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Abstract—In logics with the Craig interpolation property (CIP)
the existence of an interpolant for an implication follows from
the validity of the implication. In logics with the projective
Beth definability property (PBDP), the existence of an explicit
definition of a relation follows from the validity of a formula
expressing its implicit definability. The two-variable fragment,
FO2, and the guarded fragment, GF, of first-order logic both
fail to have the CIP and the PBDP. We show that nevertheless
in both fragments the existence of interpolants and explicit
definitions is decidable. In GF, both problems are 3EXPTIME-
complete in general, and 2EXPTIME-complete if the arity of
relation symbols is bounded by a constant c ≥ 3. In FO2, we
prove a CON2EXPTIME upper bound and a 2EXPTIME lower
bound for both problems. Thus, both for GF and FO2 existence of
interpolants and explicit definitions are decidable but harder than
validity (in case of FO2 under standard complexity assumptions).

I. INTRODUCTION

A logic enjoys the Craig Interpolation Property (CIP) if
an implication ϕ ⇒ ψ is valid if, and only if, there exists a
formula χ using only the common symbols of ϕ and ψ such
that ϕ ⇒ χ and χ ⇒ ψ are both valid. The formula χ is
then called an interpolant for ϕ ⇒ ψ. The CIP is generally
regarded as one of the most important and useful results in
formal logic, with numerous applications [1], [2], [3], [4],
[5]. One particularly interesting consequence of the CIP is the
Projective Beth Definability Property (PBDP), which states
that if a relation is implicitly definable over symbols in a
signature τ , then it is explicitly definable over τ .

From an algorithmic viewpoint, the CIP and PBDP are of
interest because they reduce existence problems to validity
checking: an interpolant exists if, and only if, an implication
is valid and an explicit definition exists if, and only if, a
straightforward formula stating implicit definability is valid.
The interpolant and explicit definition existence problems are
thus not harder than validity.

In this article, we investigate the interpolant and explicit
definition existence problem for two fragments of first-order
logic (FO) that fail to have the CIP and PBDP: the guarded
fragment (GF) and the two-variable fragment (FO2) of FO.

GF has been introduced as a generalization of modal logic
that enjoys many of its attractive algorithmic and model-
theoretic properties, including decidability, the finite model
property, the tree-like model property, and preservation prop-
erties such as the Łoś-Tarski preservation theorem [6], [7].

Since its introduction, the guarded fragment and variants of it
have been investigated extensively [8], [9], [10], [11], not only
as a natural generalisation of modal logic but also in databases
and knowledge representation [12], [13].

While GF is a good generalization of modal logic in many
respects, in contrast to modal logic it neither enjoys the
CIP [14] nor the PBDP [15]. Note, however, that GF does
enjoy the (non-projective) Beth Definability Property (BDP)
in which the signature τ of the implicit and explicit definitions
contains all symbols except the relation to be defined [14].

Fragments of first-order logic with at most k ≥ 1 variables
have been investigated in a variety of contexts, for example in
finite-model theory [16], [17], [18]. The two-variable fragment
FO2 is of particular interest as it is decidable (and any
k-variable fragment with k ≥ 3 is undecidable) and also
generalizes modal logic. In fact, satisfiability of FO2 formulas
is NEXPTIME-complete [19] and FO2 shares with modal
logic and GF the finite model property. In contrast to modal
logic and GF, however, it does not enjoy any tree-like model
property and is less robust under extensions [20], [21], [22].

Failure of the CIP for FO2 was first shown in [23], [24]
using algebraic techniques. In contrast to GF, FO2 does not
only not enjoy the PBDP but also not the BDP [25], [26].

In this article, we aim to understand better the complexity of
deciding the existence of interpolants and explicit definitions
for logics that do not enjoy the CIP and PBDP. In addition,
our motivation for investigating these existence problems in
GF and FO2 stems from the following applications.

Strong separability of labeled data under ontologies. There are
several scenarios in which one aims to find a logical formula
that separates positive from negative examples given in the
form of labeled data items. Examples include concept learning
in description logic [27], reverse engineering of database
queries, also known as query by example (QBE) [28], and
generating referring expression (GRE), where the aim is to
find a formula that separates a single positive data item from
all other data items [29]. In [30], [31] an attempt is made
to provide a unifying framework for these scenarios under
the assumption that the data is given by a relational database
and additional background information is available in the
form of an ontology in first-order logic. A natural version of



separability then asks whether for an ontology O, a database
D, a signature τ of relation symbols, and sets P (of positive
examples) and N (of negative examples) of tuples in D of
the same length whether there exists a formula ϕ over τ that
separates P from N in the sense that O ∪ D |= ϕ(a) for
all a ∈ P , and O ∪ D |= ¬ϕ(b), for all b ∈ N . For the
fundamental cases that O is in GF or FO2 and one asks for a
separating formula in GF or FO2, respectively, it is not difficult
to see that there is a polynomial time reduction of separability
to interpolant existence. Moreover, interpolants give rise to
separating formulas and vice versa.

Explicit definitions of relation symbols under GF and FO2-
sentences. The existence and computation of explicit defi-
nitions of relations has been proposed for ontology engi-
neering [4] and for query rewriting under views and query-
reformulation and compilation [32], [33], [5]. Thus, in these
applications the focus shifts from interpolants to the existence
of explicit definitions over a signature.

The following theorem summarizes our results:

Theorem 1. (i) The explicit GF-definability and the GF-
interpolant existence problems are both 3EXPTIME-complete
in general, and 2EXPTIME-complete if the arity of relation
symbols is bounded by a constant c ≥ 3.

(ii) The explicit FO2-definability and the FO2-interpolant
existence problems are in CON2EXPTIME and 2EXPTIME-
hard. 2EXPTIME-hardness holds already for explicit FO2-
definability using any symbol except the defined one.

For GF, it follows that interpolant and explicit definition
existence are exactly one exponential harder than validity, both
in general and if the arity of relation symbols is bounded
by a constant c ≥ 3 [7]. We note that exactly one ternary
relation symbol is needed to obtain 2EXPTIME-hardness and
that it is known from [34] that the fragment of GF with
only unary and binary relation symbols enjoys the CIP and
the PBDP and so interpolant and explicit definition existence
are EXPTIME-complete in that case. Explicit GF-definability
using any symbols except the defined one is polynomial time
reducible to validity since GF has the BDP. For FO2, it
follows that all these problems are harder than validity, unless
CONEXPTIME = 2EXPTIME. Finding tight complexity bounds
remains an open problem in this case.

The proofs start with a straightforward model-theoretic
characterization of the non-existence of an interpolant for an
implication ϕ ⇒ ψ by the existence of appropriate bisimula-
tions between models satisfying ϕ and ¬ψ, respectively. The
guarded bisimulations used for GF were introduced in [6]
to characterize the expressive power of GF within FO, see
also [35], [36]. The FO2-bisimulations used for FO2 are
a straightforward variant of the well known pebble games
characterizing finite variable logics [37], [38]. For GF, we
then employ a mosaic based approach, using as mosaics sets
of types over ϕ,¬ψ which can be satisfied by tuples that
are guarded bisimilar. Constraints for sets of such mosaics
characterize when they can be linked together to construct,

simultaneously, models of ϕ and ¬ψ and a guarded bisimu-
lation between them. The triple exponential upper bound then
follows from the observation that there are triple exponentially
many mosaics. If the arity of relation symbols is bounded
by a constant, then there are only double exponentially many
mosaics. The lower bounds are proved by a reduction of the
word problem for space-bounded alternating Turing machines.

For FO2 we show, using mosaics that are similar to those
introduced for GF, that if there are FO2-bisimilar models
satisfying FO2-formulas ϕ, ¬ψ, then there are such models of
at most double-exponential size. The CON2EXPTIME upper
bound follows immediately from this finite model property
result. The lower bound is again proved by reduction of the
word problem for space-bounded alternating Turing machines.

II. RELATED WORK

The problem of deciding the existence of explicit definitions
and interpolants has hardly been studied for logics without the
PBDP and CIP, respectively. Exceptions are linear temporal
logic, LTL, for which the decidability of interpolant existence
has been shown in [39], [40], [41] and description logics
with nominals and/or role inclusions for which 2EXPTIME-
completeness has recently been shown in [42]. Both the upper
and lower bound proofs presented in this article are inspired
by [42] but the proofs for GF and FO2 are significantly more
involved than for the considered description logics.

The CIP and PBDP are well understood for guarded frag-
ments of FO. The first results on GF itself and various
fragments of GF were obtained in [43], [14], [34]. In particular,
after proving that GF fails to have the CIP it is shown
that a natural modal version of the CIP holds for GF: if
ϕ ⇒ ψ is valid for guarded formulas ϕ,ψ, then there exists
an interpolant for ϕ,ψ that may use in addition to the symbols
shared by ϕ and ψ any relation symbol that occurs as a guard
in ϕ or ψ.

More recently, the guarded negation fragment of FO (GNF)
has been introduced. GNF extends GF by adding, in a careful
way, unions of conjunctive queries [11]. Although GNF ex-
tends GF significantly, it is still decidable, has the finite model
property, has the tree-like model property, and enjoys various
preservation theorems [11], [44]. Importantly, and in contrast
to GF, GNF enjoys the CIP and the PBDP [44], [45]. Thus, the
existence of Craig interpolants and explicit definitions reduces
to validity checking which is 2EXPTIME-complete in GNF and
even in EXPTIME if the arity of relation symbols is bounded
by a constant. Thus, the existence of interpolants and explicit
definitions is one exponential harder in GF than in GNF.

Also related is work on uniform interpolation for GF. As
GF does not enjoy the CIP, it also does not enjoy the uniform
interpolation property (UIP). However, in [46], the authors
consider the same modal-like fragment as [34] and show that
the CIP generalizes to the UIP for this fragment. Uniform
interpolant existence for GF and FO2 has been considered
in [47]. In contrast to the decidability results obtained in
this article, it is shown that uniform interpolant existence is
undecidable for both GF and FO2.



The CIP in finite variable fragments of FO has been
investigated from a modal viewpoint in [48]. Variants of the
interpolation property and the Beth definability property that
hold for finite variable logics are given in [49] using pebble
games. Recently, it has been shown in [50] that FO2 enjoys
the weak Beth definability property (wBDP), in contrast to the
BDP introduced above. The definition of wBDP is the same
as that of BDP except that only those implicit definitions have
to be made explicit which also have the existence property,
not only the uniqueness property.

Also relevant for this work is the investigation of interpo-
lation and definability in modal logic in general [51] and in
hybrid modal logic [52], [53].

III. PRELIMINARIES

Let τ range over relational signatures not containing func-
tion or constant symbols. Denote by FO(τ) the set of first-
order (FO) formulas constructed from atomic formulas x = y
and R(x), R ∈ τ , using conjunction, disjunction, negation, and
existential and universal quantification. The signature sig(ϕ)
of an FO-formula ϕ is the set of relation symbols used in it.
As usual, we write ϕ(x) to indicate that the free variables
in ϕ are all from x and call a formula sentence in case it
has no free variables. FO(τ) is interpreted in τ -structures
A = (dom(A), (RA)R∈τ ), where dom(A) is the non-empty
domain of A, and each RA is a relation over dom(A) whose
arity matches that of R. We often drop τ and simply speak of
structures A.

In the guarded fragment, GF of FO [6], [7], formulas are
built from atomic formulas R(x) and x = y by applying the
Boolean connectives and guarded quantifiers of the form

∀y(α(x,y)→ ϕ(x,y)) and ∃y(α(x,y) ∧ ϕ(x,y))

where ϕ(x,y) is a guarded formula, and α(x,y) is an atomic
formula that contains all variables in x,y. The formula α is
called the guard of the quantifier. GF(τ) denotes the set of all
guarded formulas (also called GF-formulas) over signature τ .
We regard ∀y(α(x,y) → ϕ(x,y)) as an abbreviation for
¬∃y(α(x,y)∧¬ϕ(x,y)). The two-variable fragment, FO2, of
FO consists of all formulas in FO using two distinct variables.

Let A be structure. A pair A,a with a a tuple in A is called
a pointed structure. It will be convenient to use the notation
[a] = {a1, . . . , an} to denote the set of components of the
tuple a = (a1, . . . , an) ∈ dom(A)n. Similarly, for a tuple
x = (x1, . . . , xn) of variables we use [x] to denote the set
{x1, . . . , xn}.

We next recall model-theoretic characterizations of when
pointed structures cannot be distinguished in either GF or FO2.
We begin by introducing GF(τ )-bisimulations (often called
guarded τ -bisimulations) [36]. A set G ⊆ dom(A) is guarded
in A if G is a singleton or there exists R with A |= R(a) such
that G = [a]. A tuple a ∈ dom(A)n is guarded in A if [a] is
a subset of some guarded set in A.

For tuples a = (a1, . . . , an) in A and b = (b1, . . . , bn) in
B we call a mapping p from [a] to [b] with p(ai) = bi for

1 ≤ i ≤ n (written p : a 7→ b) a partial τ -isomorphism if p
is an isomorphism from the τ -reduct of A|[a] onto B|[b].

A set I of partial τ -isomorphisms p : a 7→ b from guarded
tuples a in A to guarded tuples b in B is called a GF(τ )-
bisimulation if the following hold for all p : a 7→ b ∈ I:

(i) for every guarded tuple a′ in A there exists a guarded
tuple b′ in B and p′ : a′ 7→ b′ ∈ I such that p′ and p
coincide on [a] ∩ [a′].

(ii) for every guarded tuple b′ in B there exists a guarded
tuple a′ in A and p′ : a′ 7→ b′ ∈ I such that p′−1 and
p−1 coincide on [b] ∩ [b′].

Assume that a and b are (possibly not guarded) tuples in A and
B. Then we say that the pointed structures A,a and B,b are
GF(τ )-bisimilar, in symbols A,a ∼GF,τ B,b, if there exists
a partial τ -isomorphism p : a 7→ b and a GF(τ )-bisimulation
I such that Conditions (i) and (ii) hold for p.

