-empty set T of tile types including an initial tile type

Tinit to be placed only on the lower left corner and a final tile typeTfinal to be placed only on the upper
right corner, a horizontal matching relation H ⊆ T × T and a vertical matching relation V ⊆ T × T.
A tiling for (T,H ,V) is a map f : {0, . . . ,n} × {0, . . . ,m} → T such that n,m ≥ 0, f (0, 0) = Tinit,
f (n,m) = Tfinal, f (i, j) ∈ T \ {Tinit,Tfinal} for all (i, j) < {(0, 0), (n,m)}, (f (i, j), f (i + 1, j)) ∈ H for
all i < n and j ≤ m, and (f (i, j), f (i, j + 1)) ∈ V for all i ≤ n and j < m. We say that P admits a

tiling if there exists a map f that is a tiling forP. It is undecidable whether an instance of the finite
rectangle tiling problem admits a tiling [72].

To establish Theorem 7.1, it suffices to construct, for any such tiling problem P, an ontology OP
such that if P admits a tiling, then OP is not materializable (and thus query evaluation w.r.t. OP is
coNP-hard), and if P admits no tiling, then OP is materializable and query evaluation w.r.t. OP is
Datalog,-rewritable.
The rectangle to be tiled is represented in input instances using the binary relation symbols X

and Y , and OP declares these relation symbols and their inverses to be functional. The basic idea in
the construction of OP is to verify the existence of a properly tiled grid in the input instance by
propagating markers from the top right corner to the lower left corner. During the propagation,
one makes sure that grid cells close (that is, the XY-successor coincides with the YX-successor) and
that there is a tiling that satisfies the constraints in P. Once the existence of a properly tiled grid
is completed, a disjunction is derived by OP to achieve non-materializability and coNP-hardness.
The challenge is to implement this construction such that when P has no solution (and thus the
verification of a properly tiled grid can never complete), OP is Datalog,-rewritable. A central issue
is how to implement the markers as formulas with one free variable that are propagated through

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

1:30 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

the grid during the verification. The markers must be designed in a way so that they cannot be
‘preset’ in the input instance as this would make it possible to prevent the verification of parts of
the input. In ALCIF ℓ , we use formulas of the form ∃=1yP (x ,y) while additionally stating in OP
that ∀x∃yP (x ,y). Thus, the choice is only between whether a constant has exactly one P-successor
(which means that the marker is set) or more than one P-successor (which means that the marker
is not set). Clearly, this difference is invisible to queries and we cannot preset a marker as being
true at some constant in the input instance. We can, however, easily make the marker false at a
constant c by adding two P-successors to c in the input instance. It seems that this effect, which
gives rise to various technical problems we have to address in the construction below, cannot be
avoided. On uGF−2 (2, f), we work with the marker ¬∃y (P (x ,y) ∧¬F (x ,y)), where F is a functional
relation symbol for which we state ∀xF (x ,x). Also here, we can preset the marker negatively but
not positively.
We now provide the detailed construction of OP, in two steps: we first construct an ontology

Ocell that marks the lower left corner of cells and then we construct an ontology OP that marks the
lower left corner of grids that represent a solution to a rectangle tiling problem P. The ontologies
are formulated in ALCIF ℓ . Thus, in addition to ALCI concepts we use concepts of the form
(≤ 1R), (= 1R), and (≥ 2R). As formulas can be written more succinctly in DL notation compared
to FO notation, we use the former.

Marking the lower left corner of grid cells. Let X and Y be binary relation symbols and X−,Y−
their inverses in ALCI. Using the sentences

⊤ ⊑ (≤ 1Z)

for all Z ∈ {X ,Y ,X−,Y−} we ensure that in any instance D consistent w.r.t. our ontology the
relation symbols X and Y as well as their inverses X− and Y− are functional in D in the sense that
R (d,d ′),R (d,d ′′) ∈ D implies d ′ = d ′′ for all R ∈ {X ,Y ,X−,Y−}. For an instanceD and d ∈ dom(D)
we writeD |= cell(d) if there exist d1,d2,d3 withX (d,d1), Y (d1,d3), Y (d,d2),X (d2,d3) ∈ D. SinceX
and Y are functional in D, D |= cell(d) implies d3 = d4 if X (d,d1), Y (d1,d3), X (d,d2),Y (d2,d4) ∈ D.
As a marker for all d such that D |= cell(d) we use the concept (= 1P) for a binary relation symbol
P . For P and all binary relation symbols R introduced below we add the inclusion ⊤ ⊑ ∃R.⊤ to
our ontology so that when building models one can only choose between having exactly one
R-successor or at least two R-successors. To set the marker (= 1P) we use concepts (= 1R1) and
(= 1R2) with binary relation symbols R1,R2 as ‘second-order variables’, ensure that all nodes in D
are contained in (= 1R1) ⊔ (= 1R2), and then state (as a first attempt) that⊔

i=1,2
∃X .∃Y .(= 1Ri) ⊓ ∃Y .∃X .(= 1Ri) ⊑ (= 1P)

Clearly, if D |= cell(d) then O,D |= (= 1P) (d) for the resulting ontology O. Conversely, the idea is
that if D ̸ |= cell(d) and X (d,d1), Y (d,d2),Y (d1,d3), X (d2,d4) ∈ D but d3 , d4, then one can extend
D by adding a single R1-successor and two R2-successors to d3, a single R2-successor and two
R1-successors to d4, and two P-successors to d and thus obtain a model B of O and D in which
d < (= 1P)B, see Figure 2. In general, however, this inclusion does not work yet. First, the inclusion
has depth 3 and we are aiming at an inclusion of depth 2. This issue is easily resolved by introducing
auxiliary binary relation symbols RXi , R

Y
i , R

XY
i and RYXi , i = 1, 2, and replacing concepts such as

∃X .∃Y .(= 1Ri) by (= 1RXYi) and the sentences

(= 1RXYi) ≡ ∃X .(= 1RYi) and (= 1RYi) ≡ ∃Y .(= 1Ri)

Details are given below. More importantly, the implication ‘D ̸ |= cell(d) ⇒ O,D ̸ |= (= 1P) (d)’ does
not hold. There are two reasons for this. First, wemight haveX (d,d1),Y (d1,d3),X (d,d2),Y (d2,d4) ∈

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

Dichotomies in Ontology-MediatedQuerying with the Guarded Fragment 1:31

d

d1

d2

d3

d4

X

Y

Y

X

D

⇝ d

d1

d2

d3

d4

X

Y

Y

X

P

P

R2 R2

R1

R2

R1R1

Fig. 2. D ̸ |= cell(d) ⇒ O,D ̸ |= (= 1P) (d)

D with d3 , d4 but both d3 and d4 have already two R2-successors in D. Then the marker (= 1P)
is entailed without the cell being closed at d . Second, d3,d4 might be on an odd cycle of mutually
distinct e0, e1, . . . , en ∈ D such that each ei reaches e (i+1) mod n+1 via a Y−X−YX -path in D, for i =
0, 1, . . . ,n. Figure 3 illustrates this for n = 2. Then, since in at least two neighboring ei , e (i+1) mod n+1
the same concept (= 1Ri) is enforced, the marker (= 1P) is enforced at some node d from which ei
and e (i+1) mod 3 are reachable along XY and YX -paths, respectively, without satisfying cell(d). The
first problem is easily dealt with by demanding the implication to be true only if D is consistent
w.r.t. our ontology. The second problem is resolved by adding appropriate axioms enforcing that
also in this case D is not consistent w.r.t. our ontology.

e0
e1
e2

X

Y

Y

X
X

Y
Y

X

Y X

X Y

Fig. 3. D |= (= 1P) (d) ⇏ D |= cell(d)

In detail, the ontology Ocell uses in addition to X ,Y ,X−,Y− the set AUXcell of binary relations
P ,Ri ,R

W
i , where i ∈ {1, 2} andW ranges over a set of words over the alphabet {X ,Y ,X−,Y−} we

define below. The RWi serve as auxiliary symbols to avoid sentences of depth larger than two. No
unary relation symbols are used. To ensure that CQ-evaluation is Datalog,-rewritable w.r.t. Ocell
we include in Ocell the concept inclusions

⊤ ⊑ ∃Q .⊤

for all binary relation symbols Q ∈ AUXcell. If an instance D is consistent w.r.t. Ocell, then its
materialization adds a certain number of Q-successors to any d ∈ dom(D) to satisfy ⊤ ⊑ ∃Q .⊤
for Q ∈ AUXcell. The remaining sentences in Ocell only influence the number of Q-successors that
have to be added and thus do not influence the certain answers to CQs. In fact, we will have the
following equivalence

Ocell,D |= q(d⃗) iff {⊤ ⊑ ∃Q .⊤ | Q ∈ AUXcell},D |= q(d⃗) (3)

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

1:32 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

for anyCQq andD that is consistentw.r.t.Ocell. Define for any non-emptywordW over {X ,Y ,X−,Y−}
the set ∃W (= 1Ri) of sentences inductively by setting for Z ∈ {X ,Y ,X−,Y−}:

∃Z (= 1Ri) := {(= 1RZi) ≡ ∃Z .(= 1Ri)}
∃ZW (= 1Ri) := {(= 1RZWi) ≡ ∃Z .(= 1RWi)} ∪ ∃W (= 1Ri)

Thus, ∃W (= 1Ri) states that the unique d ′ reachable from d along aW -path has exactly one Ri -
successor iff d has exactly one RWi -successor. Now Ocell contains the following axioms in addition
to ⊤ ⊑ ∃Q .⊤ for Q ∈ AUXcell:
(1) Functionality of X ,Y ,X− and Y− is stated using

⊤ ⊑ (≤ 1Z)

for Z ∈ {X ,Y ,X−,Y−}.
(2) All nodes have exactly one R1-successor or exactly one R2-successor:

⊤ ⊑ (= 1R1) ⊔ (= 1R2)

(3) If all nodes reachable along an XY -path and a YX -path have exactly one R1 and exactly one
R2-successor, then the marker (= 1P) is set:

l

i=1,2
(= 1RXYi) ⊓ (= 1RYXi) ⊑ (= 1P)

(4) For i = 1, 2, the concept (= 1Ri) is true at least at every third node on the cycles in D
introduced above:

(= 1RCCj) ⊑ (= 1Ri) ⊔ (= 1RCi) ⊔ (= 1RCCi)

for {i, j} = {1, 2} and C = X−Y−XY
(5) If (= 1R1) and (= 1R2) are both true in a node inD then they are both true in all neighboring

nodes on the cycles in D introduced above:

(= 1RX
−Y −XY

1) ⊓ (= 1RX
−Y −XY

2) ⊑ (= 1R1) ⊓ (= 1R2)

(= 1RY
−X −YX

1) ⊓ (= 1RY
−X −YX

2) ⊑ (= 1R1) ⊓ (= 1R2)

(6) The auxiliary sentences ∃W (= 1Ri) for all relation symbols RWi used above.

Lemma 7.2. The ontology Ocell has the following properties for all instances D:
(1) for all d ∈ dom(D): Ocell,D |= (= 1P) (d) iff D is not consistent w.r.t. Ocell or D |= cell(d);

moreover, if D is consistent w.r.t. Ocell, then there exists a materialization B of D and Ocell such

that d ∈ (= 1P)B iff d ∈ dom(B) and D |= cell(d);
(2) If all binary relation symbols are functional in D, then D is consistent w.r.t. Ocell;

(3) CQ-evaluation w.r.t Ocell is Datalog
,
-rewritable.

This finishes the construction and analysis of Ocell.

Marking the lower left corner of grids. We now encode the rectangle tiling problem. Let
P = (T,H ,V) with T = {T1, . . . ,Tp }. We regard the tile types in T as unary relation symbols and
take the binary relation symbols X ,Y ,X−,Y− from above and an additional set AUXgrid of binary
relation symbols F , FX , FY ,U ,R,L,B, and A. The ontology OP is defined by adding to Ocell the
sentences

⊤ ⊑ ∃Q .⊤,

for all Q ∈ AUXgrid, and all sentences in Figure 4, where (Ti ,Tj ,Tℓ) range over all triples from T
such that (Ti ,Tj) ∈ H and (Ti ,Tℓ) ∈ V :

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

Dichotomies in Ontology-MediatedQuerying with the Guarded Fragment 1:33

Tfinal ⊑ (= 1F) ⊓ (= 1U) ⊓ (= 1R)
∃X .((= 1U) ⊓ (= 1F) ⊓Tj) ⊓Ti ⊑ (= 1U) ⊓ (= 1F)
∃Y .((= 1R) ⊓ (= 1F) ⊓Tℓ) ⊓Ti ⊑ (= 1R) ⊓ (= 1F)

∃Y .(= 1F) ⊑ (= 1FY)
∃X .(= 1F) ⊑ (= 1FX)

∃X .(Tj ⊓ (= 1F) ⊓ (= 1FY))⊓
∃Y .(Tℓ ⊓ (= 1F) ⊓ (= 1FX)) ⊓ (= 1P) ⊓Ti ⊑ (= 1F)

(= 1F) ⊓Tinit ⊑ (= 1A) ⊓ (= 1B) ⊓ (= 1L)
⊔

1≤s<t ≤p
Ts ⊓Tt ⊑ ⊥

(= 1U) ⊑ ∀Y .⊥ (= 1R) ⊑ ∀X .⊥ (= 1U) ⊑ ∀X .(= 1U) (= 1R) ⊑ ∀Y .(= 1R)
(= 1B) ⊑ ∀Y−.⊥ (= 1L) ⊑ ∀X−.⊥ (= 1B) ⊑ ∀X .(= 1B) (= 1L) ⊑ ∀Y .(= 1L)

Fig. 4. Additional Axioms of OP

We discuss the intuition behind the sentences of OP. The relation symbols X and Y are used to
represent horizontal and vertical adjacency of points in a rectangle. The concepts (= 1Z) of OP
serve the following purpose:
• (= 1U), (= 1R), (= 1L), and (= 1B) mark the upper, right, left, and bottom border of the
rectangle.
• The concept (= 1F) is propagated through the grid from the upper right corner where Tfinal
holds to the lower left one whereTinit holds, ensuring that every position of the grid is labeled
with at least one tile type, that the horizontal and vertical matching conditions are satisfied,
and that the grid cells are closed (indicated by (= 1P) from the ontology Ocell).
• The relation symbols FX and FY are used to avoid depth 3 sentences in the same way as the
relation symbols RWi are used to avoid such sentences in the construction of Ocell.
• Finally, when the lower left corner of the grid is reached, the concept (= 1A) is set as a
marker.

We writeD |= grid(d) if there is a tiling f forPwith domain {0, . . . ,n} × {0, . . . ,m} and a mapping
ρ : {0, . . . ,n} × {0, . . . ,m} → dom(D) with ρ (0, 0) = d such that
• for all j ≤ n, k ≤ m, and all tile types T : T (ρ (j,k)) ∈ D iff T = f (j,k);
• for all b1,b2 ∈ dom(D): X (b1,b2) ∈ D iff there are j < n, k ≤ m such that (b1,b2) =
(ρ (j,k), ρ (j + 1,k));
• for all b1,b2 ∈ dom(D): Y (b1,b2) ∈ D iff there are j ≤ n, k < m such that (b1,b2) =
(ρ (j,k), ρ (j,k + 1));
• the range of ρ is a maximally connected component in the graph (dom(D),X ∪X− ∪Y ∪Y−):
if d ∈ ran(ρ)) and Z (d,d ′) ∈ D for some Z ∈ {X ,Y ,X−,Y−}, then d ′ ∈ ran(ρ).

We then call d the root of the n ×m-grid with witness function ρ for P. The following result can now
be proved using Lemma 7.2.

Lemma 7.3. The ontology OP has the following properties for all instances D:

(1) for all d ∈ dom(D): OP,D |= (= 1A) (d) iff D is not consistent w.r.t. OP or D |= grid(d);
moreover, if D is consistent w.r.t. OP, then there exists a materialization B of D and OP such

that d ∈ (= 1A)B iff d ∈ dom(B) and D |= grid(d);

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

1:34 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

(2) If D |= grid(d) with witness ρ such that dom(D) = ran(ρ), and all relation symbols are

functional in D then D is consistent w.r.t. OP;

(3) CQ-evaluation w.r.t OP is Datalog
,
-rewritable.

We use Lemma 7.3 to prove the undecidability result. Let O = OP ∪ {(= 1A) ⊑ E1 ⊔ E2}, where
E1 and E2 are unary relation symbols.

Lemma 7.4. (1) If P admits a tiling, then O is not materializable and CQ-evaluation w.r.t. O is

coNP-hard.
(2) If P does not admit a tiling, then O is materializable and CQ-evaluation w.r.t. O is Datalog

,
-

rewritable.

Proof. (1) Consider a tiling f for P with domain {0, . . . ,n} × {0, . . . ,m}. Regard the pairs in
{0, . . . ,n} × {0, . . . ,m} as constants. Let D contain X ((i, j), (i + 1, j)), for all i < n and j ≤ m,
Y ((i, j), (i, j + 1)), for all i ≤ n and j < m, and, for every tile type T , T (i, j) if f (i, j) = T , for all
i ≤ n and j ≤ m. Then D is consistent w.r.t. O and O,D |= (= 1A) (0, 0), by Lemma 7.3. Thus
O,D |= E1 (0, 0) ∨ E2 (0, 0) but O,D ̸ |= E1 (0, 0) and O,D ̸ |= E2 (0, 0). Thus O is not materializable
and CQ-evaluation is coNP-hard.

(2) Assume P does not admit a tiling. Clearly, any instance D is consistent w.r.t. O iff it is
consistent w.r.t. OP. Thus, by Lemma 7.3, if O,D |= (= 1A) (d) for some d ∈ dom(D), then D is
not consistent w.r.t. OP. It follows that O,D |= q(d⃗) iff OP,D |= q(d⃗) for every CQ q and d⃗ in
dom(D). Thus, by Points 1 and 3 of Lemma 7.3, O is materializable and CQ-evaluation w.r.t. O is
Datalog,-rewritable, as required. □

Lemma 7.4 entails Theorem 7.1 for ALCIF ℓ ontologies of depth 2. For uGF−2 (2, f) we modify
the construction of Ocell and OP as follows:
• The relation symbols X ,Y ,X−,Y− are defined as functions and it is stated that X− and Y−
are the inverse relations of X and Y , respectively.
• For any relation symbol R in OP distinct from X ,Y ,X−,Y− we introduce a function F , state
∀xF (x ,x), and replace the axiom ⊤ ⊑ ∃R.⊤ by ∀x∃y (R (x ,y) ∧ F (x ,y)).
• We replace all occurrences of (= 1R) for R < {X ,Y ,X−,Y−} in OP by

¬∃y (R (x ,y) ∧ ¬F (x ,y))

Now Lemma 7.2 and Lemma 7.3 still hold for the resulting ontologies Ocell and OP if (= 1P) and
(= 1A) are replaced by ¬∃y (P (x ,y) ∧ ¬F (x ,y)) and ¬∃y (A(x ,y) ∧ ¬F (x ,y)), respectively.

8 NON-DICHOTOMY
We prove the two non-dichotomy results shown in the topmost section of Figure 1, reusing some
of the techniques from the previous section. Ideally, we would like to use the existence of NP-
intermediate word problems of Turing machines as asserted by Ladner’s theorem [52] to establish
our results. However, this does not appear to be easily possible. In fact, in Section 7 it was important
to use CSPs that admit precoloring rather than standard CSPs and, very informally spoken, in this
section we need a version of Ladner’s theorem that in a similar sense admits precoloring. We find
it in the form of the run fitting problem for Turing machines which asks whether a given partially
described run of a Turing machine (that corresponds to a precoloring) can be extended to a full run
which is accepting. We use an adaptation of the proof of Ladner’s theorem to show that there are
NP-intermediate run fitting problems.

Theorem 8.1. For the ontology languages uGF
−
2 (2, f) and ALCIF ℓ of depth 2, there is no

dichotomy between PTime and coNP (unless PTime = coNP).

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

Dichotomies in Ontology-MediatedQuerying with the Guarded Fragment 1:35

We consider non-deterministic Turing machines (TMs, for short) with a single one-sided infinite
tape. A TMM is represented by a tuple (Q, Σ,∆,q0,qa), whereQ is a finite set of states, Σ is a finite
alphabet, ∆ ⊆ Q × Σ ×Q × Σ × {L,R} is the transition relation, and q0,qa ∈ Q are the start state
and accepting state, respectively. A configuration ofM is represented by a string vqw , where q is
the state, v is the inscription of the tape to the left of the tape head, andw is the inscription of the
tape to the right of the tape head in the configuration (as usual, we omit all but possibly a finite
number of trailing blanks). The configuration is accepting if q = qa . A run ofM is represented by a
finite sequence γ0, . . . ,γn of configurations ofM with |γ0 | = · · · = |γn | such that γ0 = q0w for some
stringw that may contain blanks. Note that, sincew may contain blanks, γ0 does not necessarily
correspond to the initial configuration ofM for a given input string. A run is accepting if its last
configuration is accepting. We assume that the accepting state has no successor states.

