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Abstract

Various properties of ontology modules have been studied,
such as coverage, self-containment, depletingness, monotonic-
ity, preservation of justifications. These properties are impor-
tant from a theoretical and practical point of view because
they ensure, e.g., that modules have meaningful interfaces,
can be used for ontology debugging, or are suitable for com-
puting a meaningful modular structure of an ontology, such
as via atomic decomposition (AD). Given one of the many
existing module notions, it is not always obvious whether it
satisfies a given property, particularly when the module ex-
traction procedure is based on normalization. We investigate
several module properties from an abstract point of view with
an emphasis on properties relevant for AD. We examine their
interrelations, their relation with iterated module extraction,
their preservation in normalization-based module notions, and
the adjustment of the latter to the requirements of AD. As
a case study, we apply our results to modules based on Dat-
alog reasoning (DBMs), which comprise a large family of
normalization-based module notions that provide logical guar-
antees of varying strengths and are thus suitable to a wide
range of use cases. This makes DBMs ready to be used for
AD and thereby opens AD to new applications.

1 Introduction
In ontology development, modularity has received great atten-
tion in the past years (see, e.g., Stuckenschmidt, Parent, and
Spaccapietra 2009). The non-standard reasoning tasks of ex-
tracting modules and of decomposing an ontology into mod-
ules have manifold applications in ontology reuse, versioning,
debugging, and comprehension, as well as collaborative on-
tology development and automated reasoning optimization.

There are various views of what counts as a module of
an ontology. We consider modules that are subsets of the
ontology’s axioms, which is a reasonable requirement in the
context of, e.g., reuse and debugging.

When extracting a single module from a TBox T , that is,
a subset M that can be used as a proxy for T , it is crucial
for all these scenarios that M encapsulates the knowledge
from T about a certain topic, which is usually taken to be
a set of terms, the seed signature Σ. This encapsulation is
typically captured via the notion of Σ-inseparability (Konev
et al. 2009; Botoeva et al. 2016; Botoeva et al. 2019; Jung
et al. 2020), which generalizes the well-known notion of a
conservative extension (Byers and Pitt 1990; Maibaum 1997;

Ghilardi, Lutz, and Wolter 2006). However, depending on the
application, the widely adopted requirement that a module
M be Σ-inseparable from T is not always sufficient. For
example, when importing M in place of T into an external
TBox, M should even be Σ′-inseparable from T , where
Σ′ is the union of Σ and the signature of M—this property,
called self-containment (Kontchakov et al. 2009), ensures that
M encapsulates the knowledge about all of its own terms,
making M a suitable proxy for T w.r.t. its own terms rather
than just the Σ-terms. On the other hand, scenarios such
as optimization of debugging and explanation (Schlobach
and Cornet 2003; Horridge, Parsia, and Sattler 2008) or of
reasoning (Cuenca Grau et al. 2010; Zhao, Sattler, and Parsia
2019), require a different kind of encapsulation: the module
should even contain all ways to derive the knowledge about Σ
(or Σ′), captured by the notions of M being weakly (strongly)
depleting or justification-preserving (Kontchakov et al. 2009;
Armas Romero et al. 2016; Peñaloza et al. 2017). The strong
variants and self-containment share the previous intuition.

Decomposition aims at computing the modular structure
of a TBox—a representative subset of all modules together
with their logical interactions. This structure can be used
to better understand the TBox, aid its collaborative design,
and optimize tool support (Cuenca Grau et al. 2006; Del
Vescovo et al. 2020). Among the available techniques, atomic
decomposition (AD) (Del Vescovo et al. 2011) stands out by
its efficiency and genericness: the underlying algorithm is
based on a linear number of module extractions, for a suitable
module notion. Originally based on locality-based modules
(LBMs) (Cuenca Grau et al. 2008), the AD framework was
recently shown to work with any module extraction function
m that yields uniquely determined Σ-inseparable subsets
of the input TBox which satisfy certain module properties,
among them self-containment (Del Vescovo et al. 2020).

A wide range of module extraction functions and module
properties are known; for a very brief review see Section 2.
The functions differ in the properties they ensure and, for a
given module extraction function m and property P , it is not
always obvious whether m satisfies P . This is particularly
the case when m is based on some normal form: for example,
there may be various ways to recover a module of an arbitrary
TBox T from a module of its normalization, thus violating
uniqueness and suitability for AD. Sometimes only weak
properties are known, and their strong counterparts have to
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be ensured via iteration (e.g., Armas Romero et al. 2016).
The aim of this paper is to systematize the wealth of exist-

ing module properties for module extraction functions guar-
anteeing Σ-inseparability. This knowledge enables us to
examine whether module notions besides LBMs can be used
safely with AD. Our contributions are
• an ‘axiomatic’ approach to understanding modules via

their properties, with a focus on properties relevant for
AD and on normalization-based module notions and their
iteration-based variants;

• a systematic study of the relationships between properties;
• opening AD to normalization-based module notions;
• a case study with an existing family of module notions

based on Datalog reasoning (Armas Romero et al. 2016),
which suit a wide range of applications.

The main results of this theoretical investigation state the
interrelations of module properties with and without the ef-
fect of iteration (Theorems 2 and 5), establish hardness for
denormalization (Theorem 22), and cover general repairs of
module notions for atomic decomposition (Theorem 31). As
a practical consequence, the implementation of AD based on
existing module notions other than LBMs is enabled, which
promises to improve the applicability of AD.

In the following, we discuss related work (§2), intro-
duce the preliminaries (§3), investigate module properties
(§4), apply our insights to Datalog-based modules (§5),
and draw conclusions (§6). Due to space restrictions, we
present most proof details in a technical report located at
https://user.informatik.uni-bremen.de/∼mnolte/kr21/.

2 Related Work
The literature contains many module extraction functions
guaranteeing Σ-inseparability,1 including the following.
Locality-based modules (LBMs) (Cuenca Grau et al. 2008)
are self-contained and strongly depleting, and come in sev-
eral variants, the syntactic of which can be extracted effi-
ciently from SROIQ ontologies. MEX modules (Konev
et al. 2008) are minimal, self-contained, and strongly de-
pleting; they can be extracted efficiently from acyclic ELI-
TBoxes. AMEX modules (Gatens, Konev, and Wolter
2014) extend the MEX approach to acyclic ALCQI and
forgo self-containment and efficiency but not depletingness.
Reachability-based modules (RBMs) (Suntisrivaraporn 2008;
Nortjé, Britz, and Meyer 2013b) rely on normalization, can
be extracted efficiently from SROIQ ontologies, and come
in two basic variants—one equivalent with an LBM vari-
ant and the other being neither self-contained nor strongly
depleting. Modules based on Datalog reasoning (DBMs)
(Armas Romero et al. 2016) comprise a large family of
module notions for logical formalisms that admit Datalog
strengthenings—including description logics (DLs) up to
SROIQ—, are based on normalization, generalize another
LBM variant, are usually not self-contained or strongly de-
pleting but can be made so by applying iteration. Lean Ker-
nels (LKs) (Peñaloza et al. 2017) comprise a general notion

1Module notions not guaranteeing uniqueness or inseparability
are not covered by our approach and thus not discussed here.

of module tailored specifically to debugging; their further
module properties have not been discussed, to our knowledge.

Except for MEX, these module notions approximate mini-
mal modules from above because extracting minimal modules
is computationally hard or even undecidable for expressive
DLs (Ghilardi, Lutz, and Wolter 2006; Lutz, Walther, and
Wolter 2007). Furthermore, LBMs, DBMs, RBMs, and LKs
are known to preserve justifications to varying extents (see the
original works or, for LBMs, Suntisrivaraporn et al. 2008).

Inseparability relations and their robustness properties
have been introduced and studied as fundamental require-
ments to modules by Konev et al. (2009). Further module
properties have been defined and discussed in various places
in the literature, mostly in the context of a specific module no-
tion, such as self-containment and depletingness (Kontchakov
et al. 2009; Sattler, Schneider, and Zakharyaschev 2009;
Kontchakov, Wolter, and Zakharyaschev 2010; Nortjé,
Britz, and Meyer 2013a; Gatens, Konev, and Wolter
2014; Armas Romero et al. 2016; Del Vescovo et al.
2020), justification-preservation (Armas Romero et al. 2016;
Peñaloza et al. 2017; Chen, Ludwig, and Walther 2018;
Chen et al. 2019; Koopmann and Chen 2020). Del Vescovo
et al. (2020) identified module properties required by AD and
briefly discussed those for LBMs, MEX, DBMs, and RBMs.

Normal forms and normalization are integral parts of many
decision procedures for DLs and related logics (see, e.g.,
Baader et al. 2007; Baader et al. 2017). Being strongly related
to structural transformation (Plaisted and Greenbaum 1986),
various kinds of normalization are used, e.g., in consequence-
based reasoning (Baader, Brandt, and Lutz 2005; Kazakov
2009), hypertableaux (Motik, Shearer, and Horrocks 2009),
justification-finding (Horridge, Parsia, and Sattler 2008),
and module extraction (Nortjé, Britz, and Meyer 2013a;
Armas Romero et al. 2016). The latter two works laid the
groundwork for a systematic way of recovering a module of
an arbitrary TBox from a module of its normalization.

Finally, to the best of our knowledge, deductive modules
(DMs) (Koopmann and Chen 2020) comprise the only other
module notion besides LBMs that has been experimentally
evaluated for AD. However, this was done before the AD
requirements were identified by Del Vescovo et al. (2020);
hence DMs have not been checked against most of those.
We hope that our work may enable a retrospective validation;
however, DMs rely on uniform interpolation (Lutz and Wolter
2011), which is related to but does not exactly fit into our
framework of normalization-based module extraction.

3 Preliminaries
We assume the reader to be familiar with the syntax and se-
mantics of the DL SROIQ (for details see Horrocks, Kutz,
and Sattler 2006; Krötzsch, Simančik, and Horrocks 2012).
A TBox T (ABox A) is a finite set of general concept and
role inclusions (assertions). If not explicitly stated otherwise,
we consider T- and ABoxes in any DL up to SROIQ, al-
though our results can easily be extended to any monotonic
logic. We also restrict our attention to module extraction
on TBoxes; however, most of the notions and results in this
paper certainly transfer to ontologies with ABoxes.
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Let NC and NR be sets of concept and role names, respec-
tively. A signature is a set Σ ⊆ NC ∪ NR of terms. Given
a concept, role, axiom, TBox, or ABox X , the set of terms
occurring in X is called the signature of X , denoted X̃ . If
X̃ ⊆ Σ for some signature Σ, we call X a Σ-concept etc.

We adopt the common view that a module of a TBox T is
a subset of T that is indistinguishable from T w.r.t. certain
entailments and a signature of interest. Indistinguishability
is captured by the notion of an inseparability relation (IR)
S , which is a family {≡S

Σ| Σ ⊆ NC ∪NR} that is monotonic,
i.e., if T1 ≡S

Σ T3, then T2 ≡S
Σ T3, for all T1 ⊆ T2 ⊆ T3 and

Σ. Given a TBox T and a seed signature Σ, a ≡S
Σ-module of

T is a subset M ⊆ T with M ≡S
Σ T . We call M minimal

if no subset of M is a ≡S
Σ-module of T .

We represent module extraction procedures abstractly via
an S-module extraction function (S-MEF), which is a (par-
tial) function m(·, ·) that maps a signature Σ and a TBox T
to a ≡S

Σ-module of T with the additional property that, if
m(Σ, T ) is defined for some T , then m(Σ′, T ) is defined for
all Σ′ ⊆ T̃ . If S is irrelevant, we just speak of a MEF.