Next we introduce appropriate bisimulations for FO2, which
are essentially a relational variant of the infinite 2-pebble
games which have been used to characterize the expressive
power of FO2, see e.g. [37], [38]. Given structures A,B, a
relation S ⊆ dom(A) × dom(B) is an FO2(τ)-bisimulation
between A and B if S is global, that is, dom(A) ⊆ {a |
(a, b) ∈ S} and dom(B) ⊆ {b | (a, b) ∈ S} and, for every
(a, b) ∈ S the following conditions are satisfied:

(i) for every a′ ∈ dom(A), there is a b′ ∈ dom(B) such that
(a, a′) 7→ (b, b′) is a partial τ -isomorphism between A
and B and (a′, b′) ∈ S;

(ii) for every b′ ∈ dom(B), there is a a′ ∈ dom(A) such that
(a, a′) 7→ (b, b′) is a partial τ -isomorphism between A
and B and (a′, b′) ∈ S.

For tuples a = (a1, . . . , an),b = (b1, . . . , bn) of equal length
n = 0, 1, 2, we write A,a ∼FO2,τ B,b iff a 7→ b is a partial
τ -isomorphism between A and B and there is an FO2(τ)-
bisimulation S between A and B such that (ai, bi) ∈ S, for
all i ≤ n.

Now, let L be either GF or FO2. We write A,a ≡L,τ B,b
and call A,a and B,b L(τ)-equivalent if A |= ϕ(a) iff
B |= ϕ(b) holds for all formulas ϕ in L(τ). The following
equivalences are well-known [35], [36].

Lemma 1. Let L be either GF or FO2. Let A,a and B,b be
pointed structures and τ a signature. Then

A,a ∼L,τ B,b implies A,a ≡L,τ B,b

and, conversely, if A and B are ω-saturated, then

A,a ≡L,τ B,b implies A,a ∼L,τ B,b

IV. INTERPOLANTS AND EXPLICIT DEFINITIONS

Let L be either GF or FO2. We introduce L-interpolants
and explicit L-definitions and provide model-theoretic char-
acterizations of the existence of L-interpolants and explicit
L-definitions using L-bisimulations.

Let ϕ(x), ψ(x) be L-formulas with the same free variables
x. We call an L-formula θ(x) an L-interpolant for ϕ,ψ if
sig(θ) ⊆ sig(ϕ) ∩ sig(ψ), ϕ(x) |= θ(x), and θ(x) |= ψ(x).
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Fig. 1. Models for formulas in Example 1

We are interested in L-interpolant existence, the problem to
decide for given ϕ(x), ψ(x) in L whether an L-interpolant for
ϕ(x), ψ(x) exists. Recall from the introduction that neither
GF nor FO2 enjoy the Craig Interpolation Property (CIP) ac-
cording to which an L-interpolant for L-formulas ϕ(x), ψ(x)
exists iff ϕ(x) |= ψ(x).

We call L-formulas ϕ(x), ψ(x) jointly L(τ)-consistent if
there exist pointed structures A,a and B,b with A |= ϕ(a)
and B |= ψ(b) such that A,a ∼L,τ B,b. The notion of joint
consistency has been (implicitely) used to show the lack of
the CIP for GF [34]. Using Lemma 1 we show that interpolant
existence can in fact be characterized via joint consistency.

Lemma 2. Let L be either FO2 or GF. Let ϕ(x), ψ(x) be
L-formulas and let τ = sig(ϕ) ∩ sig(ψ). Then the following
conditions are equivalent:

1) there does not exist an L-interpolant for ϕ(x), ψ(x);
2) ϕ(x),¬ψ(x) are jointly L(τ)-consistent.

The following example illustrates the introduced notions.

Example 1. Consider the GF-formulas ϕ(x), ψ(x) given by

ϕ(x) = ∃yz (G(x, y, z) ∧R(x, y) ∧R(y, z) ∧R(z, x))

ψ(x) = A(x) ∧ ∀y∀z (R(y, z)→ (A(y)↔ ¬A(z)))

Clearly, we have ϕ(x) |= ¬ψ(x). Moreover, the models A, a of
ϕ(x) and B, b of ψ(x) depicted in Fig. 1 witness that ϕ(x) and
ψ(x) are jointly GF({R})-consistent; in fact, the witnessing
GF-bisimulation contains n 7→ m for every n ∈ dom(A), m ∈
dom(B). Lemma 2 implies that there is no GF-interpolant for
ϕ(x),¬ψ(x). a

Let ϕ be an L-sentence, θ(x) an L-formula, and τ a
signature. An L(τ)-formula ψ(x) is an explicit L(τ)-definition
of θ under ϕ if ϕ |= ∀x(θ(x) ↔ ψ(x)). We call θ explicitly
L(τ)-definable under ϕ if such an explicit L(τ)-definition of
θ under ϕ exists. We call θ implicitly L(τ)-definable under ϕ
if ϕ ∧ ϕ′ |= ∀x(θ(x)↔ θ′(x)), where ϕ′ and θ′ are obtained
from ϕ and θ, respectively, by renaming all non-τ symbols
R to fresh R′ of the same arity. Obviously, explicit L(τ)-
definability implies implicit L(τ)-definability. Recall from the
introduction that neither GF nor FO2 enjoy the projective Beth
definability property (PBDP) according to which the converse
implication holds.

We consider the problem of explicit L-definability, that is,
the problem to decide for given ϕ, θ(x), τ whether there is an

explicit L(τ)-definition of θ(x) under ϕ. We first observe that
explicit definition existence reduces to interpolant existence.

Lemma 3. Let L be either FO2 or GF. There is a polyno-
mial time reduction of explicit L-definability to L-interpolant
existence.

Lemma 3 suggests that there is a characterization of explicit
definability in terms of joint L(τ)-consistency as well. Indeed,
we give this characterization next.

Lemma 4. Let L be either FO2 or GF. For every L-sentence
ϕ, every L-formula θ(x), and signature τ , the following
conditions are equivalent:

1) there does not exist an explicit L(τ)-definition of θ(x)
under ϕ;

2) ϕ ∧ θ(x) and ϕ ∧ ¬θ(x) are jointly L(τ)-consistent.

Let us also illustrate the failure of the projective Beth
definability property in FO2 using Lemma 4.

Example 2. Consider the FO2-sentence ϕ given by

ϕ = ∀xy ((Y (x) ∧ Y (y))→ x = y) ∧
∀x (Z(x)→

∨3
i=0(ϕi(x) ∧ ϕ′3−i(x))) ∧

∀xy ((R(x, y) ∧ ¬Z(x))→ I(x)) ∧
∀xy (R(x, y)→ (I(x)↔ I(y))) ∧
∀xy (R(x, y)→ (I(x)→ (A(x)↔ ¬A(y))))

where ϕi(x) (resp., ϕ′i(x)) is an FO2-formula expressing that
there is an R-path of length i to (resp., from) an element
satisfying Y . Observe that Z(x) is implicitely FO2({R})-
definable under ϕ since it is explicitely FO({R})-definable
under ϕ: Z(x) is true at A, a iff a lies on a cycle of length
three. In particular, the last three conjuncts of ϕ imply that
¬Z(x) cannot be satisfied on any node of a cycle of odd
length. To see the lack of an explicit FO2({R})-definition,
consider structures A′ and B′ obtained from A, B in Figure 1:

• B′ is the extension of B in which every node satisfies I;
• A′ is the disjoint union of B′ and the extension of A in

which every node satisfies Z and a satisfies Y .

It can be verified that A′, a is a model of ϕ ∧ Z(x), that
B′, b is a model of ϕ∧¬Z(x), and that A′, a ∼FO2,{R} B

′, b.
By Lemma 4, Z(x) is not explicitely FO2({R})-definable
under ϕ. a

V. DECIDING JOINT GF(τ)-CONSISTENCY

We prove Theorem 1 (i). As Lemma 2 provides a reduc-
tion of the complement of GF-interpolant existence to joint
GF(τ)-consistency, that is, the problem of deciding whether
given ϕ(x), ψ(x) are jointly GF(τ)-consistent, we will prove
the complexity upper bound for the latter problem. For the
complexity lower bounds, we will also consider joint GF(τ)-
consistency, but for an input of the form given in Lemma 4.
This yields the respective lower bounds for explicit definition
existence; by Lemma 3, they lift to interpolant existence.



A. Upper Bounds

To decide joint GF(τ)-consistency we pursue a mo-
saic approach based on types. Throughout the section, let
ϕ(x0), ψ(x0) be the input to joint GF(τ)-consistency, for some
signature τ . Let Ξ = {ϕ(x0), ψ(x0)}.

We begin by defining an appropriate notion of type. Let
width(Ξ) denote the maximal arity of any relation sym-
bol used in Ξ and let fv(Ξ) be the number of variables
in x0. Let x1, . . . , x2n be fresh variables, where n :=
max {width(Ξ), fv(Ξ)}. We use cl(Ξ) to denote the smallest
set of GF-formulas that is closed under taking subformulas
and single negation, and contains:
• Ξ,
• all formulae x = y for distinct variables x, y;
• all formulae ∃xR(xy), where R is a relation symbol that

occurs in Ξ and xy is a tuple of variables.
Let A be a structure, a a tuple of distinct elements from
the domain of A, and x a tuple of distinct variables in
{x1, . . . , x2n} of the same length as a. Consider the bijection
v : x 7→ a. Then the Ξ-type of a in A defined through v is

tp(A, v : x 7→ a) = {θ | A |=v θ, θ ∈ cl(Ξ)[x]},

where cl(Ξ)[x] is obtained from cl(Ξ) by substituting in any
formula θ ∈ cl(Ξ) the free variables of θ by variables in
[x] in all possible ways. Note that the assumption that v is
bijective entails that ¬(x = y) ∈ tp(A, v : x 7→ a) for any
two distinct x, y ∈ [x]. We drop v (and both v and x) and write
tp(A,x 7→ a) (and tp(A,a), respectively), whenever they are
obvious from the context. Any Ξ-type of some a through some
v : x 7→ a is called a Ξ-type and simply denoted t(x). The
set of all Ξ-types is denoted T (Ξ).

We give a high-level description of our approach. To decide
joint GF(τ)-consistency of ϕ(x0), ψ(x0) we determine all sets
Φ ⊆ T (Ξ) using at most n variables from {x1, . . . , x2n} that
can be satisfied in GF(τ )-bisimilar models in the following
sense: there are models At, t ∈ Φ, realizing t in tuples at in
dom(At) through assignments vt such that for any t1, t2 ∈ Φ,

At1 , vt1(xt1,t2) ∼GF,τ At2 , vt2(xt1,t2),

where xt1,t2 are the shared free variables of t1 and t2.
Such sets Φ will be called τ -mosaics. Given the set of all
τ -mosaics one can check whether ϕ(x0), ψ(x0) are jointly
GF(τ)-consistent by simply checking whether there are types
t1(x), t2(x) in a single τ -mosaic Φ such that one can replace
the variables x0 in ϕ(x0), ψ(x0) by variables in [x] in such
a way that ϕ′ ∈ t1(x1), ψ′ ∈ t2(x2) for the resulting
formulas ϕ′, ψ′. Thus, in what follows we aim to determine
the characteristic properties of τ -mosaics and show that they
can be enumerated in triple exponential time in general. If
width(Ξ) is fixed, we perform a closer analysis of the set of
mosaics and show that double exponential time is sufficient.
The characteristic properties of τ -mosaics consist of internal
properties that can be checked by inspecting a single set Φ
of Ξ-types in isolation and one external property stating the
existence of other τ -mosaics that ensure that τ -mosaics can

be attached to each other in such a way that GF(τ )-bisimilar
models can be constructed.

To formulate the properties of τ -mosaics, we require some
notation. The restriction t(x)|X of a Ξ-type t(x) to a set X of
variables is the set of θ ∈ t(x) with free variables among X .
The restriction Φ|X of a set Φ of Ξ-types to X is defined as
{t(x)|X | t(x) ∈ Φ}. Types t(x) and t′(x′) coincide on X if
t(x)|X = t′(x′)|X and sets Φ,Φ′ of Ξ-types coincide on X if
Φ|X = Φ′|X . A variable x is free in a mosaic Φ if Φ contains
a type in which x is free.

A formula Q(x) of the form x = x or ∃yR(xy) with R ∈ τ
is called a τ -guard (for x). It is called a strict τ -guard if it is
of the form x = x or y is empty, respectively. We call a set
Φ ⊆ T (Ξ) a τ -mosaic if it satisfies the following conditions:

• Φ is τ -uniform: for all τ -guards Q(z) and all t(x), s(y) ∈
Φ with [z] ⊆ [x] ∩ [y], Q(z) ∈ t(x) iff Q(z) ∈ s(y);

• closed under restrictions: if t(x) ∈ Φ and X ⊆ [x], then
t(x)|X ∈ Φ;

• GF(τ )-bisimulation saturated: for all t(x) ∈ Φ, all strict
τ -guards Q(y) ∈ t(x), and all t′(z) ∈ Φ with [z] ⊆ [y],
there is an s(y′) ∈ Φ such that t′(z) ⊆ s(y′) and [y′] =
[y].

Intuitively, τ -uniformity reflects that GF(τ )-bisimulations pre-
serve all τ -guards and GF(τ )-bisimulation saturatedness re-
flects Condition (i) for GF(τ )-bisimulations. Let us illustrate
how to read off a mosaic from jointly consistent structures.

Example 3. Let A,B be the structures from Fig. 1, set τ =
{R}, and Ξ = {ϕ(x), ψ(x)} with ϕ,ψ as in Example 1. Let
Φ be the closure under restrictions of the set containing

tp(A, xyz → ace) and all types tp(B,x→ b)

with x ∈ {xy, yz, zx} and b ∈ {gb, bd}. Thus, for example, Φ
contains tp(A, xy → ac) as well. It can be easily verified that
Φ is τ -uniform. To illustrate GF(τ)-bisimulation saturation,
consider the types t(x, y) = tp(B, xy → bd) and t′(x) =
tp(A, x → a), and the strict τ -guard R(x, y) contained in
t(x, y). Then GF(τ)-bisimulation saturatedness is witnessed
by the type s(x, y) = tp(A, xy → ac) ∈ Φ. a

In addition to the internal properties above, we have to
ensure that τ -mosaics can be linked together. The next two
conditions state when this is the case. We say that τ -mosaics
Φ1,Φ2 are compatible if for {i, j} = {1, 2}:

1) for every t(x) ∈ Φi there is an s(y) ∈ Φj such that t(x)
and s(y) coincide on [x] ∩ [y];

2) if there are t(x) ∈ Φi and s(y) ∈ Φj and a τ -guard
Q(z) ∈ t(x) with [z] ⊆ [x]∩[y], then Φi and Φj coincide
on [z].

