
On the Decidability of Expressive Description Logics
with Transitive Closure and Regular Role Expressions

Jean Christoph Jung1 , Carsten Lutz1 , Thomas Zeume2
1University of Bremen, Germany

2Ruhr University Bochum, Germany
{jeanjung,clu}@uni-bremen.de, thomas.zeume@rub.de

Abstract
We consider fragments of the description logic SHOIF
extended with regular expressions on roles. Our main re-
sult is that satisfiability and finite satisfiability are decidable
in two fragments SHOIF1

reg and SHOIF2
reg, NEXPTIME-

complete for the former and in 2NEXPTIME for the more ex-
pressive latter fragment. Both fragments impose restrictions
on regular role expressions of the form α∗. SHOIF1

reg en-
compasses the extension of SHOIF with transitive closure
of roles (when functional roles have no subroles) and the
modal logic of linear orders and successor, with converse.
Consequently, these logics are also decidable and NEXP-
TIME-complete.

1 Introduction
There has been a long quest for description logics (DLs)
that are as expressive as possible while still being decidable,
culminating in the standardization of the OWL 2 DL on-
tology language by the W3C (OWL Working Group 2009).
In its essence, OWL 2 DL is identical to a very expres-
sive DL called SROIQ (Horrocks, Kutz, and Sattler 2006).
An important feature of SROIQ and related DLs such
as SHOIF and ALCOIF is that they support a certain
combination of expressive means, namely nominals, inverse
roles, and counting on roles. It is well-known that this com-
bination causes computational challenges and results in an
intricate model theory. For example, satisfiability is NEXP-
TIME-complete in ALCOIF while it becomes EXPTIME-
complete and conceptually much simpler if any of the men-
tioned expressive means is dropped. As another example,
consider the extension ofALCOIF with fixed points, a no-
tational variant of the µ-calculus extended with nominals,
converse, and functional relations. Satisfiability in this logic
is undecidable (Bonatti and Peron 2004) while it becomes
decidable when any of the three expressive means is dropped
(Sattler and Vardi 2001; Kupferman, Sattler, and Vardi 2002;
Bonatti et al. 2008).

A traditional feature of DLs not available in OWL 2 is reg-
ular expressions on roles (Baader 1991; Baader et al. 2017;
Calvanese, Eiter, and Ortiz 2009). Using these, we can for
example describe a person of royal descent as
Person u ∃(hasFather + hasMother)+.(King t Queen)

where ‘+’ denotes role union and ‘·+’ transitive closure of
a role. The extension ALCOIFreg of the aforementioned

ALCOIF with such expressions is a notational variant of
propositional dynamic logic (PDL) extended with nominals,
converse, and functional relations. It is a long standing open
problem whether satisfiability in this logic is decidable and
the same is true for the more expressive OWL 2 DL ex-
tended with regular expressions on roles. It is known, how-
ever, that modest extensions of this version of PDL are un-
decidable. One of them is the extended µ-calculus discussed
above. Another one is the extension with ω-regular expres-
sions on roles that speak about infinite paths rather than
about finite ones like ordinary regular expressions (Rudolph
2016). From a DL perspective, arguably the most important
and useful part of regular expressions on roles is transitive
closure. The decidability status of very expressive DLs with
transitive closure has so far been somewhat unclear. It has
been stated in (Le Duc, Lamolle, and Curé 2013) that satisfi-
ability is decidable in the extension of SHOIQ with transi-
tive closure, but there are problems in the construction and a
corrected version has not yet been published (Le Duc 2019).

We study fragments of the description logic SHOIF reg,
that is SHOIF extended with regular expressions on roles:
role composition, role union, transitive closure of roles, and
a PDL-like test operator. We generally assume that func-
tionality restrictions are declared globally in the TBox. Our
main contribution is to identify two non-trivial fragments in
which satisfiability is decidable: in SHOIF1

reg, every reg-
ular (sub)role expression of the form α∗ contains either no
functional role or only a single role name (and possibly its
inverse). In the more expressive SHOIF2

reg, every regu-
lar (sub)role expression α∗ must define a regular language
L(α∗) such that no w ∈ L(α∗) contains an infix of the form
RβS withR and S distinct functional roles (or their inverse)
and β a composition of tests. In addition, both fragments
disallow subroles of functional roles. We show that satisfia-
bility in SHOIF1

reg is decidable and NEXPTIME-complete
and thus not harder than in SHOIF without regular expres-
sions, and that satisfiability in SHOIF2

reg is decidable in
2NEXPTIME. We establish the same results for finite satis-
fiability which does not coincide with the unrestricted case.
Note that SHOIF1

reg contains the extension SHOIF+ of
SHOIF with transitive closure of roles and thus our results
imply that satisfiability and finite satisfiability in SHOIF+

are also decidable and NEXPTIME-complete (when func-
tional roles have no subroles).

To obtain our upper bounds, we first observe that role hi-
erarchies can be removed from SHOIF1

reg and SHOIF2
reg

by a polynomial time reduction. We then introduce a suitable
tree automata model, show that its non-emptiness problem
is decidable in NEXPTIME both on finite and infinite trees,
and then (essentially) encode our satisfiability problems as
a non-emptiness problem. The mentioned automata are two-
way alternating Büchi tree automata with existential Pres-
burger constraints on the Parikh image (2ABTA∃PP). They
are related to Parikh automata as originating from (Klaedtke
and Rueß 2003), but use the constraints in a more restric-
tive way—instead of maintaining the constraints throughout
a run, our automata correspond to the intersection of a tradi-
tional tree automaton with existential Presburger constraints
over multiplicities of alphabet symbols in the accepted tree.
Our decision procedure for non-emptiness relies on a trans-
lation of context-free grammars into existential Presburger
formulas by Verma, Seidl, and Schwentick (2005); getting
a NEXPTIME upper bound involves a subtle analysis in
the infinite case. The encodings of satisfiability into non-
emptiness are based on decompositions of the TBox into
parts that are related only loosely in terms of multiplicities
of types.

Another interesting perspective on our results emerges
from putting them into the perspective of GC2, the guarded
two-variable fragment of first-order logic with counting
quantifiers (Pratt-Hartmann 2007). GC2 easily becomes un-
decidable when relations can be declared to have special
semantic properties such as being a linear order (Kieron-
ski 2011) or an equivalence relation (Pratt-Hartmann 2015).
In contrast, our results imply that this is not the case in
ALCOIF , a very significant fragment of GC2. In fact,
we can express in ALCOIFreg that a role is an equiva-
lence relation or a linear order, using fresh helper symbols
in the latter case. Consequently, ALCOIF extended with
these semantic properties (even simultaneously) is still de-
cidable and NEXPTIME-complete. While decidability re-
sults for GC2 and its non-guarded extension C2 often rely
on restricting the number of relations with semantic prop-
erties (Pratt-Hartmann 2015; Schwentick and Zeume 2012;
Zeume and Harwath 2016), we impose no such restriction.
Another interesting semantic property is that a relation is a
forest. It has been shown in (Kotek et al. 2015) that finite sat-
isfiability in ALCOIQ extended with forests is decidable.
Our results capture the ALCOIF fragment of this DL, re-
prove decidability in NEXPTIME of finite satisfiability and
establish the same upper bound for unrestricted satisfiability.

Proof details are deferred to the appendix of the long ver-
sion at http://www.informatik.uni-bremen.de/tdki/research/.

2 Preliminaries
Let NC, NR, and NI be countably infinite sets of con-
cept, role, and individual names. ALCOIFreg-concepts C,
roles R, and regular roles α are defined by the grammar

C ::= A | {a} | ¬C | C u C | ∃α.C
R ::= r | r−

α ::= C? | R | α∗ | α · α | α+ α

where A ranges over NC, a over NI, and r over role names
from NR. A role of the form r− is called an inverse role.
We write ⊥ as an abbreviation for A u ¬A with A a fixed
concept name, > for ¬⊥, C t D for ¬(¬C u ¬D), ∀α.C
for ¬∃α.¬C, and r+ for r · r∗. We refer to a concept of the
form {a} as a nominal and to a role of the form C? as a test.
For brevity, we often drop the role composition operator ‘·’,
writing e.g. rr instead of r ·r. The restriction that the inverse
operator ·− is applied only to role names r is without loss of
generality as this operator can be ‘pushed down’ over all
other role operators and dropped when applied to tests.

A SHOIF reg-TBox T is a finite set of concept inclu-
sions (CIs) C v D with C,D ALCOIFreg-concepts, role
inclusions (RIs) R v S with R,S roles, and functional-
ity assertions func(R) with R a role. We use Fn(T) to de-
note the set of role names r such that T contains func(r) or
func(r−). SHOIF-TBoxes typically also admit transitivity
assertions trans(r), r a role name. This is syntactic sugar in
SHOIF reg since we can simulate a transitive role r by the
role r+. We do not admit regular roles in role inclusions as
this is known to cause undecidability (Le Duc and Lamolle
2010).

An ALCOIFreg-TBox is a SHOIF reg-TBox that does
not contain role inclusions. The letter F and subscript ·reg
in ALCOIFreg and in SHOIF reg indicate the presence
of functionality assertions and of regular roles. It should
thus be clear what we mean, for example, with ALCOIreg-
concepts and withALCOIF-TBoxes. We use SHOIF+ to
denote the extension of SHOIF with transitive closure of
roles, that is, the fragment of SHOIF reg in which all regu-
lar roles must be of the form R or R+ with R a role name
or its inverse. For a syntactic object O such as a TBox and
a concept, we write ||O|| to denote the size of O, that is, the
number of symbols needed to write O with each concept,
role, and individual name contributing one symbol.

The semantics is defined in terms of interpretations I =
(∆I , ·I) where ∆I is a non-empty set called the domain and
·I is the interpretation function that assigns to every concept
name A a subset AI ⊆ ∆I , to every role name r a subset
rI ⊆ ∆I ×∆I , and to every individual name a an element
aI ∈ ∆I . We can extend I to compound concepts and roles
in the standard way, see (Baader et al. 2017) for details. An
interpretation I satisfies a CI C v D if CI ⊆ DI , an RI
R v S if RI ⊆ SI , and a functionality assertion func(R)
if RI is a partial function. An interpretation is a model of a
TBox if it satisfies all inclusions and assertions in it. A TBox
is (finitely) satisfiable if it has a (finite) model.

With (finite) satisfiability in a DLL, we mean the problem
to decide whether a given L-TBox has a (finite) model. It is
well-known that ALCOIF does not have the finite model
property, that is, finite and unrestricted satisfiability do not
coincide. For example, the ALCOIF-TBox

> v ∃s.A, A v ∀r−.⊥, > v ∃r.>, func(r−)

is satisfiable, but not finitely satisfiable. In all DLs consid-
ered in this paper, other standard versions of satisfiability
such as satisfiability of a concept w.r.t. a TBox or of an ABox
w.r.t. a TBox (Baader et al. 2017) can be reduced in polyno-
mial time to TBox satisfiability as defined above.

SHOIF reg is a fragment of Lω1ω , the extension of first-
order logic with countably infinite conjunctions and disjunc-
tions. Since Lω1ω has the downward Löwenheim-Skolem
property (Keisler 1971), we obtain the following.
Proposition 1 Every satisfiable SHOIF reg-TBox is satisfi-
able in a model with countable domain.
It is thus w.l.o.g. to assume that domains of interpretations
are countable. We shall do so from now on.

3 Fragments and Basic Observations
We define the fragments SHOIF1

reg and SHOIF2
reg. A

regular role α can be viewed as a regular expression over
the alphabet that consists of all roles and tests in α. We use
L(α) to denote the regular language defined by α.

Definition 2 A SHOIF1
reg-TBox T is a SHOIF reg-TBox

such that if a regular role α∗ occurs in T , then
(∗1) if a role name r ∈ Fn(T) occurs in α outside of tests,

then no other role name occurs in α outside of tests.
A SHOIF2

reg-TBox T is a SHOIF reg-TBox such that if a
regular role α∗ occurs in T , then
(∗2) no w ∈ L(α∗) contains an infix of the form RβS with
R ∈ {r, r−}, S ∈ {s, s−}, r, s ∈ Fn(T), r 6= s, and β a
composition of tests.

Moreover, for both SHOIF1
reg- and SHOIF2

reg-TBoxes,
we require that functional roles have no subroles, that is,
if T contains S v r or S v r−, then r /∈ Fn(T).

We also define corresponding fragments ALCOIF1
reg and

ALCOIF2
reg of ALCOIFreg in the expected way. Clearly,

SHOIF1
reg is a fragment of SHOIF2

reg and SHOIF+

is a fragment of SHOIF1
reg subject to the condition that

functional roles have no subroles. It can be shown that
SHOIF2

reg is more expressive than SHOIF1
reg using the

fact that it makes available additional regular roles such as
(r + s)∗ with r ∈ Fn(T) and s /∈ Fn(T) and (r1s1r2s2)∗

with r1, r2 ∈ Fn(T) and s1, s2 /∈ Fn(T). The following is
easy to establish.
Lemma 3 Let i ∈ {1, 2}. It can be decided in PTIME
whether a given SHOIF reg-TBox (resp. ALCOIFreg-
TBox) is a SHOIF ireg-TBox (resp. ALCOIF ireg-TBox).

We give some examples that illustrate the expressive
power of the fragments. All of them fall withinALCOIF1

reg.

Example 4 (1) A v ∃(C? · r)∗.B expresses that every A
can reach a B along an r-path on which C is true at every
node, akin to the until operator of temporal logic. We can
have r ∈ Fn(T) despite the syntactic restrictions.

(2) A v ∃(r+ r−)∗.B expresses that whenever A is true,
then B is true somewhere in the same maximal connected
component of the interpretation defined by the role name r.
We can have r ∈ Fn(T).

(3) Finite satisfiability can be reduced to unrestricted
satisfiability in polynomial time in both SHOIF1

reg and
SHOIF2

reg. Indeed, a SHOIF reg-TBox T is finitely sat-
isfiable iff

T ′ = T ∪ {> v ∃(r−)∗.{a} u ∃r∗.{b}, func(r)}

is satisfiable, where the role name r and individual names
a, b are fresh. This is because in models of T ′, all domain
elements must be on an r-path from a to b, but because r is
functional there can be only one (finite) such path.

(4) A transitive relation can be simulated by the role r+

and an equivalence relation by the role (r + r−)∗. We can
enforce that the role name r is interpreted as a forest (of
potentially infinite trees) using the TBox

> v ∃(r−)∗.∀r−.⊥, func(r−).

