
Noname manuscript No.
(will be inserted by the editor)

onto2problog: A Probabilistic Ontology-mediated Querying System
using Probabilistic Logic Programming

Timothy van Bremen · Anton Dries · Jean Christoph Jung

Received: date / Accepted: date

Abstract We present onto2problog, a tool that supports
ontology-mediated querying of probabilistic data via proba-
bilistic logic programming engines. Our tool supports con-
junctive queries on probabilistic data under ontologies en-
coded in the description logic ELH 3A , thus capturing a large
part of the OWL 2 EL profile.

1 Introduction

The amount of data collected has grown considerably in re-
cent years, butwith this so has the uncertainty in this data. For
example, sophisticated NLP systems like the Never-Ending
Language Learner (NELL) [18] are capable of searching the
Internet continuously, extracting information from text into
a computer-readable logical form. Yet systems like this are
not perfectly accurate — indeed, NELL assigns a score to
each extracted fact representing the system’s confidence in
its truth. These scores can be viewed as degrees of belief
in the truth of these facts: in other words, probabilities in
the Bayesian sense. Typically, these probabilistic facts are
assumed to be mutually independent, resulting in a (tuple-
independent) probabilistic database [20].

However, in many cases we have some supplementary
domain knowledge in the form of an ontology, which can

T. van Bremen
KU Leuven
Belgium
E-mail: timothy.vanbremen@cs.kuleuven.be

A. Dries
KU Leuven
Belgium
E-mail: anton.dries@cs.kuleuven.be

J. C. Jung
Universität Bremen
Germany
E-mail: jeanjung@uni-bremen.de

be considered in conjunction with the probabilistic facts.
Motivated by this, Jung and Lutz introduced the frame-
work of ontology-mediated querying of probabilistic data
(OMQPD): given a set of independent probabilistic facts, an
ontology, and a query, evaluate the query on the facts taking
into account the supplementary knowledge from the ontol-
ogy [15]. It is important to note that in this line of work the
closed-world assumption that is usually adopted in databases
is replaced by the open-world assumption, that is, the ontol-
ogy might imply facts that are not explicitly stated in the
initial set provided.

For example, suppose we have two probabilistic facts:

0.9 ↦→ DepartmentHead(0;824)
0.4 ↦→ mentors(0;824, 2ℎ0A;84)

This expresses the knowledge that Alice is a department head
with probability 0.9, and, independently, Alice is a mentor of
Charlie with probability 0.4. It gives rise to a distribution on
four deterministic databases (Table 1): one in which neither
fact is true (with probability (1 − 0.9) (1 − 0.4) = 0.06), one
where both facts are true ((0.9) (0.4) = 0.36), and two when
exactly one is true ((0.9) (1−0.4) = 0.54 and (1−0.9) (0.4) =
0.04).

Now suppose that we also have the following (entirely
deterministic) ontology expressed in the description logic
EL:

DepartmentHead v Professor (1)
Professor u ∃mentors.> v AcademicSupervisor (2)

Intuitively, this ontology expresses that:

(1) All department heads are professors
(2) A professor who mentors someone is an academic super-

visor

2 Timothy van Bremen et al.

Table 1 Different interpretations of the probabilistic facts, their proba-
bilities, and facts induced from the ontology in the university example
explained in the text. Abbreviations have been used where clear.

World l % (l) Induced facts
DepHead(0;824) ,
mentors(0;824, 2ℎ0A;84)

0.9 · (0.4) =
0.36

Professor(0;824) ,
AcadSup(0;824)

DepHead(0;824)
0.9 ·
(1 − 0.4) =
0.54

Professor(0;824)

mentors(0;824, 2ℎ0A;84) (1 − 0.9) ·
0.4 = 0.04 ∅

∅ (1−0.9) · (1−
0.4) = 0.06 ∅

Assume we wish to pose the query:

Φ = AcademicSupervisor(0;824).

