
Actively Learning ELI Queries
under DL-Lite Ontologies

Maurice Funk1, Jean Christoph Jung2, and Carsten Lutz1

1 Department of Computer Science, University of Bremen, Germany
2 Department of Computer Science, University of Hildesheim, Germany

Abstract. We show that ELI queries (ELIQs) are learnable in polyno-
mial time in the presence of a DL-Lite ontology O, in Angluin’s framework
of active learning. When initially provided with a conjunctive query (CQ)
that implies the target ELIQ under O (in the sense of query contain-
ment), it suffices for the learner to only pose membership queries to the
oracle, but no equivalence queries. The initial CQ can be obtained by a
single equivalence query and is available ‘for free’ in case that O does not
pose any disjointness constraints on concepts. Our main technical result
is that every ELI concept has only polynomially many most specific
subsumers w.r.t. a DL-Lite ontology, generalizing a recent result about
homomorphism frontiers by ten Cate and Dalmau.

1 Introduction

Constructing description logic (DL) concepts, ontologies, and queries can be
challenging and costly, especially when logic expertise and domain knowledge
are not in the same hands. This has prompted many approaches to learning such
objects, including PAC learning [12,13,14], the construction of the least common
subsumer (LCS) and the most specific concept (MSC) [4,6,7,19,28], and learning
from data examples [16,18,22,23,27]. In recent years, there has been significant
interest in applying Angluin’s framework of exact learning in a DL context where
a learner interacts in a game-like fashion with an oracle [1,2]. In particular, the
learner may be a DL expert and the oracle a collaborating domain expert. The
main aim is then to find an algorithm that enables the learner to construct the
target object in polynomial time based on queries that it poses to the oracle,
even when the oracle is not able to answer the queries in the most informative
way.

The interest in exact learning in DLs started with an investigation of ontology
learning in (the conference version of) [21], see also [20,26] and the survey [25].
This was recently complemented by studies of exactly learning DL concepts and
queries: active learning of ELI concept queries (ELIQs) without ontologies is
considered in [11] while [15] studies active learning of EL concept queries (ELQs),
ELIQs, and restricted forms of conjunctive queries (CQs) in the presence of EL

Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

and ELI ontologies. The purpose of the current paper is to initiate the study of
actively learning concepts and queries under ontologies formulated in DL-Lite,
a prominent family of DLs that is featured in the OWL 2 family of ontology
languages [3]. Our main result is that ELIQs, which can be viewed both as
queries and as concepts to be used in an ontology, can be learned under DL-Lite
ontologies in polynomial time even when the oracle can pose only a very basic
kind of query to the oracle. To make this precise, we introduce the exact learning
framework in more detail.

Learner and oracle both know and agree on the ontology O and the concept
and role names that are available for constructing the target ELIQ qT which must
be satisfiable w.r.t. O; we assume that this includes all concept and role names
in O. In a membership query, the learner provides an ABox A and a candidate
answer ā and asks whether A,O |= qT (ā); the oracle faithfully answers “yes” or
“no”. In an equivalence query, the learner provides a hypothesis ELIQ qH and asks
whether qH is equivalent to qT under O; the oracle answers “yes” or provides a
counterexample, that is, an ABox A and tuple ā such that A,O |= qT (ā) and
A,O 6|= qH(ā) (positive counterexample) or vice versa (negative counterexample).
One is then interested in polynomial time learnability, that is, whether there is a
learning algorithm that constructs qT (x̄), up to equivalence w.r.t. O, such that
at any given time, the running time of the algorithm is bounded by a polynomial
in the sizes of qT , of O, and of the largest counterexample given by the oracle so
far. A weaker requirement is polynomial query learnability where only the sum of
the sizes of the queries posed to the oracle up to the current time point has to
be bounded by such a polynomial.

We can now state our main result more precisely. With DL-Lite, we generally
refer to the basic member of the DL-Lite family [10] that admits inclusions between
basic concepts, concept disjointness constraints, and role disjointness constraints;
DL-Lite− then means the fragment without concept disjointness. Our main result
is that ELIQs are polynomial time learnable using only membership queries under
DL-Lite− ontologies, and that the same is true for DL-Lite ontologies provided
that we have available an initial CQ q0

H such that q0
H ⊆O qT , that is, the answers

to q0
H w.r.t. O are a subset of those to qT w.r.t. O on every ABox A. Such a

q0
H can be obtained by a single initial equivalence query. We also observe that

polynomial learnability using only membership queries fails in the presence of
concept disjointness.

Let us mention two interesting perspectives on our results. First, they gen-
eralize the results in [11] about polynomial time learnability of ELIQs to the
case with DL-Lite ontologies, in fact borrowing and extending crucial techniques
from [11]. And second, the results in [15] demonstrate that inverse roles pose a
significant challenge to polynomial time learnability. More precisely, [15] brings
forward a polynomial time learning algorithm for symmetry-free ELIQs under EL
ontologies where symmetry-free means that there is no subconcept of the form
∃r.(C u ∃r−.D) with r a role name. It is not clear at all how to generalize that
algorithm to unrestricted ELIQs. Moreover, it is proved in [15] that ELQs are
not polynomial query learnable under ELI ontologies. Thus, inverse roles tend

to be challenging both in the query and in the ontology. In contrast, the result
in this paper need not impose any restriction on the use of inverse roles. It seems
relevant to recall here that DL-Lite is a fragment of ELI.

A core technical result underlying our approach is that the frontier of an
ELIQ q w.r.t. a DL-Lite− ontology is only of polynomial size and can be computed
in polynomial time, generalizing a similar result from [11] that does not encompass
ontologies. More precisely, a frontier of an ELIQ q w.r.t. a DL-Lite ontology
O is a set of ELIQs F such that q ⊆O qF and qF 6⊆O q for all qF ∈ F and for
all ELIQs q′ with q ⊆O q′ and q′ 6⊆O q, there is a qF ∈ F such that qF ⊆O q′.
Note that if one thinks of q as an ELI concept, then F is the set of most specific
subsumers of q w.r.t. O.1 Apart from being essential for our learning algorithm,
there is another reason for why one may be interested in the frontier. In fact, it
is observed in [11] that if an ELIQ q has a frontier of polynomial size, then q can
be characterized up to equivalence by polynomially many data examples. Such
an example takes the form (A, a) and is a positive example if A |= q(a) and a
negative example otherwise. The same is true in the presence of ontologies.

Proof details are given in the appendix of the long version of this paper,
available at http://www.informatik.uni-bremen.de/tdki/research/papers.
html.

2 Preliminaries

Ontologies and ABoxes. Let NC, NR, and NI be countably infinite sets of
concept, role and individual names. A role R is a role name r or the inverse r− of
a role name. A basic concept B is >, a concept name A, or of the form ∃R, R a
role. A DL-Lite ontology O is a finite set of (basic) concept inclusions B1 v B2,
concept disjointness constraints B1 uB2 v ⊥, and role disjointness constraints
R1 u R2 v ⊥. A DL-Lite− ontology is a DL-Lite ontology that contains no
concept disjointness constraints. A DL-Lite ontology is in normal form if all
concept inclusions in it are of the form A v B or B v A with A a concept name
or > and B a basic concept. An ABox A is a finite set of concept assertions A(a)
and role assertions r(a, b) with A a concept name or >, r a role name, and a, b
individual names. We use ind(A) to denote the set of individual names used in A.

The semantics is defined as usual in terms of interpretations I, which we
define to be a (possibly infinite and) non-empty set of concept and role assertions.
We use ∆I to denote the set of individual names in I, define AI = {a | A(a) ∈ I}
for all A ∈ NC, and rI = {(a, b) | r(a, b) ∈ I} and (r−)I = {(b, a) | r(a, b) ∈ I}
for all r ∈ NR. We further set >I = ∆I and (∃R)I = {a ∈ ∆I | ∃(a, b) ∈ RI} for
all roles R. This definition of interpretation is slightly different from the usual one,
but equivalent;2 its virtue is uniformity as every ABox is a finite interpretation.
An interpretation I satisfies a concept inclusion B1 v B2 if BI1 ⊆ BI2 , a concept

1 One could equivalently say that F is the set of LCSs of a single concept which strictly
generalize that concept.

2 This depends on admitting assertions >(a) in ABoxes.

http://www.informatik.uni-bremen.de/tdki/research/papers.html
http://www.informatik.uni-bremen.de/tdki/research/papers.html

disjointness constraint B1 u B2 v ⊥ if BI1 ∩ BI2 = ∅, and a role disjointness
constraint R1 uR2 v ⊥ if RI1 ∩RI2 = ∅.

An interpretation is a model of a DL-Lite ontology or an ABox if it satisfies
all concept inclusions, disjointness constraints and assertions in it. We write
O |= B1 v B2 if every model of O satisfies the basic concept inclusion B1 v B2

and A,O |= B(a) if every model of A and O satisfies the concept assertion B(a).
An ABox A is satisfiable w.r.t. a DL-Lite ontology O if A and O have a common
model.

A signature is a set of concept and role names, uniformly referred to as
symbols. For any syntactic object O such as an ontology or an ABox, we use
sig(O) to denote the symbols used in O and ||O|| to denote the size of O, that is,
the length of a representation of O as a word in a suitable alphabet.

Conjunctive Queries, ELIQs, Homomorphisms. A conjunctive query (CQ)
takes the form q(x̄)← φ(x̄, ȳ) where φ is a conjunction of concept atoms A(x),
with A ∈ NC, and role atoms r(x, y), with r ∈ NR over variables x, y ∈ x̄ ∪ ȳ. We
may write r−(x, y) in place of r(y, x). We refer to the variables in x̄ as answer
variables and to the variables in ȳ as quantified variables. We use var(q) to denote
the set of all variables in x̄ and ȳ. We may view a CQ q(x̄) as a set of atoms
when convenient and write r(x, y) ∈ q(x̄) to mean that r(x, y) occurs in the
conjunction φ.