Note that compatibility is a reflexive and symmetric relation.
Let M be a set of τ -mosaics. We call Φ ∈ M existentially
saturated in M if for every t(x) ∈ Φ and every formula
∃y(R(x′,y)∧ λ(x′,y)) ∈ t(x) there is a some Φ′ ∈M such
that Φ,Φ′ are compatible and R(x′,y′)∧λ(x′,y′) ∈ t′(z) for
some t′(z) ∈ Φ′ which coincides with t(x) on [x]∩ [z]. M is



called existentially saturated if every Φ ∈ M is existentially
saturated in M.

Example 4. LetM = {Φ} with Φ as in Example 3. We claim
that M is existentially saturated. Clearly every existentially
quantified formula in (any restriction of) tp(A, xyz → ace)
is ”realized” in tp(A, xyz → ace) itself. Consider now, for
example, ∃z′R(z, z′) ∈ t(y, z) := tp(B, yz → bd). Then
the type tp(B, zx → gb) coincides with t(y, z) on {z} and
contains R(z, x), as required. a

It should be clear that the set of existentially saturated sets
of τ -mosaics is closed under unions. Thus, the union of all
existentially saturated sets of τ -mosaics is again existentially
saturated. This set can be obtained by a purely syntactic
elimination procedure, starting with the set of all τ -mosaics
with at most n free variables from {x1, . . . , x2n}. We fine-
tune and analyze this procedure below to obtain our two
complexity upper bounds for joint GF(τ )-consistency. To this
end, we prove three lemmas about existentially saturated sets
of τ -mosaics. The first lemma states that τ -mosaics that are
contained in an existentially saturated set behave in the way
announced in the high-level overview of the proof.

Lemma 5. Assume M is an existentially saturated set of τ -
mosaics and let t1(x1), t2(x2) ∈ Ψ ∈ M. Then there are
pointed models A1,a1 and A2,a2 and vi : xi 7→ ai such that
• Ai |= ti(ai), i = 1, 2, and
• A1, v1([x1] ∩ [x2]) ∼GF,τ A2, v2([x1] ∩ [x2]).

Proof. Let Ψ ∈ M. We assume w.l.o.g. that M is closed
under restrictions in the sense that for any Φ ∈ M and
subset X of the free variables of Φ, Φ|X ∈ M. (If it is not
closed under restrictions simply add all Φ|X with Φ ∈ M to
M. The resulting set is still existentially saturated.) Define
Ψ̂ := Ψ|∅, that is, Ψ̂ contains all Ξ-types in Ψ without
free variables. By closure under restrictions of M, we have
Ψ̂ ∈ M. Assume Ψ̂ = {t̂1, . . . , t̂m}. We construct structures
Ai, i = 1, . . . ,m, with Ai satisfying t̂i. For the construction,
it is useful to employ notation for tree decompositions. A tree
decomposition of a structure A is a triple (T,E, bag) with
(T,E) a tree and bag a function that assigns to every t ∈ T
a set bag(t) ⊆ dom(A) such that

1) A =
⋃
t∈T A|bag(t);

2) {t ∈ T | a ∈ bag(t)} is connected in (T,E), for every
a ∈ dom(A).

We construct the structures Ai, i = 1, . . . ,m by giving a tree
decomposition (Ti, Ei, bagi) of Ai. To this end, we define
(Ti, Ei, bagi) and structures Bagi(t) with domain bagi(t), t ∈
Ti, and then show that (Ti, Ei, bagi) is a tree decomposition of
the union Ai of all Bagi(t), t ∈ Ti. We start with the definition
of (Ti, Ei). Let Ti be the set of all sequences

σn = (t0(y0),Φ0), . . . , (tn(yn),Φn)

such that t0 = t̂i, Φ0 = Ψ̂, tj(yj) ∈ Φj for all j ≤ n, and for
all j < n:
• Φj ,Φj+1 are compatible, and

• tj(yj) and tj+1(yj+1) coincide on [yj ] ∩ [yj+1].
Let Ei be the induced prefix-order on Ti. We call (tn(yn),Φn)
the tail of σn. It remains to define the functions bagi and Bagi.
We give an inductive definition with the aim to achieve the
following: for all σn ∈ Ti of the form above the Ξ-type tn(yn)
is satisfied in Ai under a canonical assignment vσn into the
set bagi(σn). For the construction, it is important to note that
we have ¬(x = y) ∈ t for any two distinct free variables x, y
in any Ξ-type t. Thus we can essentially use (copies of) the
variables yn to define bagi(σn).

For the inductive definition, start by setting bagi(σ0) = ∅
and vσ0 = ∅ for σ0 = (t̂i,Φ0). In the inductive step, assume
that bagi, vσn−1 , and Bagi have been defined on σn−1, where

σn−1 = (t0(y0),Φ0), . . . , (tn−1(yn−1),Φn−1).

Then bagi(σn) contains
• fresh copies y′ of the variables y ∈ [yn] \ [yn−1] and
• vσn−1(y) for every y ∈ [yn] ∩ [yn−1],

and vσn
(y) is defined as the copy y′ of y for y ∈ [yn]\ [yn−1]

and by setting vσn(y) := vσn−1(y) for y ∈ [yn] ∩ [yn−1].
Finally, we define Bagi(σn) by interpreting any relation sym-
bol R in such a way that the atomic formulas in tn(yn)
are satisfied under vσn

, that is, such that Bagi(σn) satisfies
R(vσn

(y)) iff R(y) ∈ tn(yn).
Let Ai be the union of all Bagi(t), t ∈ Ti. It is easy to see

that (Ti, Ei, bagi) is a tree decomposition of Ai. In fact, in
the inductive step above, tn(yn) and tn−1(yn−1) coincide on
[yn]∩ [yn−1]. Thus, the interpretation of any relation symbol
R coincides on the intersection of bagi(σn) and bagi(σn−1).
We proceed to show that the GF(τ )-bisimulation mentioned in
Lemma 5 indeed exists. To this end, we prove the following
auxiliary claim. We call a tuple a τ -guarded in A if there
exists a τ -guard Q(x) such that A |= Q(a). We prove the
following in the appendix:

Claim 1. For all i, j with 1 ≤ i, j ≤ m, we have:
1) For every σ ∈ Ti with tail(σ) = (t(y),Φ), we have Ai |=

t(vσ(y));
2) Let Hi,j be the set of all mappings pσ,σ′,z, where
• σ ∈ Ti, σ′ ∈ Tj , tail(σ) = (t(y),Φ), and tail(σ′) =

(t′(y′),Φ);
• z is a tuple with [z] ⊆ [y]∩[y′] and vσ(z) is τ -guarded

in Ai (or, equivalently, vσ′(z) is τ -guarded in Aj);
• pσ,σ′,z : vσ(z) 7→ vσ′(z).
Then Hi,j is a GF(τ )-bisimulation between Ai and Aj .

To complete the proof of Lemma 5, assume w.l.o.g. that
t̂i ⊆ ti(xi) for i = 1, 2. Take ρi = (t̂i, Ψ̂) · (ti(xi),Ψ) ∈ Ti,
for i = 1, 2. Consider the tuples ai := vρi(xi). By Claim 1,
Ai |= ti(ai). Also by Claim 1, for any tuple z with [z] ⊆
[x1]∩ [x2] and such that vρ1(z) is τ -guarded in A1 or A2, we
have pρ1,ρ2,z : vρ1(z) 7→ vρ2(z) ∈ H1,2. But then, as any two
pρ1,ρ2,z coincide on the intersection of their domains, we have
A1, vρ1([x1] ∩ [x2]) ∼GF,τ A2, vρ2([x1] ∩ [x2]), as required.

o



We next show how to read off an existentially saturated set
of mosaics from jointly consistent structures, as illustrated in
Example 3. We make sure that all mosaics except a single
mosaic Ψ use only width(Ξ) many free variables and that
also in Ψ only at most two types use more variables.

Lemma 6. Let A1,a1 and A2,a2 be pointed structures with
a1 and a2 tuples with pairwise distinct elements of length
m ≤ fv(Ξ) and let τ be a signature. Consider assignments
x0 7→ ai with [x0] ⊆ {x0, . . . , x2n}. If A1,a1 ∼GF,τ A2,a2,
then there exists an existentially saturated setM of τ -mosaics
and some Ψ ∈M such that
• all Φ ∈M with Φ 6= Ψ use at most width(Ξ) many free

variables;
• there exist types t1(x0), t2(x0) ∈ Ψ such that ti(x0) =

tp(Ai,x0 7→ ai) for i = 1, 2 and all types t(y) ∈
Ψ \ {t1(x0), t2(x0)} use at most width(Ξ) free variables
among [x0].

Proof. Assume w.l.o.g. that A1 and A2 are disjoint. For
any tuples b1 in Ai and b2 in Aj with i, j ∈ {1, 2}, we
use tp(x1 7→ b1) to denote tp(Ai,x1 7→ b1) and we write
b1 ∼GF,τ b2 if Ai,b1 ∼GF,τ Aj ,b2. Define M as follows.
Take any tuple a of distinct elements in Ai, i ∈ {1, 2}. Take a
tuple x from {x1, . . . , x2n} such that v : x 7→ a is a bijection.
Then let Φa,x contain all types tp(v′ : x|Y 7→ b) with Y ⊆ [x]
and b in either A1 or A2 such that v(x|Y ) ∼GF,τ v

′(x|Y ).
Let M contain all such Φa,x with a of length at most

width(Ξ) and x from {x1, . . . , x2n}. Moveover, if m >
width(Ξ), then add Φ̂a1,x0

to M, where Φ̂a1,x0
is obtained

from Φa1,x0 by removing all t distinct from t1(x0) and t2(x0)
using more than width(Ξ) many free variables.

We show in the appendix that M is as required. o

It follows from Lemmas 5 and 6 that the following two
conditions are equivalent, where M′ is the maximal existen-
tially saturated set of τ -mosaics using at most width(Ξ) free
variables.

1. ϕ(x0), ψ(x0) are jointly GF(τ)-consistent;
2. There exists a τ -mosaic Ψ and Ξ-types t1(x), t2(x) ∈ Ψ

such that M = {Ψ} ∪M′ is existentially saturated and:
a) t1(x), t2(x) have fv(Ξ) free variables and one can

replace the variables in [x0] by variables in x such
that ϕ′ ∈ t1(x), ψ′ ∈ t2(x) for the resulting formulas
ϕ′, ψ′;

b) all Ξ-types t(y) ∈ Ψ \ {t1(x), t2(x)} use at most
width(Ξ) free variables among [x];

Hence, it suffices to provide an algorithm deciding Condi-
tion 2.

Lemma 7. On input ϕ(x0), ψ(x0), Condition 2 can be de-
cided in time triple exponential in the size of ϕ(x0), ψ(x0) in
general, and double exponential in the size of ϕ(x0), ψ(x0) if
width(Ξ) is bounded by a constant.

Proof. First determine M′ by exhaustively removing τ -
mosaics that are not existentially saturated from the list of
all τ -mosaics with at most width(Ξ) free variables. It can be

verified that the fixpoint is existentially saturated. Next we
proceed as follows: for every pair t1(x), t2(x) of Ξ-types that
satisfies Condition 2(a) enumerate all τ -mosaics Ψ satisfying
Condition 2(b), that is, t1(x), t2(x) ∈ Ψ and all types in Ψ
except t1(x), t2(x) use at most width(Ξ) free variables among
[x]. Accept if at least one {Ψ}∪M′ is existentially saturated.
Reject otherwise.

Correctness of the algorithm is straightforward, so it remains
to analyze its run time. For this purpose, let r be the number
of subformulas (of formulas) in Ξ and ` ≥ 0. Observe that a
subformula with ` free variables has at most (2n)` instanti-
ations with variables from x1, . . . , x2n. Since for every such
instantiated formula either the formula itself or its negation is
contained in any type, there are at most 2r(2n)` many types
with ` free variables. Thus, there are only double exponentially
many choices for t1(x), t2(x) and Ψ. Moreover, the set of
all τ -mosaics with at most width(Ξ) free variables is of size
triple exponential in the size of ϕ(x0), ψ(x0) in general, and
double exponential in the size of ϕ(x0), ψ(x0) if width(Ξ) is
bounded by a constant. The upper bounds now follow from
the observation that checking whether some Φ is existentially
saturated in some set M0 of mosaics can be done in time
polynomial in the size of M0. o

From the equivalence of Conditions 1 and 2, and Lemma 7
we finally obtain that joint GF(τ)-consistency is in 3EXPTIME
in general, and in 2EXPTIME if the arity of relation symbols
is bounded by a constant.

B. Lower Bounds

We reduce the word problem for exponentially and double
exponentially space bounded alternating Turing machines,
respectively. An alternating Turing machine (ATM) is a tuple
M = (Q,Θ,Γ, q0,∆) where Q = Q∃ ] Q∀ is the set of
states that consists of existential states in Q∃ and universal
states in Q∀. Further, Θ is the input alphabet and Γ is
the tape alphabet that contains a blank symbol � /∈ Θ,
q0 ∈ Q∃ is the starting state, and the transition relation ∆
is of the form ∆ ⊆ Q × Γ × Q × Γ × {L,R}. The set
∆(q, a) := {(q′, a′,M) | (q, a, q′, a′,M) ∈ ∆} must contain
exactly two or zero elements for every q ∈ Q and a ∈ Γ.
Moreover, the state q′ must be from Q∀ if q ∈ Q∃ and
from Q∃ otherwise, that is, existential and universal states
alternate. We use a slightly non-standard acceptance condition
(note that there are no accepting states): The ATM accepts
an input w if it runs forever on all branches and rejects
otherwise. Starting from the standard ATM model, this can
be achieved by assuming that exponentially (resp., double
exponentially) space bounded ATMs terminate on every input
and then modifying them to enter an infinite loop from the
accepting state.

More formally, a configuration of an ATM is a word wqw′

with w,w′ ∈ Γ∗ and q ∈ Q. We say that wqw′ is existential
if q is, and likewise for universal. Successor configurations
are defined in the usual way. Note that every configuration
has either zero or two successor configurations. A computation



tree of an ATM M on input w is an infinite tree whose nodes
are labeled with configurations of M such that
• the root is labeled with the initial configuration q0w;
• if a node is labeled with an existential configuration
wqw′, then it has a single successor and this successor is
labeled with a successor configuration of wqw′;

• if a node is labeled with a universal configuration wqw′,
then it has two successors and these successors are
labeled with the two successor configurations of wqw′.