Definition 8.2. LetM = (Q, Σ, Γ,∆,q0,qa) be a TM.
• A partial configuration of M is a string γ̃ over Q ∪ Σ ∪ {⋆} such that there is at most one
i ∈ {1, . . . ,n} with γ̃ [i] ∈ Q . Here, γ [i] denotes the symbol that occurs at the i-th position of
γ . A configuration γ matches γ̃ if |γ | = |γ̃ | and for each i ∈ {1, . . . ,n} with γ̃ [i] , ⋆we have
γ [i] = γ̃ [i].
• A partial run of M is a sequence γ̃ = (γ̃0, γ̃1, . . . , γ̃m) of partial configurations γ̃i of M such
that |γ̃0 | = · · · = |γ̃m |. A run γ0,γ1, . . . ,γn of M matches γ̃ ifm = n and γi matches γ̃i , for
each i ∈ {0, 1, . . . ,m}.

Definition 8.3. The run fitting problem for a TMM is defined as follows: Given a partial run γ̃ of
M , decide whether there is an accepting run ofM that matches γ̃ .

It is easy to see that the run fitting problem for a TMM is in NP. We prove the following result
in Appendix G by a careful adaptation of the proof of Ladner’s theorem given in [3].

Theorem 8.4. There is a TM whose run fitting problem is neither in PTime nor NP-hard, unless
PTime = NP.

Now Theorem 8.1 is a consequence of the following lemma.

Lemma 8.5. For every Turing machine M , there is a uGF
−
2 (2, f) ontology O and an ALCIF ℓ

ontology O of depth 2 such that the following hold, where N is a distinguished unary relation symbol:

(1) there is a polynomial time reduction of the run fitting problem for M to the complement of

evaluating the OMQ (O,q ← N (x));
(2) for every CQ q, evaluating the OMQ (O,q) is reducible in polynomial time to the complement

of the run fitting problem forM .

Proof. We use a grid construction and marker formulas as in the proof of Theorem 7.1, with
the grid providing the space in which the run of the TM is simulated and markers represent TM
states and tape symbols. In fact, we re-use the ontology OP from the proof of Theorem 7.1, for
a trivial rectangle tiling problem. When the existence of the grid has been verified, instead of
triggering a disjunction as before, we now start a simulation ofM on the grid. For bothALCIF ℓ

and uGF−2 (2, f), we represent states q and tape symbolsG using the same formulas as in the CSP
encoding. Thus, forALCIF ℓ we use formulas ∃≥2yq(x ,y) and ∃≥2yG (x ,y), respectively, using q
and G as binary relation symbols. Note that here the encoding ∃=1yq(x ,y) from the tiling problem
does not work because states and tape symbols can be positively preset in the input instance rather
than negatively, which is in correspondence with the run fitting problem.
We give the detailed proof for ALCIF ℓ ontologies of depth 2. The proof for uGF−2 (2, f) is

obtained by modifying the ALCIF ℓ ontology in the same way as in the proof of Theorem 7.1 by
replacing, for example, (≥ 2R) by ∃y (R (x ,y) ∧ ¬F (x ,y)).

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

1:36 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

AssumeM = (Q, Γ,∆,q0,qa) is given. The instances D we use to represent partial runs and that
provide the space for simulating matching runs are n ×m X ,Y -grids with Tinit written in the lower
left corner, Tfinal written in the upper right corner, and E written everywhere else. To re-use the
notation and results from the proof of Theorem 7.1 we regard such a structure as a tiling with tile
types T = {E,Tfinal,Tinit}. Then the ontology OP for P = (T,H ,V) and

H = {(E,E), (E,Tfinal), (Tinitial,E)}

V = {(E,E), (E,Tfinal), (Tinitial,E)}

checks whether an instance represents a grid structure. We now construct the set OM of sentences
that encode runs ofM that match a partial run. For any D, the simulation of a run is triggered at a
constant d exactly if OP,D |= (= 1A) (d). OM uses in addition to the binary relation symbols in OP
binary relation symbols q ∈ Q and G ∈ Γ that occur in concepts (≥ 2q) and (≥ 2G) and indicate
thatM is in state q and that G is written on the tape, respectively. The sentences of OM are now as
follows:

(a) The grid in which the lower left corner is marked with (= 1A) is completely colored with
(= 1A):

(= 1A) ⊑ ∀X .(= 1A) ⊓ ∀Y .(= 1A),
The remaining sentences are all relativized to (= 1A) and so apply to constants in a grid only.

(b) q0 is the first symbol of the first configuration and no q ∈ Q occurs later in the first configu-
ration:

(= 1A) ⊓Tinit ⊑ (≥ 2q0), (= 1A) ⊓ (= 1B) ⊓ (≥ 2q) ⊑ (= 1L)
(c) Every grid point is colored with exactly one (≥ 2H) for H ∈ Γ ∪Q :

(= 1A) ⊑
⊔

H ∈Γ∪Q

(
(≥ 2H) ⊓

l

H ′∈(Γ∪Q)\{H ′ }

(= 1H ′)
)

(d) To avoid sentences of depth larger than two we introduce forW ∈ {X ,X−} and S ∈ Q ∪ Γ
fresh binary relation symbols SW and the sentences

(= 1A) ⊓ (≥ 2SW) ≡ (= 1A) ⊓ ∃W .(≥ 2S)

(e) For any triple G0qG1 ∈ Γ ×Q × Γ let S (G0qG1) denote the set of all possible successor triples
S1S2S3 ∈ (Q × Γ × Γ) ∪ (Γ × Γ ×Q) according to the transition relation ∆ ofM . Then add the
following sentence to OM

(= 1A) ⊓ ∃X−.(≥ 2G0) ⊓ (≥ 2q) ⊓ ∃X .(≥ 2G1) ⊑⊔
S1S2S3∈S (G0qG1)

∃Y .((≥ 2SX
−

1) ⊓ (≥ 2S2) ⊓ (≥ 2SX3))

(f) Symbols written on cells with distance at least two from the position of the head are not
changed. For all G,G1,G2 ∈ Γ:

(= 1A) ⊓ ∀X .(≥ 2G1) ⊓ ∀X
−.(≥ 2G2) ⊓ (≥ 2G) ⊑ ∀Y .(≥ 2G)

(g) The final state cannot be distinct from the accepting state qa . For all q ∈ Q \ {qa }:

(= 1A) ⊓ (≥ 2q) ⊑ ∃Y .⊤

(h) Finally, for AUXM the set of fresh binary relation symbols used above OM contains:

{⊤ ⊑ ∃Q .⊤ | Q ∈ AUXM }

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

Dichotomies in Ontology-MediatedQuerying with the Guarded Fragment 1:37

This finishes the definition of OM . Let O = OP ∪ OM . We show that O is as required.
(1) Let N be a fresh unary relation symbol. Then an instance D is consistent w.r.t. O if O,D ̸ |= q

for the Boolean query q ← N (x). It therefore suffices to provide a polynomial time reduction of
the run fitting problem forM to the problem whether an instance D is consistent w.r.t. O.

Assume that a partial run γ̃ = (γ̃0, γ̃1, . . . , γ̃m) of partial configurations γ̃i ofM such that γ̃0 starts
with q0 and |γ̃0 | = · · · = |γ̃m | = n + 1 is given. We define an instance D with D |= grid(0, 0) which
encodes the partial run. Thus we regard (i, j) with 0 ≤ i ≤ n and 0 ≤ j ≤ m as constants and D
contains the assertions

X ((i, j), (i + 1, j)), Y ((i, j), (i, j + 1)), Tinit (0, 0), Tfinal (n,m)

and E (i, j) for (i, j) < {(0, 0), (n,m)}. In addition, we include in D the atoms

S ((i, j),d1i, j), S ((i, j),d2i, j)

for distinct fresh constants d1i, j and d
2
i, j for all i, j such that γ̃j [i] = S and S , ⋆. It is now straight-

forward to show that D is consistent w.r.t. O iff there is an accepting run ofM that matches γ̃ .

(2) We have to provide for every CQ q(x⃗) a polynomial time reduction of the query evaluation
problem for (O,q) to the complement of the run fitting problem forM . To this end observe that
the following two conditions are equivalent for any CQ q(x⃗), instance D, and tuple a⃗:
(1) O,D |= q(a⃗);
(2) D is not consistent w.r.t. O or {⊤ ⊑ ∃Q .⊤ | Q ∈ AUX},D |= q(a⃗), where AUX = AUXcell ∪

AUXgrid ∪ AUXM .
As the second problem in Point (2) is in PTime it suffices to provide a polynomial time reduction
of the consistency problem for instances D w.r.t. O to the run fitting problem forM . Assume D is
given. First decide in polynomial time whetherD is consistent w.r.t. OP (Lemma 7.3). If not, we are
done. If yes, let

I = {d ∈ dom(D) | D |= grid(d)}.

For each d ∈ I we find natural numbers nd ,md such that d is the root of an nd ×md -grid with
witness function ρd for the tiling problem P. By Lemma 7.3, there is a materialization B of D and
OP such that d ∈ I iff d ∈ (= 1A)B.
Next we check in polynomial time that D is consistent w.r.t. OP and the axioms from (a) and (d).

To check consistency w.r.t. OP and the axiom from (a), it suffices to check that no e in the range of
some ρd has two or more A-successors. To check that D is consistent w.r.t. OP and the sentences
(= 1A) ⊓ (≥ 2SW) ≡ (= 1A) ⊓ ∃W .(≥ 2S) withW ∈ {X ,X−} from (d) it suffices to check that every
e in the range of some ρd with at least two SW -successors in D has aW -successor in D. This can
be done in polynomial time. If the answer is yes, we may assume that D is saturated in the sense
that if, for example, (= 1A) ⊓ (≥ 2SX) ≡ (= 1A) ⊓ ∃X .(≥ 2S) is in OM then for any e in the range
of some ρd and X (d,d ′) ∈ D the following holds: d has at least two SX -successors inD iff d ′ has at
least two S-successors in D.

Now, ifD is not consistent w.r.t. OP and the axioms from (a) and (d), then we are done. Moreover,
if there exist d ∈ I and natural numbers j, r with 0 ≤ r ≤ nd and 0 ≤ j ≤ md such that there are
distinct S, S ′ ∈ Γ ∪Q such that ρd (j, r) has at least two S-successors and at least two S ′-successors
in D, then D is not consistent w.r.t. O (as this condition contradicts the axioms in (c)) and we are
done as this can clearly be checked in polynomial time). Otherwise, define for every d ∈ I the
sequences of strings

γ̃d = (γ̃d0 , . . . , γ̃
d
md

)

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

1:38 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

by setting for 0 ≤ r ≤ nd and S ∈ Γ ∪Q ,

γ̃dr [j] = S iff ρd (j, r) has at least two S-successors in D

By construction, the sequences γ̃d ,d ∈ I , are well-defined partial runs ofM . It is now straightforward
to show that D is consistent w.r.t. O iff for each d ∈ I there exists an accepting run of M that
matches γ̃d . This provides a polynomial time reduction of the consistency problem for instances D
w.r.t. O to the run fitting problem forM . □

9 DECIDABILITY RESULTS
In Section 7, we have shown that it is undecidable whether a given ontology admits PTime query
evaluation when the ontologies are formulated in uGF−2 (2, f) or areALCIF ontologies of depth 2.
The aim of this section is to identify cases where this problem is decidable. In fact, we show
decidability and ExpTime-completeness for ALCHIQ ontologies of depth 1 and a NExpTime
upper bound for uGC−2 (1,=) ontologies. In both languages, PTime query evaluation coincides with
rewritability into Datalog, and thus our results can also be viewed as establishing decidability of
Datalog, rewritability. As discussed in the introduction, we have carried out experiments which
show that a large majority of real world ontologies areALCHIQ ontologies of depth 1 or can be
transformed into such ontologies in a complexity preserving way, which demonstrates the practical
relevance of the obtained results.

Theorem 9.1. For uGC−2 (1,=) ontologies, it is in NExpTime to decide whether query evaluation is

in PTime (equivalently: rewritable into Datalog,). ForALCHIQ ontologies of depth 1, this problem

is ExpTime-complete and the lower bound already holds for ALC TBoxes of depth 1.

We remark that the satisfiability problem for ALCHIQ ontologies is also ExpTime-complete,
both for ontologies of depth 1 and for ontologies of unrestricted depth. Thus, the ExpTime upper
bound in Theorem 9.1 is the best one can hope for. Also note that because of [27] (Corollary 6.9)
and [18], it is decidable andNP-complete whether a given CSP has PTime complexity. This, however,
does not imply any of the results in Theorem 9.1 in an obvious way because a CSP corresponds to
an ontology with a fixed query while we quantify over all possible queries.

The proof of Theorem 9.1 proceeds through a series of lemmas that are of independent interest.
Since the ontology languages considered here admit at most binary relation symbols, an interpreta-
tionB is cg-tree decomposable if and only if the undirected graphGB = {{a,b} | R (a,b) ∈ B,a , b}
is a tree. For simplicity, we thus speak of tree interpretations rather than of cg-tree decomposable
interpretations. Tree instances are defined likewise. A tree interpretation is irreflexive if there exists
no fact of the form R (b,b) in B. The outdegree of B is the outdegree of GB. The main insight
underlying the proof of Theorem 9.1 is that for ontologies formulated in the mentioned languages,
materializability (which by Theorem 5.3 coincides with PTime query evaluation) already follows
from the existence of materializations for tree instances of depth 1. We make this precise in the
following lemma. Given a tree interpretation B and a ∈ dom(B), define the 1-neighborhood B≤1a
of a in B as B|X , where X is the union of all guarded sets in B that contain a. We say that B is a
bouquet with root a if B≤1a = B.

Lemma 9.2. Let O be a uGC
−
2 (1,=) ontology (resp. an ALCHIQ ontology of depth 1). Then O is

materializable iff O is materializable for instances D that are bouquets (resp. irreflexive bouquets) of

outdegree ≤ |O| and satisfy sig(D) ⊆ sig(O).

Proof. We start by introducing the basic notions used in the proof. An interpretation D is
O-saturated if {R (a⃗) | O,D |= R (a⃗), a⃗ tuple in dom(D)} ⊆ D. For every O and instance D there
exists a unique minimal (w.r.t. set-inclusion) O-saturated instance D• ⊇ D called the O-saturation

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

Dichotomies in Ontology-MediatedQuerying with the Guarded Fragment 1:39

of D. Observe that dom(D•) = dom(D). We list the basic properties of O-saturated instances. Let
D ⊆ D′ be instances with D′

|dom(D)
= D and let O be a uGC2 (=) ontology. Assume D′ is consistent

w.r.t. O. Then the following hold:
(a) There exists a materialization of O and D iff there exists a materialization of O and the
O-saturation of D; moreover, the materializations are the same.

(b) If B is a materialization of O and D and D is O-saturated, then B|dom(D) = D.
(c) If D′ is O-saturated, then D is O-saturated.

We first give the proof of Lemma 9.2 for uGC−2 (1,=) ontologies, starting without the condition on
the outdegree. Let Σ0 = sig(O) and assume that O is materializable for the class of all Σ0-bouquets.
By Theorem 5.3 it suffices to prove that O is materializable for the class of Σ0-tree instances. Fix a
Σ0-tree instance D consistent w.r.t. O. By Point (a), we may assume that D is O-saturated. Note
that a forest model materialization B of O and any O-saturated instance F can be obtained by
taking the union of F and the tree interpretations Ba , a ∈ dom(F), hooked to F at a in B. Take for
any a ∈ dom(D) the bouquet D≤1a with root a and hook to D at a the interpretation Ba hooked to
D≤1a at a in a forest model materialization B(a) of O and D≤1a (such a forest model materialization
exists since D≤1a is materializable). Let A = D ∪

⋃
a∈dom(D) Ba be the resulting interpretation. We

show that A is a materialization of O and D. Clearly A is a model of D. It is a model of O since
the axioms in O have depth at most one and since D≤1a = B(a) |dom(D≤1a) for every a ∈ dom(D), by
Points (b) and (c). The condition O,D |= q(a⃗) iff A |= q(a⃗), for every CQ q(x⃗) and a⃗ in dom(D),
follows directly from the condition that the interpretations B(a) are materializations of O andD≤1a .
We now prove the restriction on the outdegree. Assume O is given. Let D be a bouquet with

root a of minimal outdegree such that there is no materialization of O and D. We show that the
outdegree of D does not exceed |O|. Assume the outdegree of D is at least three (otherwise we
are done). By Point (a), we may assume that D is O-saturated. O consists of sentences of the form
∀x (x = x → ψ (x)), where ψ (x) is a formula in openGC2 of depth 1. Take for any subformula
χ = ∃≥nz (α (z,x) ∧ φ (z,x)) occurring in such aψ from O the set

Zχ = {b , a | D |= α (b,a) ∧ φ (b,a)}

Let Z ′χ = Zχ if |Zχ | ≤ n + 1; otherwise let Z ′χ be a subset of Zχ of cardinality n + 1. Let D′ be the
restriction D|Z of D to the union Z of all Z ′χ and {a}. We show that there exists no materialization
of O andD′. Assume for a proof by contradiction that there is a materialization B of O andD′. Let
B′ be the union ofD∪B and the interpretationsBb , b ∈ dom(D) \ (Z ∪ {a}), hooked toD| {a,b } at b
in a forest model materialization of O andD| {a,b } (here we use the condition that for tree instances
with at most two constants materializations exist). We show that B′ is a materialization ofD and O
(and thus derive a contradiction). Using the condition that D is O-saturated and Points (b) and (c),
one can show that the restriction B′

|dom(D)
of B′ to dom(D) coincides with D. Using the condition

that O has depth 1 it is now easy to show that B′ is a model of O. It is a materialization of D and
O since it is composed of materializations of subinstances of D and O. This finishes the proof for
uGC−2 (1,=).
The proof for ALCHIQ ontologies of depth 1 is similar. To show, however, that it suffices

to consider irreflexive bouquets one has to replace the notion of unraveling introduced above
by irreflexive counterparts (which are well known from previous work on ALCHIQ [37]). For
every interpretation A (interpreting at most binary relation symbols) and a ∈ dom(A) one can
construct the irreflexive unraveling Aua of A at a into an irreflexive tree interpretation satisfying the
same ALCHIQ concept inclusions as A and also satisfying in a the same ALCHIQ concepts
as A. Irreflexive unraveling can then be used to define the irreflexive global unraveling of a data
instance which behaves, when restricted toALCHIQ ontologies, in exactly the same way as the

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

1:40 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

global unraveling defined above. In what follows we use the following easily proved variations of
Lemma 2.12 and Theorem 5.3. Let O be an ALCHIQ ontology of depth 1. Then the following
hold:
(d) Let A be a model of O and an irreflexive tree instance D. Then there exists an irreflexive

tree model B of O and D such that there exists a homomorphism h from B to A preserving
dom(D).

(e) O is materializable iff O is materializable for the class of all irreflexive tree instances D with
dom(D) ⊆ sig(O).

To prove the claim forALCHIQ and irreflexive bouquets in Lemma 9.2, one can now use Point (e)
and modify in a straightforward way the proof given for uGC−2 (1,=). □

We now develop algorithms that decide PTime query evaluation by checking materializability of
instances that are bouquets as stated in Lemma 9.2. Let D be an instance that is a bouquet with
root a. An interpretation B ⊇ D is a 1-materialization of O and D with root a if it is a bouquet and
(1) there exists a model A of O and D such that B = A≤1a ;
(2) for any model A of O and D there exists a homomorphism from B to A that preserves

dom(D).
For brevity, we say that D is O-relevant if it is consistent w.r.t. O, of outdegree at most |O|, and
satisfies sig(D) ⊆ sig(O).
We show that when checking materializability of ALCHIQ ontologies of depth 1, not only

is it sufficient to consider irreflexive O-relevant bouquets instead of unrestricted instances, but
additionally one can concentrate on 1-materializations of such bouquets.

Lemma 9.3. Let O be an ALCHIQ ontology of depth 1. Then O is materializable iff for all

irreflexive O-relevant bouquets D there is a 1-materialization of O and D.