Evaluating the query directly on the set of probabilistic facts
earlier returns a probability of zero, as information relating to
the class “AcademicSupervisor” does not appear anywhere
in the set. But if we evaluate it in combination with the
ontology, we get a probability of 0.36, corresponding to the
world in which Alice is both a department head and a mentor
of Charlie. Thus, the addition of an ontology can change the
results of our query, and in particular, reduce the uncertainty.
This underpins the idea of OMQPD.

To the best of our knowledge there are so far only pre-
liminary implementations realizing this framework in prac-
tice, such as the one proposed by Schoenfisch and Stuck-
enschmidt [19]. Unfortunately, this system is incomplete in
the sense that it only works for certain safe combinations of
query and ontology, and only for ontologies in DL-Lite [4].
On the other hand, Zese et al. [23] presented semantics for
DISPONTE knowledge bases and, based on two algorithms
(BUNDLE and TRILL), an implementation for inference
on these knowledge bases. DISPONTE knowledge bases are
slightly different from the framework considered here in the
sense that each axiom in the knowledge base — both facts
and ontology — is annotated with an independent proba-
bility. They use a type-based semantics orthogonal to ours
and thus obtain different probabilities for queries. For an
overview about other combinations of uncertainty and de-
scription logics, we refer the interested reader to (the related
work section of) [13].

Here, we propose the tool onto2problog for the task of
OMQPD when the ontology is formulated in the description
logic ELH 3A and the query is a conjunctive query. Con-
junctive queries are a common query language and subsume
for example the query Φ above, but can be more complex,
such as

k(G) = ∃H.DepartmentHead(G) ∧mentors(H, G)

which asks for all department heads who are mentored by
someone.

Further, ELH 3A (which underlies the OWL 2 EL pro-
file [1]) is the extension of EL [5] with domain and range re-
strictions as well as role hierarchies. Thus, beyond statements
like (1) and (2) above, in ELH 3A we can write statements
like

dom(mentors) v ∃hasDegree.PhD (3)
ran(mentors) v Student (4)

mentors v manages (5)

expressing that:

(3) Anyone who mentors has a PhD
(4) Anyone who is mentored is a student
(5) Someonewhomentors a person alsomanages that person

In contrast to previous work our tool is complete in the
sense that it can process all combinations of a query and an
ontology. The base of our implementation is the adaptation
of the combined approach to ontology-mediated querying
over deterministic data [17] to the probabilistic setting [8]. It
therefore reducesOMQPD inELH 3A to the task ofmarginal
inference in a probabilistic logic program, which has an ex-
tensive literature surrounding it with many practical tech-
niques available. In principle, this reduction can be used on
top of any off-the-shelf probabilistic logic programming en-
gine; we chose ProbLog 2 [11] for our implementation due
to its flexibility and widespread use.1

In this paper, we first give some background on ontology-
mediated querying of probabilistic data, probabilistic data-
bases, and probabilistic logic programs. We then describe
the implementation of our system and show how it can be
used. Finally, we show an evaluation of our system on the
Lehigh University Benchmark. For the technical details of
our approach, we refer the reader to our earlier conference
paper [8].

2 Background

In this section,we provide the formal background of ontology-
mediated query answering over probabilistic data. We start
by reviewing the description logic ELH 3A .

Ontologies in ELH 3A Fix disjoint countably infinite sets
of concept and role names #� and #', respectively. Then
EL-concepts are formed according to the syntax rule

� ::= > | � | � u � | ∃A.�

where � ∈ #� and A ∈ #'. An ELH 3A -ontology (hereafter
ontology) is a set of concept inclusions � v �, role inclu-
sions A v B, domain restrictions dom(A) v �, and range

1 ProbLog is available for free online at https://dtai.cs.
kuleuven.be/problog/.

onto2problog: A Probabilistic Ontology-mediated Querying System using Probabilistic Logic Programming 3

restrictions ran(A) v �, where � and � are EL-concepts
and A, B ∈ #'. An ABox is a finite set of concept assertions
�(0) and role assertions A (0, 1) where � ∈ #� , A ∈ #', and
0, 1 range over a countably infinite set of individual names
#� . We denote with Ind(A) the set of all individual names
that occur in A. The semantics of ELH 3A is defined as
usual in terms of interpretations I = (ΔI , ·I); we elide a
full description here and instead refer the reader to Baader
et al. [6] for details. We use standard terminology, e.g., I
is a model of T or A if it satisfies all the concept and role
inclusions as well as domain and range restrictions in T , or
all the assertions in A, respectively.