A conjunctive query q(x̄) is unary if q(x̄) only has a single answer variable. A
cycle in a CQ q is a sequence R1(x1, x2), . . . , Rn(xn, x1) of distinct role atoms in q
such that x1, . . . xn are distinct. An ELIQ is a unary CQ q that does not contain
a cycle and such that the undirected graph Gq = (var(q), {{y, z} | r(y, z) ∈
q}) is connected. Note that every ELIQ can be seen as an ELI concept in a
straightforward way and vice versa; see [5] for a definition of ELI concepts. We
use Aq to denote the ABox obtained from q by viewing variables as individuals
and atoms as assertions. A CQ q is satisfiable w.r.t. a DL-Lite ontology O if Aq
is satisfiable w.r.t. O.

A homomorphism h from interpretation I1 to interpretation I2 is a mapping
from ∆I1 to ∆I2 such that d ∈ AI1 implies h(d) ∈ AI2 and (d, e) ∈ rI1 implies
(h(d), h(e)) ∈ rI2 . We use img(h) to denote the set {e ∈ ∆I2 | ∃d ∈ ∆I1 : h(d) =
e}. For di ∈ ∆Ii , i ∈ {1, 2}, we write I1, d1 → I2, d2 if there is a homomorphism
h from I1 to I2 with h(d1) = d2. With a homomorphism from a CQ q to an
interpretation I, we mean a homomorphism from Aq to I. For a unary CQ q(x),
we write q(x)→ (I, d) if there is a homomorphism h from q to I with h(x) = d.
Let q(x) be a unary CQ and I an interpretation. An element d ∈ ∆I is an answer
to q in I, written I |= q(d), if q(x)→ (I, d). Now let O be a DL-Lite ontology
and A an ABox. An individual a ∈ ind(A) is an answer to q on A w.r.t. O,
written A,O |= q(a), if a is an answer to q in every model of O and A.

For q1 and q2 unary CQs and O a DL-Lite ontology, we say that q1 is contained
in q2 w.r.t. O, written q1 ⊆O q2 if for all ABoxes A and a ∈ ind(A), A,O |= q1(a)
implies A,O |= q2(a). We call q1 and q2 equivalent w.r.t. O, written q1 ≡O q2, if
q1 ⊆O q2 and q2 ⊆O q1.

O-saturatedness and O-minimality. The following two technical notions are
used throughout this paper. A CQ q is O-saturated, with O a DL-Lite ontology,
if Aq,O |= A(y) implies A(y) ∈ q for all y ∈ var(q) and A ∈ NC. It is O-minimal
if there is no S (var(q) such that q ≡O q|S with q|S the restriction of q to the
atoms that only contain variables in S.

The following is a consequence of the fact that acyclic CQs over DL-Lite
ontologies can be answered in polynomial time [8].

Lemma 1. Given an ELIQ q and a DL-Lite ontology O, we can find in polyno-
mial time an O-saturated and O-minimal ELIQ q′ with q ≡O q′.

Universal Model. Let O be a DL-Lite ontology and A an ABox that is
satisfiable w.r.t. O. A trace for A and O is a sequence t = aR1 . . . Rn, n ≥ 0, such
that a ∈ ind(A), the basic concepts ∃R1, . . . ,∃Rn occur in O, A,O |= ∃R1(a),
and O |= ∃R−i v ∃Ri+1 for 1 ≤ i < n. Let T denote the set of all traces for A
and O. Then the universal model of A and O is

UA,O = A ∪ {A(a) | A,O |= A(a)} ∪
{A(tR) | tR ∈ T and O |= ∃R− v A} ∪ {R(t, tR) | tR ∈ T}.

For brevity, we write Uq,O instead of UAq,O for any conjunctive query q.

3 Computing Frontiers in Polynomial Time

We show that for every ELIQ q and DL-Lite ontology O such that q is satisfiable
w.r.t. O, there is a frontier of polynomial size that can be computed in polynomial
time. This generalizes a result from [11] for the case without ontologies. We also
observe that the same is not true when DL-Lite is extended with conjunction,
and that ELIQs can be characterized up to equivalence by polynomially many
data examples in the presence of DL-Lite ontologies.

Definition 1. A frontier of an ELIQ q w.r.t. a DL-Lite ontology O is a finite
set of ELIQs F such that

1. q ⊆O qF for all qF ∈ F ;
2. qF 6⊆O q for all qF ∈ F ;
3. for all ELIQs q′ with q ⊆O q′ 6⊆O q, there is a qF ∈ F with qF ⊆O q′.

It is not hard to see that frontiers that are minimal w.r.t. set inclusion are unique
up to equivalence of the ELIQs in them, that is, if F1 and F2 are minimal frontiers
of q w.r.t. O, then for every qF ∈ F1, there is a q′F ∈ F2 such that qF ≡O q′F ,
and vice versa. The following is the main result of this section.

Theorem 1. Let O be a DL-Lite ontology and q an ELIQ that is satisfiable
w.r.t. O. Then a frontier of q w.r.t. O can be computed in polynomial time.

For proving Theorem 1, we first observe that we can concentrate on ontologies
that are in normal form.

Lemma 2. For every DL-Lite ontology O, we can construct in polynomial time
a DL-Lite ontology O′ in normal form such that for every ELIQ q, a frontier of
q w.r.t. O can be constructed in polynomial time given a frontier of q w.r.t. O′.

The normalization of O introduces fresh concept names X∃R that represent
the basic concept ∃R. In the proof of Lemma 2, we construct the frontier of q
w.r.t. O′ by replacing atoms X∃R(x) with atoms R(x, y), y a fresh variable.

Now we start with the proof of Theorem 1. Let O and q(x) be as in the
formulation of the theorem, O in normal form. By Lemma 1 and the fact that
equivalent queries have the same frontiers, we can assume that q is O-saturated
and O-minimal. To construct a frontier of q w.r.t. O, we consider all ways to
weaken q in a minimal way where weakening means to construct from q an ELIQ
q′ such that q ⊆O q′ and q′ 6⊆O q.

We start with some notation. We view the answer variable x of q as the root
of the undirected tree Gq, thus imposing a direction on this tree which allows
us to use notions for directed trees, such as successor, predecessor, and leaf, for
the variables in q. Note that the imposed direction is unrelated to the direction
of (inverse) roles in atoms in q. For every z ∈ var(q), we use qz to denote the
ELIQ obtained from q by taking the subtree of Gq rooted at z and making z the
answer variable. For each variable y ∈ var(q), we define a set Γy of atoms in q
that mention y and represent options that we have for weakening q. Formally, Γy
contains

– all role atoms R(y, z) ∈ qy and
– all concept atoms A(y) ∈ q such that

(i) there is no B(y) ∈ q with O |= B v A and O 6|= A v B and
(ii) there is no R(y, z) ∈ q with O |= ∃R v A.

Informally, we can weaken q by choosing a y ∈ var(q) and then removing a concept
atom A(y) ∈ Γy or a role atom R(y, z) ∈ Γy as well as the subtree of q rooted at
variable z. However, such removals alone are not enough to obtain a minimal
weakening of q and must be accompanied by certain additions, as detailed below.
Note that Conditions (i) and (ii) are needed to ensure that removing A(y) indeed
weakens q, that is, the resulting query is not equivalent to q w.r.t. O.

We define a set of ELIQs Fq(y) for every variable y ∈ var(q), by induction
on the codepth of y in q. The set Fq(x) ultimately obtained is a frontier of q
w.r.t. O. For every y ∈ var(q), set

Fq(y) = {qα(y) | α ∈ Γy}

where qα(y) is constructed by starting with qy(y) and then doing the following:

1. if α = A(y), remove all atoms B(y) with O |= A ≡ B (including α);
2. if α = R(y, z), remove α and all atoms of qz. For each qβ(z) ∈ Fq(z), add

a disjoint copy q̃β of qβ and the role atom R(y, z̃) where z̃ is the copy of z
in q̃β ;

3. for each S(y, z1) ∈ qy with S(y, z1) 6= α, add a disjoint copy q′ of q and the
role atom S(y′, z1) where y′ is the copy of y in q′;

y

ŷ

zz1 yR2

qz1 qz

R
R1 R2

R3

y

ŷ′

q

R3

z1

R1

qz1

y′

q

R1

yR2

R2

y′

q

R2

z′

R

qβ1

z′

R

qβn

. . .

. . .

Fig. 1. Construction of qR(y,z)(y) from q

4. for each S(y, yS) ∈ Uqy,O with yS a trace such that O 6|= ∃S v A if α = A(y),
add a disjoint copy q′ of q and the role atoms S(y, z1), S(y′, z1), where y′ is
the copy of y in q′ and z1 is a fresh variable name;

5. if there is a S(ŷ, y) ∈ q with ŷ the predecessor of y, then add a disjoint copy
q′ of q and the role atom S(ŷ′, y) where ŷ′ is the copy of ŷ in q′.

Note that Step 2 is the inductive step, where every subtree rooted at a successor
z of y is replaced with all ELIQs from Fq(z). The construction is illustrated
in Figure 1 which on the left side shows a variable y in q with predecessor ŷ,
two successors z1 and z in q, and one additional successor yR2 (a trace) in the
universal model Uq,O. On the right side, it displays the ELIQ qR(y,z)(y) ∈ Fq(y),
assuming that Fq(z) = {qβ1 , . . . , qβn}. We remark that for y 6= x, the set Fq(y) is
not necessarily a frontier of the ELIQ qy(y) because the part of q that is outside
of subtree qy is taken into account in the construction of Fq(y), in Steps 3-5. Our
construction generalizes the construction of frontiers of ELIQs without ontologies
given in [11].3 It indeed yields a frontier.

Lemma 3. Fq(x) is a frontier of q(x) w.r.t. O.

We next observe that the obtained frontier Fq(x) is of polynomial size. It is
then clear that it can be computed in polynomial time as described above since
subsumption between basic concepts in DL-Lite can be decided in polynomial
time [10].