Proof. Let D be an irreflexive O-relevant bouquet with root a. Assume that for all irreflexive
O-relevant bouquets F with root b there exists a 1-materialization B of O and F with root b (we
then call the triple (F,b,B) a 1-materializability witness). It suffices to prove that there exists a
materialization of O and D. Note that it follows from Point (d) in the proof of Lemma 9.2 that any
B in any 1-materializability witness (F,b,B) is an irreflexive tree interpretation. We construct the
desired materialization step-by-step using these 1-materializability witnesses and also memorizing
sets of frontier elements that have to be expanded in the next step. We start with a 1-materializability
witness (D,a,B0) and set F0 = dom(B0) \ {a}. Then we construct a sequence of irreflexive tree
interpretationsB0 ⊆ B1 ⊆ . . . and frontier sets Fi+1 ⊆ dom(Bi+1) \dom(Bi) inductively as follows:
given Bi and Fi , take for any b ∈ Fi its predecessor b ′ in Bi and a 1-materializability witness
(Bi
| {b′,b },b,Bb) and set

B
i+1 := Bi ∪

⋃
b ∈Fi

Bb Fi+1 :=
⋃
b ∈Fi

dom(Bb) \ {b}

Let B∗ :=
⋃

i≥0B
i . We show that B∗ is a materialization of O and D. B∗ is a model of O by

construction since O is an ALCHIQ ontology of depth 1. We show that B∗ is hom-universal.
Consider a model A of O andD. It suffices to construct a homomorphism h fromB∗ to A preserving
dom(D). By Point (d) in the proof of Lemma 9.2, we may assume that A is an irreflexive tree
interpretation. We construct h as the limit of a sequence h0 ⊆ h1 ⊆ . . . of homomorphisms hi
from Bi to A. By definition, there exists a homomorphism h0 from B0 to A≤1a preserving dom(D).
Now, inductively, assume that hi is a homomorphism from Bi to A. Assume c has been added
to Bi in the construction of Bi+1. Then there exists b ∈ Fi and its predecessor b ′ in Bi such

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

Dichotomies in Ontology-MediatedQuerying with the Guarded Fragment 1:41

that c ∈ dom(Bb) \ {b}, where Bb is the irreflexive tree interpretation that has been added to
Bi as the last component of the 1-materializability witness (Bi

| {b′,b },b,Bb). But then, as Bb is a
1-materialization of Bi

| {b′,b } and hi is injective on B
i
| {b′,b } (since A is irreflexive), we can expand the

homomorphism hi to a homomorphism from domain dom(Bi) ∪ {c} into A. Thus, we can expand
hi to a homomorphism from Bi+1 to A. □

Lemma 9.3 implies that an ALCHIQ ontology O of depth 1 enjoys PTime query evaluation if
and only if for all irreflexive O-relevant bouquets D there exists a 1-materialization of O and D.
The latter condition can be checked in deterministic exponential time, as follows.

We enumerate all irreflexive O-relevant bouquets D. There are only single exponentially many
candidates for D and for each of them we can check in ExpTime whether it is indeed O-relevant.
Note that this involves checking whether D is consistent w.r.t. O and that consistency of instances
w.r.t. an ontology can be decided in ExpTime in ALCHIQ [7].

For each O-relevant bouquet D, we have to check the existence of a 1-materialization. Using
a straightforward selective filtration argument one can show that if an interpretation A is an
irreflexive tree model of O andD, then there exists a subinterpretation A′ of A of outdegree at most
2|O| that satisfies O andD. It follows that we can concentrate on 1-materializations B of outdegree
at most 2|O|. We can also assume that sig(B) ⊆ sig(O). Thus, there are only single exponentially
many candidates for B. We enumerate all of them and have to verify Conditions (1) and (2) of
1-materializations. For Condition (1), we have to check whether there is a model A of O andD such
that B = A≤1a . This can be done in ExpTime by a straightforward polynomial time reduction to the
consistency of an instance w.r.t. an ALCHIQ ontology. For Condition (2), it suffices to check
whether for every bouquet A ⊇ D with root a and outdegree ≤ 2|O| and with sig(A) ⊆ sig(O)
such that there exists a model C of O with C≤1a = A there exists a homomorphism from B to A
preserving D. This can again be achieved by combining enumeration with consistency checks.
We have thus established the ExpTime upper bound in Theorem 9.1. A matching lower bound

(even for ALC ontologies of depth 1) can be proved by a straightforward reduction of the
(un)satisfiability problem for ontologies: an ALC ontology O is unsatisfiable if and only if
O ∪ {⊤ ⊑ B1 ⊔ B2} is materializable, where B1,B2 are fresh unary relation symbols.
The proof of Lemma 9.3 makes intense use of irreflexive tree interpretations to define appro-

priate unravelings for ALCHIQ ontologies. This does not work for uGC−2 (1,=). In fact, the
following example shows that there, the existence of 1-materializations does not guarantee the
materializability of bouquets.

Example 9.4. Let S, S ′,R,R′ be binary relation symbols and consider the ontology O that consists
of the sentences

∀x
(
(S (x ,x) ∧ R (x ,x)) → ∃y (R (x ,y) ∧ (x , y)) ∨ ∃y (S (x ,y) ∧ (x , y))

)
∀x

(
∃y (W (y,x) ∧ (y , x)) → ∃yW ′(x ,y)

)
where (W ,W ′) ranges over {(R,R′), (S, S ′)}. Note that O is equivalent to an uGF−2 (1,=) ontology.
O is not materializable since for D = {S (a,a),R (a,a)}, every model of O and D contains an atom
of the form R′(c, c ′) or S ′(c, c ′), but not necessarily both. It is, however, not too difficult to verify
that for every bouquet D there exists a 1-materialization of O and D.

In uGC−2 (1,=), we thus have to check unrestricted materializability of O-relevant bouquets,
instead of 1-materializability. To achieve this, we use a mosaic approach. In each mosaic piece, we
record a 1-neighborhood of the materialization of the bouquet, a 1-neighborhood of a tree-model of
the bouquet and the ontology, and a homomorphism from the former to the latter. We then identify
certain conditions that characterize when a set of mosaics can be assembled into a materialization

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

1:42 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

in a way that is similar to the model construction in the proof of Lemma 9.3. We actually introduce
two different kinds of mosaic pieces, one kind of piece explicitly addressing reflexive loops which,
as illustrated by Example 9.4, are the reason why we cannot work with 1-materializations. The
decision procedure then consists of guessing a set of mosaics and verifying that the required
conditions are satisfied.

A bounded 1-materializability witness for O is a tuple (F,a,B) such that
• F is an O-relevant bouquet with root a;
• B is a 1-materialization of O and F with root a and of outdegree ≤ 2|O|.

A pair (a,B) with B a bouquet with root a is called a 1-model for O if sig(B) ⊆ sig(O), the
outdegree of B is ≤ 2|O|, and there exists a model A of O with a ∈ dom(A) such that A≤1a = B.
We require the following two types of mosaic pieces. First, an injective hom-pair takes the form
(F,a,B) →i

h (a′,B′) such that
• (F,a,B) is a bounded 1-materializability witness for O
• (a′,B′) is a 1-model of O;
• h is a homomorphism from B to B′ mapping a to a′ which is injective on F.

In an injective hom-pair, the 1-materializability witness is a piece of the materialization we wish to
construct and the 1-model is a piece of the model into which wewish to homomorphically embed the
materialization. Injective hom-pairs cover the case in which the homomorphism onewants to extend
(i.e., the restriction of h to dom(F)) is injective. To deal with non-injective homomorphisms (as
indicated by Example 9.4) we also consider contracting hom-pairs which take the form (F,a,B) →c

h
(a′,B′) where
• (F,a,B) is a bounded 1-materializability witness for O with dom(F) = {a,b} for some
constant b;
• (a′,B′) is a 1-model of O;
• h is a homomorphism from B to B′ with h(a) = h(b) = a′.

The following lemma now provides a NexpTime decision procedure checking materializability of
uGC−2 (1,=) ontologies.

Lemma 9.5. Let O be a uGC
−
2 (1,=) ontology. Then O is materializable iff there exist

(1) a setM of bounded 1-materializability witnesses containing exactly one bounded 1-materializability

witness (F,a,B) for every O-relevant bouquet F with root a and

(2) sets H of injective hom-pairs and E of contracting hom-pairs whose first components are all inM

such that the following conditions hold:

(a) if (F,a,B) ∈ M , (a′,B′) is a 1-model of O, and h0 an injective homomorphism from F to B′

with h0 (a) = a′, then there is an extension h of h0 with (F,a,B) →i
h (a′,B′) ∈ H ;

(b) if (F,a,B) →i
h (a′,B′) ∈ H or (F,a,B) →c

h (a′,B′) ∈ E with b ∈ dom(B) \ dom(F) and
h(a) = h(b) = a′, then there are h′ and B′′ with (B| {a,b },b,B

′′) →c
h′ (a

′,B′) ∈ E.

Proof. Using Lemma 3.3 and selective filtrations as in the ExpTime proof above, one can easily
show that sets M , H , and E satisfying the Conditions (a) and (b) exist if O is materializable.
Conversely, let the sets M , H , and E satisfy the Conditions (a) and (b). Assume an O-relevant
bouquet D with root a is given. It suffices to prove that there exists a materialization of D and
O. Take the bounded 1-materializability witness (D,a,B) ∈ M . As in the proof of Lemma 9.3
we construct a sequence of interpretations B0 ⊆ B1 ⊆ . . . and sets Fi ⊆ dom(Bi) of frontier
elements (but now using only bounded 1-materializability witnesses in M): set B0 := B and
F0 = dom(B) \ {a}. If Bi and Fi have been constructed, then take for any b ∈ Fi its predecessor
b ′ and a bounded 1-materializability witness (Bi

| {b′,b },b,Bb) ∈ M and set Bi+1 := Bi ∪
⋃

b ∈Fi Bb

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

Dichotomies in Ontology-MediatedQuerying with the Guarded Fragment 1:43

and Fi+1 :=
⋃

b ∈Fi dom(Bb) \ {b}. Let B∗ :=
⋃

i≥0B
i . We show that B∗ is a materialization of O

and D. B∗ is a model of O by construction since O is a uGC−2 (1,=) ontology. We show that B∗
is hom-universal. Consider a model A of O and D. We construct a homomorphism h from B∗ to
A preserving dom(D) as the limit of a sequence h0 ⊆ h1 ⊆ . . . of homomorphisms from Bi to A.
As argued above, we may assume that the outdegree of A is ≤ 2|O|. By definition, there exists a
homomorphism h0 from B0 to A≤1a preservingD. Now, inductively, we ensure in each step that the
homomorphisms hi satisfy the following conditions for all Bi and Fi , all b ∈ Fi and the predecessor
b ′ of b in Bi−1:

(1) if hi (b ′) , hi (b), then for the bounded 1-materializability witness (B∗
| {b′,b },b,Bb) ∈ M there

exists a homomorphism hb which coincides with hi on {b,b ′} such that

(B∗
| {b′,b },b,Bb) →

i
hb

(hi (b),A
≤1
hi (b)

) ∈ H

(2) if hi (b ′) = hi (b), then for the bounded 1-materializability witness (B∗
| {b′,b },b,Bb) ∈ M there

exists a homomorphism hb which coincides with hi on {b,b ′} such that

(B∗
| {b′,b },b,Bb) →

c
hb

(hi (b),A
≤1
hi (b)

) ∈ E

Assume hi with the properties (1) and (2) has been constructed. Then we take for all b ∈ Fi and
the predecessor b ′ of b the homomorphism hb given by Condition (1) and, respectively, (2) and
set hi+1 := hi ∪

⋃
b ∈Fi hb . Using the Conditions (a) and (b) forM , H , and E it is straightforward to

show that hi+1 again satisfies Condition (1) and (2). □

As, up to isomorphism, the setsM , H , and E are of size at most single exponential in O and since
the conditions of Lemma 9.5 can be checked in polynomial time, we obtain a NExpTime procedure
for deciding materializability.

Theorem 9.1 only covers ontology languages of depth 1. It would be desirable to establish
decidability also for ontology languages of depth 2 that enjoy a dichotomy between PTime and
coNP-completeness of query evaluation, such as uGF−2 (2). The following example shows that this
requires more sophisticated techniques than those used above. In particular, materializability of
bouquets does not imply materializability.

Example 9.6. We give a family of ALC-ontologies (On)n≥0 of depth 2 such that each On is
materializable for tree instances of depth at most 2n − 1 while it is not materializable. The idea is
that any instance D that witnesses non-materializability of On must contain an R-chain of length
2n , R a binary relation symbol. The presence of this chain is verified by propagating a marker
upwards along the chain. To ensure that O is materializable for tree instances of depth smaller
than 2n − 1, we represent this marker by a universally quantified formula and also hide some other
unary relation symbols in the same way. For each unary relation symbol P , let HP (x) denote the
formula ∀y (S (x ,y) → P (y)) and include in On the sentence ∀x∃y (S (x ,y) ∧ P (y)). The remaining
sentences in On are:

X 1 (x) ∧ · · · ∧ Xn (x) → HV (x)

Xi (x) ∧ ∃R.(Xi (y) ∧ X j (y)) → Hoki (x)

X i (x) ∧ ∃R.(X i (y) ∧ X j (y)) → Hoki (x)

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

1:44 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

Xi (x) ∧ ∃R.(X i (y) ∧ X1 (y) ∧ · · · ∧ Xi−1 (y)) → Hoki (x)

X i (x) ∧ ∃R.(Xi (y) ∧ X1 (y) ∧ · · · ∧ Xi−1 (y)) → Hoki (x)

Hok1 (x) ∧ · · · ∧ Hokn (x) ∧ ∃R.HV (y) → HV (x)

∃R.Xi (y) ∧ ∃R.X i (y) → ⊥

X1 (x) ∧ · · · ∧ Xn (x) ∧ HV (x) → B1 (x) ∨ B2 (x)

where x is universally quantified, ∃R.φ (y) is an abbreviation for ∃y (R (x ,y) ∧ φ (y)), i ranges over
1..n, and j over 1..i − 1. Note that X1, . . . ,Xn and X 1, . . . ,Xn represent a binary counter and that
lines two to five implement incrementation of this counter. The second last formula is necessary to
avoid that multiple successors of a node interact in undesired ways. On instances that contain no
R-chain of length 2n , a materialization can be constructed by a straightforward chase procedure.

10 CONCLUSION
Perhaps the most surprising result of our analysis is that it is possible to escape Ladner’s Theorem
and prove a strong dichotomy between Datalog,-rewritability and coNP-completeness of query
evaluation for rather large subsets of the guarded fragment that cover many practically relevant
DL ontologies. Ontology languages covered by this positive result further enjoy the property that
Datalog,-rewritability, materializability, unraveling tolerance, and PTime query evaluation are all
equivalent notions, and in several cases we even observe decidability of meta problems such as
deciding whether a given ontology admits PTime query evaluation. Our study also shows that
increasing the expressive power in seemingly harmless ways often results in CSP-hardness and
in Datalog,-rewritability diverging from PTime query evaluation, and in several cases even in
a provable loss of the PTime/coNP dichotomy. The proof of the latter comes with a variation of
Ladner’s theorem we believe to be potentially useful also in other contexts where some form of
precoloring of the input is unavoidable, such as in consistent query answering for which the topic
of precoloring is discussed in [58].

There are a number of interesting future research questions. The main open question regarding
dichotomies is whether the PTime/coNP dichotomy can be generalized from uGF2 to uGF(=) and
even to GF(=). This appears to be very challenging as it is related to a difficult open question in the
area of constraint satisfaction problems (CSPs): whether the logic MMSNP2 [61], also known as
GMSNP [15], has a dichotomy between PTime and NP. The equivalence of the two questions has
been shown in [15] for the setup where queries are not quantified and we conjecture that it is also
true in the case of universally quantified queries studied in this paper.

Another interesting question is whether the CSP-hardness results established in this paper that
do not come with a dichotomy (third row of Figure 1) can be shown to admit a dichotomy or to
provably not enjoy a dichotomy. Also of interest is the decidability and complexity of the problem
to decide PTime query evaluation for uGF(1), uGF−2 (2), and for ALCHIF ontologies of depth 2.
It would further be interesting to study fragments of GF in which invariance under disjoint union
is not guaranteed (as we have observed, the complexities of CQ and UCQ evaluation might then
diverge), and to add the ability to declare in an ontology that a binary relation symbol is transitive.

ACKNOWLEDGMENTS
AndréHernich, Fabio Papacchini, and FrankWolterwere supported by EPSRCUK grant EP/M012646/1.
Carsten Lutz was supported by ERC CoG 647289 CODA.

REFERENCES
[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases. Addison-Wesley.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

Dichotomies in Ontology-MediatedQuerying with the Guarded Fragment 1:45

[2] Hajnal Andréka, István Németi, and Johan van Benthem. 1998. Modal Languages and Bounded Fragments of Predicate
Logic. J. Philosophical Logic 27, 3 (1998), 217–274.

[3] Sanjeev Arora and Boaz Barak. 2009. Computational Complexity - A Modern Approach. Cambridge University Press.
[4] Alessandro Artale, Diego Calvanese, Roman Kontchakov, and Michael Zakharyaschev. 2009. The DL-Lite Family and

Relations. J. of Artifical Intelligence Research 36 (2009), 1–69.
[5] Albert Atserias. 2008. On digraph coloring problems and treewidth duality. Eur. J. Comb. 29, 4 (2008), 796–820.
[6] Franz Baader, Sebastian Brandt, and Carsten Lutz. 2005. Pushing the EL Envelope. In Proc. of IJCAI. 364–369.
[7] Franz Baader, Deborah, Diego Calvanese, Deborah L. McGuiness, Daniele Nardi, and Peter F. Patel-Schneider (Eds.).

2003. The Description Logic Handbook. Cambridge University Press.
[8] Franz Baader, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. 2017. An Introduction to Description Logic. Cambridge

University Press.
[9] Vince Bárány, Georg Gottlob, and Martin Otto. 2014. Querying the Guarded Fragment. Logical Methods in Computer

Science 10, 2 (2014).
[10] Andrew Bate, Boris Motik, Bernardo Cuenca Grau, Frantisek Simancik, and Ian Horrocks. 2016. Extending Consequence-

Based Reasoning to SRIQ. In Proc. of KR. 187–196.
[11] Catriel Beeri and Philip A. Bernstein. 1979. Computational Problems Related to the Design of Normal Form Relational

Schemas. ACM Trans. Database Syst. 4, 1 (1979), 30–59.
[12] Catriel Beeri and Moshe Y. Vardi. 1984. A Proof Procedure for Data Dependencies. J. ACM 31, 4 (1984), 718–741.
[13] Meghyn Bienvenu, Peter Hansen, Carsten Lutz, and Frank Wolter. 2016. First Order-Rewritability and Containment of

Conjunctive Queries in Horn Description Logics. In Proceedings of IJCAI. 965–971.
[14] Meghyn Bienvenu and Magdalena Ortiz. 2015. Ontology-Mediated Query Answering with Data-Tractable Description

Logics. In Proc. of Reasoning Web. 218–307.
[15] Meghyn Bienvenu, Balder ten Cate, Carsten Lutz, and Frank Wolter. 2014. Ontology-Based Data Access: A Study

through Disjunctive Datalog, CSP, and MMSNP. ACM Trans. Database Syst. 39, 4 (2014), 33:1–33:44.
[16] Manuel Bodirsky, Hubie Chen, and Tomás Feder. 2012. On the Complexity of MMSNP. SIAM J. Discrete Math. 26, 1

(2012), 404–414.
[17] Pierre Bourhis, Marco Manna, Michael Morak, and Andreas Pieris. 2016. Guarded-Based Disjunctive Tuple-Generating

Dependencies. ACM Trans. Database Syst. 41, 4 (2016), 27:1–27:45.
[18] Andrei A. Bulatov. 2017. A Dichotomy Theorem for Nonuniform CSPs. In Proc. of FOCS. 319–330.
[19] Andrea Calì, Georg Gottlob, and Michael Kifer. 2013. Taming the Infinite Chase: Query Answering under Expressive

Relational Constraints. J. Artif. Intell. Res. (JAIR) 48 (2013), 115–174.
[20] Andrea Calì, Georg Gottlob, and Andreas Pieris. 2012. Towards more expressive ontology languages: The query

answering problem. Artif. Intell. 193 (2012), 87–128.
[21] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati. 2013. Data

complexity of query answering in description logics. Artificial Intelligence 195 (2013), 335–360.
[22] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati. 2007. Tractable

Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Family. J. Autom. Reasoning 39, 3 (2007),
385–429.

[23] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. 2000. View-Based Query Processing
and Constraint Satisfaction. In Proc. of LICS. 361–371.