(5) The TBox

> v ∃r∗.{a} t ∃(r−)∗.{a}, {a} v ¬∃r+.{a},
func(r), func(r−)

enforces that the regular role r+ is interpreted as a (strict)
linear order with successor relation r.

We next observe that role inclusions can be eliminated by a
polynomial time reduction, which relies on the property that
functional roles do not have subroles.
Proposition 5 Let i ∈ {1, 2}. (Finite) satisfiability in
SHOIF ireg can be reduced in polynomial time to (finite)
satisfiability in ALCOIF ireg.

In the remainder of the paper, it will be convenient to work
with TBoxes T in a certain normal form. A concept defini-
tion takes the form A ≡ C with A a concept name and C a
potentially compound concept. An interpretation I satisfies
a concept definition A ≡ C if AI = CI . Let i ∈ {1, 2}.
An ALCOIF ireg-TBox in normal form is a finite set T of
concept definitions and functionality assertions such that:

1. every concept definition in T is of one of the following
forms where A,B,B′ are concept names:

A ≡ {a} A ≡ ¬B A ≡ B tB′

A ≡ B uB′ A ≡ ∃α.B

2. if func(r−) occurs in T , then so does func(r), for every
role name r;

3. if a regular role α occurs in T , then α satisfies Condi-
tion (∗i) from Definition 2;

4. for every test C? that occurs in T , C is a concept name;
5. if T contains A ≡ ∃β + β′.B, then T contains A1 ≡
∃β.B, A2 ≡ ∃β′.B, and A ≡ A1 tA2 for some A1, A2;

6. if T contains A ≡ ∃β ·β′.B, then T contains A ≡ ∃β.A1

and A1 ≡ ∃β′.B for some A1;
7. if T contains A ≡ ∃β∗.B, then T contains A ≡ B t A1

and A1 ≡ ∃β.A for some A1;
8. if T containsA ≡ ∃B1?.B2, then alsoA ≡ B1uB2 ∈ T .
Note that Condition 3 above is stronger than what is required
by Definition 2 since (∗i) needs to be satisfied for every reg-
ular role α that occurs in T rather than only for those α that
occur in the form α∗. Conditions (5)-(8) are inspired by the
Fischer-Ladner closure in PDL (Fischer and Ladner 1979).
Every ALCOIF ireg-TBox in normal form can be viewed as
anALCOIF ireg-TBox according to the original definition by

reading concept definitionsA ≡ C as an abbreviation for the
CI> v (¬AtC)u (¬C tA). The following lemma shows
that we can work with TBoxes in normal form without loss
of generality.

Proposition 6 Every ALCOIF ireg-TBox T can be con-
verted in polynomial time into an ALCOIF ireg-TBox T ′ in
normal form such that T is (finitely) satisfiable iff T ′ is.

4 Tree Automata with Parikh Constraints
We define tree automata with existential Presburger con-
straints on the Parikh image as a central tool for our deci-
sion procedures. These are related to Parikh automata on fi-
nite words as used in (Klaedtke and Rueß 2003; Figueira
and Libkin 2015; Filiot, Guha, and Mazzocchi 2019). Our
automata may run on finite trees or on infinite trees.

A tree T is a prefix-closed (finite or infinite) set of words
over the infinite alphabet N \ {0}. A node w ∈ T is a suc-
cessor of v ∈ T and v is a predecessor of w if w = v · i
for some i ∈ N and where ‘·’ denotes concatenation. As a
convention, we write w · (−1) to denote the predecessor of
w. Moreover, w is a descendant of v ∈ T if w = v · u for
some u ∈ N∗. A tree is k-ary if every node has exactly k or
zero successors. Let Σ be a finite alphabet. A Σ-labeled tree
is a pair (T, τ) where T is a tree and τ : T → Σ. We may
write only τ for the Σ-labeled tree (T, τ) if T is understood.

Presburger arithmetic is the first-order (FO) theory of the
non-negative integers with addition (Haase 2018; Presburger
1929). We also consider a version that adds ℵ0. A term is a
constant 0, 1, or ℵ0, a variable, or of the form t1 + t2 with
t1, t2 terms. A Presburger formula is an FO formula over
atoms of the form t1 = t2 with t1, t2 terms. It is existential if
it takes the form ϕ(x) = ∃yψ(x,y) where ψ is quantifier-
free and x,y denote tuples of variables. We say that a ∈
(N ∪ {ℵ0})|x| satisfies ϕ if (N ∪ {ℵ0}, 0, 1,ℵ0,+) |= ϕ(a)
where |x| denotes the length of x. Further, ϕ is satisfiable
over N ∪ {ℵ0} if there exists a satisfying such a. For Pres-
burger sentences that do not use the constant ℵ0, satisfaction
by a ∈ N|x| and satisfiability over N are defined accordingly.

Definition 7 A two-way alternating Büchi tree automa-
ton with existential Presburger constraints on the Parikh
image (2ABTA∃PP) on k-ary trees is a tuple A =
(Q,Σ, q0, δ,Ω, ϕc) where Q is a finite set of states, Σ =
{σ1, . . . , σm} a finite input alphabet, q0 ∈ Q the initial state,
δ a transition function, Ω ⊆ Q a set of recurring states,
and ϕc an existential Presburger formula with free variables
xσ1 , . . . , xσm . The transition function δ maps each state q
and input letter σ ∈ Σ to a positive Boolean formula δ(q, σ)
over the truth constants true and false and transitions of the
form p,♦p,�p,♦−p,�−p with p ∈ Q.

A run of a 2ABTA∃PP A = (Q,Σ, q0, δ,Ω, ϕc) on a k-ary
Σ-labeled tree (T, τ) is a T × Q-labeled tree (Tr, r) such
that r(ε) = (ε, q0) and whenever x ∈ Tr, r(x) = (n, q),
and δ(q, τ(n)) = θ, then there is a subset S of the transitions
that occur in θ such that S satisfies θ and:

• for every p ∈ S, there is a successor x′ of x in Tr with
r(x′) = (n, p);

• for every ♦p ∈ S, there is an i ∈ {1, . . . , k} and a suc-
cessor x′ of x in Tr with r(x′) = (n · i, p);

• for every �p ∈ S and all successors n · i ∈ T of n, there
is a successor x′ of x in Tr with r(x′) = (n · i, p);

• for every ♦−p ∈ S, there is a successor x′ of x in Tr with
r(x′) = (n · (−1), p);

• if n · (−1) is defined, then for every �−p ∈ S, there is a
successor x′ of x in Tr with r(x′) = (n · (−1), p).

The run (Tr, r) is accepting if for every infinite path γ =
i0i1 · · · in Tr, there is a q ∈ Ω such that for infinitely many
j, r(ij) takes the form (n, q) for some n. We say that A ac-
cepts (T, τ) if

1. there exists an accepting run of A on (T, τ);
2. #σ1

(τ), . . . ,#σm(τ) satisfies ϕc over N ∪ {ℵ0}
where #σ(τ) is the cardinality of {n ∈ T | τ(n) = σ}.
We use L(A) to denote the set of all k-ary Σ-labeled trees
accepted by A and Lf (A) for the set of all finite such trees.

Let us briefly discuss the relation to Parikh automata as orig-
inating from (Klaedtke and Rueß 2003). Apart from running
on finite words rather than on infinite trees, the automata of
Klaedtke and Rueß use Presburger constraints in a more gen-
eral way, maintaining a vector over N along with the run and
checking at the end whether the obtained vector is a model
of a (not necessarily existential) Presburger formula. On the
other hand, our automata are more general in that they are
two-way and alternating. For the the two-way version of the
automata defined by Klaedtke and Rueß, emptiness is actu-
ally undecidable (Filiot, Guha, and Mazzocchi 2019).

We mainly need two properties of 2ABTA∃PP : that their
non-emptiness problem is decidable in NEXPTIME and that
they are closed under intersection with very modest blowup
of the automaton size. The latter is essentially a consequence
of the fact that the same is true for standard two-way alter-
nating Büchi tree automata.

Lemma 8 For 2ABTA∃PP Ai = (Qi,Σ, q0,i, δi,Ωi, ϕc,i),
i ∈ {1, 2}, one can construct in time polynomial in ||A1||+
||A2|| a 2ABTA A = (Q,Σ, q0, δ,Ω, ϕc) such that L(A) =
L(A1)∩L(A2), |Q| = |Q1|+|Q2|+1, and ϕc = ϕc,1∧ϕc,2.

The non-emptiness (resp. finite non-emptiness) problem for
2ABTA∃PP is to decide, given a 2ABTA∃PP A, whether
L(A) 6= ∅ (resp. Lf (A) 6= ∅).
Theorem 9 Non-emptiness of 2ABTA∃PP is decidable in
NEXPTIME. More precisely, there is a non-deterministic al-
gorithm that, given a 2ABTA∃PP A = (Q,Σ, q0, δ,Ω, ϕc),
decides whether L(A) 6= ∅ and runs in time single exponen-
tial in |Q| and polynomial in |Σ| + ||δ|| + ||ϕc||. The same
is true for finite non-emptiness.

The proof of Theorem 9 is presented in the subsequent sec-
tions. It also shows that decidability of non-emptiness ex-
tends to the parity acceptance condition and to the case
where constraints on Parikh images are unrestricted Pres-
burger formulas rather than existential ones. We leave such
generalizations and the precise complexity of non-emptiness
for 2ABTA∃PP as future work.

5 Non-Emptiness of 2ABTA∃PP : Finite Case
We first establish the finite version of Theorem 9. Although
it can be viewed as a special case of the infinite version, its
proof is much simpler than in the infinite case and showcases
the central idea in a clearer way.

A two-way alternating Büchi tree automata (2ABTA) is
a 2ABTA∃PP in which the set of Presburger constraints is
empty. A central observation is the following.

Lemma 10 Let A = (Q,Σ, q0, δ,Ω) be a 2ABTA with Σ =
{σ1, . . . , σn}. We can construct in time single exponential in
|Q| and polynomial in |Σ| + ||δ|| an existential Presburger
formula ϕA with free variables xσ1 , . . . , xσn such that for
all a ∈ Nn, the following are equivalent:

1. a satisfies ϕA over N;

2. Lf (A) contains a (T, τ) with a = #σ1
(τ), . . . ,#σn(τ).

Lemma 10 immediately yields the upper bound for fi-
nite non-emptiness in Theorem 9. Let a 2ABTA∃PP A =
(Q,Σ, q0, δ,Ω, ϕc) be given, Σ = {σ1, . . . , σn}, and let A′
be the 2ABTA obtained from A by dropping the last com-
ponent. We construct the formula ϕA′ with free variables
xσ1

, . . . , xσn from Lemma 10. Then the Presburger sentence

∃xσ1
· · · ∃xσn

(
ϕA′ ∧ ϕc

)
is satisfiable over N iff Lf (A) 6= ∅, which we can verify in
NP (Verma, Seidl, and Schwentick 2005; Haase 2018).

It thus remains to prove Lemma 10. A non-deterministic
top-down automaton on k-ary finite trees (NTA) is a tuple
A = (Q,Σ, q0,∆), where Q is a set of states, q0 ∈ Q is
the initial state, and ∆ ⊆ (Q × Σ) ∪ (Q × Σ × Qk) is the
transition relation. A transition (q, σ, q1, . . . , qk) means that
when B is in state q and reads symbol σ, then it can send
the states q1, . . . , qk to the k successors of the current node.
A transition (q, σ) means that B can stop at a leaf when in
state q. The formal definition of runs is in the appendix.

It is well-known that every 2ABTA A can be translated
into an NTA B that accepts the same language, incurring
at most a single exponential blow-up in the number of
states (Slutzki 1985; Vardi 1998). We can view B, in turn, as
a context free grammar (CFG) G by interpreting the states
as non-terminal symbols with the initial state being the start
symbol, the symbols from the input alphabet Σ as the ter-
minal symbols, and each transition (q, σ, q1, . . . , qm) as a
grammar rule q → σq1 · · · qm. Then for any tree (T, τ) ∈
L(B), there is a word w ∈ L(G) such that #σ(τ) = #σ(w)
for all σ ∈ Σ, and vice versa. Now, the following yields
Lemma 10.

Theorem 11 (Verma, Seidl, and Schwentick 2005, Theo-
rem 4) Given a CFG G with terminals Σ = {σ1, . . . , σn},
one can compute in linear time an existential Presburger
formula ϕG(xσ1

, . . . , xσn) such that for all a ∈ Nn, a sat-
isfies ϕG over N iff there is a word w ∈ L(G) such that
a = #σ1

(w), . . . ,#σn(w).1

1A small correction to the construction from (Verma, Seidl, and
Schwentick 2005) is in the long version of (Hague and Lin 2012).

6 Non-Emptiness of 2ABTA∃PP : Infinite
Case

To adapt the approach used in the previous section to infinite
non-emptiness, we would need a counterpart of Lemma 10
that quantifies over all a ∈ (N ∪ {ℵ0})n and uses L(A) in
place of Lf (A) in Point 2. However, it is not clear how to
construct the required Presburger formula ϕA then; clearly,
we can no longer proceed via CFGs as in the finite case. We
thus use a different approach, based on the following.
Lemma 12 Let A = (Q,Σ, q0, δ,Ω) be a 2ABTA and let
Σfin = {σ1, . . . , σn} ⊆ Σ. There is a finite setPA,Σfin of exis-
tential Presburger formulas with free variables xσ1

, . . . , xσn
such that for all a ∈ Nn, the following are equivalent:

1. a satisfies some ϕ ∈ PA,Σfin over N;
2. there is a (T, τ) ∈ L(A) such that

(a) a = #σ1(τ), . . . ,#σn(τ);
(b) #σ(τ) = ℵ0 for all σ ∈ Σ \ Σfin.

Moreover, there is a non-deterministic procedure that given
A and Σfin generates exactly the formulas in PA,Σfin as pos-
sible outputs, running in time single exponential in |Q| and
polynomial in ||δ||+ |Σ|.

Before proving Lemma 12, we first observe that it yields
the upper bound in Theorem 9. Let a 2ABTA∃PP A =
(Q,Σ, q0, δ,Ω, ϕc) be given, Σ = {σ1, . . . , σm}. We decide
whether L(A) = ∅ using the following non-deterministic
procedure. We first guess a set Σfin = {σi1 , . . . , σin} ⊆ Σ
and use the non-deterministic procedure from Lemma 12
to guess a sentence ψ ∈ PA′,Σfin with free variables
xσi1 , . . . , xσin where A′ is the 2ABTA obtained from A by
dropping the last component. We then construct the Pres-
burger sentence

∃xσ1 · · · ∃xσm
(
ψ ∧ ϕc ∧

∧
σ∈Σfin

xσ 6= ℵ0 ∧
∧

σ∈Σ\Σfin

xσ = ℵ0

)
.

and check in NP whether it is satisfiable over N ∪ {ℵ0}
NP (Kuncak, Piskac, and Suter 2010). We accept if this is
the case. It can be verified that this procedure indeed decides
whether L(A) = ∅ and runs in single exponential time.