Ontology-mediated Querying over Probabilistic Data. Let
#+ denote a countably infinite set of variables disjoint from
#� . Then#) = #+ ∪#� forms the set of terms. A conjunctive
query (CQ) i is a first-order formula

i(x) = ∃y.k(x, y),

where x and y are tuples of variables in #+ , and q(x, y)
is a conjunction of atoms over signature #� ∪ #' using
terms from #) , but only variables from x and y. We drop the
free variables x of i(x) whenever no confusion can arise.
An ontology-mediated query (OMQ) is a pair (T , i) of an
ontology T and a CQ i. Given an ABox A, and an OMQ
(T , i), we say that a tuple a of individuals from A is a
certain answer for (T , i) overA if (T ,A) |= i(a), that is,
every model I of T andA satisfies I |= i(a). The set of all
certain answers to (T , i) is denoted by certA (T , i).

Following [15], we use assertion-independent proba-
bilistic ABoxes (ipABoxes) to model uncertain data. For-
mally, an ipABox is a pair (A, ?) where A is a classical
ABox and ? : A → [0, 1] assigns a probability to every as-
sertion in A. An ipABox (A, ?) induces a distribution ?(·)
over possible ABoxes A ′ ⊆ A, which is defined by taking

?(A ′) = ΠU∈A′ ?(U) · ΠU∈A\A′ (1 − ?(U)), (6)

for every A ′ ⊆ A. The probability of an answer a to an
OMQ (T , i) over an ipABox (A, ?) is then defined as:

%AA, ? (T , i, a) =
∑

A′⊆A,a∈certA′ (T ,i)
?(A ′).

The prime inference task here is to compute answer proba-
bilities, that is, given an ipABox (A, ?) and anOMQ (T , i),
compute %AA, ? (T , i, a) for all answer candidates a.

Coming back to the example from the introduction, the
set of probabilistic facts corresponds to the ipABox (A, ?)
where

A = {DepartmentHead(0;824),mentors(0;824, 2ℎ0A;84)}

and

?(DepartmentHead(0;824)) = 0.9
?(mentors(0;824, 2ℎ0A;84)) = 0.4

onto2problog

Rewriting
ΠT,i

Probabilistic
logic program

ipABox (A, ?)

PLP
engine

Answer
probabilities

Query i

Ontology T

Fig. 1 An overview of the the inference pipeline supported by
onto2problog.

If we denote with T the ontology from the introduction and
let i(G) be the query AcademicSupervisor(G), we have:

%AA, ? (T ,AcademicSupervisor(G), 0;824) = .36.

Probabilistic Logic Programs. We introduce a variant of
probabilistic logic programs that is sufficient for our pur-
poses, though some systems support more features. A prob-
abilistic logic program (PLP) is a triple (F , ?,Π) where F
is a set of facts, ? : F → [0, 1] assigns a probability to every
fact, and Π is a stratified logic program consisting of rules
of the form:

� ← �1, . . . , �<,¬�<+1, . . . ,¬�=

where � and all �8 are relational atoms over terms. The
semantics of PLPs (F , ?,Π) is defined as follows. The pair
(F , ?) induces a probability distribution ?(·) over subsets
F ′ ⊆ F just as in Equation (6). Moreover, given a set of facts
F and a set of rules Π, we denote with Π(F) the minimal
supported model of F ∪ Π, obtained via the iterated fixed
point construction of [3]. The prime inference task for PLPs
is marginal inference, that is, given a PLP (F , ?,Π) and a
distinguished goal predicate �, compute the probability of
all ground facts � (a) under (F , ?,Π), which is defined as:

%AF, ?,Π (� (a)) =
∑

F′⊆F,� (a) ∈Π(F′)
?(F ′).