An ATM M accepts an input w if there is a computation tree
of M on w. It is well-known that the word problem for 2n-
space bounded and 22n

-space bounded ATMs is 2EXPTIME-
hard and 3EXPTIME-hard, respectively [54].

1) Bounded Arity: For didactic reasons, we start with
showing 2EXPTIME-hardness for the bounded arity case. Let
M be a 2n-space bounded ATM and w an input. The idea of
the reduction is as follows. We set

τ = {R,S,X,Z,B∀, B1
∃, B

2
∃} ∪ {Aσ | σ ∈ Γ ∪ (Q× Γ)},

where R,S are binary relation symbols, and the remaining
symbols are unary. We aim to construct ϕ such that M accepts
w iff ϕ∧A(x) and ϕ∧¬A(x) are jointly GF(τ)-consistent. The
sentence ϕ is a conjunction of several GF-sentences, which
are, except for one, also FO2-sentences. The first conjunct,
ϕ0 below, is this exception and enforces that every element
satisfying A is involved in a three-element R-loop (similar to
Example 1):

ϕ0 = ∀x
(
A(x)→ ∃yz(G(x, y, z) ∧X(x) ∧ ¬X(y) ∧

¬X(z) ∧R(x, y) ∧R(y, z) ∧R(z, x)
)

Now, if ϕ∧A(x) and ϕ∧¬A(x) are jointly GF(τ)-consistent,
there exist models A and B of ϕ and elements a, b such that
a ∈ AA, b /∈ AB, and A, a ∼GF,τ B, b. If the latter holds, then
from a ∈ AA and ϕ0 it follows that b has an infinite outgoing
path ρ along R on which every third element satisfies X and
is guarded τ -bisimilar to a. Let us call these elements the X-
elements. As guarded bisimilarity is an equivalence relation,
all X-elements are actually guarded τ -bisimilar. The other
conjuncts of ϕ will enforce that along the X-elements on ρ,
a counter counts modulo 2n using relation symbols not in τ .
Moreover, in every X-element of ρ starts an infinite tree along
symbol S that is supposed to mimick the computation tree of
M . Along this tree, two counters are maintained:
• one counter starting at 0 and counting modulo 2n to

divide the tree in subpaths of length 2n; each such path
of length 2n represents a configuration;

• another counter starting at the value of the counter along
ρ and also counting modulo 2n.

To link successive configurations we use the fact that all
X-elements on ρ are guarded τ -bisimilar and thus each X-
element is the starting point of trees along S with identical
τ -decorations. As on the mth such tree the second counter
starts at all nodes at distances k · 2n −m, for all k ≥ 1, we
are in the position to coordinate all positions at all successive
configurations.

In detail, let w = a0, . . . , an−1 be an input to M of length
n. We will be using unary symbols Ai, Ui, Vi, 1 ≤ i ≤ n to
represent the aforementioned binary counters; we will refer to
them with A-counter, U -counter, and V -counter, respectively.

The sentences below enforce that the A-counter along the
R-path ρ is incremented (precisely) at every X-element. In
order to avoid that the counter is stipulated at a (which would
lead to a contradiction), we use an additional symbol I /∈ τ
that is satisfied along the entire path and acts as an additional
guard:1

∀xy
(
R(x, y)→ (¬A(x) ∧X(x)→ I(x)

)
∀xy

(
R(x, y)→ (I(x)↔ I(y))

)
∀xy

(
R(x, y) ∧ I(x) ∧ ¬X(y)→ Eq(x, y))

)
∀xy

(
R(x, y) ∧ I(x) ∧X(y)→ Succ(x, y))

)
Here, atoms Eq(x, y) and Succ(x, y) are abbreviations for
formulas that express that the A-counter value at x equals
(resp., is the predecessor of) the A-counter value at y, that is:

Eq(x, y) =
∧
iAi(x)↔ Ai(y))

Succ(x, y) =
∨
i

(
Ai(y) ∧ ¬Ai(x) ∧

∧
j<i(¬Aj(y) ∧Aj(x))

∧
∧
j>i(Aj(y)↔ Aj(x))

)
Now, we start a tree along S from all X-elements on the
infinite R-path. Along the path, we maintain the U - and V -
counter, which are initialized to 0 and the value of the A-
counter, respectively:

∀x∃yS(x, y)

∀xy
(
S(x, y)→ (I(x)↔ I(y)

)
∀x
(
I(x) ∧X(x)→ MinU (x)

)
∀x
(
I(x) ∧X(x)→

∧
i(Vi(x)↔ Ai(x))

)
Here, MinU (x) is an abbreviation for the formula that ex-
presses that the U -counter is 0 at x; we use similar abbrevi-
ations such as MaxV (x) below. The U and V -counters are
incremented along S analogously to how the A-counter is
incremented along R, but on every S-step; we omit details.
Configurations of M are represented between two consecutive
elements having U -counter value 0. We next enforce the
structure of the computation tree, assuming that q0 ∈ Q∀.

∀x
(
I(x) ∧X(x)→ B∀(x)

)
∀xy

(
S(x, y) ∧ I(x) ∧ ¬MaxU (x)→ (B∀(x)↔ B∀(y))

)
∀xy

(
S(x, y) ∧ I(x) ∧ ¬MaxU (x)→

∧2
j=1(Bj∃(x)↔ Bj∃(y))

)
∀xy

(
S(x, y) ∧ I(x) ∧MaxU (x)→ (B∀(x)↔ ¬B∀(y))

)
∀x
(
I(x) ∧MaxU (x)→ ∃y(S(x, y) ∧ Z(y)) ∧

∃y(S(x, y) ∧ ¬Z(y))
)

∀x
(
I(x) ∧ ¬B∀(x)→ (B1

∃(x)↔ ¬B2
∃(x))

)
These sentences enforce that all nodes which represent a
configuration satisfy exactly one of B∀, B1

∃, B
2
∃, indicating the

1Throughout, we assume that ∧ has higher precedence than →. Moreover,
some formulas are not syntactically guarded but can easily be rewritten.



kind of configuration and, if existential, also a choice of the
transition function, indicated in the superscript of Bj∃. The
symbol Z ∈ τ enforces the branching.

We next set the initial configuration, for input w =
a0, . . . , an−1. Below, we use ∀y(Si(x, y) → ψ(y)) to abbre-
viate the GF-formula that enforces ψ at all elements y that are
reachable in i steps via S from x.

∀x(I(x) ∧X(x)→ Aq0,a(x))

∀x
(
I(x) ∧X(x)→ ∀y(Sk(x, y)→ Aak(y))

)
, 0 < k < n

∀x
(
I(x) ∧X(x)→ ∀y(Sn(x, y)→ Blank(y))

)
∀x(Blank(x)→ A�(x))

∀x(Blank(x) ∧ ¬MaxU (x)→ ∀y(S(x, y)→ Blank(y)))

We next coordinate consecutive configurations, focusing on
cells that are not at the border of a configuration; these
corner cases can be dealt with accordingly. To this end, we
associate with M functions fi, i ∈ {1, 2} that map the
content of three consecutive cells of a configuration to the
content of the middle cell in the i-th successor configuration
(assuming an arbitrary order on the ∆(q, a)). Moreover, for
each triple (σ1, σ2, σ3) ∈ (Γ∪(Q×Γ))3, we fix a GF-formula
ψσ1,σ2,σ3(x) that is satisfied at an element a of the compu-
tation tree iff a is labeled with Aσ2 , a has an S-predecessor
labeled with Aσ1

, and a has an S-successor labeled with Aσ3
.

Now, in each configuration, we synchronize elements with
V -counter 0, by including for every ~σ = (σ1, σ2, σ3) and
i ∈ {1, 2} the following sentences:

∀x
(
I(x) ∧MinV (x) ∧ ¬MinU (x) ∧ ¬MaxU (x) ∧B∀(x)→

(ψ~σ(x)→ A1
f1(~σ)(x) ∧A2

f2(~σ)(x))
)

∀x
(
I(x) ∧MinV (x) ∧ ¬MinU (x) ∧ ¬MaxU (x) ∧Bi∃(x)→

(ψ~σ(x)→ Aifi(~σ)(x))
)

The unary symbols Aiσ are used as markers (not in τ ) and are
propagated along S for 2n steps, exploiting the V -counter. The
superscript i ∈ {1, 2} determines the successor configuration
that the symbol is referring to. After crossing the end of a
configuration, the symbol σ is propagated using further unary
symbols A′σ (the superscript is not needed anymore because
the branching happens at the end of the configuration, based
on Z):

∀x
(
¬MaxU (x) ∧Aiσ(x)→ ∀y(S(x, y)→ Aiσ(y))

)
∀x
(
MaxU (x) ∧B∀(x) ∧A1

σ(x)→
∀y(S(x, y)→ (Z(y)→ A′σ(y)))

)
∀x
(
MaxU (x) ∧B∀(x) ∧A2

σ(x)→
∀y(S(x, y)→ (¬Z(y)→ A′σ(y)))

)
∀x
(
MaxU (x) ∧Bi∃(x) ∧Aiσ(x)→ ∀y(S(x, y)→ A′σ(y))

)
∀x
(
¬MaxV (x) ∧A′σ(x)→ ∀y(S(x, y)→ A′σ(x))

)
∀x
(
MaxV (x) ∧A′σ(x)→ ∀y(S(x, y)→ Aσ(x))

)
For those (q, a) with ∆(q, a) = ∅, we add the sentence

∀x ¬Aq,a(x)

to ensure that such halting states are never reached. Correct-
ness of the reduction is established in the appendix.

Lemma 8. M accepts the input w iff there exists models A,B
of ϕ and elements a ∈ AA, b /∈ AB such that A, a ∼GF,τ B, b.

2) General Case: We reduce the word problem of 22n

-
space bounded ATMs using the very same idea as in the
previous section. However, we need double exponential coun-
ters instead of the single exponential counters for A,U, V
above. These counters are encoded in a way similar to the
2EXPTIME-hardness proof for satisfiability in the guarded
fragment [7]. The mentioned encoding is based on pairs of
elements, so we “lift” the above reduction to pairs of elements
and consequently double the arity of all involved symbols.
More precisely, we set

τ = {R,S,X,Z,B∀, B1
∃, B

2
∃} ∪ {Aσ | σ ∈ Γ ∪ (Q× Γ)},

where R,S are 4-ary relation symbols, and the remaining
symbols are binary. The sentence ϕ is a conjunction of several
sentences. The first conjunct, ϕ0 below, enforces that every
pair of elements satisfying A is involved in a three-element
R-loop as follows:2

ϕ0 = ∀xx′
(
Axx′ → ∃yy′zz′(Gxx′yy′zz′ ∧Xxx′ ∧

¬Xyy′ ∧ ¬Xzz′ ∧Rxx′yy′ ∧Ryy′zz′ ∧Rzz′xx′)
)

As above, we aim to construct ϕ such that M accepts w iff
there exist models A and B of ϕ and pairs a,b such that
a ∈ AA, b /∈ AB, and A,a ∼GF,τ B,b. If the latter holds then
from a ∈ AA and ϕ0 it follows that b has an infinite outgoing
“path” ρ along R on which every third pair of element satisfies
X and is guarded τ -bisimilar to a. Let us call these pairs the
X-pairs. Observe that all X-pairs are guarded τ -bisimilar.

The main difference to the reduction above is the realization
of the counters, so we will concentrate on this and leave the
(straightforward) remainder of the proof to the reader. For
realizing the A-counter, we use an n-ary relation symbol D
and associate a counter to every pair of elements (a, a′) as
follows. We assume the order a < a′ which induces an order
< on tuples a ∈ {a, a′}n. Thus, every tuple a ∈ {a, a′}n
corresponds to a number r(a) < 2n, the rank of a according
to <. Now the sequence of truth values on all these tuples
in D can be viewed as the binary representation of a number
< 22n

.
The A-counter along the R-path ρ is enforced by the

following sentences:

∀xx′yy′
(
Rxx′yy′ → (¬Axx′ ∧Xxx′ → Ixx′)

)
∀xx′yy′

(
Rxx′yy′ → (Ixx′ ↔ Iyy′)

)
∀xx′yy′

(
Rxx′yy′ ∧ Ixx′ → (¬Xyy′ → Eq(xx′yy′))

)
∀xx′yy′

(
Rxx′yy′ ∧ Ixx′ → (Xyy′ → Succ(xx′yy′))

)
Again, the I acts as an additional guard that disables the
counting at a. It remains to define the formulas Eq(xx′yy′)
and Succ(xx′yy′). We show in the appendix that we can

2We omit commas and/or parantheses when no confusion can arise.



axiomatize a (4n + 4)-ary predicate E such that, for pairs
a, a′ and b, b′ where b, b′ represents a successor node of a, a′,
and for a,a′ ∈ {a, a′}n and b,b′ ∈ {b, b′}n, we have

E(aa′aa′bb′bb′) iff r(a) = r(b) and r(a′) = r(b′).

Then the formulas Eq and Succ can be defined as follows:

Eq(xx′yy′) = ∀xyx′y′
(
Exx′xx′yy′yy′ → (Dx↔ Dy)

)
Succ(xx′yy′) = ∃xy

(
Exxxx′yyyy′ ∧ ¬Dx ∧Dy

∧ ∀x′y′
(
Exx′xx′yy′yy′ →

(less(x′xxx′)→ Dx′ ∧ ¬Dy′) ∧
(less(xx′xx′)→ (Dx′ ↔ Dy′))

))
where, for x = x0 . . . xn−1 and x′ = x′0 . . . x

′
n−1, we have

less(xx′xx′) =
∨
i<n

(
x′i = x′ ∧ xi = x ∧

∧
j>i xj = x′j

)
.

Thus, less(xx′xx′) compares the positions of x and x′ ac-
cording to the order x < x′. Moreover, Eq(xx′yy′) is true iff
the counters stipulated by x, x′ and y, y′ have precisely the
same bits set. Finally, Succ(xx′yy′) asserts the existence of a
position k such that (i) in the counter stipulated by x, x′ bit k
is set to 0 while in the counter stipulated by y, y′ bit k is set
to 1, (ii) on all positions k′ less than k, the bits in the former
counter are 1 while the bits in the latter are 0, and (iii) on all
positions k′ greater than k the counters agree on their bits.

Having the adapted counters available, the proof then pro-
ceeds along the lines of the proof given for the bounded arity
case, always replacing single elements/variables with pairs of
elements/variables as exemplified above.