We now prove Lemma 12. A non-deterministic Büchi
automaton on k-ary infinite trees (NBTA) is a tuple A =
(Q,Σ, q0,∆,Ω) where (Q,Σ, q0,∆) is an NTA and Ω ⊆ Q
is a set of recurring states. Runs are defined in the appendix.
Note that like 2ABTAs, we define NBTAs so that they accept
trees that might have leaves and might even be finite.

Let A = (Q,Σ, q0, δ,Ω) be a 2ABTA and let Σfin ⊆ Σ.
We can construct in time exponential in |Q| and polynomial
in ||δ|| + |Σ| an NBTA A′ = (Q′,Σ, q′0,∆

′,Ω′) such that
L(A′) = L(A) (Vardi 1998). We think of trees (T, τ) ac-
cepted by A′ as being partitioned into several components.
The root component is the finite initial piece of T that is
minimal with the conditions that (1) it contains all occur-
rences of symbols from Σfin and (2) all leaf nodes are la-
beled with symbols from Σinf := Σ \ Σfin. Each leaf node
of the root component is the root of another component that
takes the form of a potentially infinite tree. The root com-
ponent can be described by an NTA on finite trees and thus

translated into an existential Presburger formula as in the
proof of Lemma 10. This allows us to address Condition 2a
of Lemma 12. The non-root components can contain only
symbols from Σinf. To satisfy Condition 2b from Lemma 12,
each such symbol must occur infinitely often, but not nec-
essarily in each single component. Apart from this, con-
crete multiplicities are irrelevant for non-root components.
In other words, we only care about the existence of certain
configurations of non-root components. We describe such
configurations by sets of obligations, detailed in the follow-
ing.

We denote with A′q the variant of A′ that has q ∈ Q′

as initial state. An obligation for A′ and Σinf is a triple
(q, σ,Ψ) ∈ Q × Σinf × 2Σinf . We say that (q, σ,Ψ) is sat-
isfiable if there is a Σinf-labeled tree (T, τ) ∈ L(A′q) with
τ(ε) = σ and #σ′(τ) = ℵ0 for all σ′ ∈ Ψ. Intuitively, (T, τ)
is a non-root component of a tree accepted by A′; note that
symbols from Σinf \Ψ may occur with any multiplicity. We
observe the following.
Lemma 13 Given an NBTA A = (Q,Σ, q0, δ,Ω), a set
Σinf ⊆ Σ, and an obligation (q, σ,Ψ) for A and Σinf, it is
decidable in NP whether (q, σ,Ψ) is satisfiable.

The proof of Lemma 13 uses a non-emptiness check for
NBTAs. Inn fact, we show that there is a finite set B of
NBTAs such that (q, σ,Ψ) is satisfiable iffL(A)∩L(B) 6= ∅
for some B ∈ B and we can non-deterministically construct
an automaton from B in polynomial time.

An obligation pattern for A′ and Σinf is a set

S = {(q1, σ1,Ψ1), . . . , (qk, σk,Ψk)}

such that each (qi, σi,Ψi) is an obligation for A′ and Σinf
with Ψ1, . . . ,Ψk a partition of Σinf, some Ψi possibly being
the empty set. We say that S is satisfiable if every obligation
in it is.

The set of formulas PA,Σfin from Lemma 12 contains
one formula ϕS for each satisfiable obligation pattern S =
{(q1, σ1,Ψ1), . . . , (qk, σk,Ψk)} for A′ and Σinf. To de-
fine ϕS , we first make precise the NTA that describes root
components. For synchronization purposes, its definition de-
pends on S. Let Z = {(q, σ) | (q, σ,Ψ) ∈ S for some Ψ}.
Recall that A′ = (Q′,Σ, q′0,∆

′,Ω′) is an NBTA. Define the
NTA AS = (Q′,ΣS , q

′
0,∆S) where ΣS = Σ ∪ Z and

∆S = ∆′ ∪ {(q, (q, σ)) | (q, σ) ∈ Z}.

Note that the transitions in ∆S \∆′ are ‘leaf transitions’, as
described in the previous section. It is not difficult to show
that L(AS) consists of all finite ΣS-labeled trees (T, τ) for
which there is a Σ-labeled tree (T ′, τ ′) ∈ L(A) such that

1. T ⊆ T ′ and τ ′(n) ∈ Σinf for all n ∈ T ′ \ T ,
2. τ ′(n) = τ(n) for all inner nodes n ∈ T , and
3. there is an accepting run r of the NBTA A′ on τ ′ such that
τ(n) = (r(n), τ ′(n)) for every leaf n of T .

Let Σfin = {σ1, . . . , σn} and for uniformity, ΣS =
{σ1, . . . , σn+m}. We can view AS as a CFG G and ob-
tain a Presburger formula ϕG from Theorem 11 that has
free variables xσ1

, . . . , xσn+m
. We construct from ϕG the

desired sentence ϕS with free variables xσ1 , . . . , xσn . For
each q ∈ Q′ and σ ∈ Σinf, let kq,σ denote the number of
triples in S that are of the form (q, σ,Ψ). Then

ϕS = ∃xσn+1 · · · ∃xσn+m

(
ϕG ∧

∧
(q,σ)∈Z

x(q,σ) ≥ kq,σ
)
.

We prove in the appendix that the conditions from
Lemma 12 are satisfied. Here, we only sketch the non-
deterministic procedure that given A and Σfin, generates the
formulas PA,Σfin as possible outputs, running in time single
exponential in |Q| and polynomial in ||δ||+|Σ|; recall thatQ
and δ are components of the original 2ABTA A. The proce-
dure first constructs the NBTA A′ and then guesses an obli-
gation pattern S for A′ and Σinf. It next uses Lemma 13 to
verify that S is satisfiable and then generates and outputs the
formula ϕS as described above. This procedure runs within
the required time mainly since the number of obligations in
an obligation pattern is bounded by (|Q′| + 1) · |Σ| and is
thus polynomial in |Σ| and single exponential in |Q|.

7 The Weaker Fragment
The aim of the section is to establish the following result.

Theorem 14 In ALCOIF1
reg, satisfiability and finite satis-

fiability are NEXPTIME-complete.
The lower bounds stated in Theorem 14 already apply to
ALCOIF and are implicit in (Tobies 2000). It thus suffices
to establish the upper bounds. We first give a suitable char-
acterization based on a decomposition of the input TBox and
then develop a decision procedure that crucially uses a non-
emptiness test for 2ABTA∃PP .

Let T be an ALCOIF1
reg-TBox in normal form. We use

• Tbool to denote the set of concept definitions in T that are
not of the form A ≡ ∃α.B,

• Treg to denote the set of concept definitions A ≡ ∃α.B
in T such that no r ∈ Fn(T) occurs in α, and

• Tr to denote the set of concept definitionsA ≡ ∃α.B in T
such that r ∈ Fn(T) is the only role name that occurs
in α, plus T ∩ {func(r), func(r−)}.

Then Tbool ∪ Treg is an ALCOIreg-TBox and each TBox
Tbool ∪ Tr, r ∈ Fn(T), contains no role name other than r.
Due to Condition 2 of TBoxes in normal form, r ∈ Fn(T)
implies func(r) ∈ T (and, potentially, func(r−) ∈ T).

A type for T is a set t of concept names used in T such
that there is a model I of Tbool and a d ∈ ∆I such that
t = {A used in T | d ∈ AI}. We then also say that t is the
type realized by d in I, denoted tpI(d). Let tp(T) denote
the set of all types for T . Let I be a model of Tbool. Then
I realizes the set of types {tpI(d) | d ∈ ∆I} and for each
t ∈ tp(T), we denote with #t(I) the cardinality of the set
{d ∈ ∆I | tpI(d) = t}. We now give the characterization.

Proposition 15 An ALCOIF1
reg-TBox T in normal form is

(finitely) satisfiable iff there is a set Γ ⊆ tp(T) such that
1. there is a model Ireg of Tbool ∪ Treg that realizes Γ;
2. there are (finite) models Ir of Tbool ∪Tr, r ∈ Fn(T), such

that for all r, s ∈ Fn(T), the following conditions hold:

(a) Ir realizes Γ;
(b) #t(Ir) = #t(Is) for all t ∈ Γ.

Notice that the models Ir, r ∈ Fn(T), from Condition 2
of Proposition 15 are synchronized with each other only via
the multiplicities of types and with the model Ireg from Con-
dition 1 only via the realized types. The following lemma is
central for addressing Condition 2.

Proposition 16 Given an ALCOIF1
reg-TBox T in normal

form and a set Γ ⊆ tp(T), we can construct in time sin-
gle exponential in ||T || a 2ABTA∃PP AT whose number of
states is polynomial in ||T || and such that

1. L(AT) 6= ∅ iff Condition 2 of Proposition 15 is satisfied;
2. Lf (AT) 6= ∅ iff the finite version of Condition 2 of Propo-

sition 15 is satisfied.
Before we prove Proposition 16, we show how it can be

used to establish the upper bounds in Theorem 14. It suffices
to guess a set Γ ⊆ tp(T) and verify Conditions 1 and 2 from
Proposition 15. Condition 1 is equivalent to satisfiability of
the ALCOIreg-TBox

T̂ = Tbool ∪Treg ∪{> v t
t∈Γ
u t}∪ {> v ∃r̂.u t | t ∈ Γ},

where r̂ is a fresh role name andu t denotes the conjunction
that contains all A ∈ t and ¬A for all concept names A /∈ t
that occur in T . Satisfiability in ALCOIreg is EXPTIME-
complete (Bonatti et al. 2008), but we have to be careful
as T̂ is of size (single) exponential in ||T ||. Fortunately, a
slight modification of the algorithm in (Bonatti et al. 2008)
achieves that the runtime is single exponential only in the
number of concept names and concepts of the form ∃r.C in
the input TBox, and the number of such concepts in T̂ is
polynomial in ||T ||. For Condition 2, it suffices to invoke
Proposition 16 and Theorem 9.

The rest of the section is devoted to the proof of Proposi-
tion 16. Thus let T be anALCOIF1

reg-TBox in normal form
and let Γ ⊆ tp(T). Take any (finite or infinite) model Ir of
Tbool∪Tr, r ∈ Fn(T). Then (∆Ir , rIr) is the graph of a par-
tial function. A crucial observation is that such a graph takes
a very special form. In fact, it has at most one directed sim-
ple cycle in every connected component and no undirected
cycle that is not a directed cycle. It is thus very ‘close’ to
a forest and can in fact be turned into a forest by remov-
ing at most a single edge from every maximal connected
component. Here, ‘forest’ means that the undirected version
of (∆Ir , rIr) contains no cycle. An example of a compo-
nent in a finite such graph can be found in Figure 1. If both
func(r) ∈ T and func(r−) ∈ T , the form of (∆Ir , rIr) is
even more restricted and each component is a (potentially
two-side infinite) directed path or a directed cycle. Recall
that we have excluded the remaining case that func(r−) ∈ T
and func(r) /∈ T . There is no a priori bound on the degree
of the graphs (∆Ir , rIr).

We aim at building a 2ABTA∃PP that simultaneously ver-
ifies the existence of all models Ir from Condition 2 of
Proposition 15 using a single non-emptiness check. We thus
need a way to encode a collection of models Ir, r ∈ Fn(T),
as a tree that can be the input to a 2ABTA∃PP . Since there

Figure 1: Example component of a graph (∆I , rI),
func(r) ∈ T . Removing the dashed edge turns it into a tree.

is no bound on the outdegree of these models, we use bi-
nary trees and a suitable encoding. Let R denote the set
{r, r− | r ∈ Fn(T)} and L = 2{src,tgt}. To label the trees,
we use the alphabet

Σ = {◦} ∪ (R× Γ× L).

The symbol ‘◦’ is a label for dummy nodes that we need
for the mentioned encoding into binary trees: we simply in-
troduce as many intermediate ◦-labeled nodes as needed to
achieve the required outdegree at each node. For each n ∈ T
with τ(n) 6= ◦, let n↑ denote the unique n′ ∈ T (if ex-
isting) such that n is a descendant of n′, τ(n′) 6= ◦, and
τ(n′′) = ◦ for all n′′ between n′ and n. If τ(n) = (R, t, L)
with R ∈ {r, r−}, then n describes a domain element in the
interpretation Ir that realizes type t. When n↑ is defined,
then additionally (n↑, n) ∈ RIr . The src and tgt markers
are used to represent extra edges that close the single cycles
in maximal connected components of graphs (∆Ir , rIr) as
discussed above. A semi-root is a node n ∈ T such that
τ(n) 6= ◦ and n↑ is undefined. A Σ-labeled tree (T, τ) is
well-formed if it satisfies the following conditions:

1. for each r ∈ Fn(T), there is at least one node n ∈ T such
that τ(n) = (R, t, L) with R ∈ {r, r−};

2. if τ(n) = (R, t, L), then there is no descendant n′ of n
with τ(n′) = (R′, t′, L′) such that the role names in R
and R′ are different;

3. for each nominal {a} in T and r ∈ fn(T), there is a
unique na,r ∈ T such that τ(na,r) = (R, t, L) with
R ∈ {r, r−} and A ∈ t for some A ≡ {a} ∈ T ;

4. for every r ∈ Fn(T) and semi-root n ∈ T , either there is a
unique descendant n1 of n with τ(n1) = (R, t1, L1) and
src ∈ L1 and a unique descendant n2 of n with τ(n2) =
(R2, t2, L2) and tgt ∈ L2, or there is no descendant of
either kind.

Condition 1 ensures that the interpretations Ir have non-
empty domains. Condition 2 separates the representations of
the interpretations Ir, r ∈ Fn(T): each maximal connected
component of an Ir is represented in a subtree rooted at a
different semi-root. Condition 4 ensures that there is at most
one extra edge per maximal connected component of Ir, for
each r ∈ Fn(T).