3 There is actually a small omission in [11] as the counterpart of our Step 5 is missing.

Lemma 4.
∑

qα(x)∈Fq(x)

|var(qα)| ≤ |sig(q)| · |var(q)|3 · (|var(q)|+ 1) · (||O||+ 1).

We next observe that adding conjunction to DL-Lite destroys polynomial
frontiers and thus Theorem 1 does not extend to DL-Litehorn ontologies [3]. In
fact, this already holds for very simple queries and ontologies, implying that
also for other DLs that support conjunction such as EL, polynomial frontiers
are elusive. A conjunction of atomic queries (AQ∧) is a unary CQ of the form
q(x)← A1(x)∧ · · · ∧An(x) and a conjunctive ontology is a set of CIs of the form
A1 u · · · uAn v A where A1, . . . , An and A are concept names.

Theorem 2. There are families of AQ∧s q1, q2, . . . and conjunctive ontologies
O1,O2, . . . such that for all n ≥ 1, any frontier of qn w.r.t. On has size at
least 2n.

The proof is a variation of a proof given in [15] showing that AQ∧s are
not polynomial time learnable under conjunctive ontologies. It is based on the
following AQ∧s and ontologies:

qn(x)← A1(x) ∧A′1(x) ∧ · · · ∧An(x) ∧A′n(x)

On = {Ai uA′i v A1 uA′1 u · · · uAn uA′n | 1 ≤ i ≤ n}.

In fact, the minimal frontier contains all AQ∧s that contain exactly one of the
conjuncts Ai and A′i, for 1 ≤ i ≤ n. Observe that in the proof of Theorem 1,
there are only polynomially many choices for weakening an ELIQ, represented
by the sets Γy, y ∈ var(q). In contrast, weakening the AQ∧ qn w.r.t. ontology On
in a minimal way requires to choose for each i ∈ {1, . . . , n} whether Ai or A′i
should be removed, and there are exponentially many such choices.

To close this section, we briefly consider the unique characterization of ELIQs
in terms of polynomially many data examples. A data example takes the form
(A, a) where A is an ABox and a ∈ ind(A). Let E+, E− be finite sets of data
examples. An ELIQ q fits (E+, E−) w.r.t. a DL-Lite ontology O if (A, a) ∈ E+

implies A,O |= q(a) and (A, a) ∈ E− implies A,O 6|= q(a). We say that (E+, E−)
uniquely characterizes q w.r.t. O if q fits (E+, E−) and every ELIQ q′ that also
fits (E+, E−) satisfies q ≡O q′. The following is a consequence of Theorem 1.

Theorem 3. For every DL-Lite ontology O and every ELIQ q that is satisfiable
w.r.t. O, we can compute in polynomial time data examples (E+, E−) that
uniquely characterize q w.r.t. O.

Note that unique characterizability is closely related to the reverse engineering
of CQs, also called query-by-example and studied in a DL context in [17,24].

4 Learning ELIQs

We use the results from the previous section to show that ELIQs are polynomial
time learnable using only membership queries under DL-Lite ontologies if the
learner is provided with an initial CQ q0

H such that q0
H is satisfiable w.r.t. the

ontology O and q0
H ⊆O qT where qT is the target ELIQ. Such a q can be

constructed in polynomial time if O is formulated in DL-Lite−. Otherwise, it
can be produced by a single initial equivalence query with an ELIQ that is not
satisfiable w.r.t. O, forcing the learner to provide a positive counterexample (A, a)
from which we can extract the desired q0

H . Before proving these positive results,
however, we first observe that polynomial time learning using only membership
queries (but no initial equivalence query) is not possible when O contains concept
disjointness constraints.

A disjointness ontology is a DL-Lite ontology that only consists of concept
disjointness constraints.

Theorem 4. AQ∧s are not polynomial query learnable under disjointness on-
tologies using only membership queries.

The proof of Theorem 4 is a variation of that of Theorem 2. We next present
the main results of this section.

Theorem 5.

1. ELIQs are polynomial time learnable under DL-Lite ontologies using only
membership queries and a single initial equivalence query.

2. ELIQs are polynomial time learnable under DL-Lite− ontologies using only
membership queries.

Throughout this section, we may assume the ontology to be in normal form.

Lemma 5. If ELIQs are polynomial time learnable under DL-Lite ontologies
in normal form using membership queries and a single initial equivalence query,
then this is also true for unrestricted DL-Lite ontologies. The same holds for
DL-Lite− ontologies without the initial equivalence query.

The idea to prove Lemma 5 is to convert the given ontology into normal form
and then run the learning algorithm for ontologies in normal form. Since that
algorithm may pose membership queries and equivalence queries that involve
fresh concept names introduced during normalization, we need to replace those
concept names as described after Lemma 2 before forwarding the query to the
oracle (which uses the original non-normalized ontology).

We prove Points 1 and 2 of Theorem 5 simultaneously. Let O be a DL-Lite
ontology and Σ a finite signature that contains all symbols in O, both known to
the learner and the oracle. Further let qT (y) be the target ELIQ known to the
oracle, formulated in signature Σ and satisfiable w.r.t. O. The algorithm that
enables the learner to learn qT in polynomial time is displayed as Algorithm 1. It
takes as input a CQ q0

H that is satisfiable w.r.t. O and satisfies q0
H ⊆O qT . Note

that q0
H need not be an ELIQ. The algorithm then constructs and repeatedly

updates a hypothesis ELIQ qH while maintaining that qH ⊆O qT . The initial call
to subroutine treeify yields an ELIQ qH with q0

H ⊆O qH ⊆O qT to be used as the
first hypothesis. The algorithm then iteratively generalizes qH by constructing the
frontier FqH of qH w.r.t. O in polynomial time and choosing from it a new ELIQ
qH with qH ⊆O qT . Additionally, the algorithm applies the minimize subroutine

Algorithm 1 Algorithm for learning ELIQs under DL-Lite ontologies

Input A DL-Lite ontology O and a CQ q0H satisfiable w.r.t. O such that q0H ⊆O qT
Output An ELIQ qH such that qH ≡O qT

qH := treeify(q0H)
while there is a qF ∈ FqH with qF ⊆O qT do

qH := minimize(qF)
end while
return qH

to ensure that the new qH is O-minimal and to avoid an excessive blowup while
iterating in the while loop.

Before we detail the subroutines treeify and minimize, we explain how to
obtain the argument q0

H to the algorithm. Suppose first that O contains neither
concept disjointness constraints nor role disjointness constraints. Then

q0
H(x) = {A(x) | A ∈ Σ ∩ NC} ∪ {r(x, x) | r ∈ Σ ∩ NR}. (1)

If O contains concept or role disjointness constraints, then we cannot use the
above q0

H because it is not satisfiable w.r.t. O. If, however, O contains only role
disjointness constraints, then we can still find a suitable q0

H . Let R be the set
of all r ∈ Σ ∩ NR such that ∃r is satisfiable w.r.t. O, introduce four variables
x0
r, x

1
r, x

0
r− , x

1
r− for all r ∈ R, and fix a linear order � on R′ = R ∪ {r− | r ∈ R}.

Fix any variable x := xiR. Then, q0
H is given by

q0
H(x) = {A(xiR) | A ∈ Σ ∩ NC, R ∈ R′, i ∈ {0, 1}} ∪

{R(xiS , x
i
R) | R,S ∈ R′, S � R, i ∈ {0, 1}} ∪

{R(xiS , x
1−i
R) | R,S ∈ R′, S 6� R, i ∈ {0, 1}}.

Observe that every variable has an R-successor for every (satisfiable) role R.
Therefore, there is a homomorphism from every satisfiable target ELIQ qT to
q0
H , which shows that indeed q0

H ⊆O qT .
In the remaining case when O contains a concept disjointness constraint

A u B v ⊥, we pose the ELIQ A(x) ∧ B(x) as an equivalence query to the
oracle. Since the target query is satisfiable w.r.t. O, the oracle returns a positive
counterexample (A, a). The desired query q0

H is (A, a) viewed as a CQ with answer
variable a. In the algorithm, we may w.l.o.g. assume that q0

H is O-saturated due
to Lemma 1.

The minimize subroutine. The subroutine takes as input a unary CQ q(x)
that is O-saturated, satisfiable w.r.t. O, and satisfies q ⊆O qT . It computes an
O-minimal unary CQ q′ with q ⊆O q′ ⊆O qT using membership queries. This is
done by exhaustively applying the following operation:

Remove successor. Choose a role atom r(x1, x2) ∈ q and let q− be the restriction
of q \ {r(x1, x2)} to the atoms that only contain variables which are reachable

from x in Gq\{r(x1,x2)}. Pose the membership query Aq− ,O |= qT (x). If the
response is positive, continue with q− in place of q.

This operation preserves O-saturation and satisfiability w.r.t. O. Since the
operation is applied at most once to each atom in q, the running time and
number of membership queries is polynomial in |var(q)| + |Σ|. The following
lemma summarizes important properties of q′ = minimize(q) that we need to
show correctness and polynomial running time of Algorithm 1.

Lemma 6. Let q be a unary CQ that is O-saturated and satisfiable w.r.t. O such
that q ⊆ qT for the target query qT (y), and let q′ = minimize(q). Then

1. q ⊆O q′ and q′ ⊆O qT ;
2. var(q′) ⊆ img(h) for every homomorphism h from qT to Uq′,O with h(y) = x

(and consequently |var(q′)| ≤ |var(qT)|);
3. q′ is O-minimal.

When q is an ELIQ, minimize(q) is also an ELIQ. We define minimize on
unrestricted CQs since it is applied to non-ELIQs as part of the treeify subroutine,
described next.

The treeify subroutine. The subroutine takes as input a unary CQ q(x) that
is O-saturated, satisfiable w.r.t. O, and satisfies q ⊆O qT . It computes an ELIQ
q′ = treeify(q) with q ⊆O q′ ⊆O qT by repeatedly increasing the length of
cycles in q and posing membership queries; similar constructions are used in
in [21,15]. Formally, treeify constructs a sequence of CQs p1, p2, . . . starting with
p1 = minimize(q) and then taking pi+1 = minimize(p′i) where p′i is obtained from
pi by doubling the length of every cycle. More precisely, p′i is the result of the
following operation.