Our strong assumptions to modules and MEFs (modules
are subsets, inseparable, and uniquely determined) cover a
range of module notions, including those named in Section 2.

We continue with further relevant notions related to IRs.
The following are two well-known IRs (Konev et al. 2009;

Botoeva et al. 2016). For a signature Σ, TBoxes T1, T2 are
• Σ-model inseparable (T1 ≡m

Σ T2) if {I|Σ | I |= T1} =
{J |Σ | J |= T2}, where I|Σ is the restriction of I to Σ;

• Σ-implication inseparable (T1 ≡i
Σ T2) if for each atomic

Σ-concept or Σ-role inclusion X ⊑ Y , we have T1 |=
X ⊑ Y iff T2 |= X ⊑ Y .

For further examples, see Section 5.
Many IRs correspond to preservation of entailments, i.e.,

there is a function relS(Σ, T ) mapping each TBox T and
Σ ⊆ T̃ to a set of second-order (SO) Σ-sentences entailed by
T , the relevant entailments. For S ∈ {m, i}, we can define

relm(Σ, T ) = {φ | T |= φ and φ is an SO Σ-sentence};
reli(Σ, T ) = {φ | T |= φ and φ = ∀x(A(x) → B(x))

with A,B ∈ Σ};

and for S ∈ {m, i} it is easy to see that

T ≡S
Σ T ′ iff relS(Σ, T ) = relS(Σ, T ′) (∗)

Σ ⊆ Σ′ implies relS(Σ, T ) ⊆ relS(Σ
′, T ) (†)

hold (see also Armas Romero et al. 2016). We say that an IR
S is characterized by relevant entailments if there is some
function relS(Σ, T ) = {φ | T |= φ and φ ∈ Φ(Σ)} where
Φ(Σ) is a set of SO Σ-sentences, such that both (∗) and (†)
hold. Note that this property is natural, e.g., the various IRs
underlying LBMs, DBMs, RBMs, LKs and (A)MEX are
characterized by relevant entailments.

Given a TBox T and SO sentence φ with T |= φ, a
justification of φ in T is a subset-minimal T ′ ⊆ T with T ′ |=
φ. We use JS(Σ, T ) to denote the set of all justifications of
any φ ∈ relS(Σ, T ) in T .

Several robustness properties of IRs have been studied
(see, e.g., Konev et al. 2009); we will use the following. An
IR S is robust under

• vocabulary restriction if, for all TBoxes T1, T2 and signa-
tures Σ,Σ′ with Σ′ ⊆ Σ: if T1 ≡S

Σ T2, then T1 ≡S
Σ′ T2;

• vocabulary extension if, for all T1, T2 and Σ,Σ′ with Σ′ ∩
(T̃1 ∪ T̃2) ⊆ Σ: if T1 ≡S

Σ T2, then T1 ≡S
Σ′ T2.

Robustness under vocabulary restriction is a particularly nat-
ural requirement and, in some sense, the counterpart of (†).
We only consider IRs S that are characterized by relevant en-
tailments and robust under vocabulary restriction. Obviously,
model inseparability is the finest of all those: ≡m

Σ ⊆ ≡S
Σ for

all Σ. We do not generally assume robustness under vocabu-
lary extension since i and further IRs used in Section 5 are
not known, to the best of our knowledge, to satisfy it.

4 Review of Module Properties
We provide an overview of known module properties, fo-
cusing on those that ensure inseparability, preserve justifi-
cations, and/or are relevant for AD (§4.1). We study their
interrelations (§4.2), observe how iterated module extraction
can ensure the strong variants (§4.3), and investigate their
preservation by (de-)normalization (§4.4). We then identify
modifications of MEFs that meet the AD requirements (§4.5).

4.1 Overview
We compile a list of the 10 module properties studied in this
paper and taken from the literature. Let m be an S-MEF. In
the following, T is an arbitrary (‘input’) TBox and Σ ⊆ T̃
(the seed signature). Five properties concern m as a whole:

(mon1), (mon2) m is monotonic in the 1st (2nd) argument.

(sup) m is weakly superpotent:
if M = m(Σ, T ), then M ⊇ m(M̃, T )

(sup+) m is strongly superpotent:
if M = m(Σ, T ), then M ⊇ m(Σ ∪ M̃, T )

(ax) α ∈ m(Σ, T ) implies α ∈ m(α̃, T ), for all α ∈ T .

These properties except (mon2) are required by AD (Del
Vescovo et al. 2020). Property (mon1) is the ‘operational’
counterpart of robustness under vocabulary restriction. Both
(mon1), (mon2) naturally require that an extension of a mod-
ule’s seed signature (or of the input TBox) does not change
the axioms already in the module. Properties (sup), (ax) serve
technical purposes; (sup+) strengthens (sup) analogously to
the strengthenings below. For P ∈ {(mon1), (mon2), (sup),
(sup+), (ax)}, a P -S-MEF is an S-MEF that satisfies P .

The remaining five properties concern a single module M,
independently of m.

(self) M is self-contained: M ≡S
Σ∪M̃

T

(dep) M is weakly depleting: T \M ≡S
Σ ∅

(dep+) M is strongly depleting: T \M ≡S
Σ∪M̃

∅

(just) M is weakly justification-preserving:
⋃

JS(Σ, T )⊆M

(just+) M is strongly justif.-pres.:
⋃

JS(Σ ∪ M̃, T ) ⊆ M



Most of these properties have been discussed and used re-
peatedly in the literature (see Sections 1 and 2 for intuitions
and references). The only exception is (just+), which we be-
lieve to be a natural strengthening of (just) in the light of the
intuitions for the other strong variants discussed in Section 1.
Furthermore, (just+) is a particularly strong property that
implies many of the others, as we will see in the following.

For P ∈ {(self), (dep), (dep+), (just), (just+)}, a (minimal)
P -≡S

Σ-module of T is a (minimal) ≡S
Σ-module of T that has

property P . Furthermore, any such P can also be seen as a
property of a MEF: A P -S-MEF is an S-MEF m such that
m(Σ, T ) is a P -≡S

Σ-module for each Σ, T in m’s domain.

4.2 Interrelations
Throughout Section 4, we link various module properties to
one another. Here, we focus on direct interrelations. The
implications given next are obvious though partially rely on
S being monotonic and robust under vocabulary restriction.
Observation 1. The following hold.

1. (sup+) implies (self);
2. Together, (sup+) and (mon1) imply (sup);
3. (dep+) implies (dep);
4. (just+) implies (just).
Theorem 2. The following hold.
1. (mon2) implies (just);
2. Together, (mon2) and (sup+) imply (just+);
3. (just) implies (dep);
4. (just+) implies (dep+) and (self).

Proof sketch. Let m be an S-MEF, T a TBox, Σ ⊆ T̃ , and
M = m(Σ, T ). For Point 1, we have to show T ′ ⊆ M,
for every justification T ′ for φ ∈ relS(Σ, T ). We assume
T ′ ⊈ M, set T ′′ := T ′ ∩ M, and show that T ′′ |= φ,
which contradicts T ′ being a justification. This is done by
considering M′ = m(Σ, T ′) and observing M′ ⊆ T ′′,
which relies on (mon2), and finally implies T ′′ |= φ. Point 2
is very similar. For Point 3, it is easy to see that, due to
(just), T \M |= φ implies ∅ |= φ, for every SO Σ-sentences
φ. Since ≡S

Σ is characterized by relevant entailments, this
implies T \M ≡S

Σ ∅. Point 4 is analogous.

Points 1 and 2 allow conclusions about the modules’ logi-
cal properties from just the behavior of the underlying MEF
(though characterization by relevant entailments plays a role).
Point 1 yields rigorous, short proofs of (just) for various
module notions that obviously satisfy (mon2), such as LBMs
and RBMs, substantiating the ‘folklore’ assumption of (just)
for LBMs (Sattler, Schneider, and Zakharyaschev 2009;
Armas Romero et al. 2016) and the technical proof for RBMs
(Nortjé, Britz, and Meyer 2013b). Point 2 even implies (just+)
for LBMs, which obviously satisfy (sup+); this insight can be
of use for other module notions whose extraction uses LBMs
as a preprocessing step. Together with Point 3, RBMs also
satisfy (dep), which, to our knowledge, has not been studied
before. Similarly, LKs, which are known to satisfy (just) for
an IR i′ slightly weaker than i (Peñaloza et al. 2017), satisfy
(dep) for i′, too. Point 3 also supersedes Armas Romero et
al.’s (2016) separate proofs of (just) and (dep) for DBMs.

4.3 Assurance of Strong Properties by Iteration
Some module extraction algorithms, such as those underlying
LBMs and (A)MEX modules, build the module M of the
input TBox T for the seed signature Σ by starting from
the empty set and iteratively applying some test against the
extended signature Σ ∪ M̃ to all axioms in T \ M. This
iteration is performed until stabilization. The test against
Σ ∪ M̃ is crucial in these algorithms to guarantee that M is
a ≡S

Σ-module, but it automatically ensures (self), too.
DBMs, in contrast, are not based on iteration and are not

self-contained but weakly depleting. Inspired by the LBM
algorithm, Armas Romero et al. (2016) devised a variant of
their DBMs that nests their core module extraction procedure
into the same kind of iteration. The resulting modules were
shown to satisfy both (self) and (dep+). DMs use a similar
extension to achieve (self) (Koopmann and Chen 2020). We
generalize this finding to arbitrary MEFs and all of the strong
module properties introduced in Section 4.1.
Definition 3. Given a MEF m, the function m+ maps each
T and Σ to the fixpoint of the sequence {Mi}i≥0 as follows.

Σ0 := Σ Mi := m(Σi, T )

Σi+1 := Σi ∪ M̃i

Clearly, m+ is a MEF. Note that since Σ ∪ T̃ is finite, the
fixpoint is well defined and the iteration is at most linear.
Lemma 4. Let m be a MEF.

1. If m satisfies (mon1), m+ satisfies (mon1), (sup+), (sup).
2. If m satisfies (mon2), so does m+.

By Lemma 4 and Theorem 2, m+ even satisfies (just+) if
m or m+ are monotonic in both arguments. As (just+) is the
strongest of our ‘logical’ module properties (see Theorem 2,
Observation 1), m+ then even satisfies all weak and strong
logical module properties. Independently of monotonocity,
iteration can also turn a module notion satisfying only a weak
property, into one that satisfies the strong counterpart:
Theorem 5. Let m be a MEF.
1. m+ satisfies (self).
2. If m satisfies (dep), m+ satisfies (dep+).
3. If m satisfies (just), m+ satisfies (just+), (dep+), (self).

Theorem 5 relies on our modest assumptions from Sec-
tion 3; alternatively, the proof still goes through if most are
replaced with m satisfying (mon1) (cf. supplementary PDF).

4.4 Module Properties and (De-)Normalization
We next generalize normalization-based module extraction
approaches, discuss their properties and that preserving
strong module properties during denormalization is hard.
We begin with the most basic definitions of normalization
functions and of module extraction based on them.
Definition 6. A normalization function (NF) f is a monotonic
and idempotent function from TBoxes to TBoxes such that
(i) f(T ) ≡m

T̃
T and (ii) f(∅) = ∅ for every TBox T . We call

f(T ) an (f -)normalized TBox.
An f -S-MEF is an S-MEF defined on Σ and f(T ) for

every TBox T and signature Σ ⊆ f̃(T ).