Every well-formed Σ-labeled tree (T, τ) gives rise to a
collection of interpretations Iτr , r ∈ Fn(T), as follows:

∆I
τ
r = {n ∈ t | τ(t) = (R, t, L), R ∈ {r, r−}}

aI
τ
r = na,r

AI
τ
r = {n | τ(n) = (R, t, L), R ∈ {r, r−}, and A ∈ t}

rI
τ
r = {(n↑, n) | τ(n) = (r, t, L)} ∪
{(n, n↑) | τ(n) = (r−, t, L)} ∪

{(n1, n2) | τ(ni) = (Ri, ti, Li), i ∈ {1, 2},
R1, R2 ∈ {r, r−}, src ∈ L1, tgt ∈ L2,

n1, n2 descendant of same semi-root n}
sI

τ
r = ∅ if s 6= r,

for all a ∈ NI, A ∈ NC, and s ∈ NR. Note that it is not
(yet) guaranteed that Iτr satisfies the CIs and functionality
restrictions in T , except the CIs in Tbool . The automaton will
verify that this is indeed the case.

Conversely, let Ir be a model of Tbool ∪ Tr, for each
r ∈ Fn(T), such that Conditions 2a and 2b of Proposition 15
are satisfied. Then there is a binary well-formed Σ-labeled
tree (T, τ) with Iτr = Ir for all r ∈ Fn(T). We construct
such a (T, τ) that is not necessarily binary, but can easily be
made binary by introducing intermediate ◦-labeled nodes.
Recall that the root of any tree T is ε. We put τ(ε) = ◦.
As already mentioned, each graph (∆Ir , rIr), r ∈ Fn(T),
has at most one directed simple cycle in every connected
component and no undirected cycle that is not a directed
cycle. Let m be the sum of the numbers of maximal con-
nected components in all graphs (∆Ir , rIr), r ∈ Fn(T).
Assume that all these components are linearly ordered. For
1 ≤ ` ≤ m, we represent the `-th such component (∆J , rJ)
using the subtree of (T, τ) rooted at the successor ` of the
root of T . If (∆J , rJ) has a simple directed cycle, then
choose an edge (d0, e0) ∈ rJ from this cycle and remove
it from (∆J , rJ). Afterwards, (∆J , rJ) has no more cy-
cles and we can thus find a tree T` ⊆ N∗ and a bijection
π between T` and ∆J such that for all n, n′ ∈ T`, n′ is
a successor of n iff (π(n), π(n′)) ∈ rJ ∪ (r−)J . We in-
clude in T all nodes `n, n ∈ T`, and put τ(`ni) = (R, t, L)
where R = r if (π(n), π(ni)) ∈ rJ and R = r− otherwise,
t = tpJ (π(ni)), and L contains src iff π(ni) = d0 and tgt
iff π(ni) = e0. We define τ(`) in the same way using ε in
place of ni and setting R = r (R = r− would also work).

The following establishes Proposition 16.
Lemma 17 One can construct in time single exponential in
||T || a 2ABTA∃PP AT whose number of states is polynomial
in ||T || and such thatL(AT) consists of exactly those binary
well-formed Σ-labeled trees (T, τ) such that for Ir = Iτr ,
r ∈ Fn(T), Condition 2 of Propositon 15 is satisfied.
Proof. (sketch) The 2ABTA∃PP AT is the intersection of
several 2ABTA∃PP , namely A1, A2, A3, and Ar for each
r ∈ Fn(T). While A1 checks that (T, τ) is well-formed,
A2 verifies that the Iτr satisfy Conditions 2a and 2b from
Proposition 15 and A3 makes sure thatRI

τ
r is a partial func-

tion whenever func(R) ∈ T , R ∈ {r, r−}. A1 and A2 are
straightforward to construct, in A2 we use Presburger con-
straints to ensure Conditions 2a and 2b from Proposition 15.
A3 is implemented by making sure that certain forbidden
patterns do not occur in (T, τ) such as:
• a node n ∈ T such that τ(n) = (r, tn, Ln), τ(n↑) =

(r−, tn↑ , Ln↑), and n↑↑ defined;
• a node n ∈ T such that τ(n) = (r, t, L), src ∈ L, and n↑

defined;
• nodes n1, n2 such that τ(ni) = (r−, ti, Li) for i ∈ {1, 2},
func(r−) ∈ T , and n↑1 = n↑2.

Working out a complete list of patterns is straightforward.
The purpose of each automaton Ar is to ensure that Iτr

satisfies the CIs from Tr. It sends a copy of itself to ev-
ery node n of the input tree (T, τ) and verifies that when
τ(n) = (R, t, L) with R ∈ {r, r−} and A ≡ α.B ∈ Tr,
then A ∈ t iff n ∈ (∃α.B)I

τ
r . The automaton thus needs to

verify the (non-)existence of an α-path that starts at n and
ends in a node whose type includes B. This is implemented
by representing α as a finite automaton B on finite words,
tracing runs of B through the Iτr part of (T, τ), and making
use of the Büchi acceptance condition. o

This finishes the proof of the upper bound in Theorem 14.
It is a noteworthy consequence of our proof and bounds on
the sizes of solutions of existential Presburger formulas (Pa-
padimitriou 1981) that every finitely satisfiable SHOIF1

reg-
TBox T has a model of size at most double exponential in
||T ||. This bound is tight since there are ALCOIF-TBoxes
that enforce models of double exponential size.

8 The Stronger Fragment
The aim of the section is to establish the following result.

Theorem 18 In ALCOIF2
reg, satisfiability and finite satis-

fiability are decidable in 2NEXPTIME.
A NEXPTIME lower bound is obtained from Theorem 14,
but the precise complexity remains open. In the upper bound
proof, it is no longer possible to separate the input TBox T
into components Tbool, Treg, Tr, r ∈ Fn(T), since regular
expressions that contain a role name r ∈ Fn(T) might now
contain also other role names. It is thus not clear how to
give a characterization in the style of Proposition 15 and
we resort to directly encoding (finite) satisfiability as a non-
emptiness check of a suitably constructed 2ABTA∃PP .

Proposition 19 Given an ALCOIF2
reg-TBox T in normal

form, we can construct in time single exponential in ||T || a
2ABTA∃PP AT such that

1. L(AT) 6= ∅ iff T is satisfiable;
2. Lf (AT) 6= ∅ iff T is finitely satisfiable.

To establish Proposition 19, let T be an ALCOIF2
reg-

TBox in normal form whose satisfiability is to be decided.
We use Σ-labeled trees for the alphabet Σ = {◦} ∪ (R ×
tp(T)×L),R and L defined as in the previous section and
where types now have to satisfy an additional progress con-
dition spelled out in detail in the appendix. We also use the
same notion of well-formedness as in the previous section,
but extended with the following condition, similar to Condi-
tion 2b of Proposition 15:

5. for all t ∈ tp(T) and r1, r2 ∈ Fn(T),∑
L∈L,R∈{r1,r−1 }

#(R,t,L)(τ) =
∑

L∈L,R∈{r2,r−2 }

#(R,t,L)(τ).

In the previous section, a Σ-labeled tree (T, τ) encodes a
collection of interpretations Iτr , r ∈ Fn(T). Here, we want
(T, τ) to encode a single interpretation Iτ that is a model
of T . Essentially, what were distinct interpretations Iτr pre-
viously are now ‘slices’ of Iτ . In particular, there is no

one-to-one correspondence between the nodes in (T, τ) and
the domain elements in Iτ as every domain element of Iτ
is represented by multiple nodes in (T, τ), one for each
r ∈ Fn(T) (each ‘slice’). We next make this precise.

A well-formed Σ-labeled tree (T, τ) gives rise to an inter-
pretation Iτ as follows. For each r ∈ Fn(T), let T |r denote
the set of nodes n ∈ T such that τ(n) = (R, t, L) with
R ∈ {r, r−}. Choose an r0 ∈ Fn(T) (which we can w.l.o.g.
assume to exist). By Condition 5 above, we can choose a bi-
jection πr from T |r0 to T |r for every r ∈ Fn(T) such that
for all n ∈ T |r0 and r ∈ Fn(T), τ(n) = (R, t, L) implies
that τ(πr(n)) is of the form (R′, t, L′). Now define

∆Iτ = T |r0
aIτ = na,r0
AIτ = {n | τ(n) = (R, t, L) and A ∈ t}
rIτ = {(n↑, n) | τ(πr(n)) = (r, t, L)} ∪

{(n, n↑) | τ(πr(n)) = (r−, t, L)} ∪
{(n1, n2) | τ(πr(ni)) = (Ri, ti, Li), i ∈ {1, 2},

R1, R2 ∈ {r, r−}, src ∈ L1, tgt ∈ L2,

n1, n2 descendant of same semi-root n}

for all a ∈ NI, A ∈ NC, and r ∈ Fn(T). We still have to
define sIτ for all s ∈ NR\Fn(T). A crucial idea, also used in
the proof of Proposition 15, is to interpret these role names
in a maximal way. More precisely, we define sIτ to contain
all pairs (n1, n2), τ(ni) = (Ri, ti, Li) for i ∈ {1, 2}, such
that the following conditions are satisfied:

1. for all CIs A ≡ ∃s.B ∈ T , B ∈ t2 implies A ∈ t1;

2. for all CIs A ≡ ∃s−.B ∈ T , B ∈ t1 implies A ∈ t2.

Conversely, we can encode every model I of T as a well-
formed binary Σ-labeled tree (T, τ) with Iτ = I. This is
done as in the previous section, using I in place of each in-
terpretation Ir, r ∈ Fn(T)—the extension r′I of all role
names r′ 6= r is simply ignored when using I as Ir. Role
names s ∈ NR \ Fn(T) are not represented explicitly in
(T, τ), but assumed to be interpreted in a maximal way as
detailed above. The following yields Proposition 19.

Lemma 20 One can construct in time single exponential
in ||T || a 2ABTA∃PP AT such that L(AT) consists of ex-
actly those binary well-formed Σ-labeled trees (T, τ) with
Iτ |= T .

Proof. (sketch) We use as AT the intersection of
2ABTA∃PP A1, A2, and A. A1 checks that Iτ is well-
formed, including the new Condition 5 for which it uses the
Presburger constraints. A2 verifies thatRIτ is a partial func-
tion whenever func(R) ∈ T . The construction is similar to
those of the automata A1 and A3 in the proof of Lemma 17.
The automata Ar, r ∈ Fn(T), from that proof can no longer
be kept separate from each other because we now need to
verify the satisfaction of eventualities A ≡ ∃α.B where α
may contain more then one role r with r ∈ Fn(T). We thus
replace them by the single automaton A.

The construction of A is similar to that of the automata Ar
in the proof of Lemma 17, with some crucial differences.

When verifying the satisfaction of an eventualityA ≡ ∃α.B,
we now might have to traverse multiple roles, functional
and non-functional. A central idea is to make the automaton
‘jump’ whenever traversing a role R ∈ {s, s−} with s /∈
Fn(T). That is, the automaton will non-deterministically
move to a (potentially far away) node in the tree whose
type t2 matches with the type t1 of the current node ac-
cording to the traversed R in the sense of Conditions 1
and 2 above. Interpreting role names s /∈ Fn(T) in a max-
imal way as explained above ensures that the ‘jump’ cor-
responds to an actual edge in Iτ . This approach works
only because of Condition (∗2) from the definition of the
fragment ALCOIF2

reg which makes sure that when follow-
ing an eventuality A ≡ ∃α.B, we never have to consec-
utively traverse R1 ∈ {r1, r

−
1 } and R2 ∈ {r2, r

−
2 } with

r1, r2 ∈ Fn(T) distinct without traversing an S ∈ {s, s−}
with s /∈ Fn(T) in between. The sandwiched S allows us to
jump and thus to move from the slice of the Σ-labeled tree
that represents Ir1 to the slice that represents Ir2 , which
may be far away. But jumping requires us to memorize
types, which leads to exponentially many states.

There is an additional small technical complication re-
lated to the ‘slice’ representation of Iτ that manifests at the
very beginning of verifying eventualities A ≡ ∃α.B. We
address it using the additional progress condition on types
mentioned at the beginning of the section. o

This finishes the proof of Theorem 18. It follows from our
proof that every finitely satisfiable SHOIF2

reg TBox T has
a model of size at most triple exponential in ||T ||.

9 Conclusions
An important question is whether (finite) satisfiability in un-
restricted SHOIF reg and ALCOIFreg is decidable. How-
ever, it appears to be difficult to adapt the presented approach
to even modest extensions ofALCOIF1

reg andALCOIF2
reg.

For example, we do not know how to accommodate local
(unqualified) functionality restrictions, that is, concept ex-
pressions of the form (6 1 r). For qualified functional-
ity restrictions (6 1 r C), it can be observed that this is
indeed difficult. Let ALCOIF1

reg,qual denote the extension
of ALCOIF1

reg with restrictions of the latter kind. It turns
out that proving decidability ofALCOIF1

reg,qual is no easier
than proving decidability of unrestricted ALCOIFreg.
Theorem 21 (Finite) satisfiability in ALCOIFreg can be
reduced in polynomial time to (finite) satisfiability in
ALCOIF1

reg,qual.
It is also interesting to note that adding guarded Boolean

operators on roles, as typically indicated by the letter b in DL
names, results in undecidability even when restricted to role
names and their inverses. In fact, this extension makes it pos-
sible to adapt the undecidability proof for the two-variable
guarded fragment of FO with three linear orders that can
only be used in guard atoms given in (Kieronski 2011).

Acknowledgements
Jung and Lutz were supported by ERC consolidator grant
647289 CODA.