Double cycle. Choose a cycle R1(x1, x2), . . . , Rn(xn, x1) in pi and let p′i be the
CQ obtained as follows: start with pi, introduce copies x′1, . . . , x

′
n of x1, . . . , xn,

and

– remove all atoms R(xn, x1);
– add A(x′j) if A(xj) ∈ pi with 1 ≤ j ≤ n;
– add R(x′j , z) if R(xj , z) ∈ pi with 1 ≤ j ≤ n and z /∈ {x1, . . . , xn};
– add R(x′j , x

′
k) if R(xj , xk) ∈ pi with 1 ≤ j, k ≤ n and {j, k} 6= {1, n};

– add R(xn, x
′
1) and R(x′n, x1) if R(xn, x1) ∈ pi.

Once pi contains no more cycles, treeify stops and returns pi. The next lemma
states the central properties of this construction.

Lemma 7. For all i ≥ 1,

1. pi is O-saturated and satisfiable w.r.t. O;
2. pi ⊆O qT ;
3. pi ⊆O pi+1 and |var(pi+1)| > |var(pi)|.

Point 3 of Lemma 7 and the ‘consequently’ part of Point 2 of Lemma 6
imply that treeify terminates and thus eliminates all cycles in q while maintaining
q ⊆O qT . The next lemma makes this precise.

Lemma 8. Let q be a CQ that is O-saturated, satisfiable w.r.t. O, and satisfies
q ⊆O qT . Then q′ = treeify(q) is an ELIQ that can be computed in time polynomial
in |var(qT)|+ ||q|| using membership queries.

Returning to Algorithm 1, let q1, q2, . . . be the sequence of ELIQs that are
assigned to qH during a run of the learning algorithm. Using the properties of
frontiers, minimize, and treeify we can now show that the hypotheses approximate
the target query in an increasingly closer way.

Lemma 9. For all i ≥ 1,

1. qi ⊆O qT ;
2. qi ⊆O qi+1 and qi+1 6⊆O qi;
3. var(qi) ⊆ img(h) for every homomorphism h from qi+1 to Uqi,O with h(x) = x.

Point 3 of Lemma 9 implies that |var(qi+1)| ≥ |var(qi)|, and this can be used
to show that the while loop in Algorithm 1 terminates after a polynomial number
of iterations, arriving at a hypothesis qH ⊆O qT such that there is no qF ∈ FqH
with qF ⊆O qT , that is, qH ≡O qT .

Lemma 10. qn ≡ qT for some n ≤ p(|var(qT)|+ |Σ|), p a polynomial.

It follows from Lemma 10, the ‘consequently’ part of Point 2 of Lemma 6,
and Lemma 8 that Algorithm 1 is a polynomial time learning algorithm, thus
completing the proof of Theorem 5.

5 Outlook

As future work, we are going to consider extensions of the setup studied in this
paper. We are optimistic that the approach presented here can be extended
to DL-Lite ontologies with role inclusions, yielding polynomial size frontiers
and polynomial query learnability also for that logic (but not polynomial time
learnability since subsumption becomes NP-complete). Natural next steps could
then be to replace DL-Lite with linear tuple-generating dependencies (TGDs) [9]
or with DL-Litekrom ontologies [3]. In contrast, it is clear from Theorem 2 and
the results in [15] that our results do not extend to DL-Litehorn. It is not ruled
out, however, that ELIQs can be learned in polynomial time w.r.t. DL-Litehorn
ontologies when both membership and equivalence queries can be used. Another
natural question is whether CQs can be learned in polynomial time in the
presence of DL-Lite ontologies. It is known that this is not possible with only
membership queries even without ontologies [11], but it might be possible with
both membership and equivalence queries.

Acknowledgement. Carsten Lutz was supported by DFG CRC 1320 EASE.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

2. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1987)
3. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family

and relations. J. of Artifical Intelligence Research 36, 1–69 (2009)
4. Baader, F.: Least common subsumers and most specific concepts in a description

logic with existential restrictions and terminological cycles. In: Proc. of IJCAI. pp.
319–324. Morgan Kaufmann (2003)

5. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description
Logics. Cambride University Press (2017)

6. Baader, F., Küsters, R., Molitor, R.: Computing least common subsumers in
description logics with existential restrictions. In: Proc. of IJCAI. pp. 96–103.
Morgan Kaufmann (1999)

7. Baader, F., Sertkaya, B., Turhan, A.: Computing the least common subsumer w.r.t.
a background terminology. J. Appl. Log. 5(3), 392–420 (2007)

8. Bienvenu, M., Ortiz, M., Simkus, M., Xiao, G.: Tractable queries for lightweight
description logics. In: Proc. of IJCAI. pp. 768–774 (2013)

9. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for
tractable query answering over ontologies. J. Web Semant. 14, 57–83 (2012)

10. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The DL-Lite family. J.
of Automated Reasoning 39(3), 385–429 (2007)

11. ten Cate, B., Dalmau, V.: Conjunctive queries: Unique characterizations and exact
learnability. In: Proc. of ICDT. LIPIcs, vol. 186, pp. 9:1–9:24. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2021)

12. Cohen, W.W., Hirsh, H.: The learnability of description logics with equality con-
straints. Mach. Learn. 17(2-3), 169–199 (1994)

13. Cohen, W.W., Hirsh, H.: Learning the classic description logic: Theoretical and
experimental results. In: Proc. of KR. pp. 121–133. Morgan Kaufmann (1994)

14. Frazier, M., Pitt, L.: Classic learning. Mach. Learn. 25(2-3), 151–193 (1996)
15. Funk, M., Jung, J.C., Lutz, C.: Actively learning concept and conjunctive queries

under ELr-ontologies. In: Proc. of IJCAI (2021)
16. Funk, M., Jung, J.C., Lutz, C., Pulcini, H., Wolter, F.: Learning description logic

concepts: When can positive and negative examples be separated? In: Proc. of
IJCAI. pp. 1682–1688 (2019)

17. Gutiérrez-Basulto, V., Jung, J.C., Sabellek, L.: Reverse engineering queries in
ontology-enriched systems: The case of expressive Horn description logic ontologies.
In: Proc. of IJCAI-ECAI. ijcai.org (2018)

18. Jung, J.C., Lutz, C., Pulcini, H., Wolter, F.: Logical separability of incomplete data
under ontologies. In: Proc. of KR. pp. 517–528 (2020)

19. Jung, J.C., Lutz, C., Wolter, F.: Least general generalizations in description logic:
Verification and existence. In: Proc. of AAAI (2020)

20. Konev, B., Lutz, C., Ozaki, A., Wolter, F.: Exact learning of lightweight description
logic ontologies. J. Mach. Learn. Res. 18(201), 1–63 (2018)

21. Konev, B., Ozaki, A., Wolter, F.: A model for learning description logic ontologies
based on exact learning. In: Proc. of AAAI. pp. 1008–1015. AAAI Press (2016)

22. Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement
operators. Mach. Learn. 78, 203–250 (2010)

23. Lehmann, J., Völker, J.: Perspectives on Ontology Learning, Studies on the Semantic
Web, vol. 18. IOS Press (2014)

24. Ortiz, M.: Ontology-mediated queries from examples: a glimpse at the DL-Lite case.
In: Proc. of GCAI. pp. 1–14 (2019)

25. Ozaki, A.: Learning description logic ontologies: Five approaches. where do they
stand? KI - Künstliche Intelligenz (2020)

26. Ozaki, A., Persia, C., Mazzullo, A.: Learning query inseparable ELH ontologies. In:
Proc. of AAAI. pp. 2959–2966 (2020)

27. Sarker, M.K., Hitzler, P.: Efficient concept induction for description logics. In: Proc.
of AAAI. pp. 3036–3043 (2019)

28. Zarrieß, B., Turhan, A.: Most specific generalizations w.r.t. general EL-TBoxes. In:
Proc. of IJCAI. pp. 1191–1197 (2013)

A Additional Preliminaries

The most important properties of universal models are as follows.

Lemma 11. Let O be a DL-Lite ontology and A an ABox that is satisfiable
w.r.t. O. Then

1. UA,O is a model of A and O;
2. A,O |= q(ā) iff q(x̄)→ (UA,O, ā) for all CQs q(x̄) and all ā ∈ ind(A)|x̄|.

Lemma 12. Let O be a DL-Lite ontology and q1(x̄), q2(ȳ) be CQs that are
satisfiable w.r.t. O. Then q1 ⊆O q2 iff q2(ȳ)→ (Uq1,O, x̄).

Lemma 13. Let O be a DL-Lite ontology, A an ABox, and q(x) a unary CQ,
such that A and q are both satisfiable w.r.t. O. If h is a homomorphism from q
to UA,O with h(x) = a for some a ∈ ind(A), then there is a homomorphism h′

from Uq,O to UA,O with h′(x) = a and h′(x′R1 . . . Rn) = h(x′)R1 . . . Rn for all
traces x′R1 . . . Rn ∈ ind(Uq,O)

Definition 2. An ELI-simulation from interpretation I1 to interpretation I2 is
a relation S ⊆ ∆I1 ×∆I2 such that for all (d1, d2) ∈ S, we have:

1. for all A ∈ NC: if A(d1) ∈ I1, then A(d2) ∈ S;
2. for all r ∈ NR and R ∈ {r, r−}: if there is some d′1 ∈ ∆I1 with R(d1, d

′
1) ∈ I1,

then there is d′2 ∈ ∆I2 such that (d′1, d
′
2) ∈ S and R(d2, d

′
2) ∈ I2.

The following is a standard property of ELI-simulations, we omit the proof.