[24] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. 2003. View-Based query containment.
In Proc. of PODS. 56–67.

[25] Stefano Ceri, Georg Gottlob, and Letizia Tanca. 1989. What you Always Wanted to Know About Datalog (And Never
Dared to Ask). IEEE Trans. Knowl. Data Eng. 1, 1 (1989), 146–166.

[26] C. C. Chang and H. Jerome Keisler. 1990. Model Theory. Studies in Logic and the Foundations of Mathematics, Vol. 73.
Elsevier.

[27] Hubie Chen and Benoit Larose. 2016. Asking the metaquestions in constraint tractability. CoRR abs/1604.00932 (2016).
[28] David Cohen and Peter Jeavons. 2006. The complexity of constraint languages. In Handbook of Constraint Programming.

Elsevier, Chapter 8.
[29] Alin Deutsch, Alan Nash, and Jeffrey B. Remmel. 2008. The chase revisited. In Proc. of PODS. ACM, 149–158.
[30] Thomas Eiter, Georg Gottlob, and Heikki Mannila. 1997. Disjunctive Datalog. ACM Trans. Database Syst. 22, 3 (1997),

364–418.
[31] Thomas Eiter, Magdalena Ortiz, Mantas Simkus, Trung-Kien Tran, and Guohui Xiao. 2012. Query Rewriting for

Horn-SHIQ Plus Rules. In Proc. of AAAI.
[32] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. 2005. Data exchange: semantics and query

answering. Theor. Comput. Sci. 336, 1 (2005), 89–124.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

1:46 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

[33] Tomás Feder and Moshe Y. Vardi. 1998. The Computational Structure of Monotone Monadic SNP and Constraint
Satisfaction: A Study through Datalog and Group Theory. SIAM J. Comput. 28, 1 (1998), 57–104.

[34] Tomás Feder and Moshe Y. Vardi. 2003. Homomorphism Closed vs. Existential Positive. In Proc. of LICS. 311–320.
[35] Cristina Feier, Antti Kuusisto, and Carsten Lutz. 2018. Rewritability in Monadic Disjunctive Datalog, MMSNP, and

Expressive Description Logics. ACM Transactions of Database Systems (2018).
[36] Jörg Flum and Martin Grohe. 2006. Parameterized Complexity Theory. Springer. https://doi.org/10.1007/3-540-29953-X
[37] Birte Glimm, Carsten Lutz, Ian Horrocks, and Ulrike Sattler. 2008. Conjunctive Query Answering for the Description

Logic SHIQ. J. Artif. Intell. Res. (JAIR) 31 (2008), 157–204.
[38] Georg Gottlob, Stanislav Kikot, Roman Kontchakov, Vladimir V. Podolskii, Thomas Schwentick, and Michael Za-

kharyaschev. 2014. The price of query rewriting in ontology-based data access. Artif. Intell. 213 (2014), 42–59.
[39] Georg Gottlob, Marco Manna, and Andreas Pieris. 2015. Polynomial Rewritings for Linear Existential Rules. In Proc. of

IJCAI. 2992–2998.
[40] Georg Gottlob, Giorgio Orsi, and Andreas Pieris. 2014. Query Rewriting and Optimization for Ontological Databases.

ACM Trans. Database Syst. 39, 3 (2014), 25:1–25:46.
[41] Erich Grädel. 1999. On The Restraining Power of Guards. J. Symb. Log. 64, 4 (1999), 1719–1742.
[42] Erich Grädel and Martin Otto. 2014. The Freedoms of (Guarded) Bisimulation. In Johan van Benthem on Logic and

Information Dynamics. 3–31.
[43] André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter. 2017. Dichotomies in Ontology-Mediated Querying

with the Guarded Fragment. In Proc. of PODS. 185–199.
[44] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. 2005. Data Complexity of Reasoning in Very Expressive Description

Logics. In Proc. of IJCAI. 466–471.
[45] Mark Kaminski, Yavor Nenov, and Bernardo Cuenca Grau. 2016. Datalog rewritability of Disjunctive Datalog programs

and non-Horn ontologies. Artif. Intell. 236 (2016), 90–118.
[46] Yevgeny Kazakov. 2004. A Polynomial Translation from the Two-Variable Guarded Fragment with Number Restrictions

to the Guarded Fragment. In Proc. of JELIA. 372–384.
[47] Roman Kontchakov and Michael Zakharyaschev. 2014. An Introduction to Description Logics and Query Rewriting. In

Proc. of Reasoning Web. 195–244.
[48] Adila Krisnadhi and Carsten Lutz. 2007. Data Complexity in the EL family of DLs. In Proc. of DL.
[49] Andrei A. Krokhin and Stanislav Zivny (Eds.). 2017. The Constraint Satisfaction Problem: Complexity and Approximability.

Dagstuhl Follow-Ups, Vol. 7. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.
[50] Markus Krötzsch, Sebastian Rudolph, and Pascal Hitzler. 2013. Complexities of Horn Description Logics. ACM Trans.

Comput. Log. 14, 1 (2013), 2:1–2:36.
[51] Gábor Kun. 2007. Constraints, MMSNP, and Expander Structures. (2007). Available at http://arxiv.org/abs/0706.1701v1.
[52] Richard E. Ladner. 1975. On the Structure of Polynomial Time Reducibility. J. ACM 22, 1 (1975), 155–171.
[53] Benoit Larose and Pascal Tesson. 2009. Universal algebra and hardness results for constraint satisfaction problems.

Theor. Comput. Sci. 410, 18 (2009), 1629–1647.
[54] Hector J. Levesque and Gerhard Lakemeyer. 2000. The logic of knowledge bases. MIT Press. https://mitpress.mit.edu/

books/logic-knowledge-bases
[55] Carsten Lutz. 2008. The Complexity of Conjunctive Query Answering in Expressive Description Logics. In Proc. of

IJCAR. 179–193.
[56] Carsten Lutz, Robert Piro, and Frank Wolter. 2011. Description Logic TBoxes: Model-Theoretic Characterizations and

Rewritability. In Prof. of IJCAI. IJCAI/AAAI, 983–988.
[57] Carsten Lutz and Frank Wolter. 2012. Non-Uniform Data Complexity of Query Answering in Description Logics. In

Proc. of KR.
[58] Carsten Lutz and Frank Wolter. 2015. On the Relationship between Consistent Query Answering and Constraint

Satisfaction Problems. In Proc. of ICDT. 363–379.
[59] Carsten Lutz and Frank Wolter. 2017. The Data Complexity of Description Logic Ontologies. Logical Methods in

Computer Science Volume 13, Issue 4 (Nov. 2017).
[60] Florent R. Madelaine. 2009. Universal Structures and the Logic of Forbidden Patterns. Logical Methods in Computer

Science 5, 2 (2009).
[61] Florent R. Madelaine. 2009. Universal Structures and the logic of Forbidden Patterns. Logical Methods in Computer

Science 5, 2 (2009). http://arxiv.org/abs/0904.2521
[62] Florent R. Madelaine and Iain A. Stewart. 2007. Constraint Satisfaction, Logic and Forbidden Patterns. SIAM J. Comput.

37, 1 (2007), 132–163.
[63] Jack Minker (Ed.). 1988. Foundations of Deductive Databases and Logic Programming. Elsevier.
[64] Marie-Laure Mugnier and Michaël Thomazo. 2014. An Introduction to Ontology-Based Query Answering with

Existential Rules. In Proc. of Reasoning Web. 245–278.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

https://doi.org/10.1007/3-540-29953-X
https://mitpress.mit.edu/books/logic-knowledge-bases
https://mitpress.mit.edu/books/logic-knowledge-bases
http://arxiv.org/abs/0904.2521

Dichotomies in Ontology-MediatedQuerying with the Guarded Fragment 1:47

[65] Magdalena Ortiz, Diego Calvanese, and Thomas Eiter. 2008. Data Complexity of Query Answering in Expressive
Description Logics via Tableaux. Journal of Automated Reasoning 41, 1 (2008), 61–98.

[66] Martin Otto. 2012. Highly acyclic groups, hypergraph covers, and the guarded fragment. J. ACM 59, 1 (2012), 5:1–5:40.
[67] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo Rosati.

2008. Linking Data to Ontologies. J. Data Semantics 10 (2008), 133–173.
[68] Ian Pratt-Hartmann. 2007. Complexity of the Guarded Two-variable Fragment with Counting Quantifiers. J. Log.

Comput. 17, 1 (2007), 133–155.
[69] Ian Pratt-Hartmann. 2009. Data-complexity of the two-variable fragment with counting quantifiers. Inf. Comput. 207,

8 (2009), 867–888.
[70] Andrea Schaerf. 1993. On the Complexity of the Instance Checking Problem in Concept Languages with Existential

Quantification. J. of Intel. Inf. Systems 2 (1993), 265–278.
[71] Frantisek Simancik, Yevgeny Kazakov, and Ian Horrocks. 2011. Consequence-Based Reasoning beyond Horn Ontologies.

In Proc. of IJCAI. 1093–1098.
[72] P. van Emde Boas. 1997. The convenience of tilings. In Complexity, Logic, and Recursion Theory. 331–363.
[73] Patricia L Whetzel, Natalya F Noy, Nigam H Shah, Paul R Alexander, Csongor Nyulas, Tania Tudorache, and Mark A

Musen. 2011. BioPortal: enhanced functionality via new Web services from the National Center for Biomedical
Ontology to access and use ontologies in software applications. Nucleic acids research 39, suppl 2 (2011), W541–W545.

[74] Dmitriy Zhuk. 2017. A Proof of CSP Dichotomy Conjecture. In Proc. of FOCS. 331–342.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

1:48 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

A PROOFS FOR SECTION 2
Theorem 2.2 (restated) A sentence in GF(=) (resp. GF) is invariant under disjoint unions iff it is

equivalent to a sentence in uGF(=) (resp. uGF).

Proof. The direction from right to left is easy. We prove the converse direction for GF(=); the
proof for GF is similar and omitted.

We first prove that every sentence in GF(=) is equivalent to a Boolean combination of sentences
in uGF(=). Assume a sentence φ in GF(=) is given. First replace any subformula of φ of the form
∃x ,y (x = y ∧ ψ (x ,y)) or ∀x ,y (x = y → ψ (x ,y)) by ¬∀x (x = x → ¬ψ (x ,x)) and ∀x (x = x →
ψ (x ,x)), respectively. In the resulting sentence, replace any formula of the form ∀y (x = y →
ψ (x ,y)) or ∃y (x = y ∧ψ (x ,y)) and with x ,y distinct variables by ψ (x ,x). Denote the resulting
GF(=) sentence by φ ′. Call a sentence ψ simple if it contains no subsentence within the scope
of a guarded quantifier. Observe that any simple subsentence of φ ′ is a Boolean combination of
sentences in uGF(=). Now we apply the following equivalent rewriting exhaustively to χ := φ ′:
if ψ is a simple subsentence of χ within the scope of a guarded quantifier, then rewrite χ into
(χ [ψ/true]∧ψ) ∨ (χ [ψ/false]∧¬ψ), where true and false are the standard propositional constants
(which can be eliminated in the well-known way). It is straightforward to show that the resulting
sentence is a Boolean combination of sentences in uGF(=).

Consider now a Boolean combination φ of uGF(=) sentences and assume that φ is invariant under
disjoint unions. Let cons(φ) be the set of all sentences χ in uGF(=) with φ |= χ . By compactness of
FO it suffices to show that cons(φ) |= φ. If this is not the case, take a model A0 of cons(φ) refuting
φ and take for any sentenceψ in uGF(=) that is not in cons(φ) an interpretation A¬ψ satisfying φ
and refutingψ . Let A1 be the disjoint union of all A¬ψ . By preservation of φ under disjoint unions,
A1 satisfies φ. By reflection of φ for disjoint unions, the disjoint union A of A0 and A1 does not
satisfy φ. Thus A1 satisfies φ and A does not satisfy φ but by construction A and A1 satisfy the same
sentences in uGF(=). This is impossible since φ is a Boolean combination of uGF(=) sentences. □

B PROOFS FOR SECTION 3
Lemma 3.4 (restated) There exists a materializable ontology O in uGF(2) not admitting hom-

universal models. Moreover, CQ-evaluation w.r.t. O is in PTime.

Proof. We construct an ontology O in uGF(2) expressing that every constant in a unary relation
C (x) is the center of a ‘cartwheel’ represented by a ternary relationW (x ,y, z). The cartwheel can
be generated using the third component ofW (called ‘turning left’) or its second component (called
‘turning right’). There does not exist a hom-universal model of D0 = {C (a)} and O as no model
of D0 and O can be homomorphically mapped into the two resulting models but one can ensure
that O is materializable. As a first attempt to construct O take unary relation symbols L (turn left)
and R (turn right) and state that one can choose either L or R when generating the cartwheel with
center C:

∀x
(
C (x) → ((L(x) ∨ R (x)) ∧ ∃y1,y2W (x ,y1,y2))

)
.

The following sentences then generate the wheel accordingly:

∀x ,y, z
(
W (x ,y, z) → (L(x) → ∃z ′W (x , z, z ′))

)
∀x ,y, z

(
W (x ,y, z) → (R (x) → ∃y ′W (x ,y ′,y))

)
The instance D0 shows that this ontology does not admit hom-universal models. It is, however,
also not materializable since O,D0 |= L(a) ∨ R (a) but neither O,D0 |= L(a) nor O,D0 |= R (a).
The first step to ensure materializability is to replace L(x) by ∃y (gen(x ,y) ∧ ¬L(x)) and R (x) by
∃y (gen(x ,y)∧¬R (x)) in the axioms above and also add∀x∃y (gen(x ,y)∧L(x)) and∀x∃y (gen(x ,y)∧

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

Dichotomies in Ontology-MediatedQuerying with the Guarded Fragment 1:49

R (x)) to O. Then a CQ ‘cannot detect’ whether one satisfies the disjunct ∃y (gen(x ,y) ∧ ¬R (x)) or
the disjunct ∃y (gen(x ,y) ∧ ¬L(x)) at a given a with C (a) ∈ D. The resulting ontology is still not
materializable: ifW (a,b, c) ∈ D then CQs can detect whether one introduces a constant c ′ with
W (a, c, c ′) or a constant b ′ withW (a,b ′,b) when building a model of O and D. To deal with this
problem we ensure that a cartwheel has to be generated from atomsW (a,b, c) only if b, c < D.
In detail, the construction of O is as follows. Let A, L, and R be unary relation symbols and aux
and gen be binary relation symbols. First, O states that every node has aux-successors in A, and
gen-successors in L and R:

∀x∃y (aux(x ,y) ∧A(y)), ∀x∃y (gen(x ,y) ∧ L(y)), ∀x∃y (gen(x ,y) ∧ R (y))

Next introduce the disjunction that determines whether one generates the cartwheel by turning
left or right, as indicated above:

∀x
(
C (x) → (∃y (gen(x ,y) ∧ ¬L(x)) ∨ ∃y (gen(x ,y) ∧ ¬R (x))

)
Now we use the following complexW ′ rather thanW to represent the cartwheel:

W ′(x ,y, z) :=W (x ,y, z) ∧ ∀y ′(aux(y,y ′) → A(y)) ∧ ∀z ′(aux(z, z ′) → A(z))

Then for any instanceD and b ∈ dom(D) one can construct a model A ofD and our ontology such
that A ̸ |= W ′(a,b, c) for any a, c by adding aux(b,d) to A for a fresh constant d with A(d) < A,
and similarly for the third component ofW ′. The following axiom starts the generation of the
cartwheel.

∀x
(
C (x) → ∃y1,y2W

′(x ,y1,y2)
)

Finally, we turn either left or right:

∀x ,y, z
(
W ′(x ,y, z) → (∃y (gen(x ,y) ∧ ¬L(y)) → ∃z ′W ′(x , z, z ′))

)
∀x ,y, z

(
W ′(x ,y, z) → (∃y (gen(x ,y) ∧ ¬R (y)) → ∃y ′W ′(x ,y ′,y))

)
This finishes the definition of O. O is a uGF(2) ontology. One can now easily construct for any
instanceD a materialization ofD and O that shows that CQ evaluation w.r.t. O is in PTime. On the
other hand, for D0 = {C (a)} there does not exist a hom-universal model of O and D0. □

Theorem 3.7 (restated) For all uGF(=) ontologies O, the following are equivalent:
(1) rAQ-evaluation w.r.t. O is in PTime;
(2) CQ-evaluation w.r.t. O is in PTime;
(3) UCQ-evaluation w.r.t. O is in PTime.

This remains true when ‘in PTime’ is replaced with ‘Datalog
,
-rewritable’ and with ‘coNP-hard’ (and

with ‘Datalog-rewritable’ if O is a uGF ontology).

Proof. We first deal with PTime membership. In this case, it suffices to prove the implication of
(3) by (1). By Theorem 3.6, we may assume that O is materializable. To prove that UCQ-evaluation
w.r.t.O is in PTime, we exploit materializability to reduce UCQ-evaluation w.r.t.O to rAQ-evaluation
w.r.t. O. The following claim formally states the properties of this reduction.

Claim 1. Let q(x⃗) be a UCQ. Then there exists a finite set D of pairs (ϕ (x⃗ , y⃗),P), where

(1) ϕ (x⃗ , y⃗) is a conjunction of atomic formulas (possibly equality atoms) that contains all the

variables from x⃗ ;
(2) P is a finite set of rAQs with free variables in x⃗ and y⃗;

In addition, for each instance D and each tuple a⃗ in D, we have O,D |= q(a⃗) iff there exists a pair

(ϕ (x⃗ , y⃗),P) in D and an assignment π of constants in dom(D) to the variables in ϕ such that

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

1:50 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

(3) π (x⃗) = a⃗,
(4) D |= ϕ (π (x⃗y⃗)), and
(5) O,D |= q′(π (z⃗)) for each rAQ q′(z⃗) ∈ P.

Using Claim 1 it is easy to complete the proof of (3). To show that evaluating a UCQ q(x⃗) w.r.t.
O is in PTime, we first fix a set D as provided by the claim. On input of an instance D and a tuple
a⃗ in D, we then check if there exists a pair (ϕ (x⃗ , y⃗),P) in D and an assignment π of constants in
dom(D) to the variables in ϕ such that Conditions 3–5 are true, where for Condition 5 we exploit
that rAQ-evaluation is in PTime.

We note that similar reductions of UCQs to certain forms of acyclic CQs have been used in [9, 19],
but the construction of the set D in the above claim is more subtle due to the requirement that the
queries that occur in the set P of a pair in D have to be rAQs. In particular, each query that occurs
in P has at least one answer variable. Before we prove the claim, we introduce a tool that helps us
to achieve the latter property.
One of the key steps in the proof of Claim 1 is to express a Boolean CQ q() ← ψ whose body

ψ is the body of a rAQ by another rAQ. The main issue is that a homomorphism that maps the
canonical database Dq of such a CQ into a model A of D and O is able to map the atomic formulas
of ψ to facts in A that are arbitrarily ‘far away’ from the facts in D, making them inaccessible
to any fixed rAQ. Here, the distance between facts in A is defined as the distance between their
corresponding guarded sets. Given two guarded sets G,G ′ in A, the distance between G and G ′ in
A, denoted by distA (G,G ′), is the length of a shortest sequence G1, . . . ,Gd of guarded sets in A
such that G1 = G, Gd = G

′, and Gi ∩Gi+1 , ∅ for all i ∈ {1, . . . ,d − 1}. For a sub-interpretation B
of A, we define distA (B,G ′) as the minimum of distA (G,G ′), where G ranges over all guarded sets
in B. Now, the following Claim 2 resolves the above problem by showing that if A |= q, then there
is a homomorphism from Dq to A that maps all atomic formulas inψ to facts in A with bounded
distance to the facts in D.

Claim 2. For every rAQ q(x⃗) there exists an integer d0 ≥ 0 with the following properties. If A is a

rAQ-materialization of O and an instance D and if A |= ∃x⃗ q(x⃗), then there exists a tuple a⃗ in A with

A |= q(a⃗) and distA (D, [a⃗]) ≤ d0.

Proof. The proof uses a pumping argument, which is based on the following notion of a type. To
simplify the presentation, we view q as an openGF formula. This is possible, because there exists
a cg-tree decomposition of Dq in which the root’s bag contains all the answer variables of q. We
define the closure of O and q as the smallest set cl(O,q) satisfying:
• O ∪ {q} ⊆ cl(O,q);
• for each relation symbol R that occurs in O or q we have that cl(O,q) contains an atomic
formula R (x⃗), where x⃗ is a tuple of distinct variables;
• cl(O,q) contains an atomic formula x = y, where x and y are distinct variables;
• cl(O,q) is closed under subformulas and single negation.