References
Baader, F.; Horrocks, I.; Lutz, C.; and Sattler, U. 2017. An
Introduction to Description Logic. Cambridge University
Press.
Baader, F. 1991. Augmenting concept languages by transi-
tive closure of roles: An alternative to terminological cycles.
In Proceedings of IJCAI, 446–451. Morgan Kaufmann.
Bonatti, P. A., and Peron, A. 2004. On the undecidability
of logics with converse, nominals, recursion and counting.
Artif. Intell. 158(1):75–96.
Bonatti, P. A.; Lutz, C.; Murano, A.; and Vardi, M. Y. 2008.
The complexity of enriched µ-calculi. Logical Methods in
Computer Science 4(3).
Calvanese, D.; Eiter, T.; and Ortiz, M. 2009. Regular path
queries in expressive description logics with nominals. In
Proceedings of IJCAI, 714–720.
Figueira, D., and Libkin, L. 2015. Path logics for querying
graphs: Combining expressiveness and efficiency. In Pro-
ceedings of LICS, 329–340. IEEE Computer Society.
Filiot, E.; Guha, S.; and Mazzocchi, N. 2019. Two-way
parikh automata. In Proceedings of FSTTCS, 40:1–40:14.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik.
Fischer, M. J., and Ladner, R. E. 1979. Propositional
dynamic logic of regular programs. J. Comput. Syst. Sci.
18(2):194–211.
Fürer, M. 1980. The complexity of the inequivalence prob-
lem for regular expressions with intersection. In Proceed-
ings of ICALP, 234–245.
Haase, C. 2018. A survival guide to presburger arithmetic.
SIGLOG News 5(3):67–82.
Hague, M., and Lin, A. W. 2012. Synchronisation- and
reversal-bounded analysis of multithreaded programs with
counters. In Proceedings of CAV, volume 7358 of LNCS,
260–276. Springer.
Horrocks, I.; Kutz, O.; and Sattler, U. 2006. The even more
irresistible SROIQ. In Proceedings of KR, 57–67.
Keisler, H. J. 1971. Model Theory for Infinitary Logic: Logic
with Countable Conjunctions and Finite Quantifiers. North
Holland Publishing Company.
Kieronski, E. 2011. Decidability issues for two-variable
logics with several linear orders. In Proceedings of CSL,
337–351.
Klaedtke, F., and Rueß, H. 2003. Monadic second-order
logics with cardinalities. In Proceedings of ICALP, volume
2719 of LNCS, 681–696. Springer.
Kotek, T.; Simkus, M.; Veith, H.; and Zuleger, F. 2015. Ex-
tending ALCQIO with trees. In Proceedings of LICS, 511–
522.
Kuncak, V.; Piskac, R.; and Suter, P. 2010. Ordered sets
in the calculus of data structures. In Proceedings of CSL,
volume 6247 of LNCS, 34–48. Springer.
Kupferman, O.; Sattler, U.; and Vardi, M. Y. 2002. The
complexity of the graded µ-calculus. In Voronkov, A., ed.,
Proceedings of CADE, 423–437. Springer.

Le Duc, C., and Lamolle, M. 2010. Decidability of descrip-
tion logics with transitive closure of roles in concept and role
inclusion axioms. In Proceedings of DL. CEUR-WS.org.
Le Duc, C.; Lamolle, M.; and Curé, O. 2013. A decision
procedure for SHOIQ with transitive closure of roles. In
Proceedings of ISWC, 264–279. Springer.
Le Duc, C. 2019. Personal Communication.
OWL Working Group, W. 2009. OWL 2 Web Ontology Lan-
guage: Document Overview. W3C Recommendation. Avail-
able at http://www.w3.org/TR/owl2-overview/.
Papadimitriou, C. H. 1981. On the complexity of integer
programming. J. ACM 28(4):765–768.
Pratt-Hartmann, I. 2007. Complexity of the guarded two-
variable fragment with counting quantifiers. J. Log. Comput.
17(1):133–155.
Pratt-Hartmann, I. 2015. The two-variable fragment with
counting and equivalence. Mathematical Logic Quarterly
61(6):474–515.
Presburger, M. 1929. Über die Vollständigkeit eines gewis-
sen Systems der Arithmetik ganzer Zahlen, in welchem die
Addition als einzige Operation hervortritt. 92—-101.
Rudolph, S. 2016. Undecidability results for database-
inspired reasoning problems in very expressive description
logics. In Proceedings of KR, 247–257. AAAI Press.
Sattler, U., and Vardi, M. Y. 2001. The hybrid µ-calculus.
In Proceedings of IJCAR, 76–91. Springer.
Schwentick, T., and Zeume, T. 2012. Two-variable logic
with two order relations. Logical Methods in Computer Sci-
ence 8(1).
Slutzki, G. 1985. Alternating tree automata. Theor. Comput.
Sci. 41:305–318.
Tobies, S. 2000. The complexity of reasoning with car-
dinality restrictions and nominals in expressive description
logics. J. Artif. Intell. Res. 12:199–217.
Vardi, M. Y. 1998. Reasoning about the past with two-way
automata. In Proceedings of ICALP, 628–641.
Verma, K. N.; Seidl, H.; and Schwentick, T. 2005. On the
complexity of equational horn clauses. In Proceedings of
CADE, 337–352. Springer.
Zeume, T., and Harwath, F. 2016. Order-invariance of two-
variable logic is decidable. In Proceedings of LICS, 807–
816.

Appendix
Regular Roles via Finite Automata

For the sake of completeness, we provide the semantics of
regular roles. Given an interpretation I, every regular role α
induces a binary relation αI , defined in the expected way:

(r−)I = {(e, d) | (d, e) ∈ rI}
(C?)I = {(d, d) | d ∈ CI}
(α∗)I = (αI)∗

(α1 · α2)I = αI1 ◦ αI2
(α1 + α2)I = αI1 ∪ αI2

The interpretation of concepts ∃α.C is then given by

(∃α.C)I = {d | ∃e ∈ CI with (d, e) ∈ αI}.
Throughout the appendix, we will often work with a rep-

resentation of regular roles by finite automata. This is with-
out loss of generality since for every regular expression, we
can find in polynomial time an equivalent finite automa-
ton (Fürer 1980). Formally, a finite automaton is a tuple
B = (S,Σ, s0,∆, F), where S is a finite set of states,
s0 ∈ S is the initial state, F ⊆ S is a set of accepting states,
∆ ⊆ S × Σ × S is the transition relation, and Σ is a finite
alphabet. We denote with L(B) the set of all words accepted
by B, defined as usual.

In the context of regular roles α, we will consider alpha-
bets Σ with
Σ ⊆ {r, r− | r ∈ NR} ∪ {C? | C an ALCOIreg-concept}.
Thus, a regular role α is just a regular expression over some
such alphabet. For any interpretation I, a finite automaton
B over the alphabet Σ induces a binary relation EIB on ∆I

defined by (d, e) ∈ EIB iff there is a word w = a1 . . . an ∈
L(B) and a sequence d0, . . . , dn ∈ ∆I with d0 = d, dn =
e, and such that for every i with 0 ≤ i ≤ n:
• if ai = C?, then di−1 ∈ CI and di = di−1,
• if ai = r, then (di−1, di) ∈ rI , and
• if ai = r−, then (di−1, di) ∈ (r−)I .
Lemma 22 For every regular role α, we can compute in
polynomial time a finite automaton B such that αI = EIB,
for every interpretation I.

Proof of Lemma 3
Lemma 3 Let i ∈ {1, 2}. It can be decided in PTIME
whether a given SHOIF reg-TBox (resp. ALCOIFreg-
TBox) is a SHOIF ireg-TBox (resp. ALCOIF ireg-TBox).

Proof. Condition (∗1) is a mere syntactic check. For Con-
dition (∗2), let B be the finite automaton equivalent to α∗
which exists due to Lemma 22. The condition can now be
verified by checking whether there are transitions
(q,R, q1), (q1, C1?, q2), . . . , (qn−1, Cn−1?, qn), (qn, S, q

′)

in B with R ∈ {r, r−}, S ∈ {s, s−}, r, s ∈ Fn(T), and r 6=
s. This boils down to a polynomial number of reachability
tests on directed graphs and is thus possible in polynomial
time. o

Proof of Proposition 5
Proposition 5 Let i ∈ {1, 2}. (Finite) satisfiability in
SHOIF ireg can be reduced in polynomial time to (finite)
satisfiability in ALCOIF ireg.

Proof. Let T be a SHOIF ireg-TBox, i ∈ {1, 2}. By intro-
ducing fresh concept names, we can obtain in polynomial
time an equisatisfiable SHOIF ireg-TBox T ′ such that every
concept inclusion takes one of the following forms:

A v {a} {a} v A A v ¬B ¬A v B
A uA′ v B A v ∃α.B ∃α.B v A

whereA,A′, B are concept names and, additionally, all tests
C? are of the form A? with A a concept name.

Let r be a role name. We denote with pre(r) the set of all
roles S such that T |= S v r. Now obtain a TBox T ′′ from
T ′ by:
• dropping all role inclusions,
• replacing in all concept inclusions of the form ∃α.B v A

every role r that occurs in α with S1 + · · · + Sk where
pre(r) = {S1, . . . , Sk}.

Clearly, T ′′ can be computed in polynomial time from T ′.
Claim. T ′′ is (finitely) satisfiable iff T ′ is (finitely) satisfi-
able.
Proof of the Claim. For “if”, observe that every model of T ′
is also a model of T ′′. For “only if”, let I be a model of T ′′.
Obtain a new model J by setting:

∆J = ∆I

AJ = AI

rJ =
⋃

S∈pre(r)

SI

for all A ∈ NC and r ∈ NR. It is routine to verify that J
is a model of T ′. In particular, the definition of rJ does not
violate any functionality assertions by our assumption that
functional roles do not have subroles. This finishes the proof
of the claim.

Observe that T ′′ is not necessarily anALCOIF ireg-TBox.
However, the violations occur only in regular expressions
on the left-hand side of concept inclusions, which can be
removed. Let ∃α.B v A ∈ T ′′. Let B = (S,Σ, s0,∆, F)
be the finite automaton equivalent to α which exists due to
Lemma 22 and let S = {s0, . . . , sn}. We introduce fresh
concept names S0, . . . , Sn and replace the concept inclusion
∃α.B v A ∈ T ′′ with the following concept inclusions:

B v S0

Si uA v Sj for all (si, A?, sj) ∈ ∆

∃r−.Si v Sj for all (si, r, sj) ∈ ∆

∃r.Si v Sj for all (si, r
−, sj) ∈ ∆

Si v A for all si ∈ F

Let T ∗ be the TBox obtained from T ′′ by replacing all con-
cept inclusions of the shape ∃α.B v A as described above.

Clearly, T ∗ is an ALCOIF ireg-TBox. It is also routine to
verify correctness.
Claim. T ∗ is (finitely) satisfiable iff T ′′ is (finitely) satisfi-
able. o

Proof of Lemma 6
Proposition 6 Every ALCOIF ireg-TBox T can be con-
verted in polynomial time into an ALCOIF ireg-TBox T ′ in
normal form such that T is (finitely) satisfiable iff T ′ is.

Proof. Let T be anALCOIF ireg-TBox, i ∈ {1, 2}. It is easy
to achieve that func(r−) ∈ T implies func(r) ∈ T . In fact,
if func(r−) ∈ T and func(r) /∈ T , then we can swap r and
r− throughout T , which clearly preserves (un)satisfiability.

We proceed in three steps. In the first step, we exhaus-
tively apply the following rewrite steps:

1. replace every concept ∃β · β′.C in T with ∃β.∃β′.C and

2. replace every concept ∃β+β′.C in T with ∃β.At∃β′.A
and add A ≡ C, with A a fresh concept name.

The concept name A in Point 2 above is introduced to avoid
an exponential blowup. Call the resulting TBox T1.

In the second step, we introduce a fresh concept nameXC

for every concept C in T1 that is not a concept name. If D is
a concept name, we use XD to denote D. Put

δ(A) = A δ({a}) = X{a}
δ(¬C) = ¬XC δ(C uD) = XC uXD

δ(∃α.C) = ∃β.XC

where β is the result of replacing every test D? in α that is
not nested within another test withXD?. Now T2 consists of
the following:

• X{a} ≡ {a}, for all nominals {a} that occur in T ;

• XC ≡ XD u A for every C v D ∈ T1, with A a fresh
concept name;

• XC ≡ δ(C) for every concept C that occurs in T1, possi-
bly as a subconcept.

It can be verified that, at this Point, Conditions 1 to 4 of
the normal form are satisfied. For Condition 3, assume that
a regular role α occurs in T2. Then it occurs in a concept
∃α.A. Due to the first step, α takes the form r, r−, or β∗.
In all of these cases, α satisfies Condition (∗i) from Defini-
tion 2 since in T , every regular role α that occurs in the form
α∗ does.

The third step ensures Conditions 5 to 7 of TBoxes in
normal form by exhaustively applying the following trans-
formations:

1. if A ≡ ∃(β+β′).B is a concept definition in T2, then add
A1 ≡ ∃β.B, A2 ≡ ∃β′.B, and A ≡ A1 t A2, for fresh
concept names A1, A2;

2. if A ≡ ∃(β · β′).B is a concept definition in T2, then add
A ≡ ∃β.A′ and A′ ≡ ∃β′.B for a fresh concept name A′;

3. if A ≡ ∃β∗.B is a concept definition in T0, then add A ≡
B tA′ and A′ ≡ ∃β.A for a fresh concept name A′.

The conversion clearly needs only polynomial time. The re-
sulting TBox T ′ is in normal form and T is (finitely) satis-
fiable iff T ′ is (finitely) satisfiable, as required. o

Preliminaries for Tree Automata
We define non-deterministic (top-down) tree automata on fi-
nite trees and non-deterministic Büchi tree automata on in-
finite trees.

Non-deterministic tree automata (NTA). An NTA over
finite k-ary trees is a tuple A = (Q,Σ, q0,∆), where Q is
a set of states, q0 ∈ Q is the initial state, and ∆ ⊆ (Q ×
Σ)∪ (Q×Σ×Qk) is the transition relation. The semantics
is defined in terms of runs. A run r of A on a Σ-labeled tree
(T, τ) is a function r : T → Q such that

• r(ε) = q0,

• for every node x ∈ T with successors x1, . . . , xk, there is
a transition (r(x), τ(x), r(x1), . . . , r(xk)) ∈ ∆, and

• for every leaf node x ∈ T , there is a transition
(r(x), τ(x)) ∈ ∆.

The language L(A) is the set of all finite Σ-labeled trees
(T, τ) such that there exists a run of A on (T, τ).

Non-deterministic Büchi Tree Automata (NBTA). An
NBTA over k-ary trees is a tuple A = (Q,Σ, q0,∆,Ω)
where (Q,Σ, q0,∆) is an NTA and Ω ⊆ Q is a Büchi ac-
ceptance condition. Runs are defined as for NTAs and a run
is accepting if every infinite path i0i1i2 · · · in T satisfies the
acceptance condition Ω, that is, there is a state q ∈ Ω such
that r(ij) = q for infinitely many j. We use L(A) to de-
note the set of all Σ-labeled trees (T, τ) such that A has an
accepting run on (T, τ).

Note that this definition deviates slightly from the tradi-
tional definition of NBTAs on k-ary trees where every node
in the tree is required to have exactly k successors. In con-
trast, our NBTAs can accept trees that have leaves and even
finite trees. It is not difficult to verify that all essential prop-
erties of NBTAs also hold in this model.