Lemma 14. Let O be a DL-Lite ontology, A1, A2 ABoxes and q(x) an ELIQ
such that A1, A2, and q are satisfiable w.r.t O. If there is an ELI-simulation S
from A1 to A2 with (a1, a2) ∈ S, then A1,O |= q(a1) implies A2,O |= q(a2).

Lemma 1. Given an ELIQ q and a DL-Lite ontology O, we can find in polyno-
mial time an O-saturated and O-minimal ELIQ q′ with q ≡O q′.

Proof. Let O be a DL-Lite ontology and q(x) an ELIQ. We assume that O
does not contain role disjointness constraints. Indeed, one can verify that, if O′
is the result of dropping all role disjointness constraints from O, we have that q
is O-saturated iff it is O′-saturated and O-minimal iff it is O′-minimal.

For establishing O-saturatedness, enumerate all atoms A(y) with y ∈ var(q)
and A a concept name that occurs in O and test whether Aq,O |= A(y). If so,
add A(y) to the query. The test Aq,O |= A(y) can be evaluated in polynomial
time since evaluation of acyclic queries over DL-Lite ontologies without role
disjointness constraints is in PTime [8].

For O-minimality, enumerate all variables y ∈ var(q) \ {x}, x the answer
variable of q. For every such variable y, test whether q|S ⊆O q where q|S is
the restriction of q to the variables in S = var(q) \ {y}. If so, replace q with
q|S . It is readily seen that the result is O-minimal. Moreover, by Lemmas 12
and 11, the test q|S ⊆O q is equivalent to the test Aq|S ,O |= q(x). The latter can

be evaluated in polynomial time again since evaluation of acyclic queries over
DL-Lite ontologies without role disjointness constraints is in PTime [8].

It remains to note that the two properties do not interact, that is, we can
first establish O-saturatedness and then O-minimality. o

A DL-Lite ontology O2 is a conservative extension of a DL-Lite ontology O1

if sig(O1) ⊆ sig(O2), every model of O2 is a model of O1, and for every model
I1 of O1, there exists a model I2 of O2 such that SI1 = SI2 for all symbols in
S /∈ sig(O2) \ sig(O1).

Lemma 15. Given a DL-Lite ontology O, one can compute in polynomial time
a DL-Lite ontology O′ in normal form such that:

1. O′ is a conservative extension of O,
2. sig(O′) = sig(O) ∪ {X∃R | ∃R occurs in O},
3. O′ |= X∃R ≡ ∃R for each ∃R that occurs in O.

Proof. Introduce a fresh concept name XB for every basic concept B of the form
∃R in O. Then O′ is obtained from O by first replacing every basic concept of
the form ∃R by X∃R, and then adding the concept inclusions ∃R v X∃R and
X∃R v ∃R to O′. O′ is in normal form and can be computed in polynomial time.
Moreover, it can be verified that Points 1–3 hold. o

B Proofs for Section 3

Lemma 2. For every DL-Lite ontology O, we can construct in polynomial time
a DL-Lite ontology O′ in normal form such that for every ELIQ q, a frontier of
q w.r.t. O can be constructed in polynomial time given a frontier of q w.r.t. O′.

Proof. Let O be a DL-Lite ontology. Let O′ be the ontology in normal form that
is computed in Lemma 15. Moreover, let q(x) be an ELIQ and F be a frontier of
q w.r.t. O’. Obtain F ′ from F by replacing every occurrence of an atom X∃R(y)
in some query in F with an atom R(y, z), using a fresh z for every replacement.
We verify that F ′ is a frontier of q w.r.t. O:

1. Suppose there is p(x) ∈ F ′ with q 6⊆O p. Then, there is an ABox A and
an individual a ∈ ind(A) such that A,O |= q(a), but A,O 6|= p(a). By
construction, of O′, we have A,O′ |= q(a). Since A,O 6|= p(a), there is a
model I of A and O such that I 6|= p(a). Now, I can be extended to a model
of A and O′ by taking XI∃R = (∃R)I . Now, let p0(x) ∈ F be the query from
which p(x) was obtained. Clearly, the extended I satisfies I 6|= p0(a), so
q 6⊆O′ p, a contradiction.

2. Let p(x) be an element of F ′ and p0(x) ∈ F be the query from which p(x)
was obtained. By Point 2 of the definition of a frontier, p0 6⊆O′ q, that is,
there is an ABox A and an individual a ∈ ind(A) such that A,O′ |= p0(a),
but A,O′ 6|= q(a). From the former we obtain A,O |= p(a), since each model
of A and O can be extended to a model of O′. From the latter, we obtain
that there is a model I of A and O′ such that I 6|= q(a). But I is also a
model of O, thus A,O 6|= q(a). Overall, we have p 6⊆O q.

3. Let q′(x) be an ELIQ with q ⊆O q′ 6⊆O q. Since O’ is a conservative extension
of O and q′ does not use the symbols introduced in the construction of O′,
we also have q ⊆O′ q′ 6⊆O′ q. Let p0(x) ∈ F witness Point 3 of the definition
of a frontier for q′, and let p(x) ∈ F ′ be obtained from p0(x). If p0 6⊆O q′, we
can use the counter model as in the previous points to show that p 6⊆O′ q′, a
contradiction.

o

Lemma 16. Let O be a DL-Lite ontology in normal form and let q(x) be an ELIQ
that is O-minimal, O-saturated and satisfiable w.r.t. O. Then var(q) ⊆ img(h)
for every homomorphism h from q to Uq,O with h(x) = x.

Proof. Assume for contradiction that there is a variable x′ ∈ var(q) with x′ /∈
img(h). Let q′ be the restriction of q to var(q) \ var(qx′). We show that h is also
a homomorphism from q to Uq′,O, and thus that q ≡O q′. This contradicts the
minimality of q.

First, observe that by the normal form of O and the O-saturation of q, the
trace-subtrees below a variable x1 ∈ ind(q′) in Uq′,O and Uq,O are identical.

Let A(x1) ∈ q. Note that h(x1) /∈ var(qx′) since x′ /∈ img(h), q is connected,
and h(x) = x. It thus follows from O-saturation that A(h(x1)) ∈ Uq′,O. If h(x1)
is a trace, then by the connectedness of q, it is a trace below a variable of q′ and
thus A(h(x1)) ∈ Uq′,O.

Let r(x1, x2) ∈ q. By h(x1), h(x2) /∈ var(qx′) and the connectedness of q, both
h(x1) and h(x2) must be variables of q′ or traces starting with variables of q′. If
both h(x1) and h(x2) are variables of q′, then r(h(x1), h(x2)) ∈ Uq′,O. If one or
both of h(x1) and h(x2) is a trace, then since the trace-subtrees are identical,
also r(h(x1), h(x2)) ∈ Uq′,O. o

Note that this implies that every homomorphism h from q to Uq,O with h(x) = x
needs to be injective.

Lemma 3. Fq(x) is a frontier of q(x) w.r.t. O.

Proof. We show that Fq(x) fulfills the three conditions of frontiers. For Condi-
tion 1, let qα(x) ∈ Fq(x). Every variable in qα is a copy of an element of Uq,O.
The mapping h : var(qα)→ ind(Uq,O) that maps every copy to its original, from
now on referred to as the natural projection, is a homomorphism from qα to Uq,O
with h(x) = x. Thus q ⊆O qα, as required.

For Condition 2, we show the following two claims:

Claim 1. For all y ∈ var(q) and A(y) ∈ Γy, qA(y) 6⊆O qy.

Proof of Claim 1. By Condition (i) of Γy and Step 1 of the construction of qA(y),
there is no B(y) ∈ qA(y) with O |= B v A. Moreover, by Condition (ii) of Γy
and the condition in Step 4 of the construction, there is also no R(y, z) ∈ qA(y)

with O |= ∃R v A. Thus, A(y) ∈ qy but A(y) /∈ UqA(y),O and therefore qy 6→
(UqA(y),O, y). Hence, qA(y) 6⊆O qy by Lemma 12.

Claim 2. For all y ∈ var(q) and R(y, z) ∈ Γy, qR(y,z) 6⊆O qy.

Proof of Claim 2. We show this claim by induction on the codepth of y. In the
induction start, y has codepth 0. Then Claim 2 is trivially satisfied because there
are no atoms R(y, z) ∈ Γy.

Thus, let y have codepth > 0 and assume that the claim holds for all smaller
codepths. Assume for contradiction that there is a homomorphism h from qy
to UqR(y,z),O with h(y) = y. Note that z has smaller codepth than y. By the

induction hypothesis and Claim 1, qz(z) 6→ (Uqβ ,O, z) for all qβ ∈ Fq(z). Since h
must map z to a successor of y, we may distinguish the following cases.

If h maps z to some z̃ that was added in Step 2 of the construction and h maps
qz entirely into the subtree below z̃ in UqR(y,z),O, then let h′ be the restriction of
h to variables in qz. Since the subtree below z̃ in UqR(y,z),O is identical to Uqβ ,O
for some qβ ∈ Fq(z), h′ is also a homomorphism from qz to Uqβ ,O with h′(z) = z.
In the case of β = A(z), this contradicts Claim 1, and in the case of β = S(z, z′)
this contradicts the induction hypothesis.

The remaining cases imply that q is not O-minimal, thus also leading to a
contradiction. To show this, it is convenient to construct some homomorphisms
beforehand. First, construct a homomorphism h′ from qy to UqR(y,z),O with
h′(y) = y by setting h(y′) = y′ for all y′ /∈ var(qz) and h′(y′) = h(y′) for all
y′ ∈ var(qz). Then, compose h′ with the natural projection from UqR(y,z),O to
Uq,O to construct a homomorphism g from qy to Uq,O with g(y) = y. Finally,
construct a homomorphism g′ from q to Uq,O with g′(x) = x by extending g to
be the identity on all variables not in var(qy).

Continuing with the cases, next assume that h maps z to one of its copies
z̃, but does not map qz entirely into the subtree below z̃. Then there must be
a z1 ∈ var(qz) such that h(z1) = y. Thus h is not injective since h(z1) = y and
h(y) = y. Then g′ is also not injective, contradicting that q is O-minimal by
Lemma 16.