Condition (i) requires that normalization preserves exactly
the knowledge ‘stored in’ T w.r.t. the finest IR considered in
this paper; this requirement is standard and usually formu-
lated using the more specific notion of a conservative exten-
sion (Baader, Brandt, and Lutz 2005; Cuenca Grau et al. 2010;
Armas Romero et al. 2016). Condition (ii) is natural and
needed for technical purposes. Definition 6 goes back to
Armas Romero et al. (2016); we additionally require (ii) and
idempotency; the latter justifies the term ‘normalized TBox’
and is naturally ensured by NFs based on exhaustive rule
application, such as the following one (Baader et al. 2017).

Example 7. Consider the well-known normal form of the DL
EL, where axioms take only the forms

A ⊑ B, A1 ⊓A2 ⊑ B, A ⊑ ∃r.B, and ∃r.A ⊑ B.

Let fEL be the function induced by exhaustive application
of the following rules (we will use fEL in further examples).

D1 ⊑ D2 −→ D1 ⊑ X, X ⊑ D2

C ⊓D ⊑ A −→ D ⊑ X, C ⊓X ⊑ A

∃r.D ⊑ A −→ D ⊑ X, ∃r.X ⊑ A

A ⊑ ∃r.D −→ X ⊑ D, A ⊑ ∃r.X
A ⊑ C1 ⊓ C2 −→ A ⊑ C1, A ⊑ C2

where C(i) are concepts, D(i) are concepts with D(i) /∈
NC ∪ {⊤}, A ∈ NC, and X is a fresh concept name.

For all EL TBoxes T , fEL(T ) can be computed in linear
time, is in the above normal form, and fEL(T ) ≡m

T̃
T .

fEL introduces fresh concept names X to break down
complex axioms. In order to ensure monotonicity of an NF f ,
we need to reserve a dedicated set of terms that is only used
for normalization purposes: Let NF be an infinite set of fresh
terms with NF ⊆ NC ∪ NR. We assume w.l.o.g. that no term
from NF occurs in any non-normalized TBox. Furthermore,
NFs may only introduce fresh terms, i.e., f̃(T ) \ T̃ ⊆ NF.

It is known that inseparability of normalized TBoxes coin-
cides with inseparability of their ‘original’ counterparts:

Proposition 8 (Armas Romero et al. 2016). Let f be an NF.
Then, f(M) ≡S

Σ f(T ) iff M ≡S
Σ T .

Thus, one can extract ≡S
Σ-modules from an arbitrary, not

necessarily normalized TBox T using an NF f , an f -S-MEF
m, and a suitable denormalization function g as follows.

(1) Normalize T via f ;
(2) Extract a module M′ of f(T ) via m;
(3) Recover from M′ a subset M of T via g.

We formalize these steps as follows; see also Figure 1.

Definition 9. Let f be an NF. An f -denormalization function
(f -DF) g maps TBoxes M′, T with M′ ⊆ f(T ) to a TBox
M := g(M′, T ) such that M ⊆ T and M′ ⊆ f(M).
A Normalization-Based S-Module Extractor (S-NME) is a
tuple (f,m, g) of an NF f , an f -S-MEF m and an f -DF g.
We set

mf,g(Σ, T ) := g
(
m
(
Σ′, f(T )

)
, T

)
, with Σ′ := Σ ∩ f̃(T ).

T

f(T ) M’

M
(3)

≡
S Σ

′

⊇, ≡S
Σ′

⊇, ≡S
Σ′

≡
S T̃(1)

(2)

Figure 1: Steps of normalization based module extraction.

Since normalization might drop terms, e.g., by omitting
certain tautologies, it is necessary to use the signature Σ′ in
the definition of mf,g. This, however, is problematic as m
only returns a ≡S

Σ′ -module of f(T ). To obtain a ≡S
Σ-module,

we rely on robustness or rule the case Σ′ ⊊ Σ out:
Definition 10. An S-NME (f,m, g) is admissible for T , Σ if
(i) S is robust under vocabulary extension, or (ii) Σ ⊆ f̃(T ).

Proposition 11. Let (f,m, g) be an S-NME. If (f,m, g) is
admissible for T , Σ, then mf,g(Σ, T ) is a ≡S

Σ-module of T .

S = m satisfies (i) from Definition 10 for any SO fragment
(Konev et al. 2009). For IRs where (i) is unknown or violated,
the restriction in (ii) is small: Using terms only in tautologi-
cal ways seems counterintuitive for ontology development;
we conjecture that in practice ontologies hardly lose terms
during normalization. In any case, such a loss and, thus, the
correctness of extracted modules, can be checked easily.

Observation 12 is a direct consequence of Definition 9:
Observation 12. Let (f,m, g) be an NME. If both m and g
are monotonic in the first (second) argument, so is mf,g .

While the NF f is usually tailored to a specific MEFm, the
DF g might be more generic; e.g., it was suggested for DBMs
and RBMs to use simple bookkeeping of the original axioms
corresponding to the normalized ones (Armas Romero et al.
2016; Nortjé, Britz, and Meyer 2012). We now identify this
approach as being universal, i.e., applicable to any NF.
Definition 13. Let f be an NF and α ∈ f(T ). An (f -)origi-
nal of α in T is a ⊆-minimal set O ⊆ T such that α ∈
f(O). The union of all f -originals of α in T is denoted by
origf (α, T ). We extend origf to sets of axioms in the natural
way: origf (M, T ) :=

⋃
α∈M origf (α, T ).

To ease readability, we write mf,orig instead of mf,origf .

Example 14. Let T = {α0 : A ⊑ B ⊓ D,α1 : B ⊓ D ⊑
F, α2 : A ⊑ B⊓∃r.C} and α := A ⊑ B. As {α0}, {α2} are
the only minimal subsets O ⊆ T with α ∈ fEL(O), they are
the only fEL-originals of α, i.e., origfEL

(α, T ) = {α0, α2}.

Note that we insist on ⊆-minimal sets so as to avoid adding
needless axioms during denormalization.
Lemma 15. The function origf is an f -DF, for every NF f .

However, we argue that the computational complexity of
origf might vary with the properties of f . To explain why
this is the case, we first define distributive NFs.
Definition 16. An NF f is distributive if, for all TBoxes
T1, T2, we have that f(T1 ∪ T2) = f(T1) ∪ f(T2).

Note that monotonicity of NFs already implies ⊇.



A distributive NF treats combinations of axioms the same
as single axioms, causing originals (of single axioms) to be
singletons. This ensures that the mentioned naive bookkeep-
ing approach to compute origf runs in polynomial time, as
only linearly many originals per axiom have to be tracked.

Proposition 17. For a distributive NF f , origf can be com-
puted in polynomial time with access to an oracle for f .

It is easy to see that any rule-based NF with only one
axiom on the left-hand side of each rule is distributive, e.g.,
fEL. If f is not distributive, then the obvious generic way to
compute origf requires exponential time.

Obviously, origf meets the requirement of Observation 12:

Observation 18. origf is monotonic in both arguments.

So far, we established NMEs to extract modules from non-
normalized TBoxes using MEFs that require a normal form.
For that, we identified a universal way to obtain from any
arbitrary NF f an f -DF origf that is tractable if f satisfies
a natural property. We also observed that origf preserves
(mon1) and (mon2) in the sense that NMEs based on origf
inherit these properties from the underlying MEF. The preser-
vation of further module properties by DFs is not obvious
because when NFs break up axioms, the signature of a recov-
ered module g(M′, T ) may contain terms outside of M′:

Example 19. Let Σ = {A,B}, T = {α1 : A ⊑ B ⊓C,α2 :
C ⊑ A}. Then, {α′

1} is a (self)-≡i
Σ-module of fEL(T ) =

{α′
1 : A ⊑ B,α′′

1 : A ⊑ C,α2}, but origfEL
(α′

1, T ) = {α1}
is not self-contained (although it is a ≡i

Σ-module of T ).

We investigate this further for properties P concerning
a single module, in particular, the strong properties P ∈
{(self), (dep+), (just+)}. For these, there are two possibili-
ties for ensuring that an S-NME yields P -modules: (1) an
extension of the module in every iteration step, and (2) the
use of a P -MEF and a DF that guarantees preservation of
P . Possibility (1) means adding, in each step of the iteration
before denormalization, all axioms that are in the normaliza-
tion of an original of any axiom in the module. This way,
denormalization will no longer introduce terms outside of
M′ as in Example 19. This solution is artificial, i.e., requires
computation of orig in every iteration step. Possibility (2)
requires a rigorous notion of a P -preserving DF, which is
hard to achieve, as we will now show.

Definition 20. An f -DF g preserves a module property P
for S if M′ being a P -≡S

Σ-module of f(T ) implies that
g(M′, T ) is a P -≡S

Σ-module of T for every M′ ⊆ f(T ).

Unfortunately, we can show that computing DFs that pre-
serve any property P ∈ {(self), (dep+), (just+)} is as hard as
module extraction itself for NFs with a natural property:

Definition 21. An NF f splits signatures if f(C⊔A ⊑ B) =
f(C ⊑ B) ∪ {A ⊑ B} for all concepts C and A,B ∈ NC.

Theorem 22. Let f split signatures and g be an f -DF pre-
serving P ∈ {(self), (dep+), (just+)} for an IR S. Extract-
ing non-trivial P -≡S

Σ-modules from consistent TBoxes is
polynomial-time Turing-reducible to computing g. In partic-
ular, there is a reduction that uses no dedicated S-MEF.

Proof sketch. We give a P -S-MEF that is defined on all con-
sistent T and Σ ⊆ T̃ , yields non-trivial modules, and can be
computed in PTIME via the following algorithm using g as
an oracle. (1) Extend T to T≤ by adding, for each t ∈ Σ, an
axiom αt := Ct ⊔Xt ⊑ Yt with fresh concept names Xt, Yt
and a concept Ct that is equivalent to ⊥ but uses t. Since f
splits signatures, we have f(αt) = f(Ct ⊑ Yt)∪{Xt ⊑ Yt},
and each Ct ⊑ Yt is a tautology. (2) Let M′

≤ := {Xt ⊑ Yt |
t ∈ Σ}, which is a P -≡S

∅ -module of f(T≤), for all P stated.
(3) Denormalize M′

≤ via g, obtaining a P -≡S
Σ-module M≤

of T≤. (4) Remove all αt with t ∈ Σ, which yields a P -≡S
Σ-

module M of T . The three claims of being P -modules can
be proven using the assumptions on f and g.

Note that Definition 21 is tailored to the proof of The-
orem 22. In particular, the sketched algorithm relies on
disjunction and negation. There may be other variants of
signature splitting that do not use either, but lend themselves
to a similar reduction; we do not discuss this further. The NFs
of, e.g., DBMs and RBMs meet our definition of signature
splitting, but, e.g., negation normal form and fEL do not.

Theorem 22 states that any f -DF preserving one of the
three module properties P is at least as hard to compute (up to
a polynomial overhead) as non-trivial P -≡S

Σ-modules, under
natural conditions to f (Def. 21). ‘Non-trivial’ means that
the MEF does not simply return the input TBox; furthermore,
depending on g, the resulting (self)-, (dep+)-, and (just+)-
modules may or may not be close to minimal. Altogether,
this finding advises against searching for a general and rea-
sonably good DF that preserves either. Ergo, the iterative
extension to ensure the strong properties should be applied
after denormalization. We abbreviate (mf,g)

+ with m+
f,g .