3 Our Tool: onto2problog

We have implemented a tool, onto2problog, that enables
the use of probabilistic logic programming inference meth-
ods for computing answer probabilities of ontology-mediated
queries over ipABoxes. The overall architecture of the in-
ference pipeline supported by our tool is depicted in Fig-
ure 1. The input of the query answering task consists of the
ontology-mediated query (a pair comprising a conjunctive
query i and an ELH 3A -ontology T), and the probabilistic
data given by an ipABox (A, ?). Our tool processes only
the ontology-mediated query (T , i) and outputs a stratified
logic program ΠT ,i with a distinguished goal predicate �,
which is equivalent to (T , i) in the following sense:

4 Timothy van Bremen et al.

(∗) for every ipABox (A, ?) and answer candidate a, we
have

%AA, ? (T , i, a) = %AA′, ?,ΠT,i (� (a)),

where A ′ is essentially A in a slightly different repre-
sentation (described below).

For more concrete information on the structure of ΠT ,i ,
we again refer the reader to our accompanying technical
paper [8]. Here, we only stress that its size is polynomial in
the sizes of T and i, that the arity of the relation symbols
used is bounded by the arity of the query, and that it has only
two strata. The use of negation is required to exclude some
spurious answers.

Wewill next give some details on our system and demon-
strate its use with the example given earlier in the introduc-
tion. We have implemented onto2problog as a Python li-
brary, so that it can be called in a flexible and modular way.
The ontology is specified in the OWL 2 ontology language
(encoded in the standard RDF/XML format [2]), and the
query is specified in a simple predicate logic-style syntax.

For example, the fragment of our ontology T expressing
the knowledge that all department heads are professors could
be represented as follows in RDF/XML:

<owl:Class rdf:ID="DepartmentHead">
<rdfs:label>department head</rdfs:label>
<rdfs:subClassOf rdf:resource="#Professor"/>
</owl:Class>

Now suppose we wish to use this ontology and pose the
query earlier in the paper asking for all department heads
mentored by someone. Then we may specify the query k in
our Python script in the following way:

query = Query(’q(?x) <- DepartmentHead(?x),’\
+ ’mentors(?y,?x)’)

We can then load in the relevant ontology T :

reader = OWLReader(’ontologies/academic.owl’)

Given T and k, onto2problog can then be used to compute
the rewritingΠT ,k as described above (after first normalizing
the ontology):

ontology = reader.read().normalize()
rewriting = query.get_rewriting(ontology)

We are now ready to pair the rewriting with an ipABox
(A, ?). As mentioned above, the rewriting relies on a cer-
tain representation of the ABox which we detail next. We
represent ipABoxes as strings of probabilistic facts over two
fixed predicate names concept and role. For example, the
facts DepartmentHead(0;824) and mentors(0;824, 2ℎ0A;84)
from earlier, along with their probabilities, are specified as
the following string:

data = \
"0.9::concept(’DepartmentHead’,’alice’)." + \
"0.4::role(’mentors’,’alice’,’charlie’)."

Note that both concept, role, and individual names become
constants under this representation. Putting it all together,
we get our final probabilistic logic program with the distin-
guished query predicate q (the name of our query above):

model = data + rewriting + ’query(q(_)).’

We may now pass this to ProbLog to do the “heavy lifting”
of computing the marginal probabilities for the distinguished
predicate q in the constructed PLP, producing a list of tuples
together with their respective probabilities:

result = get_evaluatable().
create_from(PrologString(model)).
evaluate()

By construction, and in particular because of property (∗)
above, the results returned are the answers to the original
ontology-mediated query task.

ProbLog supports marginal inference via a variety of dif-
ferent algorithms based on knowledge compilation [9], for
example, to d-DNNF and SDD. It also supports forward in-
ference in a process known as)%-compilation [22]. Using
ProbLog’s Python interface, the user may select which in-
ference method they wish to use in order to evaluate their
query.

Our tool together with some documentation and an ex-
ample is available online at http://www.informatik.
uni-bremen.de/~jeanjung/onto2problog.html.