The type of a tuple a⃗ = (a1, . . . ,an) in an interpretation A w.r.t. O and q is the set Φ(x⃗) of all
formulas ϕ (x⃗) such that A |= ϕ (a⃗) and ϕ is obtained from a formula in cl(O,q) by substituting
variables in x⃗ . Here, x⃗ is an arbitrary tuple of distinct variables, called the free variables of the type.
A type w.r.t. O and q is the type of a tuple in some interpretation w.r.t. O and q. In the following,
we will not explicitly mention O and q if these are understood. Types Φ(x⃗) and Ψ(y⃗) are equivalent,
denoted by Φ(x⃗) ≡ Ψ(y⃗), if there is a bijective mapping f on the variables in x⃗ such that Ψ(y⃗) can
be obtained from Φ(x⃗) by consistently renaming each free variable x to f (x). Since O and q are
fixed, the set of all non-equivalent types with a fixed number of free variables can be computed in
constant time using any satisfiability procedure for the guarded fragment [41].

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

Dichotomies in Ontology-MediatedQuerying with the Guarded Fragment 1:51

Letw be the maximum arity of a relation symbol that occurs in cl(O,q). Since cl(O,q) is finite,
the number of non-equivalent types with at mostw free variables is finite. Let τ be this number,
and define d0 := τ 2.
We are now ready to prove the claim. Without loss of generality, we may assume that A is a

forest model of D and O obtained using uGF-unravelings, as described in the proof of Lemma 2.12.
Let d be the smallest integer with Hd (A) , ∅, where for each integer c ≥ 0 and each model B
we let Hc (B) be the set of all homomorphisms h from Dq to B with distB (D, [h(x⃗)]) ≤ c . For a
contradiction, suppose that d > d0.
Consider any h ∈ Hd (A). Since A is a forest model of D and O, it has the form D ∪

⋃
G ∈G AG ,

where G is the set of all maximally guarded sets in D and the interpretations AG are cg-tree
decomposable. Since d > d0, there exists a uniqueG ∈ G such that [h(x⃗)] ⊆ dom(AG). Fix such aG ,
and let (T ,E, bag) be a cg-tree decomposition of AG with root r and bag(r) = G. Let t1, t2, . . . , tm
be the shortest path in (T ,E) from t1 = r to a node tm with [h(x⃗)] ⊆ bag(tm). It is straightforward
to verify that there is a rAQ of the form

q̃(y⃗1) ← R1 (y⃗1) ∧ R2 (y⃗2) ∧ · · · ∧ Rm (y⃗m) ∧ q(x⃗)

such that A |= q̃(a⃗) for some tuple a⃗ inD. Intuitively, q̃(a⃗) selects an atom Ri (a⃗i) with [a⃗i] = bag(ti)
from the bag of each node along the path t1, t2, . . . , tm and then checks if q(h(x⃗)) is true. Note that,
as a consequence of A |= q̃(a⃗), we have O,D |= q̃(a⃗). We now use a pumping argument to construct
a model of D and O in which q̃(a⃗) is not true, which yields the desired contradiction.
For each i ∈ {1, 2, . . . ,m}, we let a⃗i be a guarded tuple in A with [a⃗i] = bag(ti). We also define

sub-interpretations Ai and A−i of A, where Ai is the sub-interpretation of A induced by the bags
of all nodes in the subtree rooted at ti in (T ,E), and A−i := A \ Ai . Let Φin

i (x⃗i) and Φout
i (x⃗i) be

the type of a⃗i in Ai and A−i ∪ Bag(ti), respectively. Sincem ≥ d > d0, there are nodes ti and tj
with 1 ≤ i < j ≤ m such that Φin

i (x⃗i) ≡ Φin
j (x⃗ j) and Φout

i (x⃗i) ≡ Φout
j (x⃗ j). We now construct a new

interpretation A′ from A by replacing the sub-interpretation Aj by an isomorphic copy of Ai . More
precisely, let A′i be an isomorphic copy of Ai obtained by replacing each occurrence of a constant
in a⃗i by the corresponding constant in a⃗j and each remaining constant by a fresh constant not
contained in dom(A−j). Then, A′ = A−j ∪ A′i . Since Φ

in
i (x⃗i) ≡ Φin

j (x⃗ j) and Φout
i (x⃗i) ≡ Φout

j (x⃗ j), the
new interpretation A′ is a model of D and O. By construction, we also have |Hd (A

′) | < |Hd (A) |.
Repeating this procedure for A′ and all subsequent models yields a model A′′ of D and O with
Hd (A

′′) = ∅. In particular, A′′ ̸ |= q̃(a⃗), which is the desired contradiction.
⌟

We are now ready to prove Claim 1.

Proof. Let n be the maximum number of atomic formulas in any disjunct of q(x⃗), and let d0 be the
integer from Claim 2. Define D to be the set of all pairs (ϕ (x⃗ , y⃗),P) that satisfy Conditions 1–2 in
Claim 1 and the following additional conditions:
(6) if O,D |= q̂(a⃗) for q̂(x⃗) = ∃y⃗

(
ϕ (x⃗ , y⃗) ∧

∧
q′ (z⃗)∈P q

′(z⃗)
)
, then O,D |= q(a⃗);

(7) the total number of atomic formulas in ϕ and the rAQs in P is at most (2 + d0)n.
We show that for each instance D and each tuple a⃗ in D, we have O,D |= q(a⃗) iff there exists a
pair (ϕ (x⃗ , y⃗),P) in D and an assignment π of constants in dom(D) to the variables in ϕ such that
Conditions 3–5 in Claim 1 are satisfied. The ‘if’ direction is trivial due to Condition 6 above. We
now prove the ‘only if’ direction.

Recall that O is materializable. Consider any rAQ-materialization A of D and O. By Lemma 2.12,
there exists a forest model B of D and O and a homomorphism h from B to A that preserves
dom(D). Again, we may assume that B is obtained using uGF-unravelings, as described in the

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

1:52 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

proof of Lemma 2.12. Say, B = D ∪
⋃

G ∈G BG is a forest model of D defined using G, where G is
the set of all maximal guarded subsets ofD. Since O,D |= q(a⃗), we have B |= q(a⃗), so there exists a
disjunct q′(x⃗) of q(x⃗) and a homomorphism д from Dq′ to B with д(x⃗) = a⃗. We use q′(x⃗) and the
homomorphisms h and д to define the desired pair (ϕ (x⃗ , y⃗),P) in D and assignment π . The idea
is that atomic formulas in q′(x⃗) that are mapped by д to the sub-interpretation D of B define the
first component ϕ (x⃗ , y⃗) of a pair (ϕ (x⃗ , y⃗),P) in D, while the remaining atomic formulas that are
mapped by д to the cg-tree decomposable components BG of B define the rAQs in P.

A setC ⊆ B is connected if for every two guarded setsG,G ′ inC there is a sequenceG0,G1, . . . ,Gm
of guarded sets inC such thatG0 = G ,Gm = G

′, andGi ∩Gi+1 , ∅ for every i < m. Let us partition
the image ofDq′ underд into a minimal collection of setsΦ,Ψ1, . . . ,Ψk such thatΦ ⊆ D and for each
i ∈ {1, . . . ,k } there exists a Gi ∈ G such that Ψi is a connected subset of BGi \D. Assume for the
moment that each Ψi has a cg-tree decomposition with root ri and ∅ , dom(D)∩dom(Ψi) = bag(ri).
Then we obtain the desired pair (ϕ (x⃗ , y⃗),P) in D as follows. First, we rename each constant a in
dom(Φ ∪ Ψ1 ∪ · · · ∪ Ψk) to a variable xa with д(xa) = a. Then, we define

ϕ (x⃗ , y⃗) =
∧

Φ ∧
∧
{x = x ′ | x and x ′ occur in x⃗ and д(x) = д(x ′)}

and
qi (z⃗i) ←

∧
Ψi for 1 ≤ i ≤ k

where y⃗ consists of the variables in Φ that do not occur in x⃗ , and z⃗i consists of all variables that
correspond to the constants in bag(ri). The pair (ϕ (x⃗ , y⃗),P) with P = {qi (z⃗i) | 1 ≤ i ≤ k } satisfies
Conditions 1 and 2 in Claim 1 and both Condition 6 and Condition 7 at the beginning of the proof.
For Condition 7, note that |Φ| + |Ψ1 | + · · · + |Ψk | ≤ n. Moreover, if π is the composition of the
homomorphisms д andh, then it is straightforward to check that Conditions 3–5 in Claim 1 hold (for
Condition 5, note that B is a rAQ-materialization ofD and O, which it inherits from A). Altogether,
this would complete the proof.
In general, the assumption that each of the sets Ψi has a cg-tree decomposition whose root ri

satisfies ∅ , dom(D)∩dom(Ψi) = bag(ri) does not hold. To fix this, we augmentΦ and the sets Ψi as
follows. First, it is easy to see that by adding toΨi at most |Ψi |−1 facts fromBGi we obtain a superset
Ψ′i ⊆ BGi of Ψi that has a cg-tree decomposition with root r ′i and dom(D) ∩ dom(Ψ′i) ⊆ bag(r ′i). If
∅ , dom(D) ∩ dom(Ψ′i) = bag(r ′i), then we let Ψ′′i := Ψ′i and r

′′
i := r ′i . Otherwise, we proceed as

follows to construct a superset Ψ′′i ⊆ BGi of Ψ′i that has a cg-tree decomposition whose root r ′′i
satisfies ∅ , dom(D) ∩ dom(Ψ′′i) = bag(r ′′i):
• Case 1: ∅ , dom(D) ∩ dom(Ψ′i) ⊊ bag(r ′i). In this case, Ψ′′i is obtained from Ψ′i by adding an
arbitrary fact R (a⃗) from BGi with [a⃗] = Gi . Note that in this case, Gi is the bag of the root of
a cg-tree decomposition for Ψ′′i .
• Case 2: dom(D) ∩ dom(Ψ′i) = ∅. We use Ψ′i to define a rAQ q′i (z⃗

′
i) in the same way as we

used Ψi to define the rAQ qi (z⃗i). In particular, z⃗ ′i corresponds to the constants in bag(r ′i). By
construction of Ψ′i we have B |= ∃z⃗

′
i q
′
i (z⃗
′
i), so by Claim 2 there exists a tuple a⃗ in B with

B |= q′i (a⃗) and distB (D, [a⃗]) ≤ d0. We may therefore assume without loss of generality that
distB (D, bag(r ′i)) ≤ d0. Let R1 (a⃗1), . . . ,Rm (a⃗m) be a shortest sequence of facts inB such that
[a⃗1] ⊆ dom(D), [a⃗m] = bag(r ′i), and [a⃗j] ∩ [a⃗j+1] , ∅ for 1 ≤ j < m. Then, m ≤ d0 and
we define Ψ′′i := Ψ′i ∪ {R j (a⃗j) | 1 ≤ j ≤ m}. Note that [a⃗1] is the bag of the root of a cg-tree
decomposition of Ψ′′i .

Finally, let Φ′′ := Φ∪ {Ri (a⃗i) | 1 ≤ i ≤ k }, where Ri (a⃗i) is a fact inD such that [a⃗i] = Gi . Note that

|Φ′′ | +
k∑
i=1
|Ψ′′k | ≤ |Φ| + k +

k∑
i=1

(2|Ψi | − 1 + d0) ≤ 2
(
|Φ| +

k∑
i=1
|Ψi |

)
+ d0k ≤ (2 + d0)n.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

Dichotomies in Ontology-MediatedQuerying with the Guarded Fragment 1:53

We now construct the queries ϕ (x⃗ , y⃗) and qi (z⃗i) as above, except that we substitute Φ′′,Ψ′′1 , . . . ,Ψ
′′
k

for Φ,Ψ1, . . . ,Ψk . Then, the pair (ϕ (x⃗ , y⃗),P) with P = {qi (z⃗i) | 1 ≤ i ≤ k } satisfies Conditions 1
and 2 in Claim 1 and Condition 6 and 7 at the beginning of the proof, and it is easy to see that there
is an extension of the mapping π such that Conditions 3–5 in Claim 1 hold. ⌟

Datalog,-rewritability can be handled similarly. Again, it suffices to prove the implication of (3)
by (1) and we may assume that O is materializable. We construct a Datalog,-program for evaluating
q(x⃗) w.r.t. O as follows. Fix a set D as provided by Claim 1, and let Q be the set of all rAQs that
occur in a pair in D. For each q′ ∈ Q, let Πq′ be a Datalog, program that evaluates q′ w.r.t. O.
Without loss of generality we assume that the intensional relational symbols used in different
programs Πq′ and Πq′ are disjoint, and that the goal predicate of Πq′ is goalq′ . Now let Π be the
Datalog, program containing the rules of all programs Πq′ , for q′ ∈ Q, and the following rule for
each (ϕ (x⃗ , y⃗),P) ∈ D:

goal(x⃗) ← ϕ (x⃗ , y⃗) ∧
∧

q′ (z⃗)∈P

goalq′ (z⃗).

Note that if each Πq′ is a Datalog program, then Π is a Datalog program. Then, for all instances D
and all tuples a⃗ in D, we have D |= Π(a⃗) iff O,D |= q(a⃗).

Finally, we deal with coNP-hardness. In this case, it suffices to prove the implication of (1) by (3).
We prove the stronger statement that if UCQ-evaluation w.r.t. O is coNP-hard, then unary rAQ-
evaluation w.r.t. O is coNP-hard. If O is not materializable, then by Theorem 3.6 we have that unary
rAQ-evaluation w.r.t. O is coNP-hard and we are done. In the following, we may therefore assume
that O is materializable. Let q(x⃗) be a UCQ that witnesses coNP-hardness of UCQ-evaluation w.r.t.
O, and fix a set D as in Claim 1. Let Q be the set of all rAQs that occur in some pair in D. Using
Q we construct a unary rAQ q̃(x) such that evaluating q(x⃗) w.r.t. O is polynomially reducible to
evaluating q̃(x) w.r.t. O.

Let q′1 (z⃗1), . . . ,q
′
m (z⃗m) be an enumeration of the rAQs in Q, and let ki be the length of z⃗i , for each

i ∈ {1, . . . ,m}. Without loss of generality, we can assume that each Dq′i is consistent w.r.t. O. We
use fresh relation symbols R, S , and Ti (1 ≤ i ≤ m), where R and S are binary, and Ti is (ki + 1)-ary.
Note that each of these relation symbols is at most binary in the case that O is a uGC2 (=) ontology.
Now, given an instance D and a tuple a⃗ in D, we construct a new instance D̃ as follows. We start
with the disjoint union of D,Dq′1 , . . . ,Dq′m . Let c⃗i be the tuple of elements in the copy of Dq′i that
represents the tuple z⃗i . Next, we add the following facts for each pair δ = (ϕ (x⃗ , y⃗),P) inD and each
assignment π of elements in dom(D) to the variables in ϕ that satisfies π (x⃗) = a⃗ andD |= ϕ (π (x⃗y⃗)):
• R (a0,aδ);
• S (aδ ,aδ,π);
• Ti (aδ,π ,π (z⃗i)) for each i ∈ {1, . . . ,m} with q′i (z⃗i) ∈ P;
• Ti (aδ,π , c⃗i) for each i ∈ {1, . . . ,m} with q′i (z⃗i) < P.

Here, the a0, aδ , and aδ,π are constants that do not occur in dom(D). Since D is of constant size,
we can compute D̃ in time polynomial in the size of D. It is now straightforward to verify that
O,D |= q(a⃗) holds iff O, D̃ |= q̃(a0), where q̃(x) is the rAQ

q̃(x) ← R (x ,y) ∧ S (y, z) ∧
m∧
i=1

(
Ti (z, u⃗i) ∧ q

′
i (u⃗i)

)
.

Note that the mapping D 7→ D̃ is a polynomial-time reduction from evaluating q(x⃗) w.r.t. O to
evaluating q̃(x) w.r.t. O. Since the former problem is coNP-hard, we conclude that evaluating q̃(x)
w.r.t. O is coNP-hard. □

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

1:54 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

Theorem 3.8 (restated) For all uGC2 (=) ontologies O, the statements (1) to (3) of Theorem 3.7 are

equivalent and also equivalent to

(4) unary rAQ-evaluation w.r.t. O is in PTime.
This remains true when ‘in PTime’ is replaced with ‘Datalog

,
-rewritable’ and with ‘coNP-hard’.

Proof. The proof is almost the same as the proof of Theorem 3.8. Instead of using forest models
constructed via uGF-unravelings one uses forest models constructed via uGC2-unravelings from
the proof of Lemma 2.12. To deal with Condition (4), in Claim 1 one has to add the condition that
every rAQ that occurs in P is unary which is easily achieved using the assumption that in uGC2 (=)
all relation symbols are at most binary. □

C PROOFS FOR SECTION 4
Lemma 4.3 (restated) The implication (2)⇒ (1) in Definition 4.2 holds for every uGF(=) and uGC2 (=)
ontology and every rAQ.

Proof. Observe that the mapping h : a 7→ a↑ is a homomorphism from Du to D (Lemmas 2.10
and 2.11). Thus, if O does not use equality or counting quantifiers, then the implication (2)⇒ (1)
follows from the fact that certain answers are preserved under homomorphisms between instances,
for any ontology given in FO without equality [15] (Proposition 5.9). In general, this is not the
case, and a different argument is required. Assume A is a model of D and O such that A ̸ |= q(a⃗),
where q is an rAQ. We may assume that A is a forest model (Lemma 2.12). We construct from
A a model Au of Du and O such that (Au , b⃗) and (A, a⃗) are connected guarded bisimilar. It then
follows that Au ̸ |= q(b⃗) since q can be regarded as an openGF formula. To construct Au in the
uGF(=) case, hook to Du at every maximally guarded set G a copy of the cg-tree decomposable
interpretation AG↑ hooked to D at G↑ = {a↑ | a ∈ G} in the construction of the forest model A by
identifying every a ∈ G with a↑ ∈ G↑. It is straightforward to construct the required connected
guarded bisimulation between (Au , b⃗) and (A, a⃗) by taking the union of the guarded bisimulation
between Du and D and the obvious isomorphisms between the copies of AG↑ hooked to G and the
original AG↑ . This connected guarded bisimulation also shows that Au is a model of O (it is a model
of Du by definition), see Lemma 2.6. The argument for uGC2 is similar and left to the reader. □

Theorem 4.5 (restated) If O is an unraveling tolerant uGF(=) or uGC2 (=) ontology, then rAQ-

evaluation w.r.t. O is Datalog
,
-rewritable (resp., Datalog-rewritable if O is formulated in uGF).

Proof. Assume first that O is an unraveling tolerant uGF(=) ontology, and that q(x⃗) is a rAQ.
We discuss how we can decide O,D ̸ |= q(a⃗) for a given instance D and tuple a⃗ in D, and then
construct the desired Datalog,-rewriting. Without loss of generality, we may assume that [a⃗] = G
is maximally guarded in D, so by unraveling tolerance it suffices to decide O,Du ̸ |= q(b⃗), where
Du is the global uGF-unraveling of D and b⃗ is the copy of a⃗ in bag(G). We use the notion of a
type from the proof of Theorem 3.7 (see the beginning of the proof of Claim 2 on p. 50). The key
is to determine if we can label each maximally guarded tuple c⃗ in Du with the type Φc⃗ (x⃗c⃗) of c⃗
in a model Ac⃗ of Du |[c⃗] and O such that q(x⃗b⃗) < Φb⃗ (x⃗b⃗). Clearly, this is possible if there exists a
model A ofDu and O that falsifies q(b⃗), since we can use A as the label of each maximally guarded
tuple in Du . Conversely, by imposing a certain consistency condition on the types of intersecting
maximally guarded tuples, we can ensure that the interpretation obtained from Du by hooking
each model Ac⃗ to Du at [⃗c] is a model of Du and O that falsifies q(b⃗).