Fortunately, the following result gives a sufficient condi-
tion for general DFs to preserve at least (just) and (dep), and
thus ensures, together with Theorem 5, that m+

f,g inherits the
strong properties from the corresponding weak ones of m.

We call an f -DF g covering if f(T \M) ⊆ f(T ) \ f(M)
with M := g(M′, T ) for every TBox M′ ⊆ f(T ).
Proposition 23 (Armas Romero et al. 2016). Covering DFs
preserve both (just) and (dep) for every IR.

Armas Romero et al. (2016) do not name a covering DF.
Especially, origf is not covering for a range of DFs, e.g., for
fEL and any extension thereof:
Example 24. Let T = {α0 : A ⊑ B ⊓ C,α1 : A ⊑ C,α2 :
A ⊑ B ⊓D} and β0 := A ⊑ B. Then, {β2 : A ⊑ D} is a
≡i

{A,D}-module of fEL(T ) and origfEL
(β2, T ) = {α2}. As

β0 ∈ fEL(T \ {α2}), but β0 /∈ fEL(T ) \ fEL(α2), origfEL
is

not covering. Every covering DF g returns g(β2, T ) = T .
However, if f is distributive, we find that origf preserves

both (just) and (dep), too, and even recovers smaller modules:
Theorem 25. origf preserves (dep) for every IR and NF f .
Furthermore, if f is a distributive NF, then
1. origf preserves also (just) for every IR; and
2. origf ⊆ g for all covering DFs g.

Example 24 even hints at the exact benefit of using origf vs.
covering DFs: It can be shown that covering DFs additionally



return all axioms reachable from origf (M′, T ) in a graph
with T ’s axioms as vertices and edges between α1, α2 iff
f(α1) ∩ f(α2) ̸= ∅. This might even introduce axioms that
are already excluded from the normalized module, e.g. α1

in Example 24. However, origf does not necessarily return
minimal denormalized (just)- or (dep)-modules either:

Example 26. Set T = {α1 : A ⊑ B⊓C,α2 : A ⊑ C}, Σ =
{A,B} and M′ = fEL(α1) = {α′

1 : A ⊑ B,α2}. M′ is a
{(dep), (just)}-≡S

Σ-module of fEL(T ) and origfEL
(M′, T ) =

T . Yet, {α1} already is a {(dep), (just)}-≡S
Σ-module of T .

A DF that recovers smaller modules than origf may be as
hard to compute as module extraction.

The following result links Proposition 11 and Theorem 25:

Corollary 27. Let (f,m, origf ) be an S-NME that is admis-
sible for all T , Σ ⊆ T̃ . The following hold.

1. If m satisfies (dep), mf,orig satisfies (dep).
2. If m satisfies (just), mf,orig satisfies (just) and (dep).

Note that with Theorem 5, m+
f,orig might satisfy further

properties, e.g., (self) or—if m satisfies (dep)—(dep+).

4.5 Module Properties Relevant for AD
The atomic decomposition (Del Vescovo et al. 2011) of a
TBox T is a pair (A(T ),≻), where A(T ) is a partitioning,
called the set of atoms, and ≻ is a strict partial order on A(T )
called the dependency relation. The atoms are the maximal
subsets of T that do not overlap with any module MΣ :=

m(Σ, T ) with Σ ⊆ T̃ , i.e., for each atom a and MΣ, either
a ⊆ MΣ or a ⊆ T \MΣ. Thus, atoms represent parts of T
with a certain logical cohesion depending on the underlying
MEF m (Del Vescovo et al. 2020). Furthermore, atom a
depends on b (a ⪰ b) if every MΣ containing a contains b.
Thus, ⪰ captures logical dependencies ‘modulo’ m, and it
helps recover a module: for each atom a, its principal ideal
↓a =

⋃
{b | a ⪰ b} is some MΣ, called a genuine module;

all non-genuine modules MΣ are unions of genuine modules,
but not vice versa. The AD can be computed in polynomial
time with access to an oracle for m because it suffices to
consider only the Mα̃ for α ∈ T in order to compute all
atoms and ≻ (Del Vescovo et al. 2020). Further details are
not necessary for the remainder of this section.

According to Del Vescovo et al. (2020), AD requires six
properties (M0)–(M5) of a MEF, four of which are

(self) (mon1) (sup) (ax)

in our notation; a MEF that satisfies all four is applicable
for AD. Of these four, (sup) is weaker than the original (M4),
which required equality, but Del Vescovo et al.’s technical
development of AD relies only on the set inclusion in (sup).
The remaining two AD properties (M1), (M2) require that
modules are uniquely determined and subsets of the input
TBox, and are always satisfied by our definition of a MEF.
This has a notable side effect: Del Vescovo et al. remarked
that it is not obvious whether a normalization-based module
extraction approach might be suitable for AD at all, as the
effect of denormalization on (M1) and (M2) was unclear. Yet,
our results from Section 4.4 allow to extend any MEF whose

domain is restricted to normalized TBoxes to an NME, i.e.,
a MEF with admissibility as the only limitation. Although
this makes NMEs applicable for AD as long as the other
requirements can be met, we also found that (self) is hard to
preserve and has to be achieved after denormalization.

For this, recall Sections 4.2 and 4.3, where we identified
various conditions sufficient for a MEF to satisfy (self) and
also (mon1) and (sup), and proposed the extension m+ as a
repair that satisfies (self) by default (cf. Theorem 5) and both
(mon1) and (sup) if m satisfies (mon1) (cf. Lemma 4). This
solution even works for NMEs (cf. Observation 12 and 18).
Ergo, the repairability of MEFs for at least three of four AD
requirements depends only on the satisfaction of (mon1).

This leaves us with the analysis of (ax). Given a MEF m
(possibly ‘repaired’ as just explained) that does not satisfy
(ax), a naive repair is to add any axiom α tom(α̃, T ) by hand.
However, this approach also adds axioms that do not occur
in any m-module and thus do not contribute to violating
(ax), e.g., tautologies. If m satisfies (mon1), this can be
fixed elegantly: It then suffices to add α only if it occurs in
m(T̃ , T ), as otherwise α occurs in no m-module of T .

Finally, precautions must be taken to avoid violating other
AD requirements. Preserving (mon1) can be achieved easily
by extending any module M with all axioms α for which α̃
is subsumed by the seed signature Σ. Unfortunately, this will
turn out to be an obstacle for the preservation of (sup), but
the following approach at least preserves (sup+).

Definition 28. Let m be a MEF. We define the function m(ax):

m(ax)(Σ, T ) := M∪
(
m(T̃ , T ) ∩N

)
, with

M = m(Σ, T ) and N = {α ∈ T | α̃ ⊆ Σ ∪ M̃}

Proposition 29. Let m be a {(mon1), (sup+)}-MEF. Then,

1. m(ax) is a {(mon1), (sup+)}-MEF;
2. m satisfies (ax) iff m = m(ax);
3. if m satisfies P ∈ {(dep), (just), (self), (dep+), (just+),

(mon2)}, m(ax) also satisfies P .

By Point 2, m(ax) not only satisfies (ax), but also is
the smallest possible repair that subsumes m and satisfies
both (mon1) and (sup+). Note that, although Point 2 still
holds if the requirement of (sup+) is weakened to (sup),
Point 1 does not hold, i.e., m(ax) might not even satisfy
(sup) since M might then contain additional axioms due
to Ñ ⊆ m(ax)(Σ, T ) ⊆ Σ ∪ M̃. Yet, the stronger require-
ment (sup+) is not an unsolvable problem, as m+ satisfies
(sup+) by default (cf. Lemma 4).

This leaves the question if denormalization and iteration
preserve (ax), and whether to applym(ax) before or after them.

For denormalization, again, the differing signatures be-
tween original and normalized TBoxes are problematic: By
constructing an NF f such that every f -i-MEF satisfies (ax), it
can be shown that origf does not preserve (ax) in general (we
provide an example in the supplementary material). There
might be another non-trivial DF that preserves (ax); we leave
this question open.

For iteration, it is easy to see that m+ satisfies (ax) if m
is an {(ax), (mon1)}-MEF: α ∈ m(α̃, T ) then implies α ∈



m+(α̃, T ) as the iterated signature only grows. Moreover, it
makes no difference whether m(ax) is applied before or after
iteration (except that the latter computes N only once):

Proposition 30. (m(ax))+ = (m+)(ax) holds for all MEFs m.

From now on, we abbreviate (m+)(ax) with m+(ax). The
following theorem and corollary summarize our results.

Theorem 31. Let m be a (mon1)-MEF. Then, m+(ax) is appli-
cable for AD. If also (f,m, g) is an S-NME that is admissible
for all T , Σ ⊆ T̃ and g is monotonic in the 1st argument,
then m+(ax)

f,orig is applicable for AD.

The first part of Theorem 31 follows directly from
Lemma 4, Theorem 5 and Proposition 29. The second part
additionally requires Proposition 11 and Observation 12.

Note that by Point 3 of Proposition 29, m+(ax) and m+(ax)
f,orig

might satisfy further properties, e.g., (just+) if m satisfies
(mon2) (cf. Thm. 2, Lem. 4, Obs. 12) or (just) (cf. Cor. 27).

Our notion of applicability for AD poses requirements to a
MEF m as a whole, which continues the framework set up by
Del Vescovo et al. (2020). Consequently, we have required
admissibility of an S-NME for all T and Σ ⊆ T̃ . However,
it is possible to refine this framework such that the 4 AD
properties and admissibility are required only for a single
T , thus ensuring correctness of the AD algorithm for this
specific T . However, these properties would then have to be
checked after each change of T , as opposed to once for m.

5 Application to Datalog-Based Modules
In this section, we briefly introduce DBMs (for details, see
Armas Romero et al., 2016) and exemplarily apply to them
the above results. We show that although DBMs do not meet
the AD requirements out of the box, they can be modified as
described in Section 4.5. This also opens AD for useful IRs
besides model inseparability and other logics, e.g., Datalog.

The main idea behind DBMs is as follows. In Datalog, the
identification of rules that take part in (support) the entail-
ment of a fact, is not harder than Datalog reasoning itself,
which is decidable and, for a wide class of programs, even
tractable. DBMs exploit this: First, one constructs a Datalog
program P that is an (S-)strengthening of the input TBox
T , i.e., P implies all relevant S-entailments of T , but not
vice versa. Then, one computes the materialization of P over
a set of initial facts D0 and computes the supporting rules
of entailed relevant facts Dr. Finally, the returned module
consists of the axioms in T that correspond to these iden-
tified supporting rules. Note that D0 and Dr are chosen
carefully depending on S and the seed signature Σ such that
the approach captures all S-Σ-entailments.

5.1 Definition
If not stated otherwise, the definitions and results in this
section are taken from Armas Romero et al. (2016).

In addition to S = {m, i}, we consider two further in-
separability relations q and f. Their definitions rely on the
well-known notions of Boolean positive existential queries
(BPEQs) with the certain-answer semantics (Baader et al.

2017), first-order (FO) rules (aka existential rules or tuple-
generating dependencies; see Calı̀ et al. 2010), and Datalog
rules (Abiteboul, Hull, and Vianu 1995).

Let Σ be a signature. TBoxes T1, T2 are
• Σ-query inseparable (T1 ≡q

Σ T2) if for each Σ-BPEQ q
and Σ-ABox A, we have T1 ∪ A |= q iff T2 ∪ A |= q;

• Σ-fact inseparable (T1 ≡f
Σ T2) if for each atomic Σ-

concept or Σ-role assertion α and every Σ-ABox A, we
have T1 ∪ A |= α iff T2 ∪ A |= α.