VI. DECIDING JOINT FO2(τ)-CONSISTENCY

We prove Theorem 1 (ii). We proceed similarly to the
proof for GF by proving a N2EXPTIME upper bound for joint
FO2(τ)-consistency and then applying Lemma 2 to obtain a
CON2EXPTIME upper bound for FO2-interpolant existence.
For the complexity lower bound we consider joint FO2(τ)-
consistency for an input of the form given in Lemma 4.

A. Upper Bound

We show the N2EXPTIME upper bound for joint FO2(τ)-
consistency by proving that if two FO2-formulas are jointly
FO2(τ)-consistent, then there exist FO2(τ)-bisimilar models
satisfying the formulas of at most double exponential size:

Theorem 2. If ϕ(x0), ψ(x0) are jointly FO2(τ)-consistent,
then there are pointed models B1,b1 and B2,b2 of at most
double exponential size such that B1 |= ϕ(b1), B2 |= ψ(b2)
and B1,b1 ∼FO2,τ B2,b2.

The remainder of this section is devoted to the proof. We
first simplify the input formulas. Generalizing [19], we show
in the appendix that one can assume w.l.o.g. that the input
formulas only use relation symbols of arity at most two. Then
one can easily extend the normal form for FO2 sentences
provided in [19] to the following normal form for formulas:
for any FO2-formula χ(x) only using relation symbols of arity

at most two one can construct in polynomial time an FO2-
formula χ′(x) of the form

R0(x) ∧ ∀x∀yα ∧
m∧
i=1

∀x∃yβi(x, y),

where R0 is a relation symbol and α and βi are quantifier-free
such that all relations symbols in χ′(x) have arity at most two
and

1) χ′ |= χ;
2) every model of χ can be expanded to a model of χ′.

In what follows we can thus assume that the input formulas
ϕ(x0), ψ(x0) are of this form. Let Ξ = {ϕ(x0), ψ(x0)}. We
use cl(Ξ) to denote the closure under single negation of the
set of all subformulas of ϕ and ψ with at most the variable x
free and all formulas of the form R(x) and R(x, x) with R
a unary or, respectively, binary relation symbol in ϕ,ψ. The
1-type tA(a) realized in a pointed structure A, a is defined as

tA(a) := {χ(x) | A |= χ(a), χ ∈ cl(Ξ)}

A 1-type t is any subset of cl(Ξ) such that there exists a
pointed structure A, a with t = tA(a). A link-type l contains
x 6= y and for any binary relation symbol R in Ξ either R(x, y)
or ¬R(x, y) and R(y, x) or ¬R(y, x). The link-type lA(a, b)
realized in a pointed structure A, a, b contains R(x, y) iff A |=
R(a, b) and it contains R(y, x) iff A |= R(b, a).

For a pair (l, s) with l a link-type and s a 1-type we say that
nodes d, d′ satisfy (l, s) in A if l = lA(d, d′) and s = tA(d′).

Now assume that ϕ and ψ are jointly FO2(τ)-consistent.
Then we find pointed models A1,a1 and A2,a2 satisfying ϕ
and ψ, respectively, such that A1,a1 ∼FO2,τ A2,a2. We extract
from A1 and A2 new pointed models B1,b1 and B2,b2 which
still witness joint FO2(τ)-consistency of ϕ and ψ but which
are of at most double exponential size in ϕ and ψ. In what
follows we assume that dom(A1) ∩ dom(A2) = ∅. We write
d ∼FO2,τ e if there are i, j ∈ {1, 2} with d ∈ dom(Ai), e ∈
dom(Aj), and Ai, d ∼FO2,τ Aj , e.

A mosaic m is a pair (Φ1,Φ2) with Φ1,Φ2 sets of 1-types.
The mosaic m(d) = (Φ1,Φ2) generated by d ∈ dom(A1) ∪
dom(A2) is defined by setting

Φj = {tAj
(e) | e ∈ dom(Aj), d ∼FO2,τ e},

for j = 1, 2. The set M of all mosaics generated in A1,A2 is
then defined as

M = {m(d) | d ∈ dom(A1) ∪ dom(A2)}.

Observe that since FO2(τ)-bisimulations are global, M =
{m(d) | d ∈ dom(Ai)}, for i = 1, 2. The set K ⊆ M of
king mosaics is defined as the set of all m(d) ∈ M such
that for all e with m(d) = m(e) we have d ∼FO2,τ e. Let
C =M\K be the set of pawn mosaics. If m(d) = (Φ1,Φ2)
is a king mosaic, then call any t ∈ Φi such that there exists
exactly one e with t = tAi(e) and d ∼FO2,τ e an i-king in
(Φ1,Φ2). Any t ∈ Φi that is not an i-king in (Φ1,Φ2) is
called an i-pawn in (Φ1,Φ2). All t ∈ Φi with (Φ1,Φ2) a
pawn mosaic are called i-pawns in (Φ1,Φ2). Note that we



generalize a few notions introduced in the single exponential
size model property proof for FO2 presented in [19]. In that
proof, 1-types that are realized exactly once in a model played
a special roles and were called kings. Here we generalize that
notion to king mosaics and kings within king mosaics.

We are now in the position to define the domains of B1,B2

as follows. Let s be the size of the input ϕ(x0), ψ(x0). Then
the number of mosaics is bounded by mϕ,ψ = 22s+1

. Let
k1 = 24s ×mϕ,ψ and let k2 = 23s × k2

1 .
Take k1 many copies (t, 1), (t, 2), . . . , (t, k1) of every 1-

type t and take k2 many copies (m, 1), (m, 2), . . . , (m, k2)
of every pawn mosaic m. Then the domain dom(Bi) of Bi

contains, for i = 1, 2:
1) new i-kings (t,m), for m ∈ K and t an i-king in m;
2) semi i-pawns ((t, 1),m), . . . , ((t, k1),m) for m ∈ K and

t an i-pawn in m;
3) full i-pawns ((t, 1), (m, j)), . . . , ((t, k1), (m, j)), for m a

pawn mosaic, t an i-pawn in m, and 1 ≤ j ≤ k2.
Observe that dom(B1) ∪ dom(B2) is of double exponential
size in ϕ,ψ. To simplify notation we
• denote copies of types t by t′ and copies of pawn mosaics
m by m′;

• often regard a king mosaic m as a copy m′ of itself and
an i-king t in a king mosaic m as a copy t′ of itself.

We aim to construct B1 and B2 such that the following two
conditions hold (where, as announced, t′ and m′ also range
over i-kings and king mosaics, respectively):

1) Any pair (t′,m′) realizes the 1-type of which t′ is a copy.
More precisely, for i = 1, 2, if (t′,m′) ∈ dom(Bi) and
t′ is a copy of 1-type t and β(x) ∈ cl(Ξ), then

Bi |= β(t′,m′) ⇔ β(x) ∈ t.

2) For any copy m′ of a mosaic, all (t′,m′) are FO2(τ)-
bisimilar. More precisely, for all t′1, t

′
2,m

′ such that
(t′1,m

′) ∈ dom(Bi) and (t′2,m
′) ∈ dom(Bj) for some

i, j ∈ {1, 2}: Bi, (t
′
1,m

′) ∼FO2,τ Bj , (t
′
2,m

′).
We first define the interpretation of relation symbols on
singleton subsets of dom(Bi) in the obvious way by set-
ting (t′,m′) ∈ RBi iff R(x) ∈ t, for R unary, and
((t′,m′), (t′,m′)) ∈ RBi iff R(x, x) ∈ t, for R binary. It
thus remains to define the link-types lBi((t

′
1,m

′
1), (t′2,m

′
2))

between distinct nodes (t′1,m
′
1) and (t′2,m

′
2) in Bi, i = 1, 2.

To this end, we will carefully associate
• with every copy m′ of a mosaic a generator g ∈

dom(A1)∪dom(A2) such that m′ is a copy of m = m(g);
• with every node (t′,m′) ∈ dom(Bi) a witness d ∈

dom(Ai) for (t′,m′) such that d ∼FO2,τ g for the
generator g of m′ and t′ is a copy of tAi

(d).
If (t′1,m

′
1) and (t′2,m

′
2) contain a new i-king, then we will

define lBi
((t′1,m

′
1), (t′2,m

′
2)) as lAi

(d1, d2) for the selected
witnesses d1 and d2 for (t′1,m

′
1) and (t′2,m

′
2), respectively.

For i-pawns, lBi((t
′
1,m

′
1), (t′2,m

′
2)) will be defined using

‘global’ constraints and will not in general be the induced
link type from Ai. We now give the detailed construction.

For king mosaics m we simply select as its generator any g
with m = m(g) and for new i-kings (t,m) we take the unique
d ∼FO2,τ g with t = tAi

(d) as its witness. The definition
of link-types between new i-kings is then as announced:
if (t1,m1) and (t2,m2) are new distinct i-kings, then set
lBi((t1,m1), (t2,m2)) := lAi(d1, d2) for the witnesses d1, d2

for (t1,m1) and (t2,m2), respectively.
Link-types between new i-kings and semi i-pawns.

Assume d is the witness for an i-king (t,m) and (d, d′)
satisfies (l, s) for a link-type l and 1-type s, where d′ is a
node realizing an i-pawn and m(d′) is a king-mosaic. Then we
aim to ensure that the link-type realized by ((t,m), (s′,m(d′))
equals l, for some copy s′ of s. To obtain these link-types
we carefully choose the witnesses d′ for semi-i-pawns and
then take, as announced, the link-type between the selected
witnesses as given by Ai:
(P1) Let (t,m) be a new i-king. Let (s, n) be a pair such

that n is a king mosaic and s an i-pawn in n. Let l
be a link-type. If d is the witness of (t,m) and (d, d′)
satisfies (l, s) for some d′ with n = m(d′), then pick a
copy s′ of s, pick such a d′ as the witness for (s′, n),
and set lBi

((tAi
(e),m(e)), (s′, n)) := lAi

(e, d′), for all
witnesses e for new i-kings. There are sufficiently many
fresh copies s′ of 1-types s as k1 ≥ m1m2, where m1

is the number of new i-kings and m2 is the number of
link-types.

For any pair (s′, n) with n a king mosaic and s′ a copy of an
i-pawn s in n not selected according to (P1), pick any d′ with
n = m(d′) such that s′ is a copy of tAi(d

′) as the witness for
(s′, n) and let lBi((tAi(e),m(e)), (s′, n)) := lAi(e, d

′), for all
witnesses e for new i-kings.

Link-types between semi i-pawns. For any king mosaics
m1,m2 and i-pawns t1 ∈ m1 and t2 ∈ m2 define

Li((t1,m1), (t2,m2)) = {lAi
(d1, d2) | d1 6= d2,

t1 = tAi
(d1),m1 = m(d1),

t2 = tAi
(d2),m2 = m(d2)}.

(Note that (t1,m1) = (t2,m2) is possible.) Using the
fact that the number of copies of any 1-type exceeds
4 × 22s, it is straightforward to define the link-types
lBi

((t′1,m1), (t′2,m2)), where t′1 and t′2 are copies of t1 and
t2, in such a way that the following holds:
(P2) If t′1 is a copy of t1 and l a link-type, then there exists

a copy t′2 of t2 such that l = lBi((t
′
1,m1), (t′2,m2)) iff

l ∈ Li((t1,m1), (t2,m2)).
Selecting generators for pawn mosaics. To define link-

types for pairs of nodes that include full i-pawns, we first fix
the generators of copies of pawn mosaics as follows:
(M) Let (t′, n) be either a new i-king or semi i-pawn. Let

l be a link-type and s a 1-type. If d is the witness for
(t′, n) and (d, d′) satisfies (l, s) for some d′ such that
d′ 6∼FO2,τ g for any g generating a king mosaic, then
take such a d′ and a copy m′ of the pawn mosaic m
generated by d′ and select as generator of m′ any g′ with



m(g′) = m and d′ ∼FO2,τ g
′. There are sufficiently many

copies of pawn mosaics as k2 ≥ 2m1m2, where m1 is
the number of new i-kings and semi i-pawns and m2 is
the number of link-types.

For any copy m′ of a pawn mosaic m for which no generator
has yet been selected in (M) choose an arbitrary g with m =
m(g) as a generator.

Link-types between new i-kings and full i-pawns. These
link-types are now defined similarly to the link-types between
new i-kings and semi i-pawns.
(P3) Let (t,m) be a new i-king. Let (s, n) be a pair such

that n′ is a copy of the pawn mosaic n and s is an
i-pawn in n. Let l be a link-type. If d is the witness
of (t,m) and g the generator of n′ and (d, d′) satisfies
(l, s) for some d′ with d′ ∼FO2,τ g, then pick a copy
s′ of s, pick such a d′ as the witness for (s′, n′),
and set lBi

((tAi
(e),m(e)), (s′, n′)) := lAi

(e, d′), for all
witnesses e for new i-kings.

As in (P1), there are sufficiently many copies for this to
work and for any full i-pawn (s′, n′) not yet selected, pick
any d′ with d′ ∼FO2,τ g for the generator g of n′ and
s′ a copy of tAi

(d′) as the witness for (s′, n′) and let
lBi((tAi(e),m(e)), (s′, n)) := lAi(e, d

′), for all witnesses e
for new i-kings.

Link-types between semi i-pawns and full i-pawns. For
any king mosaic m, i-pawn t ∈ m, copy n′ of a pawn mosaic
n, and any i-pawn s ∈ n, let g be the generator of n′ and set

Li((t,m), (s, n′)) = {lAi(d1, d2) | t = tAi(d1),m = m(d1),

s = tAi(d2), d2 ∼FO2,τ g}

Similarly to (P2), it is now straightforward to define link-types
lBi

((t′,m), (s′, n′)) in such a way that the following holds:
(P4) (a) If t′ is a copy of t and l a link-type, then there exists

a copy s′ of s such that l = lBi
((t′,m), (s′, n′)) iff l ∈

Li((t,m), (s, n′)).
(b) If s′ is a copy of s and l a link-type, then there
exists a copy t′ of t such that l = lBi

((t′,m), (s′, n′))
iff l ∈ Li((t,m), (s, n′)).