4 Evaluation

We evaluated onto2problog on a probabilistic version of
the Lehigh University Benchmark (LUBM) [12]. LUBM is
a benchmark for measuring the performance of semantic
knowledge base systems in a consistent manner, comprising
an ontology, data generation tool, and a set of test queries.
For the purposes of our experiments, we dropped transitive
and inverse role declarations from the ontology in order to
obtain a valid ELH 3A -ontology. Also queries 11, 12, and
13 were deliberately omitted from the test queries as they
are specifically designed to test reasoning with inverse and
transitive role declarations.We set the parameters of the orig-
inal data generation tool to generate an ABox of cardinality
15189. Of this, 12260 statements were role assertions and
the remainder were concept assertions.

Wewrote scripts to transform the assertions generated by
the data generation tool to probabilistic facts in ProbLog. As
the data from the tool is deterministic by default, we enriched
the output by associating each ABox assertion U with an
indepedent, uniformly drawn probability ?(U) ∼ U(0, 1) to

onto2problog: A Probabilistic Ontology-mediated Querying System using Probabilistic Logic Programming 5

Table 2 Grounding and compilation runtime for the Lehigh University Benchmark queries. All times are in seconds.

onto2problog First-order rewriting
Classic inference Classic inference

Query Grounding)%-compilation Cycle-breaking Compilation Grounding)%-compilation Cycle-breaking Compilation

1 0.00 0.00 0.00 0.00 0.04 0.05 0.00 0.00
2 70.14 5.17 0.00 0.00 28.82 0.11 0.00 0.00
3 0.03 0.00 0.00 0.00 0.59 0.67 0.00 0.00
4 25.60 5.73 0.02 0.03 0.88 0.95 0.02 0.03
5 28.24 28.04 1.60 2.53 2.39 5.66 0.40 1.05
6 25.61 71.23 2.92 6.30 4.09 50.12 2.23 5.67
7 78.49 6.26 0.04 0.05 4.53 5.44 0.02 0.05
8 30.24 92.90 3.46 7.47 6.19 71.90 2.54 6.91
9 Timeout – – – Timeout – – –
10 27.28 4.85 0.00 0.00 4.35 4.63 0.01 0.03
14 0.32 0.12 0.01 0.03 0.20 0.13 0.00 0.00

“Timeout” indicates that the procedure took over ten minutes to run.

obtain an ipABox. Finally, using our tool, we computed the
rewritings of each of the LUBM queries with respect to the
ontology. In the second step we used ProbLog to compute
the query probabilities.

We used two different inference methods supported by
ProbLog: (i) the “classic” ProbLog inference approach of
cycle-breaking and compilation to sentential decision dia-
grams (SDDs) [21], and (ii))%-compilation to SDDs, which
avoids the cycle-breaking step altogether through forward
inference [22]. Regardless of the method used, ProbLog first
computes the ground program relevant to the query, that is,
it transforms the probabilistic logic program into one using
only ground atoms (while returning the same probabilities).
We refer to this first phase as the grounding step. We refrain
from giving more details on the methods (i) and (ii) here and
instead refer the reader to the aforementioned papers. The
runtimes of the computation, divided into the relevant steps,
is shown in the left side of Table 2.

We compared onto2problog to an alternative approach
to query answering, based on first-order rewritings. Infor-
mally, first-order rewritings transform the input ontology-
mediated query (T , i) into an equivalent first-order query
iT (or equivalently, a non-recursive datalog program). Al-
though first-order rewritings have been used mainly in the
classical, that is, non-probabilistic, ontology-mediated query
answering, it has been observed that they remain valid also in
the probablistic version OMQPD [15]. In the case of the on-
tology language EL, first-order rewritings are well-studied
and it is known that they do not always exist [14]. Thus,
they do not provide a complete tool for OMQPD. However,
LUBMdoes not use all features provided by ELH 3A . In fact,
when dropping the role transitivity axioms, it is essentially
formulated in a variant of DL-Lite, which implies that for
all ontology-mediated queries based on LUBM, first-order
rewritings do exist [4]. We therefore manually computed
these rewritings and evaluated them using ProbLog as well.
The results of this can be found in the right side of Table 2.