The following order holds between the 4 IRs defined so far,
for each non-trivial Σ: ≡m

Σ ⊊ ≡q
Σ ⊊ ≡f

Σ ⊊ ≡i
Σ.

Both q and f are characterized by relevant entailments with

relq(Σ, T ) = {φ | T |= φ and φ is a FO Σ-rule};
relf(Σ, T ) = {φ | T |= φ and φ is a Datalog Σ-rule}.

DBMs heavily rely on the FO calculus of hyperresolution
(Robinson 1965; Bachmair and Ganzinger 2001) as defined
next. Let r =

∧n
i=1 γi →

∨m
j=1 δj be a clause and let

φi = ψi ∨ ξi with 1 ≤ i ≤ n be ground disjunctions of
atoms where ξi is a single atom; furthermore, let σ be a most
general unifier (MGU) of each γi, ξi. The ground disjunction
of atoms

∨n
i=1 ψi ∨

∨m
j=1 δjσ is a hyperresolvent of r and

φ1, ..., φn. Let C be a set of clauses, D a dataset and φ a
disjunction of ground atoms. A (hyperresolution) proof of φ
in C ∪ D is a pair ρ = (T, λ) where T is a directed, rooted
tree, and λ is a labeling of nodes in T with disjunctions of
ground atoms such that for each node v in T the following
properties hold.

1. If v is the root of T , then λ(v) = φ.
2. If v is a leaf in T , then either (→ λ(v)) ∈ C or λ(v) ∈ D.
3. If v has children w1, ..., wk, then λ(v) is a hyperresolvent

of a clause from C and λ(w1), ..., λ(wn).
The support of ρ, denoted by supp(ρ), is the set of clauses in
C that take part in ρ as described in the above points 2 and 3.

DBMs expect a strict normal form given by a function f,
which extends fEL and matches our definition and assump-
tions of a (distributive and signature splitting) NF; the details
do not matter. Let π be the standard translation of SROIQ
into FO (Baader et al. 2017), which is a bijective function π
and maps f-normalized axioms to equivalent FO rules, e.g.,
π(A ⊑ ∃R.B) = A(x) → ∃y[R(x, y) ∧B(y)]. Technically,
π replaces the special concept ⊤ (⊥) with a reserved unary
(nullary) predicate2, which has to be axiomized (instead of
the usual semantics) and taken care of later. We ignore this
detail here; it is easy to check that our results transfer.

A module setting for T and Σ is a tuple X = ⟨θ,D0,Dr⟩
where θ is a substitution that maps each constant and ex-
istentially quantified variable in π(T ) to a (possibly fresh)
constant, and D0 (Dr) is a Σ- (T̃ -) dataset. A module setting
family is a function that maps each f-normalized TBox T and
signature Σ ⊆ T̃ to a module setting for T and Σ.

For each FO rule r = φ(x) → ∃yψ(x,y) let ΞX (r) :=
{(φ→ γ)θ | γ an atom in φ}.

2As DBMs are defined over FO rules, we here speak of unary
(binary) predicates instead of concept (role) names.



Set supp(X ) := {r | r ∈ supp(ρ) with ρ a proof in P ∪
D0 of a fact from Dr} with P :=

⋃
r∈π(T ) Ξ

X (r).
Finally, set dΨ(Σ, T ) = {α ∈ T | supp

(
Ψ(Σ, T )

)
∩

ΞΨ(Σ,T )
(
π(α)

)
̸= ∅} for all module setting families Ψ.

Let S ∈ {m, q, f, i}; Armas Romero et al. introduced,
amongst others, four families ΨS to extract ≡S-modules.
E.g., Ψi maps any f-normalized TBox T and signature Σ ⊆ T̃
to a module setting ⟨θi,Di

0,Di
r⟩, with

θi :={y 7→ cy | y existentially quantified in π(T )}
∪ {c 7→ c | c is a constant in π(T )}

Di
0 :={A(cA) | A ∈ Σ}

Di
r :={B(cA) | A ̸= B predicates in Σ of the same arity}

∪ {⊥}

where cA (cy) is a fresh constant for each predicate (exis-
tentially quantified variable) in π(T ). Due to space con-
straints, we forgo to define Ψm, Ψq and Ψf. We abbreviate
dΨS with dS . dS can be computed in polynomial time and is a
{(just), (dep)}-S-f-MEF in our notation, but satisfies neither
(self) nor (dep+). Recall that Armas Romero et al. proposed
iterative extraction of DBMs to fix this (which we generalized
in form of m+). We are not aware of any work on whether
dS satisfies P ∈ {(mon1), (mon2), (sup), (sup+), (ax+)}.

5.2 Applicability for AD
We now apply our previous results in order to verify whether
DBMs satisfy the remaining AD properties on all TBoxes
and, if necessary, devise a modification. Since (f, dS , origf) is
obviously an S-NME, both dS+

f,orig and dS
+(ax)
f,orig are candidates

for such a modification. As explained in Section 4.5, dS
satisfying (mon1) is central to both, because they then satisfy
(mon1) and (sup) by Lemma 4 and Theorem 31. To show that
dS indeed satisfies (mon1), we first define monotonicity for
families of module settings:

Definition 32. Let X = ⟨θ,D0,Dr⟩ (X ′ = ⟨θ′,D′
0,D′

r⟩) be
a module setting for some T and Σ (Σ′). X is a subsetting
of X ′ if (i) θ = θ′, (ii) D0 ⊆ D′

0, and (iii) Dr ⊆ D′
r.

A family of module settings Ψ is monotonic if Ψ(Σ, T ) is
a subsetting of Ψ(Σ′, T ) for each T and Σ,Σ′ with Σ ⊆ Σ′.

Note that the above definition is related to Armas Romero
et al.’s notion of uniformity.

The following observation is obvious for Ψi and the other
three families of module settings.

Observation 33. ΨS is monotonic for each S ∈ {m, q, f, i}.

With that, it is easily shown that

Lemma 34. dS satisfies (mon1) for each S ∈ {m, q, f, i}.

Hence, dS
+(ax)
f,orig is applicable for AD (given admissibil-

ity). Whether dS+
f,orig suffices comes down to whether dS f,orig

satisfies (ax). For S ∈ {m, q}, it is readily checked that nor-
malized axioms have to be part of the module for their own
signature; ergo, dS satisfies (ax). For S = i, we have a simple
counterexample, which also works for S = f:

Example 35. Let T = {α1 : A ⊑ ∃r.B, α2 : ∃r.B ⊑ C}
and Σ = {A,C}. Then, f(T ) = T and dif,orig(Σ, T ) = T ,
but dif,orig(α̃1, T ) = dif,orig(α̃2, T ) = ∅.

As the example TBox is already normalized, dS f,orig does
not satisfy (ax) for S ∈ {i, f}. We conjecture that dS f,orig
also satisfies (ax) for S ∈ {m, q}, but do not discuss this
further. The following theorem summarizes our results and is
a direct consequence of Theorem 31 and the fact that model
inseparability is robust under vocabulary extension.

Theorem 36. dm
+(ax)
f,orig is applicable for AD. If (f, dS , origf)

with S ∈ {q, f, i} is admissible for all T and Σ ⊆ T , then
dS

+(ax)
f,orig is applicable for AD.

As with Theorem 31, for S ∈ {q, f, i}, we can still compute
the AD of some specific T if the admissibility conditions hold
for T , i.e., if T̃ ⊆ f̃(T ). This does not always have to be the
case as f contains, e.g., the rule C ⊑ ⊤ →, i.e., the signature
of tautologies might get lost during denormalization.

Note that dS
+(ax)
f,orig is still computable in polynomial time

for each S ∈ {m, q, f, i}: both dS and f can be computed
in polynomial time (Armas Romero et al. 2016), origf is
computable in polynomial time by Proposition 17 and the fact
that f is distributive, the iteration using m+ calls dS f,orig only
polynomially often, and the extension by m(ax) is obviously
polynomial, too.

6 Conclusion
We investigated the interrelations of various module proper-
ties important not only for ontology reuse and debugging but
also for computing the AD of an ontology. Given arbitrary
(normalization-based) module extraction approaches under
natural assumptions, we pinpointed universal ways to con-
struct repairs satisfying those properties without affecting
tractability. We also applied these techniques to DBMs and
thus opened AD to novel use-cases and logics other than DLs.
Questions and opportunities for future work arise:

Can we get smaller modules by using the repaired DBM
modules instead of, e.g., LBMs (which satisfy comparable
properties by default)? Do specific NFs enable the preserva-
tion of properties such as self-containment? Here, one might
consider other DLs as, e.g., our proof of Theorem 22 does not
work for EL. How do the modular structures of an ontology
and its normalization differ?

With DBMs, we can now evaluate AD on logics other than
DLs and IRs other than model inseparability to reproduce,
e.g., the experiments by Del Vescovo et al. (2020). Our
framework is based on natural requirements and is likely to
be applicable to other module notions, e.g., RBMs.

Three specific questions were left open here: Is there a
general DF that preserves (ax)? Does dS f,orig satisfy (ax) for
S ∈ {m, q}? Is (f, dS , origf) admissible for all T ,Σ ⊆ T ,
i.e. is S ∈ {q, i, f} robust under vocabulary restriction?

Furthermore, there is hope that a recent result by Zhao,
Sattler, and Parsia (2019) on avoiding subsumption tests
during TBox classification can be improved using DBMs
with implication inseparability instead of LBMs.
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A Proofs for Section 4.2

Theorem 2. The following hold:

1. (mon2) implies (just);

2. (mon2) and (sup+) imply (just+);

3. (just) implies (dep);

4. (just+) implies (dep+) and (self).

Proof. 1. Let m be an S-MEF m that satisfies (mon2). To
show that m satisfies (just), let T be a TBox, Σ ⊆ T̃ and
M = m(Σ, T ), and consider an arbitrary φ ∈ relS(Σ, T )
and a justification T ′ for φ in T . We have to show T ′ ⊆
M. By definition of relS , we also have φ ∈ relS(Σ, T ′).
Assume T ′ ⊈ M. Then T ′′ := T ′ ∩M is a strict subset
of T ′. It suffices to show that T ′′ |= φ, which contradicts
the minimality of T ′ and thus falsifies the assumption. To
achieve this aim, we consider M′ := m(Σ, T ′) and make
the following observations.

(a) M′ ⊆ T ′ (due to the definition of a MEF);
(b) M′ ⊆ M (since T ′ ⊆ T and due to (mon2));
(c) M′ |= φ (because T ′ |= φ and M′ ≡S

Σ T ′,
and S is characterized by relevant entail-
ments).

Now (a) and (b) imply M′ ⊆ T ′′, and with (c) we obtain
T ′′ |= φ as desired.

2. The proof is very similar to that of the previous point, with
the following three exceptions.

• We consider φ ∈ relS(Σ ∪ M̃, T );

• We set M′ := m(Σ ∪ M̃, T ′);
• Point (b) M′ ⊆ M now additionally requires (sup+)

and the following argument.