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

Dichotomies in Ontology-MediatedQuerying with the Guarded Fragment 1:55

To decide the existence of a labeling with the above properties, we use the notion of a type

assignment, which is a mapping T that assigns to each maximally guarded tuple c⃗ = (c1, . . . , cn) in
D a non-empty set T (c⃗) of types Φ(x1, . . . ,xn) such that:

(1) each type in T (c⃗) is the type of c⃗ in some model of D|[c⃗] and O;
(2) for each maximally guarded tuple c⃗ ′ in D with [⃗c] ∩ [⃗c ′] , ∅ there exists a type Φ′(x⃗ ′) in

T (c⃗ ′) such that Φ(c⃗) and Φ′(c⃗ ′) are consistent.
Here, given a type Φ(x1, . . . ,xn) and constants c1, . . . , cn , we denote by Φ(c1, . . . , cn) the set of all
formulas that are obtained from a formula in Φ(x1, . . . ,xn) by replacing each free occurrence of
xi by ci , for each i ∈ {1, . . . ,n}, where we regard c1, . . . , cn as the free variables of Φ(c1, . . . , cn).
Moreover, types Φ(x⃗) and Ψ(y⃗) are consistent if they agree on all formulas that contain only the
variables in [x⃗] ∩ [y⃗]. It turns out that a type assignment T with the property that q(x⃗) < Φ(x⃗) for
some type Φ(x⃗) ∈ T (a⃗) yields the desired labeling of the maximally guarded tuples in Du , and thus
leads to a decision procedure for O,Du ̸ |= q(b⃗).

Claim 1. O,Du ̸ |= q(b⃗) iff there exists a type assignment T and a type Φ(x⃗) ∈ T (a⃗) with q(x⃗) < Φ(x⃗).

Proof. For the ‘only if’ direction, assume O,Du ̸ |= q(b⃗). It will be more convenient to work with
the equivalent assumption that O,D ̸ |= q(a⃗), so let A be a model of D and O with A ̸ |= q(a⃗). For
each maximally guarded tuple c⃗ = (c1, . . . , cn) ofD, let Φc⃗ (x1, . . . ,xn) be the type of c⃗ in A, and set
T (c⃗) = {Φc⃗ (x1, . . . ,xn)}. Then, T is a type assignment. Furthermore, q(x1, . . . ,x |a⃗ |) does not occur
in the type Φa⃗ (x1, . . . ,x |a⃗ |) assigned to a⃗.

For the ‘if’ direction, letT be a type assignment such that q(x⃗) < Φ(x⃗) for some type Φ(x⃗) ∈ T (a⃗).
We construct a model A of Du and O with A ̸ |= q(b⃗).

We first assign to eachmaximally guarded tuple c⃗ inDu a type inT (c⃗↑). It suffices to do this for the
maximally guarded tuples corresponding to the bags in the cg-tree decomposition (T (D,G ′),E, bag),
for each maximally guarded set G ′ in D. Fix a maximally guarded set G ′ in D. For each node t
in T (D,G ′), let c⃗t be a tuple consisting of all constants in bag(t) such that c⃗t = b⃗ if t is the root
G = [a⃗] of (T (D,G),E, bag). We inductively assign to each node t inT (D,G ′) a type Φt (x⃗t) ∈ T (c⃗

↑
t).

If t = G ′, then we let Φt (x⃗t) be any type in T (c⃗↑t). If in addition we have G ′ = G, then c⃗↑t = a⃗ and
we select Φt (x⃗t) so that q(x⃗t) < Φt (x⃗t). For the induction step, consider a node in T (D,G ′) of the
form t ′ = tG ′′. Since Φt (x⃗t) ∈ T (c⃗

↑
t) and [⃗ct] ∩ [⃗ct ′] , ∅, there exists a type Φt ′ (x⃗t ′) ∈ T (c⃗

↑

t ′) such
that Φt (c⃗t) and Φt ′ (c⃗t ′) are compatible. We assign this type to t ′.
To obtain the desired model of Du and O, we proceed as follows. For each t ∈ T (D), we pick a

modelAt ofDu |[c⃗t] and O such that Φt (x⃗t) is the type of c⃗t inAt . Without loss of generality, we may
assume that At has a cg-tree decomposition such that the root’s bag is exactly [⃗ct]. Furthermore, we
may assume that dom(At)∩dom(Du) = [⃗ct] for each node t and dom(At)∩dom(At ′) = [⃗ct]∩ [⃗ct ′]
for every two distinct nodes t , t ′. Let A be the interpretation obtained from Du by hooking At to
Du for each node t :

A := Du ∪
⋃

t ∈T (D)

At .

It can be shown that A is a model ofDu and O with A ̸ |= q(b⃗). To prove that A is a model of O and
that A ̸ |= q(b⃗), we can use that for all openGF formulas ϕ (x⃗), for all guarded tuples c⃗ of A, and for
all t ∈ T (D) with [⃗c] ⊆ dom(At) we have A |= ϕ (c⃗) iff At |= ϕ (c⃗). The proof is straightforward by
induction on the structure of ϕ. ⌟

To conclude the proof for the case of uGF(=) ontologies, let us show how the condition in Claim 1
can be verified by a Datalog, program ΠO,q . The idea is to derive the desired type assignment

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

1:56 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

inductively, starting with a set of all possible types for each guarded tuple inD, and removing a type
Φ(x⃗) from the set of a guarded tuple c⃗ whenever there exists a guarded tuple c⃗ ′ with [⃗c] ∩ [⃗c ′] , ∅
such that Φ(c⃗) is not consistent with Φ′(c⃗ ′) for any type Φ′(x⃗ ′) in the set for c⃗ ′. In the Datalog,
program, we use relation symbols PT to assign sets T of types to each guarded tuple in D. The
program will assign many such sets to each guarded tuple c⃗ , but there will be an inclusion-minimal
one, which we pick as the set assigned to c⃗ in a type assignment.
For the formal description of the program, letw be the maximum arity of a relation symbol in

O or q, and let k be the number of answer variables of q(x⃗). Fix 2w variables z1, . . . , z2w . In the
description below, u⃗, v⃗ range over tuples consisting of at mostw of these variables, and w⃗ ranges
over k-tuples of variables in {z1, . . . , z2w }. The rules of ΠO,q are as follows:
(1) PT (zi) ← α , where α is an atomic formula that involves only the variable zi , i ∈ {1, . . . , 2w },

and T consists of all types with free variable zi that contain α ;
(2) PT (u⃗) ← R (u⃗) ∧α , where R ∈ sig(O ∪ {q}), α is an atomic formula (possibly an equality) that

involves only variables from u⃗, and T consists of all types with free variables u⃗ that contain
both R (u⃗) and α ;

(3) PT⇝U (u⃗) ← PT (u⃗) ∧ PU (v⃗), where T and U are sets of types with free variables u⃗ and v⃗ ,
respectively, u⃗ and v⃗ share at least one variable, and T ⇝ U denotes the set of all types in T
that are consistent with some type inU ;

(4) PT∩T ′ (u⃗) ← PT (u⃗) ∧ PT ′ (u⃗), where T ,T ′ are sets of types with free variables u⃗;
(5) goal(w⃗) ← PT (u⃗), where T is a set of types with free variables u⃗ such that q(w⃗) is contained

in all types in T ;
(6) goal(w⃗) ← P∅ (u⃗), where u⃗ and w⃗ do not share any variables.

If equality occurs at a non-guarded position in O (i.e., if O is not formulated in uGF), then the
program also contains the following rule:
(7) PT (u⃗) ← zi , zj , where zi and zj are distinct variables in u⃗, and T consists of all types with

free variables u⃗ that contain ¬(zi = zj).
Note that the above program is technically not a Datalog, program, since the bodies of some rules
may contain equality atoms. However, it is not difficult to see that equality atoms can be eliminated
by introducing additional Datalog rules that define the equality predicate.

Using Claim 1, we can now show:

Claim 2. D |= ΠO,q (a⃗) iff O,D
u |= q(a⃗).

Proof. By Claim 1, it suffices to show that D ̸ |= ΠO,q (a⃗) iff there exists a type assignment T and a
type Φ(x⃗) ∈ T (a⃗) with q(x⃗) < Φ(x⃗). First assume that D ̸ |= ΠO,q (a⃗). Let A be the unique minimal
model of D and ΠO,q . For each guarded tuple c⃗ in D, let T (c⃗) be the unique inclusion-minimal
set of types with free variables z1, . . . , z |c⃗ | such that PT (c⃗) (c⃗) ∈ A. Then, T (c⃗) is non-empty. Since
goal(a⃗) < A, there exists a type in T (a⃗) that does not contain q(z1, . . . , zk). It follows that T leads
to the desired type assignment.

For the ‘if’ direction, letT be a type assignment such that q(x⃗) < Φ(x⃗) for some type Φ(x⃗) ∈ T (a⃗).
Without loss of generality, we may assume that T is maximal in the sense that for every type
assignmentT ′ we haveT ′(c⃗) ⊆ T (c⃗). We rename each variable xi that occurs free in a type assigned
by T to zi , and extend T so that it assigns to each guarded tuple c⃗ that is properly contained in
a maximally guarded tuple c⃗ ′ the set of all types in T (c⃗ ′) restricted to all formulas whose free
variables correspond to the constants in c⃗ . Now, rules (1)–(4) and (7) of ΠO,q ensure that for each
guarded tuple c⃗ in D the unique minimal model A of D and ΠO,q contains the fact PT (c⃗) (c⃗). By the
choice of T , it follows that goal(a⃗) < A, and consequently D ̸ |= ΠO,q (a⃗). ⌟

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

Dichotomies in Ontology-MediatedQuerying with the Guarded Fragment 1:57

Altogether, this concludes the proof for the case that O is a uGF(=) ontology.

The case of ontologies O formulated in uGC2 (=) is similar, but requires a bit more care. In this
case, we assume that all relation symbols are at most binary, andDu is the global uGC2-unraveling
of D. As in the case of uGF(=) ontologies, the key is to determine if we can label the maximally
guarded tuples c⃗ ofDu with the type Φc⃗ (x⃗) of c⃗ in a model ofDu |[c⃗] and O such that q(x⃗b⃗) < Φb⃗ (x⃗b⃗).
However, to ensure that we can hook appropriate interpretations toDu in order to obtain a model of
Du and O that falsifies q(b⃗) we need a stronger consistency condition. The reason is that uGC2 (=)
allows us to count. In particular, in uGC2 (=) we can count the number of guarded tuples that
intersect with a given guarded tuple c⃗ and satisfy a certain property. It is therefore no longer
sufficient to ensure consistency between pairwise intersecting maximally guarded tuples, but for a
given maximally guarded tuple c⃗ we need to take into account all maximally guarded tuples that
intersect with c⃗ .
We generalize the definition of a type assignment as follows. A type assignment is a mapping

T that assigns to each maximally guarded tuple (c1, c2) in D a non-empty set T (c1, c2) of types
Φ(x1,x2) for which there exists a model A of O with the following properties:
• D| {c1,c2 } ⊆ A and Φ(x1,x2) is the type of (c1, c2) in A;
• for each maximally guarded tuple (c ′1, c

′
2) inDwith {c1, c2}∩{c ′1, c

′
2} , ∅we haveD| {c ′1,c ′2 } ⊆ A

and there exists a type Φ′(x1,x2) in T (c ′1, c
′
2) such that Φ′(x1,x2) is the type of (c ′1, c

′
2) in A.

As in the case of uGF(=) ontologies, we can now show the following:

Claim 3. O,Du ̸ |= q(b⃗) iff there exists a type assignment T and a type Φ(x⃗) ∈ T (a⃗) with q(x⃗) < Φ(x⃗).

Proof. The ‘only if’ direction is exactly as in Claim 1. For the ‘if’ direction, let T be a type
assignment such that q(x⃗) < Φ(x⃗) for some type Φ(x⃗) ∈ T (a⃗). We are going to construct a model A
of Du and O with A ̸ |= q(b⃗).

We start as in Claim 1 and assign to each maximally guarded tuple c⃗ in Du a type in T (c⃗↑). This
is slightly different from how it was done in Claim 1 due to the different consistency criterion
for types used in the definition of a type assignment. If G ′ is a maximally guarded set in D and
t ∈ T (D,G ′), let c⃗t is a tuple consisting of all constants in bag(t) such that c⃗t = b⃗ if t is the root
G = [a⃗] of (T (D,G),E, bag). Fix a maximally guarded set G ′ in D. We inductively assign to each
node t in T (D,G ′) a type Φt (x⃗t) ∈ T (c⃗

↑
t). If t = G ′, then we let Φt (x⃗t) be any type in T (c⃗↑t). If in

addition we haveG ′ = G , then c⃗↑t = a⃗ and we select Φt (x⃗t) so that q(x⃗t) < Φt (x⃗t). For the induction
step, consider a node t ∈ T (D,G ′) and all successor nodes ti = tGi , i ∈ {1, . . . ,k }, of t in T (D,G ′).
Since Φt (x⃗t) ∈ T (c⃗

↑
t) and [⃗ct] ∩ [⃗cti] , ∅ for each i ∈ {1, . . . ,k }, there exists a model A of O with

the following properties:
• Du

|[c⃗t]
⊆ A and Φ(x⃗t) is the type of c⃗t in A;

• for each i ∈ {1, . . . ,k } we have Du
|[c⃗ti]

⊆ A and there is a type Φi (x⃗ti) in T (c⃗↑ti) such that
Φi (x⃗ti) is the type of c⃗ti in A.

We assign to each of the nodes ti , i ∈ {1, . . . ,k } the type Φi (x⃗i). We also assign to t the model
At := A. In the following, we will assume that dom(Du)∩dom(At) consists of exactly the constants
in [⃗ct] ∪ [⃗ct1] ∪ · · · ∪ [⃗ctk]. This concludes the induction step.

We are now ready to construct a model B ofDu and O with B ̸ |= q(b⃗). Let B0 be the union of all
interpretations At |dom(Du) , for t ∈ T (D). By the choice of the types Φt (x⃗t) and the interpretations
At , the interpretation B0 contains Du and agrees with At on all facts that involve only constants
in dom(At) ∩ dom(Du). We now obtain B from B0 by hooking appropriate interpretations Bc to
each constant c ∈ dom(Du). To define Bc , fix any node t ∈ T (D) with c ∈ bag(t). We will extract

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

1:58 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

Bc from At as follows. Take a maximally guarded set G ′ of At with dom(G ′) ∩ dom(Du) = {c},
and construct an interpretation BG′ along the lines of the proof of Lemma 2.12. To this end, start
with the uGC2-unraveling of At at G ′, but then keep only the portion of this unraveling that is
defined by the nodes G0G1 · · ·Gn in T (At ,G ′) with dom(G1) ∩ dom(Du) = ∅. The interpretation
Bc is obtained from the disjoint union of all interpretations BG′ , whereG ′ is a maximally guarded
set of At with dom(G ′) ∩ dom(Du) = {c}, by identifying the copy of c in the root bag of each BG′
with c . It can now be shown that

B := B0 ∪
⋃

c ∈dom(Du)

Bc

is a model of Du and O with B ̸ |= q(b⃗). ⌟

It remains to construct the Datalog, program ΠO,q . We follow a similar strategy as in the case
of uGF(=) ontologies, namely that we derive the desired type assignment inductively, starting
with a set of all possible types for each guarded tuple in D, and removing a type from the set of a
guarded tuple c⃗ whenever it is not consistent with types from the sets of the guarded tuples in D
that intersect with c⃗ . Since the number of guarded tuples in D that intersect a given guarded tuple
in D may be unbounded, a Datalog, program cannot implement this strategy directly. We will
exploit the fact that in order to establish consistency of a type for c⃗ it suffices to inspect a bounded
number of guarded tuples that intersect with c⃗ , where the bound depends only on O and q. More
precisely, let τ be one plus the number of non-equivalent types with at most two free variables,
and let N be the largest integer such that a formula of the form ∃≥Nx ϕ occurs in cl(O,q), or 1 if
there is no such formula in cl(O,q). Then the number of intersecting guarded tuples that have to
be considered in order to establish consistency is at most Nτ2τ . In what follows, we first exploit
this fact to construct the Datalog, program ΠO,q , and then prove that ΠO,q has the intended effect.

Fix variables z1, z2, z3, . . . , zm , wherem := Nτ2τ + 2. In the description below, u⃗0, u⃗1, . . . , u⃗N τ 2τ
range over tuples consisting of at most two of these variables, and w⃗ ranges over k-tuples of
variables in {z1, . . . , zm }, where k ≤ 2 is the number of answer variables of q. Given a type Φ0 (x⃗0)
and sets T1, . . . ,Tℓ of types with free variables x⃗1, . . . , x⃗ℓ , we write Φ0 (x⃗0) ⇝ T1, . . . ,Tℓ if there is
a model A of O and an assignment π : [x⃗0] ∪ · · · ∪ [x⃗ℓ]→ dom(A) with the following properties:
• Φ(x⃗0) is the type of π (x⃗0) in A;
• for each i ∈ {1, . . . , ℓ} there is a type Φi (x⃗i) in Ti such that Φi (x⃗i) is the type of π (x⃗i) in A.

The rules of ΠO,q are as follows:
(1) PT (zi) ← α , where α is an atomic formula that involves only the variable zi , i ∈ {1, . . . ,m},

and T consists of all types with free variable zi that contain α ;
(2) PT (u⃗0) ← R (u⃗0) ∧ α , where R ∈ sig(O ∪ {q}), α is an atomic formula (possibly an equality)

that involves only variables from u⃗0, and T consists of all types with free variables u⃗0 that
contain both R (u⃗0) and α ;

(3) PT (u⃗0) ← zi , zj , where zi and zj are distinct variables in u⃗0, andT consists of all types with
free variables u⃗0 that contain ¬(zi = zj);

(4) PV (u⃗0) ←
∧ℓ

i=0 PTi (u⃗i), where ℓ ≤ Nτ2τ ,Ti is a set of types with free variables u⃗i , the tuples
u⃗0 and u⃗i share a variable, for each i ≤ ℓ, and V is the set of all types Φ0 (u⃗0) in T0 such that
Φ0 (u⃗0) ⇝ T1, . . . ,Tℓ ;

(5) PT∩T ′ (u⃗0) ← PT (u⃗0) ∧ PT ′ (u⃗0), where T ,T ′ are sets of types with free variables u⃗0;
(6) goal(w⃗) ← PT (u⃗0), whereT is a set of types with free variables u⃗0 such that q(w⃗) is contained

in all types in T ;
(7) goal(w⃗) ← P∅ (u⃗0), where u⃗0 and w⃗ do not share any variables.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

Dichotomies in Ontology-MediatedQuerying with the Guarded Fragment 1:59

We can now show:

Claim 4. D |= ΠO,q (a⃗) iff O,D |= q(a⃗).

Proof. By Claim 3, it suffices to show that D ̸ |= ΠO,q (a⃗) iff there exists a type assignment T and a
type Φ(x⃗) ∈ T (a⃗) with q(x⃗) < Φ(x⃗). The ‘if’ direction is exactly as in Claim 2, so we focus on the
‘only if’ direction.

Assume thatD ̸ |= ΠO,q (a⃗). Let A be the unique minimal model ofD and ΠO,q . For each guarded
tuple c⃗ in D, let T (c⃗) be the unique inclusion-minimal set of types with free variables z1 or (z1, z2)
such that PT (c⃗) (c⃗) ∈ A. Then, T (c⃗) is non-empty. We now show that T is a type assignment.
Consider a maximally guarded tuple c⃗0 in D and a type Φc⃗0 (x⃗c⃗0) in T (c⃗0). Let C be the set of all

maximally guarded tuples c⃗ , c⃗0 in D that have a non-empty intersection with c⃗0. For each pair
c⃗, c⃗ ′ of tuples inC define c⃗ ∼ c⃗ ′ iffT (c⃗) = T (c⃗), and letC1, . . . ,Cs be the equivalence classes w.r.t. ∼.
Then, s ≤ 2τ . For each i ∈ {1, . . . , s}, pick a subset C ′i of Ci of size min{|Ci |,Nτ }. Let c⃗1, . . . , c⃗ℓ be
an enumeration of the tuples in C ′1 ∪ · · · ∪C

′
s . Then, ℓ ≤ Nτ2τ . By construction of ΠO,q , we have

Φc⃗0 (x⃗c⃗0) ⇝ T1 (c⃗1), . . . ,Tℓ (c⃗ℓ), which implies that there exists a model B of O such that:
• Φc⃗0 (x⃗c⃗0) is the type of c⃗0 in B;
• for each i ∈ {1, . . . , ℓ} there is a type Φc⃗i (x⃗c⃗i) in T (c⃗i) such that Φc⃗i (x⃗c⃗i) is the type of c⃗i in
B.

The first three rules of the program ensure that each Φc⃗i (x⃗c⃗i) contains information about all atomic
formulas and inequalities that are true about c⃗i inD|[c⃗i], so the fact that Φc⃗i (x⃗c⃗i) is the type of c⃗i in
B also implies D|[c⃗i] ⊆ B.