1.5 2 2.5 3 3.5 4 4.5
·104

50

100

150

200

250

ipABox size

Ru
nt
im

e
(s
)

Query 5
Query 6
Query 8

Fig. 2 Total inference time on various ipABox sizes, using classic
inference.

Interestingly, we see that most of the time is spent in the
grounding step rather than the knowledge compilation step
for each query. These steps correspond to the (deterministic)
query answering phase and probability computation phase,
respectively. This means that a large amount of time is taken
in the computation of the relevant ground program, which is
based on SLD-resolution. As SLD-resolution is theoretically
not a hard task,we believe this to be the result of inefficiencies
in ProbLog’s implementation of grounding which become
apparent when dealing with large programs like the ones
here.

Moreover, the classic ProbLog inferencemethod of cycle-
breaking and compilation to SDDs consistently outperforms
)%-compilation. We also observe that first-order rewritings
seem to have somewhat better inference times overall, as a
trade-off for the incompleteness of this approach. We con-
clude that in practice, it may be best to first test the first-order
rewritability of the query before resorting to the complete ap-
proach provided by onto2problog as a second option.

Finally, to get an indication of how our method scales, we
examined the total inference time on different ipABox sizes
for a subset of the queries in Table 2 for which inference
appeared non-trivial. The total inference time here is the

6 Timothy van Bremen et al.

sum of grounding, cycle-breaking, and SDD compilation
time. The results are shown in Figure 2. We observe that
the runtime increases with ipABox size, but the exact nature
of the relationship appears to be dependent on the query in
question: the increase is much steeper for query 8 than query
5, for example.

5 Conclusion and Future Work

We have presented our tool onto2problog for answering
queries over incomplete probablistic data in the presence
of ontologies formulated in the description logic ELH 3A .
The evaluation shows potential for our tool to be used in at
least small-scale scenarios. At the same time, it shows that
the grounding step can be unexpectedly time-consuming.
While it is known that grounding can be expensive in logic
programming (see for instance [16] in the context of answer
set programming), the PLP ΠT ,i we produce should not be
“dangerous” in this sense. We therefore conclude that this
is a bottleneck in ProbLog’s implementation, which indeed
has been addressed in very recent work [10]. It would be
interesting to combine their results with our efforts.

Beyond these improvements to the grounding step, we
would like to extend our tool in three directions. First, we
want to integrate first-order rewritings into our program na-
tively, which on the one hand exhibited better performance
in some of our experiments, but on the other hand are incom-
plete in general. Second, we want to investigate whether our
approach can be extended to different ontology languages,
such as those in the Datalog± family [7]. Finally, it would
be interesting to see whether other capabilities of ProbLog,
such as learning, can be transferred to the OMQPD setting.

Acknowledgements. This work has received funding from
the Research Foundation - Flanders (grant G042815N), and
from the European Research Council under the European
Union’s Horizon 2020 research and innovation programme
(grant 694980).

References

1. OWL 2 web ontology language profiles. W3C recommen-
dation, W3C (2012). URL http://www.w3.org/TR/2012/
REC-owl2-profiles-20121211/

2. RDF 1.1 XML syntax. W3C recommendation,
W3C (2014). URL http://www.w3.org/TR/2014/
REC-rdf-syntax-grammar-20140225/

3. Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative
knowledge. In: J.Minker (ed.) Foundations ofDeductiveDatabases
and Logic Programming, pp. 89–148. Morgan Kaufmann (1988)

4. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev,M.: The
dl-lite family and relations. J. Artif. Int. Res. 36(1), 1–69 (2009)

5. Baader, F.: Terminological cycles in a description logic with ex-
istential restrictions. In: Proceedings of ĲCAI 03, pp. 325–330.
Morgan Kaufmann (2003)

6. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to
Description Logic. Cambridge University Press (2017)