If h maps z to a variable z1 added by Step 4 of the construction, then the
natural projection maps z1 to a trace yS. The homomorphism g′ then also maps
z to a trace in Uq,O, contradicting that q is O-minimal by Lemma 16.

If h maps z to a trace yS, then g′ maps z to a trace in Uq,O, again contradicting
that q is O-minimal.

If h maps z to a successor z2 6= z of y, then h′ is not injective since h′(z) = z2

and h′(z2) = z2. Thus g′ is not injective, contradicting that q is O-minimal by
Lemma 16.

If h maps z to the copy ŷ′ of the predecessor of y added by Step 5, then
g(z) = ŷ and thus g′(z) = ŷ as well as g′(ŷ) = ŷ, again contradicting that q is
O-minimal by Lemma 16.

This completes the proof of Claim 2. Claim 1 and Claim 2 together imply
Condition 2 of frontiers. For Condition 3 we show the following two claims:

Claim 3. Let q′(x1) be an ELIQ and y ∈ var(q) such that q′(x1)→ (Uq,O, y). If
there is an A(y) ∈ qy such that A(x1) /∈ Uq′,O, then there is a qα(y) ∈ Fq(y) such
that q′(x1)→ (Uqα,O, y).

Proof of Claim 3. We assume that there is no B(y) ∈ qy with O |= B v A and
O 6|= A v B (otherwise apply Claim 3 to B(y)) and that there is no R(y, z) ∈ qy
with O |= ∃R v A (otherwise Claim 4 applies to the atom R(y, z)). Hence A(y)
fulfills Conditions (i) and (ii) of Γy and there is a qA(y) ∈ Fq(y). We construct
a homomorphism h′ from q′ to UqA(y),O with h′(x1) = y by by starting with
h′(x1) = y and mapping the subtree below each successor x2 of x1 as follows. Let
h be a homomorphism from q′ to Uq,O with h(x1) = y.

If h maps x2 to the predecessor ŷ of y, set h′(x2) = ŷ′ and continue mapping
the subquery q′x2

according to h into the copy of q added in Step 5 of the
construction.

If h maps x2 to a successor z1 of y, set h′(x2) = z1 and continue mapping
the subquery q′x2

into the tree below z1 according to h. If there is a x3 ∈ var(q′x2
)

with h(x3) = y, instead set h′(x3) = y′ and continue mapping q′x3
into the copy

of q added in Step 3 of the construction according to h.
If h maps x2 to a trace yR, first note that by the choice of A(y), O 6|= ∃R v A.

Thus Step 4 of the construction of qA(y) added a copy z1 of yR and the role atom
R(y, z1). Set h′(x2) = z1 and continue mapping the subquery q′x2

into the traces
starting with z1 according to h. If there is a x3 ∈ var(q′x2

) with h(x3) = y set
h′(x3) = y′ and continue to map the subquery q′x3

into the copy of q added in
Step 4 according to h.

By construction, h′ is a homomorphism. This completes the proof of Claim 3.

Claim 4. Let q′(x1) be an ELIQ and y ∈ var(q) such that q′(x1)→ (Uq,O, y). If
there is a R(y, z) ∈ qy such that qz(z) 6→ (Uq′,O, x2) for all R(x1, x2) ∈ Uq′,O,
then there is a qα(y) ∈ Fq(y) such that q′(x1)→ (Uqα,O, y).

Proof of Claim 4. We show the claim by induction on the depth of q′. Start with
a q′ of depth 0, then there is no R(x1, x2) ∈ q′, but by assumption R(y, z) ∈ qy.
Hence there is a qR(y,z) ∈ Fq(y). We construct a homomorphism h′ from q′ to
UqR(y,z),O by setting h′(z) = y. Since q is O-saturated and the construction of

qR(y,z) does not remove any concept atoms, A(y) ∈ Uq,O iff A(y) ∈ UqR(y,z),O.
Thus h′ is a homomorphism.

Now let q′ be an ELIQ of depth > 0 and assume that the claim holds for
all ELIQs of smaller depth. Again, we construct a homomorphism h′ from q′ to
UqR(y,z),O with h′(x1) = y. Start by setting h′(x1) = y and continue mapping
the successors of x1 as follows. Let h be a homomorphism from q′ to Uq,O with
h(x1) = y.

If h maps a successor x2 to z, observe that q′x2
is an ELIQ of smaller depth than

qz, that q′x2
(x2) → (Uq,O, z) and that qz(z) 6→ (Uq′,O, x2). Therefore either the

induction hypothesis or Claim 3 can be applied to show that there is a qβ ∈ Fq(z)
such that there is a homomorphism g from q′x2

to Uqβ ,O with g(x2) = z. Extend
h′ to the subquery q′x2

by mapping it into the copy of qβ according to g.
For the remaining cases of h mapping a successor x2 to the predecessor ŷ, to

a trace starting with y, or to a successor of y that is not z, h′ is expanded to the
subquery q′x2

as in the proof of Claim 3.
This completes the proof of Claim 4. Claim 3 and Claim 4 together imply

that for all ELIQs q′(x1) and y ∈ ind(q) with q′(x1) → (Uq,O, y) and qy(y) 6→

(Uq′,O, x1), there is a qα ∈ Fq(y) such that q′(x1) → (Uqα,O, y). Condition 3 of
frontiers follows for y = x by Lemma 12. o

Lemma 4.
∑

qα(x)∈Fq(x)

|var(qα)| ≤ |sig(q)| · |var(q)|3 · (|var(q)|+ 1) · (||O||+ 1).

Proof. Let qα ∈ Fq(x). Recall that in Steps 3, 4, and 5, disjoint copies of q are
added to qα. Let V (qα) denote the set of variables of qα that are not part of
such a copy of q, and let N(qα) denote their number. Since at most one copy of
q is added per variable in V (qα), we have |var(qα)| ≤ N(qα) +N(qα) · |var(q)| =
N(qα) · (var(|q|) + 1). Hence, it suffices to show that∑

qα∈Fq(x)

N(qα) ≤ |sig(q)| · |var(q)|3 · (||O||+ 1).

This bound follows from the following claim for y = x:

Claim. For all y ∈ var(q), we have:∑
qα∈Fq(y)

N(qα) ≤ |sig(q)| · |var(qy)|3 · (||O||+ 1).

Proof of the Claim. We show the claim by induction on the codepth of y in q.
For the base case, consider a variable y of codepth 0. In that case Fq(x) contains
only queries qα for α = A(y) and A(y) ∈ q. Note that in the construction of qα

for α = A(y), only Step 4 introduces variables to V (qα). More precisely, V (qα)
consists of var(qy) and at most one variable for every atom S(y, yS) ∈ Uqy,O. As
the number of these atoms is bounded by ||O||, we have

N(qA(y)) ≤ |var(qy)|+ ||O||.

Since the number of atoms A(y) ∈ q is bounded by |sig(q)|, we obtain∑
qα∈Fq(y)

N(qα) ≤ |sig(q)| · (|var(qy)|+ ||O||) ≤ |sig(q)| · |varqy)|3 · (||O||+ 1), (2)

as required.
For the inductive step, consider a variable y of codepth greater than 0. By

definition of Fq, we have∑
qα∈Fq(y)

N(qα) =
∑

A(y)∈Γy

N(qA(y)) +
∑

R(y,z)∈Γy

N(qR(y,z)). (3)

We bound from above the two sums on the right-hand side of (3). Using the
exact same analysis as in the base case, one can show that the first sum is at
most |sig(q)| · (|var(qy)| + ||O||), see (2). For the second sum, we analyze the
construction of qR(y,z). Note first that z has smaller codepth than y, by definition

of Γy. Moreover, Step 2 adds a copy of each qβ ∈ Fq(z) and Step 4 adds a variable
to V (qR(y,z)) for every atom S(y, yS) ∈ Uqy,O. Since the number of the latter is
bounded by ||O|| and using induction, we obtain

N(qR(y,z)) ≤ |var(qy)|+ ||O||+
∑

qβ∈Fq(z)

N(qβ)

≤ |var(qy)|+ ||O||+ |sig(q)| · |var(qz)|3 · (||O||+ 1).

Now, the second sum in (3) can be bounded as follows∑
R(y,z)∈Γy

N(qR(y,z)) ≤
∑

R(y,z)∈Γy

|var(qy)|+ ||O||+ |sig(q)| · |var(qz)|3 · (||O||+ 1)

≤ (|var(qy)| − 1) · (|var(qy)|+ ||O||)

+ |sig(q)| · (||O||+ 1) · (
∑

R(y,z)∈Γy

|var(qz)|)3

≤ (|var(qy)| − 1) · |var(qy)| · (||O||+ 1)

+ |sig(q)| · (||O||+ 1) · (|var(qy)| − 1)3

≤ |sig(q)| · (||O||+ 1) · (|var(qy)|2 − |var(qy)|+ (|var(qy)| − 1)3)

using |{R(y, z) ∈ Γy}| ≤ |var(qy)| − 1 and
∑m
j=1 f(j)3 ≤ (

∑m
j=1 f(j))3 for the

second inequality and
∑
R(y,z)∈Γy |var(qz)| = |var(qy)| − 1 for the third.

To finish the proof of the claim, we put the bounds on the sums in (3) together
and obtain that

∑
qα∈Fq(y)N(qα) is bounded from above by

|sig(q)| · (|var(qy)|+ ||O||)+
|sig(q)| · (||O||+ 1) · (|var(qy)|2 − |var(qy)|+ (|var(qy)| − 1)3)

≤ |sig(q)| · (||O||+ 1) · (|var(qy)|2 + (|var(qy)| − 1)3)

≤ |sig(q)| · (||O||+ 1) · |var(qy)|3,

as required. o

Theorem 2. There are families of AQ∧s q1, q2, . . . and conjunctive ontologies
O1,O2, . . . such that for all n ≥ 1, any frontier of qn w.r.t. On has size at
least 2n.