Finally, consider any tuple c⃗ ∈ Ci \C
′
i . Note that |C

′
i | = Nτ , so there is a type Φc⃗ (x⃗c⃗) ∈ T (c⃗) that

is assigned to at least N of the tuples in C ′i . Fix such a type for each tuple c⃗ ∈ Ci \ C
′
i and each

i ∈ {1, . . . , s}. By the choice of N , we can transform B into a model B′ such that:
• D|[c⃗0] ⊆ B

′ and Φc⃗0 (x⃗c⃗0) is the type of c⃗0 in B
′;

• for each c⃗ ∈ C we have D|[c⃗] ⊆ B′ and there is a type Φc⃗ (x⃗c⃗) in T (c⃗) such that Φc⃗ (x⃗c⃗) is the
type of c⃗ in B′.

This implies that the restriction of T to the maximally guarded tuples in D is a type assignment.
Moreover, since goal(a⃗) < A, there exists a type in T (a⃗) that does not contain q(z⃗). ⌟

Altogether, this concludes the proof of the theorem. □

D PROOFS FOR SECTION 5
Theorem 5.2 (restated) Let O be an ontology formulated in one of uGF(1), uGF− (1,=), uGF−2 (2),
uGC

−
2 (1,=), or an ALCHIF ontology of depth 2. If O is materializable for the class of (possibly

infinite) cg-tree decomposable instances D with sig(D) ⊆ sig(O), then O is unraveling tolerant.

Proof. Recall hat we proved already that if O is materializable for the class of cg-tree decom-
posable instances D with sig(D) ⊆ sig(O), then it is materializable for the class of all cg-tree
decomposable instances without any signature restrictions.
Also recall that we proved the result already for ontologies in uGC−2 (1,=). We next consider

uGF− (1,=). Assume that O is an ontology in uGF− (1,=). The proof is similar to the proof for
uGF− (1,=) and we only give a sketch. Let D be an instance and Du its global uGF-unraveling. Let
Bu be a materialization of O and Du . We may assume that Bu is a forest model. Define a model B
of D by
• hooking to D at every c↑ ∈ dom(D) a copy Bc↑

c∗ of the interpretation B
u by identifying c↑

and c∗ (we assume dom(D) ∩ dom(Bc↑
c∗) = {c

↑}) and

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

1:60 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

• adding the atoms {R (c⃗↑) | R (c⃗) ∈ Bu
|dom(Du)

}.

As in the previous case, it suffices to show thatB is a model of O andDwhich is connected guarded
bisimilar (for the appropriate tuples) to a materialization B∗ of O and Du . Define B∗ by hooking
to Du at every c ∈ Du a copy Bc

c∗ of B
u by identifying c and c∗ and adding Bu

|dom(Du)
. We assume

dom(Du)∩dom(Bc
c∗) = {c}. We show thatB∗ is a materialization of O andDu . First, by Lemma 5.1,

B∗ |= q(a⃗) iff Bu |= q(a⃗) for all a⃗ ∈ dom(Du) and rAQs q(x⃗). It remains to show that B∗ is a model
of O. Again it is crucial that O is an ontology in uGF− (1,=). Let φ ∈ O. Then φ is of the form
∀x (x = x → ψ (x)), whereψ (x) is a formula of depth 1 in openGF. Consider a ∈ dom(B∗). We have
to show that B∗ |= ψ (a). We distinguish two cases:

Case 1. a ∈ dom(Bc
c∗) \ {c} for some c ∈ dom(Du). This case is considered in exactly the same way

as Case 1 for ontologies in uGC−2 (1,=).

Case 2. a ∈ dom(Du). Denote for c ∈ dom(Du) by N (c) the set of all d ∈ dom(Du) such that there
exists a guarded set G in Du with c,d ∈ G. By Lemma 5.1, the interpretations Bu

|N (c) and B
u
|N (c∗)

are isomorphic for every c ∈ dom(Du). Now the argument is exactly the same as in Case 2 for
ontologies in uGC−2 (1,=).

We have shown that B∗ is a materialization of O and Du . The required connected guarded bisimu-
lation between B∗ and B is obtained by taking the set of partial isomorphisms between Du and D
from Lemma 2.10 and adding the induced partial isomorphisms between guarded sets from the
obvious isomorphisms between Bc

c∗ , c ∈ D
u , and the Bc↑

c∗ hooked to c↑ in B.

The proofs given above do not work for the remaining fragments. The reason is that the model
B∗ defined above by hooking to Du at c certain cg-tree decomposable Bc∗ obtained from Bu is not
guaranteed to be a model of O, and so B is not guaranteed to be a model of O either. The following
examples illustrates the situation.

Example D.1. Let O contain

∀x∃y (S (x ,y) ∧A(y)), ∀x ,y (R (x ,y) → (φ (x) → φ (y)), where φ (x) = ∃z (S (x , z) ∧ ¬A(z)).

Thus, in every model A of O each node has an S-successor in A and having an S-successor b with
A(b) < A is propagated along R. O is unraveling tolerant. Consider the instanceD from Example 2.9
(1) depicted here again with the maximally guarded sets G1,G2,G3.

G1

G2

G3

A A A A

¬A ¬A ¬A ¬A

G1

A A A A

¬A ¬A

G2

A A A A
G3

D

Bu

We have seen that the uGC2-unraveling DuGi
of D at Gi consists of a single chain. The global

unraveling Du of D thus consists of three chains. An example of a forest model Bu of O and Du
is given on the right hand side of the figure. When we now choose c∗ ∈ {b | c ∼u b} arbitrarily

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

Dichotomies in Ontology-MediatedQuerying with the Guarded Fragment 1:61

when constructing B∗, then it is not guaranteed that we obtain a model in which the propagation
condition for the existence of S-successors b with A(b) < B∗ holds.

For the remaining fragments we therefore
• expand Du to a new cg-tree decomposable instance Du+ by adding entailed rAQs to Du ; in
the example above every a ∈ Du now has an S-successor b with A(b) < Du+;
• take a materialization Bu+ of O and Du+ and define the model B of O and D by hooking to
D appropriate cg-tree decomposable interpretations hooked to Du in Bu+;
• prove that B is a model of O with B ̸ |= q0 (a⃗) by constructing an appropriate guarded
bisimulation from a uniformization Bu∗ of Bu+.

Thus, the main difference to the proof above is that we first expand Du to a new instance Du+
and then work with a materialization of Du+ instead of Du . For this to work it is crucial that
any materialization of Du+ is a materialization of Du as well, and therefore O,Du |= q(a⃗) iff
O,Du+ |= q(a⃗) for all tuples a⃗ in Du and all rAQs q(x⃗). For uGF(1) and uGF−2 (2) this will follow
directly from the observation that they are fragments of FO without equality and thus answers
to CQs are preserved under homomorphisms of instances [15]. For ALCHIF this preservation
result does not hold and a more careful construction of Du+ is needed to ensure this property.

LetD be an instance andDu its global uGF unraveling. Let a⃗ be a tuple with [a⃗] = G0 maximally
guarded inD and let b⃗ be the copy in bag(G0) of a⃗. Further let q0 be an rAQ such that O,Du ̸ |= q0 (b⃗).
We show that O,D ̸ |= q0 (a⃗). We first hook to Du at any bag(t) with t ∈ T (D) a copy of any rAQ
entailed by O andDu at bag(t). In detail, letDt be the union of all canonical instancesDq (a⃗), where
q is an rAQ, [a⃗] ⊆ bag(t), O,Du |= q(a⃗), and where we assume that dom(Dq (a⃗)) ∩ dom(Du) = [a⃗]
and dom(Dq (a⃗))∩dom(Dq′ (a⃗

′)) = [a⃗]∩ [a⃗′] forDq (a⃗) , Dq′ (a⃗′). Then letDu+ = Du ∪
⋃

t ∈T (D) Dt .
The following properties of Du+ follow directly from the definition and Lemma 4.6.

(a) For any t , t ′ ∈ T (D) with t ∼ t ′ there is an isomorphism from Dt onto Dt ′ that extends the
canonical isomorphism ht,t ′ from bag(t) to bag(t ′), and an automorphism h+t,t ′ of D

u+ that
extends the canonical automorphism ĥt,t ′ of Du .

(b) there is a homomorphism fromDu+ to any materialization of O andDu preserving dom(Du).
Thus, if O is given in FO without equality then by, preservation of certain answers under
homomorphisms between instances ([15], Proposition 5.9), any materialization of Du+ is a
materialization of Du and for every rAQ q(x⃗) and a⃗ in Du :

O,Du+ |= q(a⃗) ⇔ O,Du |= q(a⃗)

As Du+ is cg-tree decomposable, there is a materialization Bu+ of O and Du+ which is a forest
model of O andDu+. Thus, Bu+ is obtained fromDu by hooking toDu at every bag(t), t ∈ T (D), a
cg-tree decomposable model Bu+t of Dt . Observe that we obtain from Point (a):

(c) For any t , t ′ ∈ T (D) with t ∼ t ′, the mapping h+t,t ′ is an automorphism of Bu+
|Du+

and its
restriction to dom(Dt) is an isomorphism from Bu+

|dom(Dt)
onto Bu+

|dom(Dt ′)
.

The following result states that every finite subinterpretation of Bu+t exists already in Bu+
|dom(Dt)

(up to renaming).
(d) Let t ∈ T (D). For any finite subinterpretation A ofBu+t there exists an isomorphic embedding

of A into Bu+
|dom(Dt)

preserving bag(t).
To prove (d), we may assume that A is connected and dom(A) ∩ dom(Bu+t) = bag(t). By Point (b),
there is an isomorphism between A and someDq (a⃗) from the construction ofDt preserving bag(t).
Fix Dq (a⃗). It remains to be proved that there does not exist any R (b⃗) with [b⃗] ⊆ dom(Dq (a⃗)) such
that R (b⃗) ∈ Bu+ \Dq (a⃗). But using the fact that A is a subinterpretation of the model Bu+ of O

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

1:62 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

and Du+ isomorphic to Dq (a⃗) one can easily construct a model of Du+ and O that contains no
R (b⃗) < Dq (a⃗) with [b⃗] ⊆ dom(Dq (a⃗)). Thus, asBu+ is a materialization of O andDu+,Bu+ contains
no such R (b⃗). This finishes the proof of (d). In what follows we require the following consequence
of Points (c) and (d):

(e) For all t , t ′ ∈ T (D) with t ∼ t ′ and all guarded tuples a⃗ in Bu+t there exists a guarded tuple b⃗
in Bu+

|dom(Dt ′)
and mapping p : a⃗ 7→ b⃗ which coincides with ht,t ′ on bag(t) such that p is an

isomorphism from Bu+
|[a⃗] to B

u+
|[b⃗]

.

The next steps depend on whether we consider ontologies in uGF(1) or uGF−2 (2). We start with the
former case. Fix for every equivalence class {t ′ | t ∼ t ′} a t∗ ∼ t . Define a model B ofD by hooking
to D at every bag(t)↑ in D a copy of the interpretation Bu+t ∗ by identifying every a ∈ bag(t∗) with
a↑. To show that B is a model of O and B ̸ |= q0 (a⃗) we uniformize Bu+ as before and then take an
appropriate connected guarded bisimulation between the uniformization and B. Define Bu∗ by
hooking toDu at every bag(t), t ∈ T (D), a copy Bu∗t of the interpretation Bu+t ∗ by identifying every
a ∈ bag(t) with the unique a′ ∈ bag(t∗) with a ∼u a′. We show that Bu∗ is a materialization of
D and O. Denote for a ∈ dom(Bu∗t) by a′ the corresponding element of Bu+t ∗ (thus, for a ∈ bag(t)
we have a ∼u a′). We show that Bu∗ is a model of O. Then Bu∗ is a materialization of O and Du
since it is a model of Du and since the construction of Bu∗ from Bu+ preserves answers to rAQs.
Consider a sentence φ ∈ O. Then φ = ∀y⃗ (R (y⃗) → ψ (y⃗)), where ψ (y⃗) is a formula in openGF of
depth one. We show that Bu∗ |= φ. Let Bu∗ |= R (a⃗) for some tuple a⃗ = (a1, . . . ,ak) in dom(Bu∗).
Then [a⃗] ⊆ dom(Bu∗t) for some t ∈ T (D). Bu∗ |= φ follows from Bu+ |= φ if we can show that
Bu∗ |= ψ (a⃗) iff Bu+ |= ψ (a⃗′) where a⃗′ = (a′1, . . . ,a

′
k).

To show that Bu∗ |= ψ (a⃗) iff Bu+ |= ψ (a⃗′) it suffices to constructed a connected depth 1 guarded
bisimulation between (Bu∗, a⃗) and (Bu+, a⃗′); i.e., to prove that for any guarded b⃗ in Bu∗ with
[b⃗] ∩ [a⃗] , ∅ there exists a guarded c⃗ in Bu+ with [⃗c] ∩ [a⃗′] , ∅ such that there is a partial
isomorphism p : b⃗ 7→ c⃗ with p (a) = a′ for all a ∈ [b⃗] ∩ [a⃗] and vice versa. We prove the first
direction, the converse is similar. Consider a guarded b⃗ in Bu∗ with [b⃗] ∩ [a⃗] , ∅. We distinguish
two cases cases.

Case 1. [b⃗] ∩ dom(Bu∗t) \ bag(t)) , ∅. Then [b⃗] ⊆ dom(Bu∗t) and the claim follows directly from
the fact that Bu∗t is a copy of Bu+t ∗ (⃗c = b⃗ ′ is as required).

Case 2. [b⃗] ∩ dom(Bu∗t) \ bag(t)) = ∅. There exists t ′ ∈ T (D) (possibly t ′ , t) such that [b⃗] ⊆
dom(Bu∗t ′). By (e), there is a guarded e⃗ in Bu+

|dom(Dt ′)
and a mapping p : b⃗ 7→ e⃗ which is the identity

on bag(t ′) ∩ [b⃗] such that p is an isomorphism from Bu∗
|[b⃗]

to Bu+
|[e⃗]. Then c⃗ = h

+
t,t ∗ (e⃗) is as required.

We have shown that Bu∗ is a materialization of O and Du . One can now construct in the same
way as before a connected guarded bisimulation between B∗ and B showing that B is a model of
O and B ̸ |= q0 (a⃗).

Now let O be in uGF−2 (2) and let Du be the global GC2-unraveling of D. Assume that Du+ and
Bu+ are defined as above. The construction of the model B of O and D is very similar to the
uGC−2 (1,=) case except that we now use the model Bu+ instead of Bu to construct B. Thus, we
define B by

• hooking to D at every c↑ ∈ dom(D) a copy Bc↑
c∗ of the interpretation Bc∗ hooked to Du at c∗

in Bu+ and
• adding the atoms {R (c↑1 , c

↑

2) | R (c1, c2) ∈ B
u+
|dom(Du)

}.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

Dichotomies in Ontology-MediatedQuerying with the Guarded Fragment 1:63

To prove that B is a model of O and D such that B ̸ |= q0 (a⃗), we uniformize Bu+, as before: define
Bu∗ by hooking to Du at c a copy Bc

c∗ of the model Bc∗ hooked to Du at c∗ in Bu+, for every
c ∈ dom(Du) and addingB|dom(Du) . It can be shown as before thatBu∗ is a materialization of O and
Du and can be used show thatB is a model ofDwithB ̸ |= q0 (a⃗) if we can show thatBu∗ is a model
of O. So we focus on showing that B∗ is a model of O. Let φ ∈ O. Then φ = ∀x (x = x → ψ (x))
for a formulaψ (x) of depth 2 in openGF2. Let a ∈ dom(Bu∗). We have to show that Bu∗ |= ψ (a).
To prove this let for any a ∈ dom(Du), N (a) = {a} ∪ {b | R (a,b) ∈ Bu+ or R (b,a) ∈ Bu+}. Then (e)
implies for all a ∈ dom(Du):
(e’) there is an isomorphism p from Bu+

|N (a) to B
u+
|N (a∗) mapping any b ∈ N (a) ∩ dom(Du) to

p (b) ∈ dom(Du) such that p (b) ∼u b.
We now distinguish two cases.

Case 1. a ∈ dom(Bc
c∗) \ {c} for some c ∈ dom(Du). Let a′ be the element corresponding to a in

Bc∗ . As ψ has depth 2 and by (e’), Bu∗ |= ψ (a) iff Bu+ |= ψ (a′) and the claim follows from the
assumption that Bu+ is a model of O.

Case 2. a ∈ dom(Du). As ψ has depth 2 and by (e’), Bu∗ |= ψ (a) iff Bu+ |= ψ (a∗) and the claim
follows from the assumption that Bu+ is a model of O.

Finally, assume that O is a ALCHIF ontology of depth 2. The proof that follows is similar to
the construction for uGF−2 (2), but one cannot hook to every bag(t) all entailed rAQs as this can
obviously lead to violations of the functionality axioms in O.
Let D be an instance with O,D ̸ |= q0 (a⃗) and let Du be its global GC2-unraveling. Let A be a

materialization of O and Du . We define for every c ∈ dom(Du) an instance Dc . Let Dq be the
instance corresponding to an rAQ q = q(x) ← ϕ with a single answer variable x and a single
additional variable y such that there is an injective homomorphism h from Dq to A mapping x
to c and such that R (h(x),h(y)) < A for any R functional in O and R (h(y),h(x)) < A for any R−

functional in O. Then let the instance Dc contain a copy of every such Dq obtained by identifying
the variable x with c . DefineDu+ by hooking toDu at every c the instanceDc and adding A |dom(Du) .
The following properties of Du+ follow directly from the definition.

(a) for all a,b ∈ dom(Du) with a ∼u b there is an isomorphism fromDa ontoDb mapping a to b;
(b) for every rAQ q(x⃗) and tuple a⃗ in dom(Du):

O,Du+ |= q(a⃗) ⇔ O,Du |= q(a⃗)

Take a materialization Bu+ of O and Du+ obtained from Du+ by hooking to every c ∈ dom(Du) a
cg-tree decomposable model Bc of Dc . Define a model B of D by
• hooking to D at every c↑ ∈ dom(D) a copy Bc↑

c∗ of the interpretation Bc∗ hooked to Du at c∗
in Bu+ and
• adding the atoms {R (c↑1 , c

↑

2) | R (c1, c2) ∈ B
u+
|dom(Du)

}.
One can now show in the same way as in the proof for GF−2 (2) that B is a model of O such that
B ̸ |= q0 (a⃗).

□

E PROOFS FOR SECTION 6
Lemma 6.7 (restated) For all Σ-instances D and a ∈ dom(D), O,D |= q(a) iff D |= Π(a).

Proof. First assume that O,D ̸ |= q(a). Then there is a model A of O and D such that A ̸ |= q(a).
LetB be the extension ofD obtained by adding, for all b ∈ dom(D), PtA (b) (b); moreover if A |= q(b),
then also add goal(b). It can be verified that B satisfies all rules in Π. In particular, realizability

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

1:64 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

of all relevant typed links is witnessed by A. Since clearly goal(a) < B, we obtain D ̸ |= Π(a), as
required.

Assume conversely thatD ̸ |= Π(a). Then there is an extension B ofD to the intensional relation
symbols of Π such that all rules in Π are satisfied and goal(a) < B. Assume w.l.o.g. that B is a
minimal such extension of D (w.r.t. set inclusion). Then clearly there is a unique fact Pt (b) in
B, for every b ∈ dom(D). We use tb to denote t . Note that there must be a model Ab of O and
tb in the sense that Ab |= O, b ∈ dom(Ab), and tAb (b) = tb . If there is no such model, then
the link tb , ∅, tb would not be realizable, in contrast to the third type of rule being satisfied in B.
Also note that for all distinct b1,b2 ∈ dom(D), there is a model Ab1,b2 of O and the typed link
tb1 ,R

D (b1,b2), tb2 in the sense that Ab1,b2 |= O, b1,b2 ∈ dom(Ab1,b2), t
Ab1,b2 (bi) = tbi for i ∈ {1, 2},

and RAb1,b2 (b1,b2) ⊇ RD (b1,b2). We may assume w.l.o.g. that Ab1,b2 = Ab2,b1 . All models Ab and
Ab1,b2 must satisfy the same sentences since, due to the rules in Π of the third kind, when Pt1 and
Pt2 are non-empty in B, then t1 and t2 must contain the same sentences. We use Γ to denote the set
of these sentences. Clearly, O ⊆ Γ.

We assemble an interpretation A as follows:
(1) Start with A being the result of hooking Ab to D for each b ∈ dom(D).
(2) For all distinct b1,b2 ∈ dom(D), extend A constructed with all facts of the form R (b1,b2) or

R (b2,b1) from Ab1,b2 .
By construction, A is a model of D. We next observe the following.