Proof of Lemma 12
Lemma 12 Let A = (Q,Σ, q0, δ,Ω) be a 2ABTA and let
Σfin = {σ1, . . . , σn} ⊆ Σ. There is a finite setPA,Σfin of exis-
tential Presburger formulas with free variables xσ1

, . . . , xσn
such that for all a ∈ Nn, the following are equivalent:

1. a satisfies some ϕ ∈ PA,Σfin over N;
2. there is a (T, τ) ∈ L(A) such that

(a) a = #σ1(τ), . . . ,#σn(τ);
(b) #σ(τ) = ℵ0 for all σ ∈ Σ \ Σfin.

Moreover, there is a non-deterministic procedure that given
A and Σfin generates exactly the formulas in PA,Σfin as pos-
sible outputs, running in time single exponential in |Q| and
polynomial in ||δ||+ |Σ|.

Proof. We prove correctness of the construction given in
the main part. Recall that, for some obligation pattern S =
{(q1, σ1,Ψ1), . . . , (qk, σk,Ψk)}, the formula ϕS has free
variables xσ1

, . . . , xσn and is defined by

ϕS = ∃y
(
ϕG ∧

∧
(q,σ)∈Z

x(q,σ) ≥ kq,σ
)
,

where y is the tuple of variables xσn+1
, . . . , xσn+m

.
(1 ⇒ 2). Let a ∈ Nn satisfy some ϕS ∈ PA,Σfin . That is,

there is some b ∈ Nm such that ab satisfies ϕG over N and
also the inequalities of shape x(q,σ) ≤ kq,σ . By definition of
ϕG, there is a Σ∪Z-labeled tree τ ∈ L(AS) such that ab =
#σ1(τ), . . . ,#σn+m(τ). We construct a Σ-labeled tree τ ′ ∈
L(A) satisfying Conditions 2a and 2b as follows.

Since S is satisfiable, there are Σinf-labeled trees
τ1, . . . , τk such that for every i ∈ {1, . . . , k} we have
τi ∈ L(A′qi), τi(ε) = σi, and #σ(τi) = ℵ0, for ev-
ery σ ∈ Ψi. The idea is to obtain τ ′ from τ by replac-
ing every leaf labeled with some (qi, σi) with the corre-
sponding tree τi. Since the mapping is not unique, that is,
(qi, σi) = (qj , σj) is possible even if i 6= j, there is a choice.
In choosing, we have to be careful to use each tree τi at least
once in order realize all symbols from Σinf infinitely often
in the resulting tree (recall that the Ψi partition Σinf). How-
ever, such a choice is always possible since ab satisfies the
inequalities in the definition of ϕS , that is, symbol (q, σ)
occurs at least kq,σ times in τ . Thus, the resulting tree τ ′
satisfies Condition 2(b). For Condition 2(a), note that the
existential quantification ∃y in ϕS essentially projects out
symbols that occur infinitely often; as a result, we obtain
a = #σ1

(τ ′), . . . ,#σn(τ ′).
(2 ⇒ 1). Assume some τ ∈ L(A) such that a =

#σ1
(τ), . . . ,#σn(τ) and #σ(τ) = ℵ0 for every σ ∈ Σ \

Σfin. We show that a satisfies ϕS ∈ PA,Σfin over N for some
satisfiable obligation pattern S for A′ and Σinf.

Since τ ∈ L(A), we can fix an accepting run r for τ . Let `
be a number such that below ` no symbol from Σfin occurs in
τ . Since all symbols from Σinf occur infinitely often in τ and
τ is finitely branching, there are nodes u1, . . . , uk in level `
of the tree and a partition Ψ1, . . . ,Ψk of Σinf such that, for
all i ∈ {1, . . . , k} and all σ ∈ Ψi, we have #σ(τi) = ℵ0

where τi denotes the subtree of τ rooted at ui. Define S by
taking
S = {(r(ui), τ(ui),Ψi) | i ∈ {1, . . . , k}} ∪

{(r(u), τ(u), ∅) | u in level ` of τ , u /∈ {u1, . . . , uk}}.
Clearly, S is a satisfiable obligation pattern for A′ and Σinf.
To show that a satisfies ϕS over N, consider the finite Σ∪Z-
labeled tree τ ′ defined as follows:
• τ ′ consists of all nodes of τ of level at most `;
• τ ′(u) = τ(u), for every node u ∈ T on a level smaller

than `;
• τ ′(u) = (r(u), τ(u)), for every node u ∈ T on level `.
By construction, τ ′ ∈ L(AS). By Theorem 11, there is some
b ∈ Nm such that ab satisfies ϕG over N. Since S is read
off from τ and r, ab also satisfies the inequalities of shape
x(q,σ) ≤ kq,σ in the definition of ϕS . o

Proof of Lemma 13
In order to prove Lemma 13, we need an auxiliary lemma.

Lemma 23 For every set Σ0 ⊆ Σ, there is a finite set A of
NBTA such that:

1. For every Σ-labeled tree τ such that #σ(τ) = ℵ0, for all
σ ∈ Σ0, we have τ ∈ L(B) for some B ∈ A.

2. For every B ∈ A and τ ∈ L(B), we have #σ(τ) = ℵ0,
for all σ ∈ Σ0.

Moreover, there is a non-deterministic procedure that given
Σ0 generates A in polynomial time.

Proof. The definition of the NBTAs in A is based on the
following observation.

Claim 1. Given a set of labels Σ′ ⊆ Σ, a Σ-labeled tree
(T, τ), and a node n ∈ T . We denote with Tn the subtree of
T rooted at n. The labels in Σ′ occur infinitely often in Tn
iff one of the following is the case:

(A) there is a node n′ ∈ Tn and a sequence Σ1, . . . ,Σk of
pairwise disjoint subsets of Σ′ such that

• Σi 6= Σ′, for i ∈ {1, . . . , k},
• Σ1 ∪ . . . ∪ Σk = Σ′, and
• the labels in Σi occur infinitely often in Tn′i;

(B) there is an infinite path n0, n1, . . . with n0 = n such that,
for every σ ∈ Σ′, there are infinitely many i such that
some node in Tni is labeled with σ.

Proof of Claim 1. The “if”-direction is trivial. For the “only-
if”-direction, assume that all labels in Σ′ occur infinitely of-
ten in Tn, but (A) is not satisfied. We construct the infinite
path in (B) inductively. Start with n0 = n. For the induc-
tion step, let Σj , j ∈ {1, . . . , k}, be the set of labels that
occur infinitely often in the j-th successor of ni. Clearly,
Σ1 ∪ . . . ∪ Σk = Σ′. Set Σ′i = Σi \ (

⋃
j<i Σj). By defini-

tion, the Σ′i are pairwise disjoint and Σ′1 ∪ . . . ∪ Σ′k = Σ′.
Since (A) is not satisfied, for some j ∈ {1, . . . , k}, we have
Σ′j = Σ′. We set ni+1 = nij. Consequently, for every i ≥ 0,
all symbols in Σ′ occur infinitely often in Tni . Hence, Con-
dition (B) is satisfied. This finishes the proof of the Claim.

Let now Σ0 ⊆ Σ. Intuitively, every NBTA in A imple-
ments a sequence of partitionings of Σ0 according to (A),
and stops partitioning at some subset Σ′. From then on, it
continues by verifying the existence of the infinite path de-
scribed in (B). It is not difficult to construct an NBTA BΣ′

(of size polynomial in Σ′) that checks Condition (B) for Σ′,
that is, BΣ′ accepts a tree iff there is a path as described
in (B); we omit the details.

Formally, the class A contains an NBTA Aτ for every fi-
nite k-ary 2Σ0 -labeled tree (T, τ) which satisfies the follow-
ing properties:

• τ(ε) = Σ0;

• for every n ∈ T with successors n1, . . . , nk, we have that
τ(n1), . . . , τ(nk) are pairwise disjoint, τ(ni) 6= τ(n), for
all i, and τ(n1) ∪ . . . ∪ τ(nk) = τ(n).

Note that, by definition, the labels in the leaves of τ form a
partition of Σ0. Thus, every such tree (T, τ) has at most |Σ0|
leaves and thus at most 2|Σ0| nodes.

With such a tree (T, τ), we associate an NBTA Aτ =
(Q,Σ, q0,∆,Ω) as follows. Let Γ1, . . . ,Γm be the la-
bels of the leaves, and let B1, . . . ,Bm be the NBTAs
that check Condition (B) for Γ1, . . . ,Γm. Suppose Bi =
(Qi,Σ, qi0,∆i,Ωi), for all i ∈ {1, . . . ,m}, and denote with
Bq
i = (Qqi ,Σ, q,∆

q
i ,Ω

q
i) the variant of Bi with the initial

state renamed to q. Now, Aτ = (Q,Σ, ε,∆,Ω) with initial
state ε ∈ T is defined as follows:

Q = {>} ∪ T ∪
⋃

n leaf of T,
τ(n)=Σi

Qni

∆ =
⋃

n leaf of T,
τ(n)=Γi

∆n
i ∪ {(>, σ,>, . . . ,>), (>, σ)} ∪

⋃
n inner node

{(n, σ, n1, . . . , nk) ∪⋃
n inner node

{(n, σ, n,>, . . . ,>), (n, σ,>, n,>, . . . ,>),

. . . , (n, σ,>, . . . ,>, n)}

Ω = {>} ∪
⋃

n leaf of T,
τ(n)=Γi

Ωni

Thus, in states T , Aτ performs the partitioning according to
Condition (A). In order to accept, however, it has to change
at some point to some sub-automaton Bi (with the appropri-
ate initial state) where Condition (B) is verified. More for-
mally, we have:

Claim 2. The class A of NBTAs satisfies Conditions 1 and 2
from the Lemma.

Proof of Claim 2. For Condition 2, let Aτ ∈ A and τ̂ ∈
L(Aτ), that is, there is an accepting run of Aτ on τ̂ . The
Büchi acceptance condition ensures that, on every infinite
path, eventually state > or a state n for some leaf node
n ∈ T is reached. Moreover, the transitions for inner nodes
ensure that for each leaf of T , there is actually an infinite
path on which state n is reached. When Aτ visits some node
u in a state n, n leaf of T , Condition (B) for τ(n) is verified,
that is, in Tu all the symbols in τ(n) occur infinitely often.
Since the labels in the leaves of τ partition Σ0, all symbos
in Σ0 occur infinitely often in τ̂ .

For Condition 1, let τ be a Σ-labeled tree such that
#σ(τ) = ℵ0, for every σ ∈ Σ0. We construct a 2Σ0 -labeled
tree τ̂ and an accepting run r of Aτ̂ on τ as follows. Start
with a single node tree τ̂ with τ̂(ε) = Σ0 and r(ε) = ε.
Then apply the following rule exhaustively:

• Choose a leaf node n in τ̂ and let τ̂(r(n)) = Σ′.

– If Σ′ and n satisfy Condition (A) above, let n′ be the
witnessing node in Tn and let Σ1, . . . ,Σk be the wit-
nessing partition of Σ′. Set r(m) = n for every m on
the path from n to n′, and r(m) = > for every m that
is a successor node of some node on the path from n to

n′ except n′, but not on the path itself. Moreover, add
k successors to n in τ̂ , set τ̂(ni) = Σi and r(n′i) = ni
for all i ∈ {1, . . . , k}.

– Otherwise, by Claim 1, Σ′ and n satisfy Condition (B)
above. By definition, the NBTA Bn

Σ′ has an accepting
run r′ on the subtree Tn rooted at n. Then complete the
run r by setting r(n′) = r′(n′), for every n′ ∈ Tn,
n 6= n′.

It is routine to verify that the constructed τ̂ is a finite, k-ary,
2Σ0 -labeled tree with the required properties. Moreover, the
resulting run r is an accepting run of Aτ̂ on τ . This finishes
the proof of the Claim.

It remains to argue for the ‘moreover’ part of the lemma.
Given Σ0, we can guess a tree (T, τ) and construct the cor-
responding automaton Aτ . As mentioned above, the tree is
of polynomial size, and thus also the automaton is. o

Now we can finish the proof of Lemma 13, which we re-
state for the sake of convenience.

Lemma 13 Given an NBTA A = (Q,Σ, q0, δ,Ω), a set
Σinf ⊆ Σ, and an obligation (q, σ,Ψ) for A and Σinf, it is
decidable in NP whether (q, σ,Ψ) is satisfiable.

Proof. Let (q, σ,Ψ) be an obligation for A and Σinf, and let
further A be the set of NBTAs from Lemma 23 applied to
the case with Σ = Σinf and Σ0 = Ψ. Then (q, σ,Ψ) is sat-
isfiable iff there is some B ∈ A such that the intersection
of Aq and B is non-empty. This is an NP algorithm since
according to the ‘moreover’ part of Lemma 23, B can be
guessed in polynomial time, and intersection non-emptiness
of NBTAs is possible in polynomial time. o

Proof of Proposition 15
Proposition 15 An ALCOIF1

reg-TBox T in normal form is
(finitely) satisfiable iff there is a set Γ ⊆ tp(T) such that
1. there is a model Ireg of Tbool ∪ Treg that realizes Γ;
2. there are (finite) models Ir of Tbool ∪Tr, r ∈ Fn(T), such

that for all r, s ∈ Fn(T), the following conditions hold:
(a) Ir realizes Γ;
(b) #t(Ir) = #t(Is) for all t ∈ Γ.

Proof. (⇒) Let I be a (finite) model of T , and let Γ be the
set of types realized in I. Then, Ireg = I witnesses Condi-
tion 1 and Ir = I, r ∈ Fn(T), witness Condition 2.

(⇐) Let Γ be a set of types for T that satisfies Condi-
tions 1 and 2, that is, there is a model Ireg of Treg that real-
izes Γ and models Ir of Treg ∪ Tr, r ∈ Fn(T), which satisfy
Conditions 2(a)–(b).

We construct a model I of T as follows. If there is no
functionality assertion in T , take I = Ireg and we are done.
Otherwise, fix some r ∈ Fn(T). Condition 2(b) implies that
we can choose bijections πs : ∆Ir → ∆Is for every s ∈
Fn(T) such that tpIr (d) = tpIs(πs(d)) for all d ∈ ∆Ir .
For types t, t′ ∈ Γ and a role name s, we write t Ts t′ if

1. for all CIs A ≡ ∃s.B ∈ T , B ∈ t′ implies A ∈ t;
2. for all CIs A ≡ ∃s−.B ∈ T , B ∈ t implies A ∈ t′.