Proof. For n ≥ 1, let

qn(x)← A1(x) ∧A′1(x) ∧ · · · ∧An(x) ∧A′n(x)

On = {Ai uA′i v A1 uA′1 u · · · uAn uA′n | 1 ≤ i ≤ n}.

Suppose F is a frontier of qn w.r.t. On. Let p be any query that contains for each
i with 1 ≤ i ≤ n either Ai(x) or A′i(x). It suffices to show that p ∈ F .

Clearly, qn ⊆On p 6⊆On qn and thus Point 3 of the definition of frontiers
implies that there is a p′ ∈ F with p′ ⊆O p. We distinguish cases:

– p′ contains the atoms Ai(x), A′i(x) for some i. But then p′ ≡On qn and p′

cannot be in F by Point 2 of the definition of frontiers, a contradiction.
– p′ does not contain both atoms Ai(x), A′i(x) for any i. But then the ontology

does not have an effect on the containment p′ ⊆On p and hence every
Ai(x), A′i(x) that occurs in p must occur in p′. As p′ does not contain the
atoms Ai(x), A′i(x) for any i, we actually have p′ = p, which was to be shown.

o

Theorem 3. For every DL-Lite ontology O and every ELIQ q that is satisfiable
w.r.t. O, we can compute in polynomial time data examples (E+, E−) that
uniquely characterize q w.r.t. O.

Proof. Let q(x) and O be as in the Theorem. By Theorem 1, we can compute
in polynomial time a frontier Fq(x) for q w.r.t. O. Let E+ = {(Aq, x)} and
E− = {(Ap, x) | p ∈ Fq(x)}. Let q′ be an ELIQ that fits (E+, E−). Note first
that we have q ⊆O q′, since (Aq, x) is a positive example. Moreover, since all
data examples in E− are negative examples for q′, we know that p 6⊆O q′ for any
p ∈ Fq(x). By Point 3 of the definition of frontiers, we can conclude that q′ ⊆O q.
Overall, we have shown q′ ≡O q. o

C Proofs for Section 4

Theorem 4. AQ∧s are not polynomial query learnable under disjointness on-
tologies using only membership queries.

Proof. To prove the theorem, we use a proof strategy that is inspired by basic
lower bound proofs for abstract learning problems due to Angluin [2]. Essentially
the same proof is given in [15] for a slightly different class of ontologies that
allows only concept inclusions between arbitrary conjunctions of concept names.

Here, it is convenient to view the oracle as an adversary who maintains a set
S of candidate target queries that the learner cannot distinguish based on the
queries made so far. We have to choose S and the ontology carefully so that each
membership query removes only few candidate targets from S and that after a
polynomial number of queries there is still more than one candidate that the
learner cannot distinguish.

For each n ≥ 1, let

On = {Ai uA′i v ⊥ | 1 ≤ i ≤ n}

and

Sn = {q(x)← α1(x) ∧ · · · ∧ αn(x) | αi ∈ {Ai, A′i} for all i with 1 ≤ i ≤ n}.

Note that Sn is a frontier of ⊥ w.r.t. On, if only AQ∧ queries using the concept
names Ai and A′i for all 1 ≤ i ≤ n, are considered for Condition 3. Clearly, Sn
contains 2n queries.4

4 In fact, it can be shown similar as in the proof of Theorem 2 that Sn is contained
in any frontier of ⊥ w.r.t. On. Hence, ⊥ does not have polynomially sized frontiers
w.r.t. disjointness ontologies.

Assume to the contrary of what is to be shown that AQ∧ queries are polyno-
mial query learnable under disjointness ontologies using only membership queries.
Then there exists a learning algorithm and polynomial p such that the number of
membership queries needed to identify a target query qT is bounded by p(n1, n2),
where n1 is the size of qT and n2 is the size of the ontology. We choose n such
that 2n > p(r1(n), r2(n)), where r1 is a polynomial such that every query q ∈ Sm
satisfies ||q|| = r1(m) and r2 is a polynomial such that r2(m) > ||Om|| for every
m ≥ 1.

Now, consider a membership query posed by the learning algorithm with
ABox and answer individual (A, a). The oracle responds as follows:

1. if A,On |= q(a) for no q ∈ Sn, then answer no;
2. if A,On |= q(a) for a single q ∈ Sn, then answer no and remove q from Sn;
3. if A,On |= q(a) for more than one q ∈ Sn, then answer yes.

Note that the third response is consistent since A must then contain Ai(a) and
A′i(a) for some i and thus A is not satisfiable w.r.t. On. Moreover, the answers
are always correct with respect to the updated set Sn. Thus, the learner cannot
distinguish the remaining candidate queries by answers to queries posed so far.

It follows that the learning algorithm removes at most p(r1(n), r2(n)) many
queries from Sn. By the choice of n, at least two candidate concepts remain in
Sn after the algorithm is finished. Thus the learner cannot distinguish between
them and we have derived a contradiction. o

Lemma 5. If ELIQs are polynomial time learnable under DL-Lite ontologies
in normal form using membership queries and a single initial equivalence query,
then this is also true for unrestricted DL-Lite ontologies. The same holds for
DL-Lite− ontologies without the initial equivalence query.

Proof. We show the lemma by converting a learning algorithm L′ for ontologies
in normal form into a learning algorithm L for unrestricted ontologies. Since L
will ask a single query for every query asked by L′, the lemma follows.

Given an DL-Lite or DL-Lite− ontology O and a signature Σ = sig(O) ∪
sig(qT), algorithm L first computes the ontology O′ in normal form as per
Lemma 15, choosing the fresh concept names so that they are not from Σ. It
then runs L′ on O′ and Σ′ = Σ ∪ sig(O′). In contrast to L′, the oracle still works
with the original ontology O. To ensure that the answers to the queries posed to
the oracle are correct, L modifies L′ as follows.

Whenever L′ asks a membership query A′,O′ |= qT (a), L instead asks the
membership query A,O |= qT (a), where A is obtained from A′ by replacing
each concept assertion X∃R(b) where X∃R is a fresh concept name added during
conversion to normal form with a role assertion R(b, b′) where b′ is a fresh
individual name. By the following claim, the answer to the modified membership
query coincides with that to the original query.

Claim 1. A′,O′ |= q(a) iff A,O |= q(a) for all ELIQs q that only use symbols
from Σ.

Proof of Claim 1. A′ is not satisfiable w.r.t. O′ iff A is not satisfiable w.r.t. O,
since the conversion to normal form does not add any disjointness constraints.
Hence it remains to show the claim for satisfiable ABoxes. For “if”, suppose
that A,O |= q(a) and let I be a model of A′ and O′. Since O′ is a conservative
extension of O, I is also a model of O. Additionally, I satisfies X∃R v ∃R for all
concept names X∃R that are added during conversion of O to normal form. Thus
I is also a model of A and I |= q(a). For “only if”, suppose that A′,O′ |= q(a)
and let I be a model of A and O. Since O′ is a conservative extension of O, there
is a model I ′ of O′ that coincides with I on all symbols from Σ. I ′ must satisfy
∃R v X∃R for all fresh concept names X∃R. Thus I ′ is a model of A′. Since
sig(q) ⊆ Σ and I ′ and I coincide on Σ, it follows that I |= q(a) as required.

Second, whenever L′ asks an equivalence query q′H ≡O′ qT , L instead asks the
equivalence query qH ≡O qT , where qH is obtained from q′H by replacing each
atom X∃R(y) with the atom R(y, y′) where y′ is a fresh variable. Applying the
following claim to both q′H and q′T = qT , the answer to the modified equivalence
query coincides with that to the original query.

Claim 2. Let q′ be an ELIQ that uses only symbols from Σ′ and let q be obtained
from q′ by replacing each atom R∃R(y) with the atom R(y, y′), where y′ is a
fresh variable. Then A,O′ |= q′(a) iff A,O |= q(a) for all ABoxes A using only
symbols from Σ.

Proof of Claim 2. Again, the claim holds trivially for not satisfiable ABoxes.
Therefore assume A to be satisfiable. For “if”, suppose A,O |= q(a) and let I
be a model of A and O′. Since O′ is a conservative extension, I is also a model
of O, thus I |= q(a). Since I also must satisfy ∃R v X∃R for all fresh concept
names X∃R, I |= q′(a).

For “only if”, suppose A,O′ |= q′(a) and let I be a model of A and O. Since
O′ is a conservative extension of O, there is a model I ′ of O′ that coincides on
all symbols from Σ with I and is also a model of A. Thus I ′ |= q′(a). Since I ′
must satisfy X∃R v ∃R for all X∃R, I |= q(a) as required. o

Lemma 6. Let q be a unary CQ that is O-saturated and satisfiable w.r.t. O such
that q ⊆ qT for the target query qT (y), and let q′ = minimize(q). Then

1. q ⊆O q′ and q′ ⊆O qT ;
2. var(q′) ⊆ img(h) for every homomorphism h from qT to Uq′,O with h(y) = x

(and consequently |var(q′)| ≤ |var(qT)|);
3. q′ is O-minimal.

Proof. Point 1 of the Lemma holds since q′ is a subset of q and minimize ensures
in each step that Aq′ ,O |= qT (x), which implies q′ ⊆O qT .

For Point 2, let y be the answer variable of qT and assume that there is a
homomorphism h from qT to Uq′,O with h(y) = x and a x′ ∈ var(q′) that is
not in img(h). Let q′′ be the result of removing from q′ all atoms that involve
x′. We show that h is a homomorphism from qT to Uq′′,O which witnesses that
Aq′′ ,O |= qT (x). Hence all role atoms involving x′ are dropped by minimize, in

contradiction to x′ ∈ var(q′). To see that h is indeed a homomorphism, first note
that for all x1, x2 ∈ var(q′) \ {x′}, the following holds by O-saturation of q and
construction of universal models:

1. A(x1) ∈ Uq′,O iff A(x1) ∈ Uq′′,O;
2. r(x1, x2) ∈ Uq′,O iff r(x1, x2) ∈ Uq′′,O.

From the normal form of O and 1., it follows that the subtree in Uq′,O below
each x1 ∈ var(q′) \ {x′} is identical to the subtree in Uq′′,O below x1. Thus h is a
homomorphism.