M′ = m(Σ ∪ M̃, T ′)

⊆ m(Σ ∪ M̃, T ) (due to T ′ ⊆ T and (mon2))

⊆ M (due to (sup+))

3. Let m be an S-MEF m that satisfies (just), T a TBox,
Σ ⊆ T̃ , and M = m(Σ, T ). We need to show T \M ≡S

Σ

∅. Since ≡S
Σ is characterized by relevant entailments, it

suffices to show:

T \M |= φ implies ∅ |= φ

for all SO Σ-sentences φ. Assume T \M |= φ for such a
φ and consider a ⊆-minimal set T ′ ⊆ T \M ⊆ T with
T ′ |= φ. Then T ′ is a justification for φ in T . Due to
(just), we have T ′ ⊆ M. Hence T ′ = ∅, and thus ∅ |= φ.

4. Analogous to the previous point, but with Σ replaced by
Σ ∪ M̃.

B Proofs for Section 4.3
For the proofs of Lemma 4 and Theorem 5, we reuse the
notation from Definition 3 and, given both a TBox T (T ′)
and a seed signature Σ ⊆ T̃ (Σ′ ⊆ T̃ ′), denote the sequence
underlying m+ with (Mi)i≥0 ((M′

i)i≥0), the iterative signa-
tures with Σi (Σ′

i) and the first fixpoint with Mi0 (M′
i′0

), i.e.,
M := m+(Σ, T ) = Mi0 and M′ := m+(Σ′, T ′) = M′

i′0
.

Furthermore, let imax = max(i0, i′0).
We need the following supportive statements, which are

easy to show by induction.

Observation 37. Let m be a (mon1)-MEF. Then,

1. Σ ⊆ Σi for all i ≥ 0.
2. Σi ⊆ Σ′

i for all i ≥ 0, if either of the following hold.
(a) Σ ⊆ Σ′ and T = T ′, or
(b) Σ ⊆ Σ′, T ⊆ T ′ and m satisfies (mon2).

Using Observation 37, we next prove Lemma 4 and Theo-
rem 5.

Lemma 4. Let m be a MEF.

1. If m satisfies (mon1), m+ satisfies (mon1), (sup+), (sup).

2. If m satisfies (mon2), so does m+.

Proof. 1. Suppose that m satisfies (mon1).
We first prove that m+ satisfies (mon1). Let
T ,Σ, (Σi)i≥0, (Mi)i≥0,Mi0 ,M be as above. We know
both Σ ⊆ Σi0 (by Point 1 of Observation 37) and
M̃ = M̃i0 , therefore, Σ ∪ M̃ ⊆ Σi0 ∪ M̃i0 = Σi0+1.
With this, m satisfying (mon1) entails m+(Σ ∪ M̃, T ) ⊆
m+(Σi0+1, T ). On the other hand, m+(Σi0+1, T ) =
m+(Σ, T ) must hold as both
• Mi0 = m(Σi0 , T ) = m(Σi0+1, T ), and, thus,
• m+(Σi0+1, T ) has to stabilize in the first step of the

iteration, i.e., m+(Σi0+1, T ) = m(Σi0+1, T )

due to Mi0 being the fixpoint of {Mi}i≥0. Together, we
have that m+(Σ ∪ M̃, T ) ⊆ m+(Σ, T ) = M.

Then m+ also satisfies (sup) due to Observation 1, Point 2.

In order to show that m+ satisfies (sup+), additionally
let T ′,Σ′, (Σ′

i)i≥0, (M′
i)i≥0,M′

i0
,M′, imax be as above

with T = T ′ and Σ ⊆ Σ′ ⊆ T̃ . We need to show
that m+(Σ, T ) ⊆ m+(Σ′, T ). We already know that
Σimax ⊆ Σ′

imax
holds by Point 2 (a) of Observation 37.

Thus, m satisfying (mon1) implies Mimax ⊆ M′
imax

and
even Mi0 ⊆ M′

i′0
, as we have both Mi0 = Mimax

and M′
i′0

= M′
imax

(due to them being fixpoints). Ergo,
m+(Σ, T ) ⊆ m+(Σ′, T ).

2. The proof is very similar to the (mon1) part of Point 1,
with the exception that we consider arbitrary T ,Σ′ with
T ⊆ T ′ and additionally require m to satisfy (mon2).
Then, Σimax ⊆ Σ′

imax
holds by Point 2 (b) of Observation 37;

the rest is analogous.



Theorem 5. Let m be a MEF.

1. m+ satisfies (self).

2. If m satisfies (dep), m+ satisfies (dep+).

3. If m satisfies (just), m+ satisfies (just+), (dep+), (self).

Proof. Let T ,Σ, (Σi)i≥0, (Mi)i≥0,Mi0 ,M be as above.
Since Mi0 is the fixpoint, we have:

M = Mi0 = Mi0+1 = m(Σi0 ∪ M̃i0 , T )

= m(Σi0 ∪ M̃, T ) (∗)

1. As m is a MEF, (∗) implies M ≡S
Σi0

∪M̃
T . Furthermore,

Σ ⊆ Σi0 (Observation 37). As we assumed that S is robust
under vocabulary restriction (see Section 3), we then have
M ≡S

Σ∪M̃
T .

2. The proof is analogous to the proof of Point 1 with
the exception that we replace M ≡S

Σi0∪M̃
T with

T \M ≡S
Σi0

∪M̃
∅ as m is a (dep)-MEF.

3. It suffices to show that m+ satifies (just); the other two
properties follow via Theorem 2, Point 4. Consider some
φ ∈ relS(Σ ∪ M̃, T ) and a justification T ′ of φ in T ; we
need to show that T ′ ⊆ M. As Σ ⊆ Σi0 (Observation 37),
and S is characterized by relevant entailments, we have
relS(Σ∪M̃, T ) ⊆ relS(Σi0∪M̃, T ), ergo φ ∈ relS(Σi0∪
M̃, T ). By m being a (just)-MEF and given (∗), we thus
have that M is a (just)-≡S

Σi0∪M̃
-module of T and must

therefore subsume T ′, i.e., T ′ ⊆ M.

In Section 4.3, we noted that the proof of Theorem 5 still
goes through using (mon1) instead of some of the assump-
tions that we made in Section 3. In particular, one can show
Point 3 (1 and 2), if relS(·, ·) is not monotonic in the sec-
ond argument (S is not robust under vocabulary restriction),
but m satisfies (mon1): E.g., for Point 1, it is obvious that
m(Σ ∪ M̃, T ) is a ≡S

Σ-module of T that satisfies (self). The
same then holds for M as that is a superset of m(Σ∪M̃, T )
by m satisfying (mon1); that M satisfies (self) then follows
directly from monotonicity of IRs. This is similar for the
other cases.

C Proofs for Section 4.4

Proposition 11. Let (f,m, g) be an S-NME. If (f,m, g) is
admissible for T , Σ, then mf,g(Σ, T ) is a ≡S

Σ-module of T .

Proof. Let (f,m, g) be admissable for T , Σ. Furthermore,
let Σ′ := Σ ∩ f̃(T ), M′ := m(Σ′, f(T )) and M :=
mf,g(T ,Σ) = g(M′, T ).

We first show that M′ is a ≡S
Σ′-module of f(T ). By

Definition 9 we have both M ⊆ T , which by Definition
6 implies f(M) ⊆ f(T ), and M′ ⊆ f(M). Together,
M′ ⊆ f(M) ⊆ f(T ) holds. Furthermore, since m is a
module extraction function, we have that M′ ≡S

Σ′ f(T ).
We next show M′ ≡S

Σ f(T ), distinguishing between the
two cases of (f,m, g) being admissible for T , Σ.

1. Let ≡S
Σ be robust under vocabulary extension. Since

M′ ⊆ f(T ), we have that Σ ∩ (M̃′ ∪ f̃(T )) = Σ′. By
robustness under vocabulary extension of S , we then have
that M′ ≡S

Σ f(T ).

2. Let Σ ⊆ f̃(T ). Then we have that Σ = Σ′; M′ ≡S
Σ f(T )

is an immediate result.

Finally, monotonicity of IRs implies f(M) ≡S
Σ f(T ).

Proposition 8 entails M ≡S
Σ T .

For some proofs, we need the following observation, which
is a direct result of Definition 13 and monotonicity of NFs.

Observation 38. Let f be an NF. For every TBox M′ ⊆
f(T ) and each axiom α ∈ M′ the following hold.

• α has an original in T ;
• α has no original in T \ origf (M′, T ).

Lemma 15. The function origf is an f -DF, for every NF f .

Proof. Let f be an NF, M′ ⊆ f(T ) and α ∈ M′. It
suffices to show that α ∈ f(origf (M′, T )). By Observa-
tion 38 there is some original O of α in T . Definition
13 implies O ⊆ origf (M′, T ) and α ∈ f(O). By the
monotonicty of normalization functions, we then have that
α ∈ f(origf (M′, T )).

We need the following supporting statement for the proof
of Proposition 17 and Theorem 25.

Lemma 39. Let f be a distributive NF. Then, all originals
for all axioms α′ ∈ f(T ) are singletons.

Proof. Let α′ ∈ f(T ). By Observation 38 there is some
original O of α′ ∈ T . Since f(∅) = ∅ (Def. 6 ii), there is an
axiom α ∈ O. It remains to show that {α} is an original of
α′ in T , as then O = {α}, i.e., O is a singleton.

Since f is distributive, we have that f(O) = f(O\{α})∪
f(α). In addition, Definition 13 implies α′ ∈ f(M) and
therefore either α′ ∈ f(O \ {α}) or α′ ∈ f(α) must hold
true, but the former is in contradiction to O by Definition 13
being a ⊆-minimal set such that α′ ∈ f(O). This implies
α′ ∈ f(α) and together with f(∅) = ∅, {α} is an original of
α′ in T .

Proposition 17. For a distributive NF f , origf can be com-
puted in polynomial time with access to an oracle for f .

Proof. By Lemma 39, the bookkeeping approach to compute
origf as described in Section 4.4 runs in polynomial time, as
at most linearly many originals (one for each axiom in the
ontology) have to be tracked for every axiom; i.e., by the
following procedure:

• Input M′, T .
• Set M = ∅.
• For every α ∈ T , if f(α) ∈ M′, then add α to M.
• Output M.



Theorem 22. Let f split signatures and g be an f -DF
preserving P ∈ {(self), (dep+), (just+)} for an IR S. Ex-
tracting non-trivial P -≡S

Σ-modules from consistent TBoxes
is polynomial-time Turing-reducible to computing g. In par-
ticular, there is a reduction that uses no dedicated S-MEF.

Proof. We give a P -S-MEF mg that is defined on all con-
sistent T and Σ ⊆ T̃ , yields non-trivial modules, and can
be computed in PTIME using g as an oracle. We then show
successively that mg is a (self)-, (dep+)-, and (just+)-MEF.

Given a consistent TBox T and a signature Σ ⊆ T̃ , we
assume Xt and Yt to be fresh concept names that do not
occur in T or f(T ) for each term t ∈ Σ. Then, we define
mg(Σ, T ) to be the result of the following procedure.

1. Set T≤ := T ∪ kr(Σ), where

kr(Σ) = {Ct ⊔Xt ⊑ Yt | t ∈ Σ}, and

Ct =

{
t ⊓ ¬t if t ∈ NC

∃t.⊤ ⊓ ¬∃t.⊤ if t ∈ NR

2. Set M′
≤ := {Xt ⊑ Yt | t ∈ Σ}

3. Calculate M≤ := g(M′
≤, T≤)

4. Return M := M≤ \ kr(Σ)

Self-containment. In order to show that mg is a (self)-MEF,
we start with two simple observations.

(a) T≤ is consistent; in particular, for every model I of T ,
there is a model J of T≤ with tJ = tI for all t ∈ T̃ .