7. Borgwardt, S., Ceylan, İ.İ., Lukasiewicz, T.: Ontology-mediated
queries for probabilistic databases. In: Proceedings of AAAI 2017,
pp. 1063–1069. AAAI Press (2017)

8. van Bremen, T., Dries, A., Jung, J.C.: Ontology-mediated queries
over probabilistic data via probabilistic logic programming. In:
Proceedings of CIKM 2019, pp. 2437–2440 (2019)

9. Darwiche, A., Marquis, P.: A knowledge compilation map. J. Artif.
Intell. Res. 17, 229–264 (2002)

10. Efthymia Tsamoura Víctor Gutiérrez-Basulto, A.K.: Beyond the
grounding bottleneck: Datalog techniques for inference in prob-
abilistic logic programs. In: Proceedings of AAAI 2020. AAAI
Press (2020)

11. Fierens, D., Van den Broeck, G., Renkens, J., Shterionov, D., Gut-
mann, B., Thon, I., Janssens, G., De Raedt, L.: Inference and
learning in probabilistic logic programs using weighted boolean
formulas. TPLP 15(3), 358–401 (2015)

12. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowl-
edge base systems. J. Web Semant. 3(2-3), 158–182 (2005)

13. Gutiérrez-Basulto, V., Jung, J.C., Lutz, C., Schröder, L.: Proba-
bilistic description logics for subjective uncertainty. J. Artif. Intell.
Res. 58, 1–66 (2017)

14. Hansen, P., Lutz, C.: Computing fo-rewritings in EL in practice:
From atomic to conjunctive queries. In: The SemanticWeb - ISWC
2017 - 16th International Semantic Web Conference, Vienna, Aus-
tria, October 21-25, 2017, Proceedings, Part I, pp. 347–363 (2017)

15. Jung, J.C., Lutz, C.: Ontology-based access to probabilistic data
with OWL QL. In: Proceedings of ISWC 2012, pp. 182–197.
Springer (2012)

16. Kaufmann, B., Leone, N., Perri, S., Schaub, T.: Grounding and
solving in answer set programming. AI Magazine 37(3), 25–32
(2016)

17. Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in
the description logic EL using a relational database system. In:
Proceedings of ĲCAI 2009, pp. 2070–2075 (2009)

18. Mitchell, T.M., Cohen, W.W., Jr., E.R.H., Talukdar, P.P., Bet-
teridge, J., Carlson, A., Mishra, B.D., Gardner, M., Kisiel, B.,
Krishnamurthy, J., Lao, N., Mazaitis, K., Mohamed, T., Nakas-
hole, N., Platanios, E.A., Ritter, A., Samadi, M., Settles, B., Wang,
R.C., Wĳaya, D., Gupta, A., Chen, X., Saparov, A., Greaves, M.,
Welling, J.: Never-ending learning. In: Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence, January 25-30,
2015, Austin, Texas, USA., pp. 2302–2310. AAAI Press (2015)

19. Schoenfisch, J., Stuckenschmidt, H.: Towards large-scale prob-
abilistic OBDA. In: Proceedings of SUM 2015, pp. 106–120.
Springer (2015)

20. Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic Databases.
Synthesis Lectures on Data Management. Morgan & Claypool
Publishers (2011)

21. Vlasselaer, J., Renkens, J., Van den Broeck, G., De Raedt, L.:
Compiling probabilistic logic programs into sentential decision di-
agrams. In:Workshop on Probabilistic Logic Programming (PLP),
Vienna (2014)

22. Vlasselaer, J., Van den Broeck, G., Kimmig, A., Meert, W., De
Raedt, L.: Tp-compilation for inference in probabilistic logic pro-
grams. Int. J. Approx. Reasoning 78, 15–32 (2016)

23. Zese, R., Bellodi, E., Lamma, E., Riguzzi, F., Aguiari, F.: Seman-
tics and inference for probabilistic description logics. In: Uncer-
tainty Reasoning for the Semantic Web III - ISWC International
Workshops, URSW 2011-2013, Lecture Notes in Computer Sci-
ence, vol. 8816, pp. 79–99. Springer (2014)