The interpretation I is now defined as follows:

∆I = ∆Ir

AI = AIr

aI = aIr

sI = {(d, e) ∈ ∆I ×∆I | (π(d), π(e)) ∈ sIs}
sI0 = {(d, e) ∈ ∆I ×∆I | tpI(d) Ts0 tpI(e)}

for all A ∈ NC, a ∈ NI, s ∈ Fn(T), and s0 ∈ NR \ Fn(T).
To show that I |= T , it suffices to show that I |= Tbool ,

I |= Treg , and I |= Ts for all s ∈ Fn(T). By construction of
I, the restrictions of I and Is to role name s are isomorphic
(witnessed by πs). Since each Is is a model of Tbool ∪Ts, we
obtain that I |= Tbool ∪ Ts, for all s ∈ Fn(T). It remains to
show that I |= Treg. Let A ≡ ∃α.B ∈ Treg. We show the two
directions of the equivalence AI = (∃α.B)I separately.

For “⊆”, one first proves the following claim by induction
on the structure of α.
Claim 1. For all roles α in Treg, all d, e ∈ ∆I , and all d′, e′ ∈
∆Ireg such that tpI(d) = tpIreg

(d′) and tpI(e) = tpIreg
(e′),

(d′, e′) ∈ αIreg implies (d, e) ∈ αI .

Proof of Claim 1. The induction base follows from the fact
that tpIreg

(d) s tpIreg
(e) for all (d, e) ∈ sIreg . The induc-

tion step is then immediate.

Now let d ∈ AI . Since Ireg and I both realize Γ, there
is an element d′ ∈ ∆Ireg such that tpI(d) = tpIreg

(d′).
Since Ireg |= Treg, there is some e′ such that (d′, e′) ∈ αIreg

and e′ ∈ BIreg . Since Ireg and I both realize Γ, there is
an element e with tpI(e) = tpIreg (e′). Claim 1 yields
d ∈ (∃α.B)I .

For the “⊇” direction, we prove by induction on α that for
all A ≡ ∃α.B ∈ Treg , d ∈ (∃α.B)I implies d ∈ AI :

• If α is a test X?, then X is a concept name, d ∈ XI ,
and d ∈ BI , and hence d ∈ XIr and d ∈ BIr . Since
A ≡ ∃X?.B ∈ Tr, and Ir |= Tr, we have d ∈ AIr and
thus d ∈ AI .

• If α = s or α = s−, for some role name s, then the
statement follows from the definition of Ts .

• If α = β · β′, then there is some e ∈ ∆I such that
(d, e) ∈ βI and e ∈ (∃β′.B)I . By Condition 6 of the nor-
mal form, Treg contains concept definitions A ≡ ∃β.A1

and A1 ≡ ∃β′.B. By induction, we have e ∈ AI1 , and,
again by induction, also d ∈ AI .

• If α = β + β′, then d ∈ (∃β.B)I or d ∈ (∃β′.B)I .
By Condition 5 of the normal form, Treg contains concept
definitions A1 ≡ ∃β.B, A2 ≡ ∃β′.B, and A ≡ A1 t A2.
By induction, we have d ∈ AI1 or d ∈ AI2 , and thus d ∈
AI .

• If α = β∗, there are elements d0, . . . , dn, n ≥ 0, such that
d0 = d, dn ∈ BI , and (di, di+1) ∈ βI , for all i with 0 ≤
i < n. By Condition 7 of the normal form, T contains
concept definitions A1 ≡ ∃β.A and A ≡ B t A1. We
show inductively that di ∈ AI for all i with 0 ≤ i ≤ n.

Since dn ∈ BI and A ≡ B t A1 ∈ T , we obtain dn ∈
AI . For i < n, we know di+1 ∈ AI by induction. Since
(di, di+1) ∈ βI and A1 ≡ ∃β.A, we obtain di ∈ AI1 .
Since A ≡ B tA1 ∈ T , we obtain di ∈ AI .

o

Proof of Proposition 16
Proposition 16 is an immediate consequence of Lemma 17,
so we will only give the proof of the latter.

For a finite automaton B = (S,Ω, s0,∆, F), and any s ∈
S, we use Bs to denote the automaton obtained from B by
replacing the initial state with s. Moreover, given a regular
role α, we denote with Bα the finite automaton equivalent
to α which exists according to Lemma 22.

Lemma 17 One can construct in time single exponential in
||T || a 2ABTA∃PP AT whose number of states is polynomial
in ||T || and such thatL(AT) consists of exactly those binary
well-formed Σ-labeled trees (T, τ) such that for Ir = Iτr ,
r ∈ Fn(T), Condition 2 of Propositon 15 is satisfied.

Proof. The 2ABTA∃PP A1,A3 are straightforward to con-
struct; we omit details. For A2 = (Q2,Σ, q0,2, δ2,Ω2, C2),
we use only the set of Presburger constraints C2 (and leave
the actual automaton empty). which contains the following
equations, for every t ∈ Γ:∑

(R,t,L)∈Σ

x(R,t,L) > 0 (1)

∑
(R,t,L)∈Σ,

R∈{r,r−}

x(R,t,L) =
∑

(S,t,L)∈Σ,

S∈{s,s−}

x(S,t,L) for r, s ∈ Fn(T).

(2)

Intuitively, Equation (2) establishes the synchronization of
the type multiplicities.

Now, for the 2ABTA∃PP Ar, r ∈ Fn(T). We fix one
r ∈ Fn(T) throughout the rest of the proof and define Ar =
(Q,Σ, q0, δ,Ω, C) with C = ∅. The set Q consists of q0, q

∗,
and all states of the form

qBs,B , q
a
Bs,B , q

a,X
Bs,B

, qBs,B , q
a
Bs,B , q

a,X
Bs,B

where B is a finite automaton equivalent to some regular ex-
pression α that occurs in Tr (c.f. Lemma 22), s is a state in
B, B is a concept name that occurs in T , a is an alphabet
symbol in B and X ∈ {↑, ↓, src, tgt}. The Büchi condition
Ω consists of all states of the form q∗B,B (which will be ex-
plained below).

We next define the transition function δ. As a general pro-
viso, we provide the definition of δ(q, σ) only for the ‘rele-
vant’ inputs q, σ, that is, inputs which can be reached during
a successful run of the automaton on a well-formed tree. For
all other q, σ, we implicitly set δ(q, σ) = false.

The automaton visits every node in the input tree and ver-
ifies that it satisfies the concept definitions in Tbool∪Tr. This
process is initiated using the following transitions.

δ(q0, ◦) = �q0

δ(q0, σ) = q∗ ∧�q0 for all σ 6= ◦

When the automaton visits a node n in state q∗ this repre-
sents the obligation to verify that (the domain element rep-
resented by) n satisfies the concept definitions in Tr. We in-
clude the following transitions for all (R, t, L) ∈ Σ with
R ∈ {r, r−} and (S, t, L) ∈ Σ with S /∈ {r, r−}:

δ(q∗, (S, t, L)) = true

δ(q∗, (R, t, L)) =
∧

A∈t,A≡∃α.B∈Tr

qBα,B ∧∧
A/∈t,A≡∃α.B∈Tr

qBα,B

When the automaton visits a node n in a state qB,B , it has
the obligation to find a node n′ ∈ BIτr with (n, n′) ∈ EI

τ
r

B .
Complementary, the visit of n in state qB,B represents the

obligation to verify that all nodes n′ with (n, n′) ∈ EI
τ
r

B do
not satisfy n′ ∈ BIτr . We include the following transitions
for states qB,B with B = (S,Ω, s0,∆, F):

δ(qB,B , (R, t, L)) = true if s0 ∈ F and B ∈ t

δ(qB,B , (R, t, L)) =
∨

(s0,a,s)∈∆

qaBs,B if s0 /∈ F or B /∈ t

In a state qaB,B , the automaton has the obligation to simulate
the step a in the represented interpretation and change to
state qB,B . This is easily realized for tests A?:

δ(qA?
B,B , (R, t, L)) = qB,B if A ∈ t

δ(qA?
B,B , (R, t, L)) = false if A /∈ t

For the case when a is a role R, the automaton has to nav-
igate to an R successor of the current element, taking into
account the encoding of structures as Σ-labeled trees. In this
part, the automaton uses the states of the form qR,XB,B with
R ∈ {r, r−} and X ∈ {↑, ↓, src, tgt}. We concentrate on
the case when R = r is a role name; the case for inverse
roles r− is symmetric and can be obtained from the given
case by replacing r with r− and additionally exchanging the
role of src and tgt. Before we give the actual transitions,
we provide a summary of the intended behavior of the used
states when visiting a node n.

• qr,↑B,B : navigate to n↑;

• qr,↓B,B : navigate to some n′ such that n = (n′)↑;

• qr,srcB,B : check if n is labeled with src; if so, change to qr,tgtB,B ;

• qr,tgtB,B : navigate to the corresponding node with tgt ∈ L.

Formally, we use the following transitions:

δ(qrB,B , (S, t, L)) = false if S /∈ {r, r−}

δ(qrB,B , (r
−, t, L)) = ♦−qr,↑B,B ∨ ♦q

r,↓
B,B ∨ q

r,src
B,B

δ(qrB,B , (r, t, L)) = ♦qr,↓B,B ∨ q
r,src
B,B

δ(qr,srcB,B , (r, t, L)) = false if src /∈ L

δ(qr,srcB,B , (r, t, L)) = qr,tgtB,B if src ∈ L

δ(qr,↑B,B , ◦) = ♦−qr,↑B,B

δ(qr,↑B,B , (S, t, L)) = qB,B

δ(qr,↓B,B , ◦) = ♦qr,↓B,B

δ(qr,↓B,B , (r, t, L)) = qB,B

δ(qr,↓B,B , (r
−, t, L)) = false

δ(qr,tgtB,B , (S, t, L)) = false if S /∈ {r, r−}

δ(qr,tgtB,B , (r, t, L)) = qB,B if tgt ∈ L

δ(qr,tgtB,B , (r
−, t, L)) = qB,B if tgt ∈ L

δ(qr,tgtB,B , ◦) = ♦−qr,tgtB,B ∨ ♦q
r,tgt
B,B

δ(qr,tgtB,B , (S, t, L)) = ♦−qr,tgtB,B ∨ ♦q
r,tgt
B,B

if S ∈ {r, r−} and tgt /∈ L

The transitions for states of the form q∗∗ are complementary,
that is, they can be obtained from the transitions given above
by replacing false by true, true by false, ∨ by ∧, ♦ by�, ♦−
by �−, and all states q∗∗ with q∗∗.

The Büchi condition ensures that the automaton cannot
stay in states of the form q∗B,B along an infinite path of a run.
Thus, existential restrictions ∃α.B are eventually witnessed.

Based on the provided intuitions, it is routine to verify that
the constructed automaton Ar accepts a well-formed (T, τ)
iff Iτr is a model of Tbool ∪Tr. It remains to note that Ar has
polynomially many states and can be constructed in single
exponential time.

Overall, the intersection AT of A1,A2,A3 and Ar, r ∈
Fn(T) has polynomially many states and can be constructed
in single exponential time by Lemma 8. o

Proof of Proposition 19
Proposition 19 is an immediate consequence of Lemma 20,
so we will give only the proof of the latter. We start with
spelling out the additional progress condition on types men-
tioned in the main body of the paper.

A type for T is a set t of concept names used in T such
that there is a model I of Tbool and a d ∈ ∆I such that
t = {A used in T | d ∈ AI} and additionally, the following
progress condition is satisfied:
(P) if A ∈ t and A ≡ ∃α.B ∈ T , then one of the following
is the case:

1. B ∈ t and there are A1, . . . , An ∈ t such that
A1? . . . An? ∈ L(α);

2. there are concept names A1, . . . , An and B0, . . . , Bm
with Bm = B, a role R, and regular roles β1 . . . , βm−1

such that:

(a) L(A1? . . . An?Rβ1 . . . βm−1) ⊆ L(α);
(b) B0 ≡ ∃R.B1 ∈ T ;
(c) Bi ≡ ∃βi.Bi+1 ∈ T for 1 ≤ i < m;
(d) A1, . . . , An, B0 ∈ t.

We give a simple example to illustrate the need for this con-
dition. Let A ∈ t, B /∈ t, and A ≡ ∃(A0? + r)∗.B ∈

T . Then together with Conditions 5-8 of TBoxes in nor-
mal form, (P) makes sure that we find some X ∈ t with
X ≡ ∃r.A ∈ T . Note that Conditions 5-8 alone would
allow us to run into a ‘bad cycle’, endlessly deferring the
satisfaction of ∃(A0? + r)∗.B by running through the test
A0? over and over again. The same can of course happen in
ALCOIF1

reg, where we did not impose this extra condition.
In the decision procedure used there, such ‘local bad cycles’
were ruled out by the 2ABTA in a uniform way along with
‘non-local bad cycles’. This is not easily possible in our de-
cision procedure for ALCOIF2

reg because of the ‘slice’ rep-
resentation of interpretations in Σ-labeled trees.

The following lemma asserts soundness of (P).

Lemma 24 Let I be a model of T and d ∈ ∆I . Then the
set t = {A used in T | d ∈ AI} satisfies (P).

Proof. The lemma is an immediate consequence of the fol-
lowing Claim that also provides a bound on the length of the
sequences.

Claim. Let I be a model of T . For all A ≡ ∃α.B ∈ T , and
all d, e ∈ ∆I with d ∈ AI , e ∈ BI , and (d, e) ∈ αI , one of
the following is the case:

1. d = e and there are concept names A1, . . . , An such that
n ≤ ||α||, A1? . . . An? ∈ L(α), and d ∈ AIi , for all
i ∈ {1, . . . , n};

2. there are concept names A1, . . . , An and B0, . . . , Bm
with Bm = B, a role R, and regular roles β1 . . . , βm−1

such that:

(a) L(A1? . . . An?Rβ1 . . . βm−1) ⊆ L(α);
(b) B0 ≡ ∃R.B1 ∈ T ;
(c) Bi ≡ ∃βi.Bi+1 ∈ T , for 1 ≤ i < m;
(d) d ∈ BI0 and d ∈ AIi , for 1 ≤ i ≤ n;
(e) (d, e) ∈ (A1? . . . An?Rβ1 . . . βm−1)I ;
(f) n+m ≤ ||α||.

Note that Conditions 2(a)–(d) in the Claim correspond ex-
actly to the Conditions 2(a)–(d) of Condition (P). Condi-
tion 2(e) is needed to strengthen the induction hypothesis;
Condition 2(f) establishes the announced bound. The proof
of the Claim is by induction over the structure of the regu-
lar role α and heavily relies on the TBox normal form. The
stronger induction hypothesis in 2(f) is needed in the cases
for composition α1 · α2 and Kleene-star β∗.