(b) f(T≤) is consistent.

As for (a), J can be obtained as the extension of I with
XJ

t = Y J
t = ∅ for all t ∈ Σ; then (b) follows from

f(T≤) ≡m
T̃≤

T≤.

We now show the following three claims, the last of which
states that mg is a (self)-MEF.

(A) M′
≤ ≡S

M̃′
≤
f(T≤);

(B) M≤ ≡S
Σ∪M̃

T≤;
(C) M ≡S

Σ∪M̃
T .

Proof of Claim (A). Since ≡m
Σ ⊆ ≡S

Σ, it suffices to show
M′

≤ ≡m
M̃′

≤
f(T≤) and, since M′

≤ ⊆ f(T≤) by construction,

we only need to show one ‘direction’, i.e.:

(∗) For every model I of M′
≤, there is a model J of f(T≤)

with tJ = tI for all t ∈ M̃′
≤.

Let I be a model of M′
≤. Take an arbitrary model J ′ of

f(T≤), which exists by Observation (b). We construct the
desired J by combining I and J ′:

• tJ = tJ
′

for all t ∈ f̃(T≤);
• XJ

t = XI
t and Y J

t = Y I
t for all t ∈ Σ.

Clearly J is a model of f(T≤).

Proof of Claim (B). By assumption, g preserves (self). To-
gether with Claim (A), we have M≤ ≡S

M̃≤
T≤ (III).

It suffices to show kr(Σ) ⊆ M≤ because

• together with Σ ⊆ k̃r(Σ) this implies Σ ⊆ M̃≤;

• with (III) we get M≤ ≡S
Σ∪M̃≤

T≤;

• since M ⊆ M≤ and S is robust under vocabulary restric-
tion, this yields M≤ ≡S

Σ∪M̃
T≤ as desired.

In order to show kr(Σ) ⊆ M≤, consider some axiom α ∈
kr(Σ). Since kr(Σ) contains exactly one axiom for each
t ∈ Σ, we have that {α} = kr({t}) for some t ∈ Σ. Because
f splits signatures, f(α) = f(Ct ⊑ Yt) ∪ {Xt ⊑ Yt} holds.
Due to f(∅) = ∅, {α} then has to be an original of Xt ⊑ Yt.
As Xt and Yt do not occur in T or f(T ) by construction
and because normalization always introduces fresh terms, we
have that Xt ⊑ Yt /∈ f(T ). Therefore, {α} has to be the
only original of f(α) in T≤. By the definition of originals,
we then have:

(∗) α ∈ P for every P ⊆ T≤ such that Xt ⊑ Yt ∈ f(P)

Furthermore, by Definition 9, M′
≤ ⊆ f(M≤) holds and,

by construction, Xt ⊑ Yt ∈ M′
≤, which imply Xt ⊑ Yt ∈

f(M≤). Together with (∗), we have α ∈ M≤ as desired.

Proof of Claim (C). We first show that T≤ ≡S
Σ∪M̃

T (IV).
Since ≡m

Σ ⊆ ≡S
Σ, it suffices to show T≤ ≡m

Σ∪M̃
T and,

since T ⊆ T≤ by construction, we only need to show one
‘direction’, i.e.:

(∗) For every model I of T , there is a model J of T≤ with
tJ = tI for all t ∈ Σ ∪ M̃.

Now, consider some model I of T . By Observation (a), there
is a model J≤ of T≤ with tJ = tI for all t ∈ T̃ . Since
M = M≤ \ kr(Σ) and therefore Σ ∪ M̃ ⊆ T̃ , we also have
tJ = tI for all t ∈ Σ ∪ T̃ as desired.

With the same model construction as in Observation (a),
we can show that M≤ ≡S

Σ∪M̃
M (V).

Finally, combining (IV), Claim (B), and (V), we obtain

T ≡S
Σ∪M̃ T≤ ≡S

Σ∪M̃ M≤ ≡S
Σ∪M̃ M,

i.e., T ≡S
Σ∪M̃

M as desired.

Strong depletingness. In order to show that mg is a (dep+)-
MEF, we use the analogs of Claims (A)–(C):

(A′) f(T≤) \M′
≤ ≡S

M̃′
≤
∅;

(B′) T≤ \M≤ ≡S
Σ∪M̃

∅;

(C′) T \M ≡S
Σ∪M̃

∅.



The proofs of (A′) and (B′) are analogous to those of (A)
and (B). Claim (C′) follows from (B′) via the additional
observation that T \M = T≤ \M≤ by construction.

Strong preservation of justifications. It remains to show the
analogs of Claims (A)–(C) for (just+):

(A′′)
⋃
JS(M̃′

≤, f(T≤)) ⊆ M′
≤

(B′′)
⋃
JS(Σ ∪ M̃, T≤) ⊆ M≤

(C′′)
⋃
JS(Σ ∪ M̃, T ) ⊆ M

Proof of Claim (A′′). Let φ ∈ relS(M̃′
≤, f(T≤)) and T ′ a

justification of φ in f(T≤). We need to show T ′ ⊆ M′
≤.

Due to the construction of M′
≤ and the fact that both Step 1

and normalization introduce fresh terms, none of the Xt, Yt
introduced in Step 2 logically interacts with the remaining
terms in f(T≤). Now since φ̃ ⊆ M̃′

≤ and given the construc-
tion of M′

≤, we have that φ can only be of the form Xt ⊑ Yt
for some t ∈ Σ, and T ′ = {φ}. Then clearly T ′ ⊆ M′

≤.

Proof of Claim (B′′). By assumption, g preserves (just+).
Together with Claim (A′′), we have:⋃

JS(M̃≤, T≤) ⊆ M≤

Since Σ ⊆ M̃≤ as shown in (B), this implies:⋃
JS(Σ ∪ M̃≤, T≤) ⊆ M≤

Finally, since M ⊆ M≤ and thus, by definition,
⋃
JS(Σ ∪

M̃, T≤) ⊆
⋃
JS(Σ ∪ M̃≤, T≤), we obtain the statement in

the claim.

Proof of Claim (C′′). Let φ ∈ relS(M̃, T ) and T ′ a jus-
tification of φ in T . Since the fresh terms from kr(Σ) are
neither contained in M nor interact with T , we have that
T ′ is also a justification of φ in T≤, and thus T ′ ⊆ M≤ by
Claim (B′′). Since T ′ ∩ kr(Σ) = ∅ (by T ′ ⊆ T ), we even
have T ′ ⊆ M≤ \ kr(Σ) = M as desired.

Theorem 25. origf preserves (dep) for every IR and NF f .
Furthermore, if f is a distributive NF, then

1. origf preserves also (just) for every IR; and
2. origf ⊆ g for all covering DFs g.

Proof. We first show that origf preserves (dep). Let M′ be a
weakly depleting ≡S

Σ-module of f(T ), i.e., f(T )\M′ ≡S
Σ ∅,

and set M := origf (M′, T ). We need to prove T \M ≡S
Σ ∅.

We start showing

f(T \M) ∩M′ = ∅. (∗)

Let α ∈ M′. By Observation 38 there is no original of α in
T \ M, i.e., there is no O ⊆ T \ M such that α ∈ f(O).
Thus, α /∈ f(T \M).

Next, by monotonicity of NFs, we also have that f(T \
M) ⊆ f(T ) and together with (∗):

f(T \M) ⊆ f(T ) \M′ (∗∗)

As f(T ) \ M′ ≡S
Σ ∅, monotonicity of IRs then implies

together with (∗∗):

f(T \M) ≡S
Σ ∅ = f(∅)

Finally, Proposition 8 gives us T \M ≡S
Σ ∅ as desired.

From now on, let f be a distributive NF.

1. We show that that origf preserves (just). Let M′ be a
(just)-≡S

Σ-Module of f(T ) and φ ∈ relS(Σ, T ). Further-
more, let P be a justification of φ in T . We need to
show that P ⊆ origf (M′, T ). For this, let α ∈ P . By
f(P) ≡S

Σ P and characterization by relevant entailments,
φ ∈ relS(Σ, f(P)), too, which is why there has to be a
justification P ′ ⊆ f(P) of φ.
We argue by contradiction that there has to be an axiom α′

such that α′ ∈ f(α)∩P ′ (∗): Suppose that such an axiom
does not exist. Then, P ′ ⊆ f(P) \ f(α) = f(P \ {α})
(the equality is due to the distributivity of f ). As we
have f(P \ {α}) ≡S

Σ P \ {α}, by Proposition 8 we get
P \ {α} |= φ, which contradicts that P is a justification
of φ, ergo, (∗) must hold.
Now, as M′ is a (just)-≡S

Σ-Module of f(T ), we have that
P ′ ⊆ M′. Thus, by (∗) and Definition of origf , every
original of α′ has to be a subset of origf (M′, T ); es-
pecially we have that α ∈ origf (M′, T ). This entails
P ⊆ origf (M′, T ) as desired.

2. Let g be a covering DF w.r.t f . Furthermore, let M′ ⊆
f(T ), M := g(M′, T ) and α ∈ origf (M′, T ). The
latter and Definition 13 imply that there exists an axiom
α′ ∈ M′ with some original O ⊆ T such that α ∈ O. By
distributivity of f and Lemma 39, O must be a singleton.
We now show α ∈ M by contradiction; assume that α /∈
M, which implies O ∩ M = ∅. Together with O ⊆ T
and M ⊆ T , we have O ⊆ T \M. Then, by monotonicty
of NFs, f(O) ⊆ f(T \M) must hold. In addition, since
g is covering, we have f(T \M) ⊆ f(T ) \ f(M), and,
together, f(O) ⊆ f(T ) \ f(M), too. Moreover, g being a
DF implies M′ ⊆ f(M), which leads to f(O) ⊆ f(T ) \
M′. Therefore, we have that f(O) ∩ M′ = ∅. This,
however, is a contradiction to α′ ∈ f(O) ∩M, which is a
direct entailment of α ∈ M and O being an original of α′.
All in all, we have that α ∈ M; thus, claim 3 holds.

D Proofs for Section 4.5
For the proof of Proposition 29, we need the observation
that a TBox M′ has to be a P -≡S

Σ-module of a TBox T , for
P ∈ {(dep), (just)}, if there is a P -≡S

Σ-module M of T with
M ⊆ M′, which directly follows from the definition of P .
This obviously extends to the strong variants, including (self),
if M̃′ is a subset of Σ ∪ M̃:
Observation 40. Let m, m′ be MEFs such that m(Σ, T ) ⊆
m′(Σ, T ) for all Σ, T . The following hold.

1. If m satisfies P ∈ {(dep), (just)}, then so does m′.
2. If m satisfies P ∈ {(dep+), (just+), (self)} and we have

that ˜m′(Σ, T ) ⊆ m̃(Σ, T ) ∪ Σ for all signatures Σ ⊆ T̃
and TBoxes T , then m′ also satisfies P .



Proposition 29. Let m be a {(mon1), (sup+)}-MEF. Then,

1. m(ax) is a {(mon1), (sup+)}-MEF;

2. m satisfies (ax) iff m = m(ax);

3. if m satisfies P ∈ {(dep), (just), (self), (dep+), (just+),
(mon2)}, m(ax) also satisfies P .