Link-types between full i-pawns. For any pawn mo-
saics m1,m2 and i-pawns t1 ∈ m1 and t2 ∈ m2, define
Li((t1,m1), (t2,m2)) in exactly the same way as in the
definition of link-types between semi i-pawns. Then one can
define the link types lBi((t

′
1,m

′
1), (t′2,m

′
2)) in such a way that

the following holds:
(P5) If m′1 and m′2 are copies of m1 and m2, t′1 is a

copy of t1, and l is a link-type, then there exists a
copy t′2 of t2 such that l = lBi

((t′1,m
′
1), (t′2,m

′
2)) iff

l ∈ Li((t1,m1), (t2,m2)).
This finishes the definition of B1 and B2. It is not difficult
to show that Conditions 1 and 2 above hold. Assume w.l.o.g.
that a1 = (a11, a12) and a2 = (a21, a22) with a11 6= a12.
Then, a21 6= a22 as otherwise A1,a1 6∼FO2,τ A2,a2. It is
straightforward to ensure in the construction of B1 and B2

above that a11, a12, a21, a22 are witnesses for domain elements

(t11,m1), (t12,m2) of B1 and (t21,m1), (t22,m2) of B2 and
that lBi((ti1,m1), (ti2,m2)) = lAi(ai1, ai2), for i = 1, 2.
Then we have that B1 |= ϕ((t11,m1), (t12,m2)) and B2 |=
ψ((t21,m1), (t22,m2)), by Condition 1. By Condition 2,
B1, (t11,m1), (t12,m2) ∼FO2,τ B2, (t21,m1), (t22,m2).

B. Lower Bound

The lower bound proof is essentially a modification of the
lower bound for (the bounded arity case for) GF. In fact, it
is also an reduction from the word problem of exponentially
space bounded ATMs which uses the same signature τ . Again,
we aim to construct an FO2-sentence ϕ′ such that such an
ATM M accepts input w iff ϕ′ ∧ A(x) and ϕ′ ∧ ¬A(x)
are jointly FO2(τ)-consistent. The sentence ϕ′ is obtained
from the sentence ϕ constructed for GF by replacing the first
conjunct ϕ0 with ϕ′0 (recall that all other conjuncts are already
in FO2). Recall that ϕ0 enforced a cycle of length three using
a ternary relation, which is impossible in FO2. Instead, we
proceed similar to Example 2. Indeed, ϕ′0 enforces that every
element satisfying A is involved in such a cycle:

ϕ′0 = ∀x (Y (x)→ X(x) ∧ ϕ3(x) ∧ ∀y (Y (y)→ x = y)) ∧
∀x (A(x)→ Y (x))

where ϕ3 is as in Example 2, that is, it enforces the existence
of a path of length three to an element satisfying Y , which is
enforced to be a singleton. Now, if ϕ′∧A(x) and ϕ′∧¬A(x)
are jointly FO2(τ)-consistent, there exist models A and B
of ϕ′ and elements a, b such that a ∈ AA, b /∈ AB, and
A, a ∼FO2,τ B, b. If the latter holds, then from a ∈ AA and
ϕ′0 it follows that b has an infinite outgoing path ρ along R on
which every third element satisfies X . As FO2(τ)-bisimilarity
is an equivalence relation, all these elements satisfying X
are actually FO2(τ)-bisimilar. Now, the synchronization of the
successor configurations works in the very same way as for
GF; we prove correctness in the appendix.

Lemma 9. M accepts the input w iff there exists models A,B
of ϕ′ and elements a ∈ AA, b /∈ AB such that A, a ∼FO2,τ

B, b.

To prove the second part of Theorem 1 (ii) we replace in ϕ′

every occurrence of any formula of the form E(x) and E(y)
for a unary symbol E ∈ sig(ϕ′) \ (τ ∪ {A}) by the formula

χE(x) = ∃y(RE(x, y) ∧ ∃x(N(y, x) ∧ ∃y(N(x, y) ∧A(y))))

and the formula χE(y) obtained from χE(x) by swapping x
and y, respectively. Here RE , E ∈ sig(ϕ′)\ (τ ∪{A}), and N
are fresh binary relation symbols. An analogue of Lemma 9
is proved in the appendix for the resulting formula ϕ′′ and the
signature τ ′ containing all relation symbols in ϕ′′ except A.

VII. CONCLUSION

We have shown tight complexity bounds for in-
terpolant and explicit definition existence in GF and
CON2EXPTIME/2EXPTIME upper and, respectively, lower
bounds for FO2. Many questions remain to be explored.
First we conjecture that these problems are actually



CON2EXPTIME-complete in FO2. Then it would be of interest
to determine the size of interpolants/explicit definitions in
GF and FO2 if they exist. Note that recently the size and
computation of interpolants in GNF has been studied in
depth [45]. In contrast to GF, GNF enjoys CIP and PBDP and
it is not difficult to show using the complexity lower bound
proof given above that in GF minimal interpolants/explicit
definitions are, in the worst case, at least by one exponential
larger than in GNF.

There are many logics without the CIP and PBDP for which
the complexity of interpolant and explicit definition existence
remain to be explored, examples include the extension of FO2

with counting, FO2 without equality, the extension of GF with
constants, and the Horn fragment of GF introduced in [55].
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APPENDIX

PROOFS FOR SECTION IV

Lemma 2. Let L be either FO2 or GF. Let ϕ(x), ψ(x) be
L-formulas and let τ = sig(ϕ) ∩ sig(ψ). Then the following
conditions are equivalent:

1) there does not exist an L-interpolant for ϕ(x), ψ(x);
2) ϕ(x),¬ψ(x) are jointly L(τ)-consistent.

Proof. (⇐) Assume there is an L-interpolant θ(x) and let
A,B be structures and a,b be tuples such that A |= ϕ(a)
and B |= ¬ψ(b). Suppose further that A,a ∼L,τ B,b. Since
ϕ(x) |= θ(x), we have A |= θ(a). By Lemma 1, we obtain
B |= θ(b). Finally, as θ(x) |= ψ(x), we obtain B |= ψ(b), a
contradiction.

(⇒) Suppose that for all structures A,B and tuples a,b
such that A |= ϕ(a) and B |= ¬ψ(b) we have A,a 6∼L,τ
B,b. Let Φ be defined by taking

Φ = {ϕ′(x) ∈ L(τ) | ϕ(x) |= ϕ′(x)}.

Clearly, ϕ(x) |= Φ. We claim that also Φ |= ψ(x). To see
this, let B,b such that B |= Φ(b). Let B′ be an ω-saturated
elementary extension of B and let A,a be an ω-saturated
pointed structure realizing {χ(x) ∈ L(τ) | B |= χ(b)} ∪ {ϕ}
in a (A,a exists by compactness and the definition of Φ). By
definition of Φ and Lemma 1, we have A,a ∼L,τ B′,b. By
the initial assumption, we cannot have B′ |= ¬ψ(b) and thus
B |= ψ(b). By compactness, there is a finite subset Φ′ of Φ
such that Φ′ |= ψ(x). The conjunction of the formulas in Φ′

is the required interpolant. o

Lemma 3. Let L be either FO2 or GF. There is a polyno-
mial time reduction of explicit L-definability to L-interpolant
existence.

Proof. Assume ϕ, θ(x), and τ are given. Then θ(x) is
explicitly definable under ϕ iff there exists an L-interpolant
for ϕ ∧ θ(x), ϕ′ → θ′(x), where ϕ′ and θ′ are obtained from
ϕ and θ, respectively, by renaming all non-τ symbols R to
fresh R′ of the same arity. o

PROOFS FOR SECTION V

Claim 1. For all i, j with 1 ≤ i, j ≤ m, we have:

1) For every σ ∈ Ti with tail(σ) = (t(y),Φ), we have Ai |=
t(vσ(y));

2) Let Hi,j be the set of all mappings pσ,σ′,z, where
• σ ∈ Ti, σ′ ∈ Tj , tail(σ) = (t(y),Φ), and tail(σ′) =

(t′(y′),Φ);
• z is a tuple with [z] ⊆ [y]∩[y′] and vσ(z) is τ -guarded

in Ai (or, equivalently, vσ′(z) is τ -guarded in Aj);
• pσ,σ′,z : vσ(z) 7→ vσ′(z).
Then Hi,j is a GF(τ )-bisimulation between Ai and Aj .

Proof. For Point 1, we prove by induction that, for all σ ∈ Ti
with tail(σ) = (t(y),Φ) and all formulas ϕ(z) with [z] ⊆ [y],
we have:

ϕ(z) ∈ t(y) iff Ai |= ϕ(vσ(z))

The induction base is given by the definition of bagi(σ). If
ϕ is of the shape ¬ϕ′, ϕ′ ∧ ϕ′′, or ϕ′ ∨ ϕ′′, the statement
is immediate from the hypothesis. Consider now ϕ(z) =
∃x(R(z,x) ∧ λ(z,x)).

(⇒) Since M is existentially saturated, there is a Φ′ ∈
M such that Φ,Φ′ are compatible and R(z,x′) ∧ λ(z,x′) ∈
t′(y′) for some t′(y′) ∈ Φ′ such that t(y) and t′(y′) coincide
on [y] ∩ [y′]. By definition of Ti and compatibility of Φ,Φ′,
we have σ′ = σ · (t′(y′),Φ′) ∈ Ti. Moreover, by induction,
we obtain that Ai satisfies R(z,x′) ∧ λ(z,x′) under vσ′ . By
definition of bagi(σ) and bagi(σ

′), we get Ai |= ϕ(vσ(z)).

(⇐) Conversely, assume Ai |= ϕ(vσ(z)). By construction,
there is some σ′ ∈ Ti such that vσ(z) = vσ′(z) and Ai satisfies
R(z,x′) ∧ λ(z,x′) under vσ′ , for some x′. By induction
hypothesis, R(z,x′) ∧ λ(z,x′) ∈ t′(y′), where tail(σ′) =
(t′(y′),Φ′). Thus, ∃x(R(z,x)∧ λ(z,x)) = ϕ(z) ∈ t′(y′). As
vσ(z) = vσ′(z), the construction of Ti implies that t′(y′) and
t(y) coincide on all subformulas over z, hence ϕ(z) ∈ t(y).

For Point 2, observe first that the pσ,σ′,z are partial τ -
isomorphisms between τ -guarded tuples since all Φ ∈ M
are τ -uniform. (In addition, the observation that vσ(z) is τ -
guarded in Ai iff vσ′(z) is τ -guarded in Aj follows from the
condition that Φ is τ -uniform.) By symmetry, it suffices to
prove Condition (i) for GF(τ )-bisimulations.

Let p ∈ Hi,j . Then we have σ ∈ Ti, σ
′ ∈ Tj with

tail(σ) = (t(y),Φ) and tail(σ′) = (t′(y′),Φ) and we have
a tuple z such that [z] ⊆ [y] ∩ [y′] and vσ(z) is τ -guarded
in Ai and p = pσ,σ′,z. Thus, there is a τ -guard Q(z) with
Ai |= Q(vσ(z)) and Aj |= Q(vσ′(z)). Consider any tuple
b with Ai |= R(b) for some R ∈ τ . We have to show
that there exists a mapping pρ,ρ′,z′ ∈ Hi,j with domain [b]
which coincides with pσ,σ′,z on [vσ(z)] ∩ [b]. We distinguish
on whether or not that intersection is empty.

Case 1. [vσ(z)] ∩ [b] = ∅. The existence of such a
mapping follows from GF(τ )-bisimulation saturatedness: to
see this, observe that, as we have a tree decomposition,
there exists ρ0 ∈ Ti such that [b] ⊆ dom(bag(ρ0)). Let
tail(ρ0) = (s(x0),Ω). Then there exists a tuple y0 with
[y0] ⊆ [x0] such that vρ0(y0) = b. We have R(y0) ∈ s(x0).
As t̂j ∈ Ω, by GF(τ )-bisimulation saturatedness of Ω, there
exists s′(y′0) ∈ Ω such that t̂j ⊆ s′(y′0) and [y′0] = [y0]. But
then R(y0) ∈ s′(y′0). Also ρ = (t̂j , Ψ̂) · (s′(y′0),Ω) ∈ Tj .
Thus pρ0,ρ,y′0 is as required.

Case 2. [vσ(z)]∩ [b] 6= ∅. As we have a tree decomposition,
there exists ρ0 ∈ Ti such that [b] ⊆ dom(bag(ρ0)). Let
tail(ρ0) = (s(x0),Ω). Then there exists a tuple z′ with
[z′] ⊆ [x0] such that vρ0(z′) = b. We distinguish the following
cases:
(a) ρ0 = σ;



(b) ρ0 6= σ.
Assume first that (a) holds. Then (s(x0),Ω) = (t(y),Φ) and
b = vσ(z′). We use GF(τ )-bisimulation saturatedness of Φ.
Consider the restriction z′′ of z′ to [z]∩ [z′] and the restriction
t′(y′)|[z′′] of t′(y′) to [z′′]. Then there exists s′(z′0) ∈ Φ such
that t′(y′)|[z′′] ⊆ s′(z′0) ∈ Φ and [z′0] = [z′]. Let σ′′ = σ′ ·
(s′(z′0),Φ) ∈ Tj . Then pσ,σ′′,z′0 is as required, as Φ is τ -
uniform.

Assume now that Point (b) holds. Consider the restriction
z′′ of z′ to [z]∩ [z′] and the restriction t′(y′)|[z′′] of t′(y′) to
[z′′]. Consider the restriction Φ|[z′′] of Φ to [z′′]. By closure
under restrictions, Φ|[z′′] ∈ M. Observe that Φ,Φ|[z′′] and
Φ|[z′′],Ω are compatible: indeed, in the tree decomposition all
bags on the path from σ to ρ0 have a tail (·,Ω′) satisfying
Φ|[z′′] ⊆ Ω′. Thus t′(y′)|[z′′] ∈ Ω. Using the fact that Ω is
GF(τ )-bisimulation saturated, one can now show that there
exists s′(z′0) ∈ Ω such that t′(y′)|[z′′] ⊆ s′(z′0) and [z′0] = [z′].
We then have

ρ = σ′ · (t′(y′)|[z′′],Φ|[z′′]) · (s′(z′0),Ω) ∈ Tj

and pρ0,ρ,z′0 is as required. o

Lemma 6 Let A1,a1 and A2,a2 be pointed structures with
a1 and a2 tuples with pairwise distinct elements of length
m ≤ fv(Ξ) and let τ be a signature. Consider assignments
x0 7→ ai with [x0] ⊆ {x0, . . . , x2n}. If A1,a1 ∼GF,τ A2,a2,
then there exists an existentially saturated setM of τ -mosaics
and some Ψ ∈M such that
• all Φ ∈M with Φ 6= Ψ use at most width(Ξ) many free

variables;
• there exist types t1(x0), t2(x0) ∈ Ψ such that ti(x0) =

tp(Ai,x0 7→ ai) for i = 1, 2 and all types t(y) ∈
Ψ \ {t1(x0), t2(x0)} use at most width(Ξ) free variables
among [x0].