If α = X?, then by the TBox normal form, we have A ≡
X u B ∈ T . Since I is a model of T and d ∈ AI , we also
have d ∈ XI and d ∈ BI . Thus, we are in Case 1.

If α = S is a role, then setting n = 0, R = S, B0 = A,
m = 1, and B1 = B witnesses that we are in Case 2.

If α = α1 + α2, then by the TBox normal form there
are concept names X1, X2 such that A ≡ X1 tX2 ∈ T and
Xi ≡ ∃αi.B ∈ T . Since I is a model of T , we have d ∈ XIi
and (d, e) ∈ αi, for some i ∈ {1, 2}. By induction applied
to Xi ≡ ∃αi.B ∈ T and d, e, either Case 1 or Case 2 is true
for Xi ≡ ∃αi.B ∈ T and d, e. Obviously, the same is true
for A ≡ ∃α.B and d, e.

If α = α1 · α2, then by the TBox normal form there
is a concept name X such that A ≡ ∃α1.X ∈ T and

X ≡ ∃α2.B ∈ T . Since I is a model of T , there is some e′
such that (d, e′) ∈ αI1 and e′ ∈ XI . Applying the induction
hypothesis to A ≡ α1.X ∈ T and d, e′ leaves us with two
cases:

• There are A1, . . . , An such that A1? . . . An? ∈ L(α1),
d = e′, and d ∈ AIi , for all i ∈ {1, . . . , n}. Applying the
induction hypothesis also to X ≡ α2.B ∈ T and (e′, e)
yields again two cases:

– There are B1, . . . , Bk with D1? . . . Bk? ∈ L(α2), e′ =
e, and e′ ∈ BIi , for all i ∈ {1, . . . , k}. Then the se-
quence A1, . . . , An, B1, . . . , Bk witnesses that Case 1
is true for A ≡ ∃α.B ∈ T and d, e.

– There are concept names A′1, . . . , A
′
k and B0, . . . , Bm

withBm = B, a roleR, and regular roles β1 . . . , βm−1

satisfying Condition (a)–(f) from Case 2.
Now, the sequences A1, . . . , An, A

′
1, . . . , A

′
k and

B1, . . . , Bm, the role R and the regular roles
β1, . . . , βm−1 witness that Case 2 is true forA ≡ ∃α.B
and d, e.

• There are concept names A1, . . . , An ∈ t and
B0, . . . , Bm with Bm = X , a role R, and regular roles
β1 . . . , βm−1 such that Conditions (a)–(f) from Case 2 are
satisfied.
Define Bm+1 = B and βm = α2. Obviously, the se-
quences A1, . . . , An and B1, . . . , Bm+1, the role R and
the sequence β1, . . . , βm of regular roles witness that
Case 2 is true for A ≡ ∃α.B and d, e.

If α = β∗, then by the TBox normal form there is a con-
cept name X such that A ≡ B tX ∈ T and X ≡ ∃β.A ∈
T . Since I is a model of T , we have either d ∈ BI or
d ∈ XI . In the former case, setting n = 0 witnesses that
we are in Case 1. In the latter case, there is a sequence of
elements d0, . . . , dk, k > 0 such that d0 = d, dn = e,
(di, di+1) ∈ βI , for all i ∈ {0, . . . , k − 1}, and dn ∈ BI .
We can assume that d0 6= d1. To see why this is without loss
of generality, let j be the smallest ` with d` 6= d0. If there is
no such `, e = dk = d0 = d, and we are in the first case.
Otherwise, drop d1, . . . , dj−1 from the sequence.

We apply induction to X ≡ ∃β.A ∈ T , d0 ∈ XI ,
d1 ∈ AI , and (d0, d1) ∈ βI . As d0 6= d1, Case 2 has
to be satisfied, that is, there are concept names A1, . . . , An
and B0, . . . , Bm with Bm = A, a role R, and regular roles
β1 . . . , βm−1 such that Conditions (a)–(f) from Case 2 are
satisfied. Define Bm+1 = B and βm = β∗. Obviously, the
sequences A1, . . . , An and B1, . . . , Bm+1, the role R and
the sequence β1, . . . , βm of regular roles witness that Case 2
is true for A ≡ ∃β∗.B and d, e. o

Lemma 25 Given an ALCOIF2
reg-TBox T and a set t of

concept names that occur in T , it can be decided in EXP-
TIME whether t is a type for T .

Proof. It can easily be checked in polynomial time that t
satisfies all concept definitions in Tbool. For checking Con-
dition (P) note that in the proof of Lemma 24, we estab-
lished a bound on the length on the numbers n,m that occur
in (P). More precisely, we have n + m ≤ ||α||. Given t,

we can thus just enumerate all (exponentially many) poten-
tial witnesses for Conditions 1 and 2 of (P). It remains to
note that, given a candidate A1, . . . , An (for Condition 1)
or A1, . . . , An, B0, . . . , Bm, R, β1, . . . , βm−1 (for Condi-
tion 2), it can be checked in polynomial time whether it ac-
tually witnesses (P). o

Lemma 20 One can construct in time single exponential
in ||T || a 2ABTA∃PP AT such that L(AT) consists of ex-
actly those binary well-formed Σ-labeled trees (T, τ) with
Iτ |= T .

Proof. As it was argued in the main part, A1 and A2 are
rather straightforward to construct; we omit the details.

The automaton A = (Q,Σ, q0, δ,Ω) is similar to the au-
tomata Ar, r ∈ Fn(T) from the proof of Lemma 17. In fact,
Q also contains states q0, q

∗ and states of the form

qBs,B , q
a
Bs,B , q

a,X
Bs,B

, qBs,B , q
a
Bs,B , q

a,X
Bs,B

where B is a finite automaton from a set B (to be defined),
s is a state in B, a is an alphabet symbol in B, and X ∈ {↑
, ↓, src, tgt}. The set B contains for every regular role α =
Rβ1 . . . βm such thatR is a role that occurs in T ,m ≤ ||T ||,
and β1, . . . , βm are regular roles that occur in T , the finite
automaton Bα equivalent to α that exists due to Lemma 22.
Additionally, Q contains states of the form

qRt,B,B , q
R
t,B,B , qA≡∃α.B , qA≡∃α.B

where t is a type for T , R is a role that occurs in T , and
∃α.B is a concept that occurs in T . The Büchi condition Ω
consists of all states of the form q∗B,B .

The transition function δ is also very similar to the tran-
sition functions δr from the automata Ar in Lemma 17. In
fact, the transitions for q0 remain the same, that is,

δ(q0, ◦) = �q0

δ(q0, σ) = q∗ ∧�q0 for all σ 6= ◦
The transitions for q∗ slightly change since A treats all roles
in the same automaton. Thus, we include the following tran-
sitions for all (R, t, L) ∈ Σ:

δ(q∗, (R, t, L)) =
∧

A∈t,A≡∃α.B∈T

qA≡∃α.B ∧∧
A/∈t,A≡∃α.B∈T

qA≡∃α.B

If the automaton visits a node n in state qA≡∃α.B , this rep-
resents the obligation to verify that in the represented inter-
pretation the domain element encoded by n satisfies ∃α.B.
(Again, states qA≡∃α.B behave complementary, so we con-
centrate on qA≡∃α.B .) The difficulty here is that one domain
element in the represented interpretation is encoded in dif-
ferent ‘slices’ of the input tree. We have thus to be careful
in which of the slices the automaton verifies that ∃α.B is
satisfied. This is where we use the additional property (P).
Intuitively, the role R in Condition 2 of (P) determines the
first (non-test) step and thus the slice.

Let (S, t, L) ∈ Σ with S ∈ {r, r−} for some role name
r and A ≡ ∃α.B ∈ T with A ∈ t. Since t is a type for

T , Condition 1 or Condition 2 of (P) is satisfied for A,A ≡
∃α.B. We define δ(qA≡∃α.B , (S, t, L)) by a case distinction
as follows:
• If Condition 1 of (P) is satisfied for A, A ≡ ∃α.B, then

set
δ(qA≡∃α.B , (S, t, L)) = true.

• Otherwise, let us define a set B′ ⊆ B as follows. If
B ∈ B is equivalent to the regular role Rβ1 . . . βm−1,
then B ∈ B′ iff there are concept names A1, . . . , An and
B0, . . . , Bm such that m+ n ≤ ||α||,
R ∈ {r, r−} ∪ {s, s− | s occurs in T and s /∈ Fn(T)},

and Conditions 2(a)–(d) of (P) are satisfied. Then, we de-
fine:

δ(qA≡∃α.B , (S, t, L)) =

{
true if B′ = ∅,∨

B∈B′ qB,B otherwise.

The fact that the empty disjunction in the second case corre-
sponds to true can be explained as follows: if B′ is empty,
then the concept ∃α.B has to be verified in a different slice.
Condition (P) on types ensures that such a slice exists.

Just like the automata Ar from Lemma 17, visiting a node
n in state qB,B represents the obligation to find a node n′
which satisfies B and is connected to n via a B-path. Recall
that it does so by non-deterministically guessing the steps
of this path according to the finite automaton B. In fact,
the transition function for states of the form qB,B (and the
states reachable from that) is identical to the transition func-
tion δr in the automaton Ar, except for inputs of the form
(qRB,B , (S, t, L)) when R ∈ {r, r−} and S ∈ {s, s−} for
role names r 6= s. Intuitively, these inputs represent the situ-
ation that the automaton visits a node in the s-slice and tries
to make an R-step, R ∈ {r, r−} and r 6= s. This situation
cannot occur in a successful run of Ar on a well-formed in-
put tree, and hence the definition of δr(q, σ) for such q, σ is
actually irrelevant. Here This is, however, not the case for
the stronger fragment.

Before we give the transition function in this case, let
us note that the above definition of δ(qA≡∃α.B , (S, t, L))
makes sure that the automaton never attempts to make an
S-step, S ∈ {s, s−}, s ∈ Fn(T) when it visits a node in the
slice for a functional role r 6= s. Indeed, this is the case for
the first step since the first step of every automaton B ∈ B′

will either be r, r−, or s or s−, for some non-functional role
s. To see this for later steps, let Rβ1 . . . βm−1 be the regular
role for which B was added to B′, in processing the concept
∃α.B. By Condition 2(a) of (P), there are concept names
A1, . . . , An such that L(A1 . . . AnRβ1 . . . βm−1) ⊆ L(α).
Since α satisfies (∗2), so does Rβ1 . . . βm−1. Thus, the au-
tomaton B does not allow consecutive steps for distinct
functional roles.

For the definition of δ on the mentioned inputs, let
R ∈ {r, r−}. Then for every state qRB,B and every symbol
(S, t, L) ∈ Σ with S ∈ {s, s−} for some s 6= r such that
s /∈ Fn(T), we set

δ(qRB,B , (S, t, L)) =
∨
t′∈T

qRt′,B,B

where T is the set of all types t′ for T such that:

1. for all CIs A ≡ ∃R.B ∈ T , B ∈ t′ implies A ∈ t;
2. for all CIs A ≡ ∃R−.B ∈ T , B ∈ t implies A ∈ t′.
That is, in the represented interpretation, nodes with types
t and t′ will be connected by R. In a state qRt′,B,B , the au-
tomaton non-deterministically navigates to a node with label
(S, t′, L) and changes to state qB,B ; we omit the details.

Using the arguments provided during the definition of the
transition function δ above, it is routine to verify that A ac-
cepts a well-formed tree τ iff the represented interpretation
Iτ is a model of T . It can also be verified that the construc-
tion can be carried out in exponential time. o

Proof of Theorem 21
Theorem 21 (Finite) satisfiability in ALCOIFreg can be
reduced in polynomial time to (finite) satisfiability in
ALCOIF1

reg,qual.

Proof. Let T be an ALCOIFreg-TBox. Suppose without
loss of generality that some nominal occurs in T . The gen-
eral idea is to replace role names r in T by the regular role
s ·Xr? ·s, where s andXr are fresh names. That is, an r-step
is simulated by two s-steps via an auxiliary element which
satisfies a conceptXr. To make this idea work, we also need
to relativize the TBox to the ‘real’ domain elements. For-
mally, we use the following fresh symbols:

• role name s;

• concept names Xr, for each role name r that occurs in T ;

• concept name D.

We denote with δ(C) the concept that is obtained from C
by replacing every role name r by the regular role s ·Xr? ·
s. Moreover, the relativization C|D of a concept C to the
concept name D is defined inductively as follows:

A|D = A uD
(¬C)|D = D u ¬(C|D)

(C1 u C2)|D = D u C1|D u C2|D
(∃α.C)|D = D u ∃α|D.C|D

where α|D is obtained from α by replacing every test C?
that occurs in α by the test C|D?.

We now define a TBox T ′ by taking

T ′ = {δ(C1)|D v δ(C2)|D | C1 v C2 ∈ T } ∪
{> v (≤ 1 s Xr) | func(r) ∈ T } ∪
{> v (≤ 1 s− Xr) | func(r−) ∈ T } ∪
{{a} v D | {a} occurs in T } ∪
{D v ∀s.¬D,¬D v ∀s.D} ∪
{¬D v (≤ 1 s >) u (≤ 1 s− >)}

Intuitively, the first line captures the relativized TBox; the
second and third lines capture the functionality assertions;
the fourth line ensures that all nominals are contained in the
intended domainD. In particular, due to the assumption that
T contains at least one nominal, the intended domain is not
empty. Finally, the last two lines axiomatize the fact that D

is the intended domain. Note that the only role name that
occurs in T ′ is s, so indeed T ′ is anALCOIF1

reg,qual-TBox.

Claim. T is (finitely) satisfiable iff T ′ is (finitely) satisfiable.
Proof of the Claim. (⇒) Let I be a model of T . We define
an interpretation J as follows:

∆J = ∆I ∪ {r(d, e) | r ∈ NR, (d, e) ∈ rI }
AJ = AI for all A that occur in T
DJ = ∆I

XJr = {r(d, e) | (d, e) ∈ rI} for all r that occur in T
sJ = {(d, r(d, e)), (r(d, e), e) | r(d, e) ∈ ∆J }

It is routine to verify that J is a model of T ′, and J is finite
iff I is finite.

(⇐) Conversely, let I be a model of T ′. We define an
interpretation J by taking

∆J = DI

AJ = AI

rJ = {(d, e) ∈ ∆J ×∆J | there exists an f ∈ XIr
such that (d, f), (f, e) ∈ sI}

for all concept names A and all role names r that occur in
T . It can be verified that J is a model of T , and J is finite
iff I is finite. o