Proof. 1. By monotonicity of IRs, m(ax) clearly is a MEF. It
remains to prove that it satisfies both (mon1) and (sup+).
For (mon1), let Σ ⊆ Σ′ and β ∈ m(ax)(Σ, T ); we need to
show β ∈ m(ax)(Σ′, T ). By Definition 28, β is in M :=

m(Σ, T ) or m(T̃ , T ) ∩ {α | α̃ ⊆ Σ ∪ M̃}. For the
first case, it is easy to see that m satisfying (mon1) and
Definition 28 directly imply β ∈ m(ax)(Σ′, T ) as desired.
For the second case, it is also easy to see that m(T̃ , T ) ∩
{α | α̃ ⊆ Σ ∪ M̃} is monotonic in Σ (as M is so); ergo,
Definition 28 again gives β ∈ m(ax)(Σ′, T ) as desired.
For (sup+), we need to show

M2 ⊆ M1, (∗)

where, according to Definition 28,

M1 :=m(ax)(Σ, T )

=M′
1 ∪

(
MT ∩ {α | α̃ ⊆ Σ ∪ M̃′

1

)
, with

M′
1 :=m(Σ, T ) and

MT :=m(T̃ , T ), and

M2 :=m(ax)(Σ2, T )

=M′
2 ∪

(
MT ∩ {α | α̃ ⊆ Σ2 ∪ M̃′

2

)
, with

Σ2 := Σ ∪ M̃1 and

M′
2 :=m(Σ2, T ).

We first prove:

M′
2 ⊆ M′

1 (∗∗)

(∗∗) holds due to the fact that m satisfies both (mon1) and
(sup+): It is easy to see that Σ2 ⊆ Σ∪M̃′

1, which implies
M′

2 ⊆ m(Σ ∪ M̃′
1, T ) as m satisfies (mon1). Because m

also satisfies (sup+), we then have M′
2 ⊆ M′

1.
Now, in order to show (∗), let β ∈ M2. Then either (a)
β ∈ M′

2 or (b) β ∈ MT ∩ {α | α̃ ⊆ Σ2 ∪ M̃′
2} must

hold. We differentiate both cases:
(a) Then, (∗∗) gives us β ∈ M′

1, which implies β ∈ M1

as desired.
(b) Then, we have that β̃ ⊆ Σ2 ∪ M̃′

2 and, by (∗∗), also
β̃ ⊆ Σ2 ∪ M̃′

1. Again, it is easy to see that Σ2 ⊆
Σ ∪ M̃′

1. Together, β̃ ⊆ Σ ∪ M̃′
1 must hold; ergo, we

have β ∈ M1 as desired.
2. We first prove that m satisfying (ax) implies m = m(ax)

by contraposition. Let m ̸= m(ax). By Definition 28,
there must be some β ∈ m(T̃ , T ) ∩ {α | α̃ ⊆ Σ ∪ M̃}
such that β /∈ M with M = m(Σ, T ) for some TBox
T and signature Σ ⊆ T̃ . Thus, it suffices to show that

β /∈ m(β̃, T ). Asm satisfies (sup+), M ⊇ m(Σ∪M̃, T )

must hold, ergo β /∈ m(Σ ∪ M̃, T ). Then, the claim
follows directly from the fact that m satisfies (mon1).
For the converse direction, it suffices to prove that m(ax)

satisfies (ax). Let β ∈ m(ax)(Σ, T ) for some TBox T and
Σ ⊆ T̃ , i.e., according to Definition 28:

β ∈ m(Σ, T )︸ ︷︷ ︸
M

∪(m(T̃ , T ) ∩ {α | α̃ ⊆ β̃ ∪ m̃(Σ, T )}︸ ︷︷ ︸
N

)

(†)
We need to show that β ∈ m(ax)(β̃, T ), i.e.:

β ∈ m(β̃, T )︸ ︷︷ ︸
M′

∪(m(T̃ , T ) ∩ {α | α̃ ⊆ β̃ ∪ m̃(β̃, T )}︸ ︷︷ ︸
N ′

)

(††)
Since β ∈ N ′ anyway, it suffices to show that β ∈
m(T̃ , T ). According to (†), we have either β ∈ M or
β ∈ m(T̃ , T )∩N . The second case implies β ∈ m(T̃ , T )
directly, the first because m satisfies (mon1).

3. Point 1 of Observation 40 implies the transfer of P ∈
{(dep), (just)} as m(Σ, T ) ⊆ m(ax)(Σ, T ) obviously holds
for all Σ, T . Similarly, for P ∈ {(self), (dep+), (just+)},
it suffices to show the requirement of Point 2 of Ob-
servation 40, i.e., ˜m(ax)(Σ, T ) ⊆ m̃(Σ, T ) ∪ Σ for all
TBoxes T and Σ ⊆ T̃ . This, however, is easy to see
as m(ax)(Σ, T ) \ m(Σ, T ) = m(T̃ , T ) ∩ {α | α̃ ⊆
Σ ∪ m̃(Σ, T )}.
For (mon2), the proof is very similar to that of (mon1) in
Point 2, but with T ⊆ T ′ instead of Σ ⊆ Σ′.

Example 41. We consider the logic ELU , i.e., EL with dis-
junction, and the extension of the EL normal form from Ex-
ample 7 to ELU , which adds the case A ⊑ B1 ⊔ B2 to the
four allowed forms of axioms. This can be achieved via an
analogous NF fELU . We furthermore slightly modify this nor-
mal form such that each axiom has either the form A ⊑ B
with A ̸= B or one of

(A1 ⊓A2) ⊔X ⊑ B

A ⊑ X ⊓ ∃r.B
X ⊔ ∃r.A ⊑ B

A ⊑ (B1 ⊔B2) ⊓X,

whereX is a fresh concept (for each axiom). This new normal
form can be achieved by an NF fex whose computation is
as follows. For each axiom α that is not in normal form,
compute fELU (α) and remove all tautologies. Then, we can
translate them by applying the following rules once (where
X ∈ NC is fresh for each axiom).

A1 ⊓A2 ⊑ B → (A1 ⊓A2) ⊔X ⊑ B

A ⊑ ∃r.B → A ⊑ X ⊓ ∃r.B
∃r.A ⊑ B → X ⊔ ∃r.A ⊑ B

A ⊑ B1 ⊔B2 → A ⊑ (B1 ⊔B2) ⊓X

Obviously, fex(T ) ≡m
T̃
T holds for each ELU TBox T .



Although this normal form is rather artificial, it serves to
show that origf does not preserve (ax) in general. In the case
of fex, this is due to an interesting property: It is easy to see
that each axiom α in fex(T ) entails at least one (non-trivial)
concept name inclusion A(i) ⊑ B, X ⊑ B or A ⊑ X and
therefore has to be included in m(α̃,M) for each fex-i-MEF
m. Ergo, these MEFs satisfy (ax) by default.

Now, consider the TBox Tex := {α1, α2} with α1 = A ⊑
∃r.B and α2 = ∃r.B ⊑ C with fex(Tex) = {A ⊑ X1 ⊓
∃r.B, ∃r.B ⊔ X2 ⊑ C}. Suppose that an fex-i-MEF m
returns minimal modules. In contrast to m, mfex,orig does
not satisfy (ax): since M := mfex,orig({A,C}, Tex) = Tex,
we have, e.g., α1 ∈ M but M1 := mfex,orig(α̃1, Tex) = ∅
(because α̃1 = {A, r,B} and reli(α̃1, Tex) = ∅), i.e., α1 /∈
M1.

Proposition 30. (m(ax))+ = (m+)(ax) holds for all MEFs m.

Proof. Let T be a TBox and Σ ⊆ T̃ a signature. We reuse
the notation from Definition 3 with the following devia-
tion. We denote the sequence underlying m+((m(ax))+) with
(Mi)i≥0 ((M′

i)i≥0), the iterative signatures with (Σi)i≥0

((Σ′
i)i≥0), and the first fixpoint with Mi0 (M′

i′0
), i.e.:

M := m+(Σ, T ) = Mi0 (∗)

M′ := (m(ax))+(Σ, T ) = M′
i′0

(∗∗)

Furthermore, let imax = max(i0, i′0).
The following can be shown easily by induction on i.

Σi = Σ′
i, for all i ≥ 0. (†)

Now, for all M ⊆ T let

NM := m(T̃ , T ) ∩ {α | α̃ ⊆ Σ ∪ M̃}

= m+(T̃ , T ) ∩ {α | α̃ ⊆ Σ ∪ M̃},

where the equality follows directly from Definition 3. We
have:

(m+)(ax)(Σ, T ) = m+(Σ, T ) ∪Nm+(Σ,T ) (Definition 28)

= Mi0 ∪NMi0
(∗)

= Mimax ∪NMimax
(fixpoint)

= M′
imax

∪NM′
imax

(see †)

= m(ax)(Σ′
imax
, T ) (Definition 28)

= M′
imax

= M′
i′o

(Definition 3, fixpoint)

= (m(ax))+(Σ, T ) (∗∗)

E Proofs for Section 5

Lemma 34. dS satisfies (mon1) for each S ∈ {m, q, f, i}.

Proof. In correspondence with monotonicity of FO logic, we
first show that X being a subsetting of X ′ implies supp(X ) ⊆
supp(X ′). It is then straightforward to prove the claim using
Observation 33.

In detail, we first show the following claim.

(∗) Let X (X ′) be a module setting for some T and Σ
(Σ′). If X is a subsetting of X ′, we have that supp(X ) ⊆
supp(X ′).

Let X = ⟨θ,D0,Dr⟩ and X ′ = ⟨θ′,D′
0,D′

r⟩. Furthermore,
let r ∈ supp(X ). Then, there is a proof ρ = (T, λ) in P∪D0

of a fact φ from Dr with P :=
⋃

r∈π(T ) Ξ
X (r) such that r

takes part in ρ. It suffices to show that ρ also is in P ′∪D′
0 of a

fact from D′
r with P ′ :=

⋃
r∈π(T ) Ξ

X ′
(r) (note that P ′ = P

by θ = θ′ by the subsetting property and the definition of Ξ).
By the definition of hyperresolution, we need to show the
following points.

1. φ ∈ D′
r.

2. If v is a leaf in T , either (→ λ(v)) ∈ P ′ or λ(v) ∈ D′
0.

3. If v has children w1, ..., wk, then λ(v) is a hyperresolvent
of a clause from P ′ and λ(w1), ..., λ(wn).

The above are all easy to see by X being a subsetting of X ′:
Point 1 because of Dr ⊆ D′

r and both Point 2 and Point 3
because they hold for P and D0 (as ρ is a proof in P and D0),
and P = P ′ and D0 ⊆ D′

0. Ergo, (∗) holds.
We now go on to prove the lemma. Let S ∈ {m, q, f, i}, T

be an f-TBox and Σ,Σ′ signatures such that Σ ⊆ Σ′ ⊆ T̃ .
We need to show that dS(Σ, T ) ⊆ dS(Σ

′, T ). For that, let
α ∈ dS(Σ, T ), Ψ = ΨS(Σ, T ) = ⟨θ,D0,Dr⟩ and Ψ′ =
ΨS(Σ′, T ) = ⟨θ′,D′

0,D′
r⟩. Then, by Definition of dS , there

is some rule r ∈ supp(Ψ) ∩ ΞΨ
(
π(α)

)
. We need to show

that r ∈ supp(Ψ′) ∩ ΞΨ′(
π(α)

)
, too. As ΨS is monotonic

in the first argument (see Observation 33), (∗) immediately
gives us r ∈ supp(Ψ′). Furthermore, we have that θ = θ′;
ergo, ΞΨ

(
π(α)

)
= ΞΨ′(

π(α)
)
∋ r by Definition of Ξ. All

in all, the lemma holds.
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