Claim 1.
(1) A |= φ () iff φ ∈ Γ() for all sentences φ () ∈ cl(O,q)
(2) A |= φ (b) iff φ (x) ∈ tb for all φ (x) ∈ cl(O,q) and b ∈ dom(D);
(3) A |= φ (b ′) iff Ab |= φ (b

′) for all φ (x) ∈ cl(O,q) and b ′ ∈ dom(Ab), b ∈ dom(D).
(4) A |= φ (b1,b2) iff Ab1,b2 |= φ (b1,b2) for all subformulas φ (x ,y) of O and distinct b1,b2 ∈

dom(D);
(5) A |= φ (b1,b2) iff Ab |= φ (b1,b2) for all subformulas φ (x ,y) of O and distinct b1,b2 ∈ dom(Ab),

b ∈ dom(D).

All five points can be proved by a mutual induction on the structure of the sentences φ () and
formulas φ (x). Details are rather straightforward and omitted.

It remains to remark that O ⊆ Γ implies A |= O by Point (1) and goal(a) < B together with the
rules in Π of the second kind implies that q(x) < ta and thus A ̸ |= q(a) by Point (4). □

F PROOFS FOR SECTION 7
Lemma 7.2 (restated) The ontology Ocell has the following properties for all instances D:
(1) for all d ∈ dom(D): Ocell,D |= (= 1P) (d) iff D is not consistent w.r.t. Ocell or D |= cell(d);

moreover, if D is consistent w.r.t. Ocell, then there exists a materialization B of D and Ocell such

that d ∈ (= 1P)B iff d ∈ dom(B) and D |= cell(d);
(2) If all binary relation symbols are functional in D, then D is consistent w.r.t. Ocell;

(3) CQ-evaluation w.r.t Ocell is Datalog
,
-rewritable.

Proof. We first derive a necessary and sufficient condition for consistency of instances D
w.r.t. Ocell. Lemma 7.2 then follows in a straightforward way. It is easy to see that if any of the
following conditions is not satisfied, then D is not consistent w.r.t. Ocell:
(c1) all X ,Y ,X−,Y− are functional in D;
(c2) D is consistent w.r.t. the sentences ∃W (= 1Ri) in Ocell;
(c3) if D |= cell(d), then d has at most one P-successor in D.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

Dichotomies in Ontology-MediatedQuerying with the Guarded Fragment 1:65

We thus assume in what follows that all three conditions are satisfied. Clearly, they can be encoded
in Datalog,. By (c2) we may assume that D is saturated for the sentences ∃W (= 1R) in the sense
that if (= 1RZW) ≡ ∃Z .(= 1RW) ∈ Ocell then for any Z (d,d ′) ∈ D the following holds: d has at
least two RZW -successors in D iff d ′ has at least two RW -successors in D. Now let e1 ≤ e2 iff there
are X (d,d1),Y (d1, e1),Y (d,d2),X (d2, e2) ∈ D. Let e1 ∼ e2 iff e1 ≤ e2 or e2 ≤ e1 and let ∼∗ be the
smallest equivalence relation containing ∼. For any equivalence class E w.r.t. ∼∗ either
• E is of the form e0 ≤ · · · ≤ en with ei , ej for all i , j, or
• E is a cycle e0 ≤ · · · ≤ en with ei = ej iff {i, j} = {0,n} for all i , j.

We say that sets E1,E2 ⊆ E partition E if E1 ∪ E2 = E and E1 ∩ E2 = ∅. If E is not a singleton {e}
with e ≤ e , then clearly there is a partition E1,E2 of E such that

(†) if e ≤ e ′ ≤ e ′′, then {e, e ′, e ′′} ⊈ Ei , for i = 1, 2.

Now set for any equivalence class E and {i, j} = {1, 2},

E=1j = {d ∈ E | D |= (≥ 2Ri) (d)}

Claim 1. Assume D satisfies Conditions (c1), (c2), and (c3). Then D is consistent w.r.t. Ocell iff the

following conditions hold for all equivalence classes E:

(cell+) if E = {e} with e ≤ e , then e < E=11 ∪ E=12 ;

(cell−) if |E | ≥ 2, then there exists a partition E1,E2 of E with Ei ⊇ E=1i satisfying (†).

Moreover, if (cell
+
) and (cell

−
) hold, then a materialization B satisfying the conditions of Lemma 7.2

(1) exists.

Proof. (⇒) LetD be consistent w.r.t. Ocell. First assume that Condition (cell+) does not hold for
some E = {e} with e ≤ e . Then D is not consistent w.r.t. Ocell by the axioms given under (2) and (4)
since it is not possible to satisfy (= 1Ri) in e if e ∈ E=1j (i , j). Now assume that (cell−) does not
hold. So there exists E with |E | ≥ 2 such that there exists no partition E1,E2 of E with Ei ⊇ E=1i
satisfying (†). Then the axioms under (2) and (4) cannot be satisfied without having at least one
node in E that is in both (= 1R1) and (= 1R2). But then, by the axioms under (5), all nodes in E are
in (= 1R1) and in (= 1R2) which implies that E=11 = E=12 = ∅. But this contradicts our assumption
that there is no partition E1,E2 of E with Ei ⊇ E=1i satisfying (†).

(⇐) Assume (cell+) and (cell−) hold for every equivalence class E. For E = {e} with e ≤ e we can thus
construct the relevant part of a model B ofD and Ocell such that e has exactly one Ri -successor for
i = 1, 2 and such that the d ∈ dom(D) for which there exist X (d,d1),Y (d1, e),Y (d,d2),X (d2, e) ∈ D
has exactly one P-successor. For any equivalence class E with |E | ≥ 2 we can construct the relevant
part of B such that each e ∈ Ei has exactly one Ri -successor and each e ∈ E \ Ei has at least
two Ri -successors. As E1 and E2 are mutually disjoint, the axioms under (5) are satisfied. As (†) is
satisfied, the axioms under (4) are satisfied. As E1 ∪ E2 contains E, the axiom (2) is satisfied. Thus,
we can satisfy (≥ 2P) in every d ∈ dom(D) such that D ̸ |= cell(d) without violating axiom (3). ⌟

The construction under (⇐) shows that we can construct a materialization B satisfying Point (1)
of Lemma 7.2. The proof of Point (2) of Lemma 7.2 is straightforward. For Point (3), observe that
Conditions (cell+) and (cell−) of Claim 1 can be encoded in a Datalog, program in a straightforward
way and thus there is a Datalog, program checking consistency of an instance D w.r.t. Ocell.
Datalog,-rewritability of CQ-evaluation w.r.t. Ocell now follows from the observation that the
equivalence (3) holds for any CQ q, instance D consistent w.r.t. Ocell, and any d⃗ in D. □

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

1:66 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

G PROOFS FOR SECTION 8
This section presents a detailed proof of Theorem 8.4. We use the terminology and notation from
the main body of the paper. In particular, see Section 8 for definitions and assumptions relevant to
non-deterministic Turing machines (TMs) and to the run fitting problem.

Given a TMM , we denote by L(M) the set of strings accepted byM , and by RF(M) the run fitting
problem forM . As observed in Section 8, RF(M) is in NP for every TMM . We will now prove the
following theorem by a careful adaptation of the proof of Ladner’s theorem given in [3].
Theorem 8.4 (restated) There is a TM whose whose run fitting problem is neither in PTime nor

NP-hard, unless PTime = NP.
The proof is a modification of the construction used in Impagliazzo’s version of the proof of

Ladner’s Theorem [52], as presented in [3, Theorem 3.3].
We start by fixing a polynomial-time TM MSAT for SAT. For a monotone polynomial-time

computable function H : N→ N to be specified later, letMH be a polynomial-time TM that works
as follows on a given input string v :
(1) Check if there exists an integer n ≥ 0 such that v is the unary representation of nH (n) (i.e.,

v = 1nH (n)). If such an n does not exist, then reject v .
(2) Guess an inputw of length n forMSAT.
(3) Generate the initial configuration γ ofMSAT on inputw .
(4) StartMSAT in configuration γ , and accept v iffMSAT acceptsw .

We refer to the first three steps as the initialization phase.
We now define the function H : N → N. Fix a polynomial time computable enumeration

M0,M1,M2, . . . of deterministic TMs such that all runs of Mi on inputs of length n terminate
after at most i · ni steps, and for each problem A in PTime there are infinitely many indices i such
that L(Mi) = A.4 Then, H (n) is defined as

H (n) := min {i < log logn | for all z of length ≤ logn,Mi accepts z iff z ∈ RF(MH)} ∪ {log logn}.

It is not hard to see that H is well-defined, and that there is a deterministic polynomial-time Turing
machine that, given a positive integer n in unary, outputs H (n). For details, we refer to [3].
This finishes the construction of MH . Lemma G.2 below shows that RF(MH) has the desired

properties, namely that RF(MH) is neither in PTime nor NP-complete, unless PTime = NP. It uses
the following auxiliary lemma.

Lemma G.1.
• If RF(MH) is in PTime, then H (n) = O (1).
• If RF(MH) is not in PTime, then limn→∞H (n) = ∞.

Proof. The proof is as in [3], but we here provide a proof for the sake of completeness. Assume
first that RF(MH) is in PTime. Then, there is an index i such that L(Mi) = RF(MH). Now, for all
n > 22i , we have i < log logn, which implies H (n) ≤ i by the definition of H . It follows that
H (n) ≤ max{H (m) | m ≤ 22i + 1}, and therefore H (n) = O (1).

Next assume that RF(MH) is not in PTime. For a contradiction, suppose that limn→∞H (n) , ∞.
Since H is monotone, this means that there are integers n0, i ≥ 0 such that H (n) = i for all integers
n ≥ n0. Let n ≥ n0. By the definition of H , we have that Mi agrees with RF(MH) on all strings of

4It is easy to construct a deterministic polynomial-time Turing machine that, given an integer i ≥ 0, outputs a deterministic
Turing machineMi such that the sequence (Mi)i≥0 has the desired properties. For instance, letM ′i be the i-th deterministic
Turing machine in lexicographic order under some string encoding of Turing machines, and add a clock to M ′i that stops
the computation of M ′i after at most i · ni steps (and rejects if M ′i did not accept yet).

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

Dichotomies in Ontology-MediatedQuerying with the Guarded Fragment 1:67

length at most logn. Since this holds for all n ≥ n0, we conclude that L(Mi) = RF(MH). But then,
RF(MH) is in PTime, which contradicts our initial assumption that RF(MH) is not in PTime. □

We now prove the main lemma, which concludes the proof of Theorem 8.4.

Lemma G.2. If PTime , NP, then RF(MH) is neither in PTime nor NP-complete.

Proof. ‘RF(MH) is not in PTime’: For a contradiction, suppose that RF(MH) is in PTime. By
Lemma G.1, there is a constant c ≥ 0 such that for all integers n ≥ 0 we have H (n) ≤ c . Suppose
that on inputs of length n, MSAT makes at most p (n) := nk + k steps. Then, the following is a
polynomial-time (many-one) reduction from SAT to RF(MH), which implies PTime = NP and leads
to the desired contradiction.

Given an input x of length n forMSAT:
(1) Compute h := H (n) andw := 1nh .
(2) Output the partial run γ̃0, . . . , γ̃i+p (n) ofMH such that:
• γ̃0, . . . , γ̃i corresponds to the initialization phase ofMH on inputw that generates the start
configuration ofMSAT on input x . In particular, γ̃0, . . . , γ̃i are complete configurations of
MH , and γ̃0 = q0w and γ̃i = q′0x , where q0 and q′0 are the start states of MH and MSAT,
respectively;
• γ̃i+1, . . . , γ̃i+p (n) are completely unspecified (i.e., they consist of wildcards only).

Note that the partial run γ̃0, . . . , γ̃i+p (n) can be computed by simulating the initialization phaseMH
on inputw , where in step 2 of the initialization phase we ‘guess’ the input string x given as input
to the reduction. Then, we pad the sequence of configurations corresponding to the initialization
phase by p (n) partial configurations, each consisting of exactly p (n) wildcard symbols.

‘RF(MH) is not NP-complete’: Suppose, to the contrary, that RF(MH) is NP-complete. Then there is a
polynomial-time (many-one) reduction f from SAT to RF(MH). Using f , we construct a polynomial-
time many-one reduction д from SAT to SAT such that for all sufficiently large strings x we have
|д(x) | < |x |. This implies that SAT can be solved in polynomial time, and contradicts PTime , NP.
Consider an input x for SAT. Since f is a many-one reduction from SAT to RF(MH), we have

f (x) = γ̃0#γ̃1# · · · #γ̃m (4)

for some partial run

γ̃ := (γ̃0, γ̃1, . . . , γ̃m)

ofMH . Moreover, x ∈ SAT iff there is an accepting run ofMH that matches γ̃ . By the construction
ofMH , an accepting run ofMH on an input y can only exist if there is an integer n ≥ 0 such that
y = 1nH (n) . Note also that the length of y has to be bounded by |γ̃0 |. Define

N := {n ∈ N | nH (n) ≤ |γ̃0 |}.

Then, as argued above, the following are equivalent:
(1) x ∈ SAT;
(2) γ̃0#γ̃1# · · · #γ̃m ∈ RF(MH);
(3) there is an n ∈ N such that there is an accepting run ofMH on input 1nH (n) that matches γ̃ .
In what follows, we show how to compute in polynomial time, for each n ∈ N , a propositional

formula ϕn such that:
• ϕn is satisfiable if and only if there is an accepting run ofMH on input 1nH (n) that matches γ̃ ;
• |ϕn | ≤

|x |
|N | − 2 for all n ∈ N (if x is large enough).

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

1:68 André Hernich, Carsten Lutz, Fabio Papacchini, and Frank Wolter

Then, the following function д is a polynomial-time many-one reduction from SAT to SAT:

д(x) :=
∨
n∈N

ϕn .

Assuming a suitable encoding of propositional formulas, the size of д(x) is bounded by |x | − 1 for
large enough x . Thus, д is the desired length-reducing polynomial-time self-reduction of SAT. It
remains to construct ϕn , for all n ∈ N .

Construction of ϕn . Fix n ∈ N . By the construction of MH , any accepting run of MH on
input 1nH (n) has to start with the initialization phase. The first step of the initialization phase
is deterministic, and checks whether the input has the form 1nH (n) . Thus, we can complete γ̃ in
polynomial time to a partial run ofMH where the first step of the initialization phase is completely
specified. If this is not possible due to constraints imposed by γ̃ , then we know that the desired
accepting run does not exist, and we can output a trivial unsatisfiable formula ϕn . Otherwise, let

˜̃γ = (˜̃γ0, ˜̃γ1, . . . , ˜̃γm)

be the resulting partial run ofMH . It remains to construct a formula ϕn that is satisfiable iff there is
an accepting run ofMH that matches ˜̃γ .

Let us take a closer look at ˜̃γ . Let i ≥ 0 be such that ˜̃γ0, . . . , ˜̃γi corresponds to the first step of the
initialization phase ofMH on input 1nH (n) . In particular, for each j ∈ {0, 1, . . . , i}, ˜̃γj is a completely
specified configuration. It is possible to specifyMH in such a way that the second and third step
of the initialization phase ofMH on input 1nH (n) take exactly n computation steps combined, and
that any configuration after the initialization phase uses space at most n. Thus, without loss of
generality we can assume:
(1) | ˜̃γj | ≤ n for all j ∈ {i + 1, . . . ,m};
(2) m − i − n is bounded by the running time ofMSAT on inputs of length n.
Let h be a polynomial-time computable function that, given ˜̃γi+1# · · · # ˜̃γm , outputs a propositional

formula that is satisfiable iff there is an accepting run ofMH that starts in the second step of the
initialization phase ofMH in a configuration matching ˜̃γi+1, and that matches ˜̃γi+1, . . . , ˜̃γm . Let

ϕn := h(˜̃γi+1# · · · # ˜̃γm).

This finishes the construction of ϕn .
It is immediate from the construction of ϕn that ϕn is satisfiable if and only if there is an accepting

run ofMH on input 1nH (n) that matches γ̃ . It remains to prove that the length of ϕn is bounded by
|x |/|N | − 2.

Bounding the size of ϕn . Let p be a polynomial such that for all strings z,MSAT makes at most
p (|z |) steps on input z, and both | f (z) | and |h(z) | are bounded by p (|z |). Since, as mentioned above,
m − i − n is bounded by the running time ofMSAT on inputs of length n, we have

m − i ≤ p (n) + n.

Since moreover | ˜̃γj | ≤ n for all j ∈ {i + 1, . . . ,m}, we have

|ϕn | ≤ |h(˜̃γi+1# · · · # ˜̃γm) | ≤ p (| ˜̃γi+1# · · · # ˜̃γm |) ≤ p ((m − i) · (n + 1)) ≤ p ((p (n) + n) · (n + 1)).

Hence,

|ϕn | ≤ q(n)

for some polynomial q depending only onMSAT, f , and h. It remains to show that for all n ∈ N we
have q(n) ≤ |x |/|N | − 2 if x is sufficiently large.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

Dichotomies in Ontology-MediatedQuerying with the Guarded Fragment 1:69

Claim. There is a polynomial r (ℓ) > 0 depending only on MH such that for sufficiently large x we

have
|x |
|N | ≥ r (|x |).

Proof. Recall that N consists of all integers n ≥ 0 such that nH (n) ≤ |γ̃0 |. Since γ̃0 is part of f (x),
whose overall length is bounded by p (|x |), we have nH (n) ≤ p (|x |).

Now, for all integers ℓ ≥ 0, define

N (ℓ) := {n ∈ N | nH (n) ≤ p (ℓ)}.

Then, N ⊆ N (|x |). We show that for all constants c ∈ (0, 1) there is an integer λc ≥ 0 such that for
all integers ℓ ≥ λc we have |N (ℓ) | ≤ ℓc . This implies the claim.5
Fix a constant c ∈ (0, 1) and L := {ℓ ∈ N | |N (ℓ) | > ℓc }. For each ℓ ∈ L, there is an nℓ ∈ N (ℓ)

with nℓ ≥ ℓc . Thus, by the definition of N (ℓ) and the monotonicity of H , for each ℓ ∈ L we have

ℓc ·H (ℓc) ≤ nH (nℓ)
ℓ

≤ p (ℓ). (5)

Now, since limℓ→∞H (ℓ) = ∞ (by Lemma G.1), we have limℓ→∞ cH (ℓc) = ∞. Hence, there is an
integer λc ≥ 0 such that for all ℓ ≥ λc we have ℓc ·H (ℓc) > p (ℓ). This implies that for all ℓ ≥ λc we
have |N (ℓ) | ≤ ℓc (otherwise, we would violate (5)). ⌟

Assume that q(n) = nk + k . Let r be a polynomial as guaranteed by the claim. In what follows,
we will assume that x is large enough so that:

(1) |x |
|N | ≥ r (|x |); this can be satisfied by the previous claim.

(2) (r (|x |) − 2 − k)H
(
(r (|x |)−2−k)

1
k

)
/k
> p (|x |); this is possible since limℓ→∞H (ℓ) = ∞ by LemmaG.1.

Suppose that there is an n ∈ N such that q(n) > |x |/|N | − 2. Then,

n >

(
|x |

|N |
− 2 − k

) 1
k

.

This implies

nH (n) ≥

(
|x |

|N |
− 2 − k

) H (n)
k

≥

(
|x |

|N |
− 2 − k

) H *.
,

(
|x |
|N | −2−k

) 1
k +/

-
k

≥ (r (|x |) − 2 − k)
H *
,
(r (|x |)−2−k)

1
k +

-
k

> p (|x |),

where the last two inequalities follow from the monotonicity of H . Consequently,

| ˜̃γi+1# · · · # ˜̃γm | ≤ | ˜̃γ0# · · · # ˜̃γm | − | ˜̃γ0# · · · # ˜̃γi | ≤ p (|x |) − nH (n) < p (|x |) − p (|x |),

which is the desired contradiction. □

5Set r (ℓ) := ℓ1−c for some c ∈ (0, 1) (e.g., r (ℓ) =
√
ℓ). Then, |x |

|N | ≥
|x |

|N (|x |) | ≥ r (|x |) if |x | ≥ λc .

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: April 2019.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Basics of Ontology-Mediated Querying
	2.2 The Guarded Fragment of FO
	2.3 Description Logics
	2.4 Guarded Bisimulations
	2.5 Guarded Tree Decompositions

	3 Materializability
	4 Unraveling Tolerance
	5 Strong Dichotomies
	6 Connection to CSP and MMSNP
	7 Undecidability
	8 Non-Dichotomy
	9 Decidability Results
	10 Conclusion
	Acknowledgments
	References
	A Proofs for Section 2
	B Proofs for Section 3
	C Proofs for Section 4
	D Proofs for Section 5
	E Proofs for Section 6
	F Proofs for Section 7
	G Proofs for Section 8