Proof. Assume w.l.o.g. that A1 and A2 are disjoint. For any
tuples b1 in Ai and b2 in Aj with i, j ∈ {1, 2}, we use
tp(x1 7→ b1) to denote tp(Ai,x1 7→ b1) and we write
b1 ∼GF,τ b2 if Ai,b1 ∼GF,τ Aj ,b2. Define M as follows.
Take any tuple a of distinct elements in Ai, i ∈ {1, 2}. Take a
tuple x from {x1, . . . , x2n} such that v : x 7→ a is a bijection.
Then let Φa,x contain all types tp(v′ : x|Y 7→ b) with Y ⊆ [x]
and b in either A1 or A2 such that v(x|Y ) ∼GF,τ v

′(x|Y ).
Let M contain all such Φa,x with a of length at most

width(Ξ) and x from {x1, . . . , x2n}. Moveover, if m >
width(Ξ), then add Φ̂a1,x0 to M, where Φ̂a1,x0 is obtained
from Φa1,x0

by removing all t distinct from t1(x0) and t2(x0)
using more than width(Ξ) many free variables.

We show thatM is as required. By definition, tp(A1,x0 7→
a1), tp(A2,x0 7→ a2) ∈ Φa1,x0 ∈M.

For the next steps we first assume that instead of Φ̂a1,x0

we have Φa1,x0
in M. Then observe that if we have any

Φ ∈ M and t(x′), s(x′′) ∈ Φ, then we can assume that
Φ = Φa,x, we have a bijection v from a to x, x′ = x|Y ′
and x′′ = x|Y ′′ for appropriate sets of variables Y ′, Y ′′ ⊆ [x],

and there are v′ : x|Y ′ 7→ Ai and v′′ : xY ′′ 7→ Aj such that
v′(x|Y ′) ∼GF,τ v(x|Y ′) and v′′(x|Y ′′) ∼GF,τ v(x|Y ′′). Then
v′(x|Y ′∩Y ′′) ∼GF,τ v

′′(x|Y ′∩Y ′′). We show that each Φa,x is
τ -uniform and GF(τ )-bisimulation saturated.

1) Every Φa,x ∈ M is τ -uniform: let t(x′), s(x′′) ∈ Φa,x

be as above and assume that Q(z) is a τ -guard with [z] ⊆
[x′] ∩ [x′′]. Then [z] ⊆ Y ′ ∩ Y ′′ and so Q(~z) ∈ t(x′) iff
Q(z) ∈ s(x′′) since v′(x|Y ′∩Y ′′) ∼GF,τ v

′′(x|Y ′∩Y ′′), as
required.

2) To show GF(τ )-bisimulation saturatedness let Φa,x ∈M
and t(x′), s(x′′) ∈ Φa,x be as above and let R(y) ∈ t(x′)
with [x′′] ⊆ [y] be a strict τ -guard. We have Y ′′ ⊆ [y] ⊆
Y ′ and v′(x|Y ′′) ∼GF,τ v

′′(x|Y ′′). Let H be the GF(τ )-
bisimulation witnessing this. By the definition of GF(τ )-
bisimulations, there exists p ∈ H with domain v′(x|[y])
such that p◦v′|Y ′′ = v′′. Now we expand v′′ to the domain
[y] by setting v̂ := p◦v′|x|[y]

. Let b′ be the image of x|[y]

under v̂. Then the type tp(v̂ : x|[y] 7→ b′) is as required.
Finally we show that every Φ ∈M is existentially saturated in
M. Assume Φa,x is given. Assume ∃y(R(x′,y)∧λ(x′,y)) ∈
t(x|Y ) = tp(v′ : x|Y 7→ b) with Y ⊆ [x] and b w.l.o.g. in
A1. Then A1 |=v′ ∃y(R(x′,y) ∧ λ(x′,y)). Then we find an
assignment v′′ for the variables in [x′y] which coincides with
v′ on [x′] such that A1 |=v′′ R(x′,y)∧ λ(x′,y). Take a tuple
c of distinct elements with [c] = [v′′(x′y)] and a tuple y′

of variables in {x1, . . . , x2n} such that [x′] = [x] ∩ [y′] and
we have a bijection ρ : y′ 7→ c which coincides with v′ on
[x′]. Then ρ(y′|[x′]) ∼GF,τ v(x|[x′]) and so Φa,x and Φc,y′ are
compatible and Φc,y′ is as required.

For the proof with Φ̂a1,x0
instead of Φa1,x0

in M observe
that Φ̂a1,x0

is τ -uniform and GF(τ )-bisimulation saturated as
Φ̂a1,x0

behaves in exactly the same way as Φa1,x0
regarding

τ -guarded Q(y). For the same reason all elements of M are
still existentially saturated in M. o

2EXPTIME Lower Bound
Lemma 8. M accepts the input w iff there exists models A,B
of ϕ and elements a ∈ AA, b /∈ AB such that A, a ∼GF,τ B, b.

Proof. (⇒) If M accepts w, there is a computation tree of
M on w. We construct a single model A of ϕ as follows.
Let A∗ be the infinite tree-shaped structure that represents the
computation tree of M on w as described above, that is, con-
figurations are represented by sequences of 2n elements linked
by S. Moreover, all elements of a configuration are labeled
with B∀, B1

∃, or B2
∃ depending on whether the configuration

is universal or existential, and in the latter case the superscript
indicates which choice has been made for the existential state.
Finally, the first element of the first successor configuration of
a universal configuration is labeled with Z. In particular, A∗

only interprets the symbols in τ non-empty. Now, we obtain
structures Ak, k < 2n from A∗ by interpreting non-τ -symbols
as follows:
• the entire domain of Ak satisfies I;
• the U -counter starts at 0 at the root and counts modulo

2n along each S-path;



• the V -counter starts at k at the root and counts modulo
2n along each S-path;

• the auxiliary concept names of the shape Aiσ and A′σ are
interpreted in a minimal way so as to satisfy the sentences
listed above. Note that the sentences are Horn, thus there
is no choice.

Now obtain A from A∗ and the Ak as follows. First, create a
both side infinite R-path

. . . b−2Rb−1Rb0Rb1Rb2 . . .

and realize the corresponding A-counter along the path and
label every b3k, k ∈ Z, with X . Then, add all A∗k to every
node b3k, k ∈ Z, on the path by identifying the roots of
the Ak with the respective node on the path. Moreover, add
to A three elements a0, a1, a2 such that (a0, a1, a2) ∈ GA,
(a0, a1), (a1, a2), (a2, a0) ∈ RA, a0 ∈ XA, and a0 ∈ AA.
Finally, add a copy of A∗ to A by identifying the root of A∗

with a0. We claim that A is as required. In particular, A, a0

is a model of ϕ ∧ A(x), A, b0 is a model of ϕ ∧ ¬A(x), and
the set S of all mappings
• (ai, ai+1) 7→ (bi+3k, bi+3k+1) with k ∈ Z, i ∈ {0, 1, 2},

and a3 := a0,
• (e, f) 7→ (e′, f ′) with (e, f) ∈ SB and e′, f ′ copies of
e, f in some Ak, and

• all restrictions of the above,
is a GF(τ )-bisimulation on A with a0 7→ b0 ∈ S.

(⇐) Let A,B be a models of ϕ such that A, a ∼GF,τ B, b
for some elements a, b with a ∈ AA, b /∈ AB. As it was argued
above, due to the three-element R-loop enforced at a via ϕ0,
from b there has to be an outgoing infinite R-path on which
all S-trees are guarded τ -bisimilar. (There is also an incoming
infinite R-path with this property, but it is not relevant for the
proof.) All those S-trees are additionally labeled with some
auxiliary relation symbols not in τ , depending on the distance
from b. However, it can be shown using the arguments that
accompanied the construction of ϕ that all S-trees contain a
computation tree of M on input w. Hence, M accepts w.

o

3EXPTIME Lower Bound

We show how to axiomatize the predicate E as announced
in the main part, that is, for pairs a, a′ and b, b′, where b, b′ rep-
resents a successor node of a, a′, and for all a,a′ ∈ {a, a′}n
and b,b′ ∈ {b, b′}n, we have

E(aa′aa′bb′bb′) iff r(a) = r(b) and r(a′) = r(b′). (1)

We abbreviate the tuples xx′ and yy′ with u and v, respec-
tively; thus u = u0 . . . u2n−1 and v = v0 . . . v2n−1 are tuples
of length 2n. Moreover, let Σ be the set of all substitutions
[ui/x, vi/y] and [ui/x

′, vi/y
′], for all i < 2n. Now, add the

following sentences:

∀xx′yy′
(
R(xx′yy′)→ E(x2nxx′y2nyy′)

)
∀uxx′vyy′

(
E(uxx′vyy′)→

∧
σ∈Σ

E(σ(u)xx′σ(v)yy′)
)

∀uxx′vyy′
(
E(uxx′vyy′)→∧

i<2n

(ui = x ∧ vi = y) ∨ (ui = x′ ∧ vi = y′)
)

These sentences axiomatize E as required, since the last
sentence enforces “only if” of Property (1) while the first and
second sentence together enforce “if”.

We finish noting that MinU (xx′) can be expressed by the
formula

MinU (xx′) = ∀x
(
DU (x)→

∨
i<n

(xi 6= x ∧ xi 6= x′)
)
.

PROOFS FOR SECTION VI

Proofs for the Upper Bound

Lemma 10. Joint FO2(τ)-consistency can be reduced in
polynomial time to joint FO2(τ)-consistency for formulas
using relation symbols of arity at most two.

Proof. We show that the construction given in the finite
model property proof in [19] also works for joint FO2(τ)-
consistency.

Consider FO2(τ)-formulas ϕ and ψ. We may assume that
sig(ϕ) ∩ sig(ψ) = τ . For any relation symbol R of arity at
least three that occurs in ϕ or ψ we do the following: for any
atomic formula R(v1, . . . , vn) that occurs in ϕ or ψ introduce
a fresh relation symbol Rv1,...,vn of arity two if both x and y
occur in v1, . . . , vn and of arity one otherwise.

If both x and y occur in v1, . . . , vn, then replace in ϕ and ψ
every occurrence of R(v1, . . . , vn) in ϕ,ψ by Rv1,...,vn(x, y).
If only x occurs in v1, . . . , vn, then replace R(v1, . . . , vn) by
Rv1,...,vn(x) and if only y occurs in v1, . . . , vn then replace
R(v1, . . . , vn) by Rv1,...,vn(y). Let ϕ′ and ψ′ be the resulting
formulas.

It remains to capture the logical relationships between
different formulas R(v1, . . . , vn) and R(v′1, . . . , v

′
n) using

implications between the fresh atomic formulas. For example,
if R(v1, . . . , vn) and R(v′1, . . . , v

′
n) are both subformulas of

ϕ or ψ and R(v′1, . . . , v
′
n) is obtained from R(v1, . . . , vn) by

replacing x by y and y by x, then we take the implication

∀x∀y(Rv1,...,vn(x, y)↔ Rv
′
1,...,v

′
n(y, x))

We also take for any R in ϕ or ψ and any two distinct
R(v1, . . . , vn) and R(v′1, . . . , v

′
n) occurring in ϕ or ψ the

implication:

∀x(Rv1,...,vn(x, x)↔ Rv
′
1,...,v

′
n(x, x))

Let χR be the conjunction of all these implications between
the fresh atomic formulas. Now let

ϕ† = ϕ′ ∧
∧

R occurs in ϕ

χR, ψ† = ψ′ ∧
∧

R occurs in ψ

χR

and let τ ′ contain all relation symbols of arity at most two in
τ and all fresh Rv1,...,vn for R ∈ τ .

We show that ϕ and ψ are jointly FO2(τ)-consistent iff ϕ†

and ψ† are jointly FO2(τ ′)-consistent.



Assume A,a ∼FO2,τ B,b, A |= ϕ(a), and B |= ψ(b).
Define the structure A′ in the same way as A except that for
relation symbols R of arity ≥ 3:
• (a, b) ∈ (Rv1,...,vn)A

′
if A |=v R(v1, . . . , vn) for v(x) =

a and v(y) = b, if x and y occur in v1, . . . , vn and
Rv1,...,vn occurs in ϕ or ψ.

• a ∈ (Rv1,...,vn)A
′

if A |=v R(v1, . . . , vn) for v(x) = a,
if only x occurs in v1, . . . , vn and Rv1,...,vn occurs in ϕ
or ψ.

• a ∈ (Rv1,...,vn)A
′

if A |=v R(v1, . . . , vn) for v(y) = a,
if only y occurs in v1, . . . , vn and Rv1,...,vn occurs in ϕ
or ψ.

B′ is defined in the same way using B. It is readily checked
that A′,a ∼FO2,τ ′ B

′,b, A′ |= ϕ†(a), and B′ |= ψ†(b).
Conversely, assume A,a ∼FO2,τ ′ B,b, A |= ϕ†(a), and

B |= ψ†(b). We define the structure A′ in the same way as
A except that for relation symbols R of arity ≥ 3:
• (v(v1), . . . , v(vn)) ∈ RA′ if R(v1, . . . , vn) occurs in
ϕ or ψ such that for the assignment v it holds that
A |=v Rv1,...,vn(x, y) (or, if only x or only y occur
in v1, . . . , vn, A |=v R

v1,...,vn(x) or A |=v R
v1,...,vn(y)

respectively).
• no other tuples are in RA′ .

B′ is defined in the same way using B. Using the conjuncts
χR it can be shown that A′,a ∼FO2,τ B′,b and A′ |= ϕ(a)
and B′ |= ψ(b). o

We first show that one can achieve Condition (P2) for
links between semi i-pawns. Recall that for any king mosaics
m1,m2 and i-pawns t1 ∈ m1 and t2 ∈ m2

Li((t1,m1), (t2,m2)) = {lAi
(d1, d2) | d1 6= d2,

t1 = tAi
(d1),m1 = m(d1),

t2 = tAi
(d2),m2 = m(d2)}.