For Point 3, assume that q′ is not minimal, that is, there exists a homomor-
phism h from q′ to Uq′S ,O with h(x) = x where qS is a restriction of q′ to a
proper subset of var(q′). Then h is also a homomorphism from q′ to Uq′,O with
var(q′) 6⊆ img(h). By Lemma 13, h can be extended to a homomorphism h′ from
Uq′,O to Uq′,O without adding any element of var(q′) to img(h′). Composing a
homomorphism from qT to Uq′,O that exists by Point 1 with h′ yields a homo-
morphism g from qT to Uq′,O with var(q′) 6⊆ img(g) and g(y) = x, contradicting
Point 2. o

Lemma 7. For all i ≥ 1,

1. pi is O-saturated and satisfiable w.r.t. O;
2. pi ⊆O qT ;
3. pi ⊆O pi+1 and |var(pi+1)| > |var(pi)|.

Proof. For Point 1 of the Lemma, observe that both doubling the length of
a cycle and minimize, preserve O-saturation and satisfiability w.r.t. O. Since
p1 = minimize(q) is O-saturated and satisfiable w.r.t. O, so is every pi.

We show Point 2 by induction on i. The case i = 1 is immediate since
p1 = minimize(q) and q ⊆O qT . Now let i ≥ 1. By the induction hypothesis
pi ⊆ qT and thus Api ,O |= qT (x). Assume that p′i was obtained from pi by
expanding a cycle R1(x1, x2), . . . , Rn(xn, x1). Then

S = {(y, y) | y ∈ var(pi)} ∪ {(xi, x′i) | 1 ≤ i ≤ n}

is an ELI-simulation from Api to Ap′i with (x, x) ∈ S. Therefore by Lemma 14
Ap′i ,O |= qT (x) and p′i ⊆O qT . Hence, by Point 1 of Lemma 6, pi+1 ⊆O qT for
pi+1 = minimize(p′i).

For Point 3, define a mapping g from var(pi+1) to var(pi) by setting g(y) = y
for all y ∈ var(pi) ∩ var(pi+1) and g(y′) = y for all y′ ∈ var(pi+1) \ var(pi). We
show that g is a homomorphism from pi to Upi+1,O, implying pi ⊆O pi+1. If
A(y) ∈ pi+1, then A(y) ∈ p′i by the definition of minimize and A(g(y)) ∈ pi by
the construction of p′i. If r(y, y′) ∈ pi+1, then r(y, y′) ∈ p′i by the definition of
minimize and r(g(y), g(y′)) ∈ pi by the construction of pi.

For |var(pi+1)| > |var(pi)|, we will show the following three claims, proving
that g is surjective, but not injective. For an injective and surjective function, we
use g− to denote the inverse of g. Again, let y be the answer variable of pT .

Claim 1. g is surjective.

Proof of Claim 1. Suppose that g is not surjective. Then var(pi) 6⊂ img(g).
Recall that pi = minimize(q) for some query q and thus by Point 3 of Lemma 6,
var(q′) ⊆ img(h) for every homomorphism h from qT to Upi,O with h(y) = x.

Let h2 be the extension of g to a homomorphism from Upi+1,O to Upi,O as in
Lemma 13. Note that var(pi) 6⊆ img(h2). By Point 2, there is a homomorphism h1

from qT to Upi+1,O with h(y) = x. Composing h1 and h2 yields a homomorphism
h3 from qT to Upi,O with h3(y) = x and var(pi) 6⊆ img(h3), a contradiction.

Claim 2. If g is injective, then r(y1, y2) ∈ pi implies r(g−(y1), g−(y2)) ∈ pi+1.

Proof of Claim 2. Suppose to the contrary that there is an r(y1, y2) ∈ pi with
r(g−(y1), g−(y2)) /∈ pi+1. It is then also a homomorphism from pi+1 to pi \
{r(y1, y2)} and using the same composition-of-homomorphisms argument as in
the proof of Claim 1, we find a homomorphism h from qT to Upi\{r(y1,y2)},O
with h(y) = x. Hence pi \ {r(y1, y2)} ⊆O qT . This contradicts the fact that
pi = minimize(q) for some query q.

Claim 3. g is not injective.

Proof of Claim 3. Let R1(x1, x2), . . . , Rn(xn, x1) ∈ pi be the cycle that is ex-
panded during the construction of pi+1 from pi. Without loss of generality, assume
that Rn = rn is a role name, but not an inverse role. Suppose for contradiction
that g is injective. The construction of g, together with g being surjective and
injective, implies that exactly one of xj , x

′
j is in var(pi+1) for all j with 1 ≤ j ≤ n.

Assume that xn ∈ var(pi+1) (the case x′n ∈ var(pi+1) is analogous) and thus
g(xn) = xn.

We prove by induction on j that xj /∈ var(pi+1) for 1 ≤ j ≤ n, thus obtaining
a contradiction to xn ∈ var(pi+1). For the induction start, assume to the contrary
of what is to be shown that x1 ∈ var(pi+1). Then g(x1) = x1 and rn(xn, x1) ∈ pi
implies rn(xn, x1) ∈ pi+1 by Claim 2. A contradiction to the construction of pi+1.

For the induction step, let j ≥ 1. By the induction hypothesis xj /∈ var(pi+1)
and thus x′j ∈ var(pi+1). Then g(x′j) = xj . Assume to the contrary of what
is shown that xj+1 ∈ var(pi+1). Then g(xj+1) = xj+1 and Rj(xj , xj+1) ∈ pi
yield Rj(x

′
j , xj+1) ∈ pi+1 by Claim 2. A contradiction to the construction of

pi+1. o

Lemma 8. Let q be a CQ that is O-saturated, satisfiable w.r.t. O, and satisfies
q ⊆O qT . Then q′ = treeify(q) is an ELIQ that can be computed in time polynomial
in |var(qT)|+ ||q|| using membership queries.

Proof. Let p1, p2, . . . , be the sequence of constructed queries. Recall that for
all i ≥ 1, pi is the result of applying minimize to some query. Thus by Lemma 6
Point 2, |var(pi)| ≤ |var(qT)| for all i ≥ i. But by Lemma 7 Point 3, the number
of variables in pi increases with every doubling of the length of some cycle. The
length n of the sequence of queries is therefore at most |var(qT)| and treeify stops
at pn = treeify(q). Hence pn does not contain a cycle, making it an ELIQ.

It remains to show that every operation runs in polynomial time. Clearly,
|Σ| ≤ ||q|| and since the operation does not introduce new concept or role names,
sig(pi) ⊆ Σ for all i.

Each call to minimize makes at most |Σ| · |var(pi)|2 membership queries. For
the operation of treeify, note that a cycle can be identified in time polynomial in
|var(pi)| ≤ |var(qT)|. o

Lemma 9. For all i ≥ 1,

1. qi ⊆O qT ;
2. qi ⊆O qi+1 and qi+1 6⊆O qi;
3. var(qi) ⊆ img(h) for every homomorphism h from qi+1 to Uqi,O with h(x) = x.

Proof. For Point 1, first consider the case i = 1. Then q1 = treeify(q0
H), and

by q0
H ⊆O qT and Lemma 7 Point 1 it follows that q1 ⊆O qT . For i > 1, recall

that qi = minimize(qF) for some qF ⊆O qT . Thus qi ⊆O qT follows by Lemma 6
Point 1.

Point 2 follows from the definition of a frontier of qi w.r.t O and the property
of minimize in Lemma 6 Point 1.

For Point 3, let h be a homomorphism from qi+1 to Uqi,O with h(x) = x.
By Lemma 13, we can extend h to a homomorphism h′ from Uqi+1,O to Uqi,O
such that no elements of var(qi) are added to img(h′). By Point 1, there is a
homomorphism g from qT to Uqi+1,O with h(y) = x. Composing g and h′ yields
a homomorphism g′ from qT to Uqi,O with g′(y) = x. Recall that for all i ≥ 1,
qi = minimize(q) for some ELIQ q that is O-saturated and satisfiable w.r.t O,
thus var(qi) ⊆ img(g′) by Lemma 6 Point 2. Since img(g′) ⊆ img(h′), it follows
that var(qi) ⊆ img(h), as required. o

Lemma 10. qn ≡ qT for some n ≤ p(|var(qT)|+ |Σ|), p a polynomial.

Proof. For all i ≥ 1, qi = minimize(q) for some ELIQ q that is O-saturated and
satisfiable w.r.t O, thus by Lemma 6 Point 2, |var(qi)| ≤ |var(qT)|. Moreover,
Lemma 9 Point 3 implies that |var(qi)| ≤ |var(qi+1)|. Hence, it remains to show
that the length of any subsequence qj , . . . , qk with |var(qj)| = · · · = |var(qk)| is
bounded by a polynomial in var(qT) and |Σ|.

Let h` for ` ∈ {j + 1, . . . , k} be the homomorphism from q` to Uq`+1,O that
exists due to Lemma 9 Point 2. Since |var(q`)| = |var(q`+1)|, h` is a bijection
between var(q`+1) and var(q`). By Lemma 9 Point 2, h− is not a homomorphism
from q` to q`+1.

Therefore there is either a concept atom A(x1) ∈ q` such that A(h−` (x1)) /∈
q`+1 or there is a role atom r(x1, x2) ∈ q` such that r(h−` (x1), h−` (x2)) /∈ q`+1.
The second case is not possible, since h− is a bijection and both q` and q`+1

are ELIQs. Thus q` contains at least one concept atom more than q`+1 and the
length of the sequence qj , . . . , qk is bounded by |var(qT)| · |Σ|. o

	Actively Learning ELI Queries under DL-Lite Ontologies