We aim to define link-types lBi
((t′1,m1), (t′2,m2)), where t′1

and t′2 are copies of t1 and t2, in such a way that the following
holds:
(P2) If t′1 is a copy of t1 and l a link-type, then there exists

a copy t′2 of t2 such that l = lBi
((t′1,m1), (t′2,m2)) iff

l ∈ Li((t1,m1), (t2,m2)).
In the construction, we use the fact that there are ≥ 4 × 22s

many copies of any i-pawn and that the number of link types
does not exceed 22s. Assume first that (t1,m1) 6= (t2,m2).
Then partition, for j = 1, 2, the set {(tj , 1), . . . , (tj , k1)} of
copies of tj into two sets M j

1 ,M
j
2 such that |M j

1 |, |M
j
2 | ≥ 22s.

Now we define the link types between any pair (t′1,m1) and
(t′2,m2) as follows
• for every t′1 ∈M1

1 do the following: take for any link type
l ∈ Li((t1,m1), (t2,m2)) some (t′2,m2) with t′2 ∈ M2

1

and set
lBi

((t′1,m1), (t′2,m2)) := l

There are sufficiently many (t′2,m2) with t′2 ∈M2
1 since

|M2
1 | ≥ 22s.

• for every t′1 ∈M1
2 do the following: take for any link type

l ∈ Li((t1,m1), (t2,m2)) some (t′2,m2) with t′2 ∈ M2
2

and set
lBi((t

′
1,m1), (t′2,m2)) := l

There are sufficiently many (t′2,m2) with t′2 ∈M2
2 since

|M2
2 | ≥ 22s.

• for every t′2 ∈M2
1 do the following: take for any link type

l ∈ Li((t1,m1), (t2,m2)) some (t′1,m1) with t′1 ∈ M1
2

and set
lBi

((t′1,m1), (t′2,m2)) := l

There are sufficiently many (t′1,m1) with t′1 ∈M1
2 since

|M1
2 | ≥ 22s.

• for every t′2 ∈M2
2 do the following: take for any link type

l ∈ Li((t1,m1), (t2,m2)) some (t′1,m1) with t′1 ∈ M1
1

and set
lBi

((t′1,m1), (t′2,m2)) := l

There are sufficiently many (t′1,m1) with t′1 ∈M1
1 since

|M1
1 | ≥ 22s.

For semi i-pawns (t′1,m1), (t′2,m2) that have not yet been
connected by any of the four steps above, choose an
arbitrary link type l from Li((t1,m1), (t2,m2)) and set
lBi

((t′1,m1), (t′2,m2)) := l. It is readily checked that (P2)
is satisfied.

Now assume that (t1,m1) = (t2,m2). Then partition
the set {(t1, 1), . . . , (t1, k1)} of copies of t1 into four sets
M j

1 ,M
j
2 such that |M j

1 |, |M
j
2 | ≥ 22s, j = 1, 2, and define

lBi
((t1, k),m1), ((t1, k

′),m1)) in exactly the same way as
above for (t1, k), (t1, k

′) ∈ M1
r × M2

r′ , r, r
′ ∈ {1, 2}.

For any ((t1, k),m1), ((t1, k
′),m1)) with k 6= k′ for which

lBi
((t1, k),m1), ((t1, k

′),m1)) has not yet been defined
choose an arbitrary link type l from Li((t1,m1), (t2,m2))
and set lBi

(((t1, k),m1), ((t1, k
′),m2)) := l. Then (P2) is

satisfied.

We now show that Conditions (1) and (2) are satisfied,
starting with Condition (1).

Lemma 11. Let t′ be a copy of t and m′ a copy of m. For
i = 1, 2, all (t′,m′) ∈ dom(Bi), the witness d of (t′,m′) in
Ai, and all γ(x) ∈ cl(Ξ):

Bi |= γ(t′,m′) ⇔ γ(x) ∈ tAi
(d) ⇔ γ(x) ∈ t.

Proof. The equivalence ‘γ(x) ∈ tAi
(d) iff γ(x) ∈ t’ follows

from the definition of witnesses d of (t′,m′). We thus show
the first equivalence. For γ(x) of the form R(x) or R(x, x)
the equivalence holds by definition. It thus suffices to show the
first equivalence for existentially quantified γ(x) = ∃yβ(x, y)
with β(x, y) quantifier-free.

(⇒) It suffices to observe that the following holds for all
(t′1,m

′
1) ∈ dom(Bi): if l = lBi

((t′1,m
′
1), (t′2,m

′
2)) for some

(t′2,m
′
2) ∈ dom(Bi), then there exist d1, d2 with mj = m(dj)

and tj = tAj
(dj) for j = 1, 2 such that l = lAi

(d1, d2).

(⇐) We show the following



Claim 1. Let d1 be the witness for (t′1,m
′
1). If l = lAi

(d1, d2)
for some d2 ∈ dom(Ai), then there exists (t′2,m

′
2) such that

m2 = m(d2), t2 = tAi(d2), and l = lBi((t
′
1,m

′
1), (t′2,m

′
2)).

For the proof of Claim 1 let d1 be the witness for (t′1,m
′
1)

and l = lAi(d1, d2) for some d2 ∈ dom(Ai).

Case 1. tAi(d1) is an i-king in king mosaic m = m(d1).
If tAi(d2) is an i-king in king mosaic m(d2), then

(tAi
(d2),m(d2)) is as required.

If tAi
(d2) is an i-pawn in king mosaic m(d2), then by

(P1) there exists (t′2,m(d2)) such that t2 = tAi
(d2) and

l = lBi
((tAi

(d1),m(d1)), (t′2,m(d2)). Then (t′2,m(d2)) is as
required.

If tAi(d2) is an i-pawn in pawn mosaic m(d2), then by (M)
and (P3) there exists a full i-pawn (t′2,m

′) such that t2 =
tAi

(d2) and l = lBi
((tAi

(d1),m(d1)), (t′2,m
′)), as required.

Case 2. (t′1,m
′
1) is a semi i-pawn. The claim follows from

(P1) if tAi
(d2) is an i-king in king mosaic m(d2). For tAi

(d2)
an i-pawn in king mosaic m(d2), the claim follows from (P2).
For tAi

(d2) an i-pawn in a pawn mosaic m(d2), the claim
follows from (P4).

Case 3. (t′1,m
′
1) is a full i-pawn. The claim follows from

(P3) if tAi(d2) is an i-king in king mosaic m(d2). For tAi(d2)
an i-pawn in king mosaic m(d2), the claim follows from (P4).
For tAi

(d2) an i-pawn in a pawn mosaic m(d2), the claim
follows from (P5). o

We now prove Condition (2). The restriction l|τ of a link-type
l to a signature τ is the set of all R(x, y) and R(y, x) in l
with R ∈ τ . Any such restriction is called a τ -link.

Note first that for all (t′1,m
′), (t′2,m

′) ∈ dom(B1) ∪
dom(B2) there exists a generator g of m′ and witnesses d1

for (t′1,m
′) and d2 for (t′2,m

′). Thus d1 ∼FO2,τ d2 and
ti = dAj

(di) for appropriate j ∈ {1, 2}. Thus χ(x) ∈ t1
iff χ(x) ∈ t2 for any formula χ(x) of the form R(x)
or R(x, x) with R ∈ τ . We obtain from Lemma 11 that
(t′1,m

′) and (t′2,m
′) satisfy the same atomic formulas R(x)

and R(x, x) with R ∈ τ . To fully check Conditions (i) and
(ii) for FO2(τ)-bisimulations, we introduce some notation. For
(t′1,m

′
1) ∈ dom(Bi), any copy m′2 of a mosaic, and any τ -link

h, we write
(t′1,m

′
1)→h m

′
2

if there exists (t′2,m
′
2) ∈ dom(Bi) such that

h = lBi
((t′1,m

′
1), (t′2,m

′
2))|τ

Then it suffices to show the following

Lemma 12. For (t′1,m
′
1), (t′2,m

′
1) ∈ dom(B1) ∪ dom(B2),

any copy m′2 of a mosaic, and any τ -link h:

(t′1,m
′
1)→h m

′
2 ⇔ (t′2,m

′
1)→h m

′
2

Proof. We make a case distinction and first assume that m1

or m2 is a king mosaic. By construction, then (t′1,m
′
1)→h m

′
2

implies that for the generators g1, g2 of m′1,m
′
2 there are

d1 ∼FO2,τ g1 and d2 ∼FO2,τ g2 such that h = lAi
(d1, d2)|τ ,

for appropriate i. But then, by the definition of mosaics
and FO2(τ)-bisimulations, for all d1 ∼FO2,τ g1 there exists
d2 ∼FO2,τ g2 such that h = lAi

(d1, d2)|τ , for appropriate i.
But then (t′2,m

′
1)→h m

′
2 for all (t′2,m

′
1).

Now assume that m1 and m2 are both pawn mosaics. By
construction, then (t′1,m

′
1) →h m

′
2 iff there are d1, d2 with

m1 = m(d1) and m2 = m(d2) such that t1 = tAi
(d1) and

h = lAi
(d1, d2)|τ , for appropriate i. But by the definition of

mosaics and FO2(τ)-bisimulations, the latter is the case iff
there are d1, d2 with m1 = m(d1) and m2 = m(d2) such that
h = lAi

(d1, d2)|τ , for appropriate i. This condition does not
depend on t′1 and so (t′2,m

′
1)→h m

′
2 follows. o

Lemma 9. M accepts the input w iff there exists models A,B
of ϕ′ and elements a ∈ AA, b /∈ AB such that A, a ∼FO2,τ

B, b.

Proof. The proof is essentially the same as the proof for
Lemma 8; we give it here for the sake of completeness.

(⇒) If M accepts w, there is a computation tree of M on w.
We construct a single model A of ϕ′ as follows. Let A∗ be the
infinite tree-shaped structure that represents the computation
tree of M on w as described above, that is, configurations
are represented by sequences of 2n elements linked by S.
Moreover, all elements of a configuration are labeled with
B∀, B1

∃, or B2
∃ depending on whether the configuration is

universal or existential, and in the latter case the superscript
indicates which choice has been made for the existential state.
Finally, the first element of the first successor configuration of
a universal configuration is labeled with Z. In particular, A∗

only interprets the symbols in τ non-empty. Now, we obtain
structures Ak, k < 2n from A∗ by interpreting non-τ -symbols
as follows:
• the entire domain of Ak satisfies I;
• the U -counter starts at 0 at the root and counts modulo

2n along each S-path;
• the V -counter starts at k at the root and counts modulo

2n along each S-path;
• the auxiliary concept names of the shape Aiσ and A′σ are

interpreted in a minimal way so as to satisfy the sentences
listed above. Note that the sentences are Horn, thus there
is no choice.

Now obtain A from A∗ and the Ak as follows. First, create a
both side infinite R-path

. . . b−2Rb−1Rb0Rb1Rb2 . . .

and realize the corresponding A-counter along the path and
label every b3k, k ∈ Z, with X . Then, add all A∗k to every
node b3k, k ∈ Z, on the path by identifying the roots of the Ak
with the respective node on the path. Moreover, add to A three
elements a0, a1, a2 such that (a0, a1), (a1, a2), (a2, a0) ∈ RA

a0 ∈ XA, a0 ∈ Y A, and a0 ∈ AA. Finally, add a copy of A∗

to A by identifying the root of A∗ with a0. We claim that A is
as required. In particular, A, a0 is a model of ϕ∧A(x), A, b0
is a model of ϕ ∧ ¬A(x), and the set S of all pairs



• (ai, bi+3k) with k ∈ Z, i ∈ {0, 1, 2}, and
• (e, e′) with e′ copy of e in some Ak,

is an FO2(τ)-bisimulation on A with (a0, b0) ∈ S.
(⇐) Let A,B be a models of ϕ such that A, a ∼FO2,τ B, b

for some elements a, b with a ∈ AA, b /∈ AB. As it was
argued above, due to the three-element R-loop enforced at a
via ϕ′0, from b there has to be an outgoing infinite R-path
on which every third element FO2(τ)-bisimilar, and thus the
S-trees starting at these elements are also FO2(τ)-bisimilar.
(There is also an incoming infinite R-path with this property,
but it is not relevant for the proof.) All those S-trees are
additionally labeled with some auxiliary relation symbols not
in τ , depending on the distance from b. However, it can be
shown using the arguments that accompanied the construction
of ϕ′ that all S-trees contain a computation tree of M on input
w. Hence, M accepts w. o

Recall the definition of ϕ′′ and τ ′ from the paper. Then it
suffices to prove the following.

Lemma 13. M accepts the input w iff there exists models
A,B of ϕ′′ and elements a ∈ AA, b /∈ AB such that
A, a ∼FO2,τ ′ B, b.

Proof. (⇐) is an immediate consequence of Lemma 9.

(⇒) We expand the model A constructed in the proof of
Lemma 9 and obtain a model A′ of ϕ′′ such that a0 ∈ AA′ ,
b0 /∈ AA′ and A′, a0 ∼FO2,τ ′ A

′, b0.
In detail, to define A′ we keep A but attach to every X-

element d of A an N−1 path of length 2 from d to a fresh node
(d,E), for every E ∈ sig(ϕ′) \ (τ ∪ {A}). Now we proceed
as follows for every E ∈ sig(ϕ′)\ (τ ∪{A}): add (d, (a0, E))
to RA′

E iff d ∈ EA, for all d ∈ dom(A). This ensures that
A′ |= χE(d) iff d ∈ EA for all such d. Let ∆0,∆1, . . . be the
maximal subsets of dom(A) such that all elements of ∆i are
FO2(τ)-bisimilar in A. We add additional pairs to RA′

E in such
a way that all elements of any ∆i are also FO2(τ ′)-bisimilar
in A′:
• if ∆i ⊇ EA then also add (d, (d′, E)) to RA′

E for all
X-elements d′ and d ∈ ∆i;

• if ∆i ∩ EA = ∅, then we do not add any (d, (d′, E)) to
RA′

E , for X-elements d′ and d ∈ ∆i;
• otherwise we make sure that for every X-element d′ there

exist both d ∈ ∆i with (d, (d′, E)) ∈ RA′

E and e ∈ ∆i

with (e, (d′, E)) 6∈ RA
E and we make sure for every d ∈

∆i there exist both an X-element d′ with (d, (d′, E)) ∈
RA′

E and an X-element e′ with (d, (e′, E)) 6∈ RA′

E . This
is easily achieved without adding any additional pairs of
the form (d, (a0, E)) to RA′

E .
This finishes the definition of A′. It is easy to see that A′ is
as required. o


