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Abstract Extracting a subset of a given ontology that captures all the
ontology’s knowledge about a specified set of terms is a well-understood
task. This task can be based, for instance, on locality-based modules.
However, a single module does not allow us to understand neither topic-
ality, connectedness, structure, or superfluous parts of an ontology, nor
agreement between actual and intended modeling.
The strong logical properties of locality-based modules suggest that the
family of all such modules of an ontology can support comprehension
of the ontology as a whole. However, extracting that family is not feas-
ible, since the number of locality-based modules of an ontology can be
exponential w.r.t. its size.
In this paper we report on a new approach that enables us to efficiently
extract a polynomial representation of the family of all locality-based
modules of an ontology. We also describe the fundamental algorithm
to pursue this task, and report on experiments carried out and results
obtained.

1 Introduction

Why modularize an ontology? Modern ontologies can get quite large as well as
complex, which poses challenges to tools and users when it comes to processing,
editing, analyzing them, or reusing their parts. This suggests that exploiting
modularity of ontologies might be fruitful, and research into this topic has been
an active area for ontology engineering. Much recent effort has gone into devel-
oping logically sensible modules, that is, parts of an ontology which offer strong
logical guarantees for intuitive modular properties. One such guarantee is called
coverage. It means that a module captures all the ontology’s knowledge about a
given set of terms (signature)—a kind of dependency isolation. A module in this
sense is a subset of an ontology’s axioms that provides coverage for a signature,
and each possible signature determines such a module. Coverage is provided by
modules based on conservative extensions, but also by efficiently computable
approximations, such as modules based on syntactic locality [5].

We call the task of extracting one module given a signature GetOne; it is
well understood and starting to be deployed in standard ontology development
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environments, such as Protégé 4,3 and online.4 Locality-based modules have
already been effectively used for ontology reuse [13] and as a subservice for
incremental reasoning [4].

Despite its usefulness, the service GetOne does not provide information about
the ontology as a whole. It cannot help us to exploit an ontology as a one-piece
of software, and understand its topicality, connectedness, structure, superfluous
parts, or agreement between actual and intended modeling. To gain that under-
standing, we aim at revealing an ontology’s modular structure, a task that we
call GetStruct. That structure is determined by the set of all modules and their
inter-relations, or at least a suitable subset thereof.

From a näıve point of view, a necessary step to achieve GetStruct is GetAll, the
task of extracting all modules. This is the case as long as we have not specified
what a “suitable subset of all modules” is, or do not know how to obtain such a
subset efficiently. It might well be that GetAll is feasible and yields a small enough
structure, in which case it would solve GetStruct. While GetOne is well-understood
and often computationally cheap, GetAll has hardly been examined for module
notions with strong logical guarantees, with the works described in [7, 8] being
promising exceptions. GetOne also requires the user to know in advance the right
signature to input to the extractor: we call this a seed signature for the module
and note that each module can have several such seed signatures. Since there
are non-obvious relations between the final signature of a module and its seed
signature, users are often unsure how to generate a proper request and confused
by the results. If they had access to the overall modular structure of the ontology
determined by GetStruct, they could use it to guide their extraction choices.

While GetAll seems to be a necessary step to perform GetStruct, we note that
in the worst case, the number of all modules of an ontology is exponential in
the number of terms or axioms in the ontology, in fact in the minimum of these
numbers. In [19], we have shown cases of (artificial) ontologies with exponentially
many modules w.r.t. their sizes, and obtained empirical results confirming that
in general ontologies have too many modules to extract all of them, even with
an optimized extraction methodology. Then, some other form of analysis would
have to be designed.

In this paper, we report on new insights regarding the modular structure of
ontologies which leads to a new, polynomial algorithm for GetStruct (provided
that module extraction is polynomial) that generates a linear (in the size of the
ontology), partially ordered set of modules and atoms which succinctly repres-
ent all (potentially exponentially many) modules of an ontology. We use this
decomposition to give an estimate of the number of modules of an ontology,
and compare these numbers with the real number of modules (when possible),
obtained following the same approach as in [19]. For data generated during the
experiments, the reader is referred to http://bit.ly/i4olY0 .

3 http://www.co-ode.org/downloads/protege-x
4 http://owl.cs.manchester.ac.uk/modularity
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Related work. One solution to GetStruct is described in [7, 6] via partitions related
to E-connections. When this technique succeeds, it divides an ontology into three
kinds of disjoint modules: (A) those which import vocabulary from others, (B)
those whose vocabulary is imported, and (C) isolated parts. In experiments
and user experience, the numbers of parts extracted were quite low and often
corresponded usefully to user understanding. For instance, the tutorial ontology
Koala, consisting of 42 logical axioms, is partitioned into one A-module about
animals and three B-modules about genders, degrees and habitats. It has also
been shown in [7] that certain combinations of these parts provide coverage.
Partitions can be computed efficiently.

Ontology partitions based on E-connections require rather strong conditions
to ensure modular separation. However, it has been observed that ontologies
with fairly elaborate modular structure have impoverished E-connections based
structures. For the ontology Periodic,5 for instance, such a combination is still the
whole ontology, even though the ontology seems well structured. Furthermore,
the robustness properties of the parts (e.g., under vocabulary extension) are not
as well-understood as those of locality-based modules. Finally, there is only a
preliminary implementation of the partition algorithm.

Among the other approaches to GetStruct we find the tool ModOnto [2], which
aims at providing support for working with ontology modules, that borrows in-
tuitions from software modules. This approach is logic-based and a-posteriori
but, to the best of our knowledge, it has not been examined whether such mod-
ules provide coverage. Another procedure to partition an ontology is described
in [21]. However, this method only takes the concept hierarchy into account,
therefore it cannot guarantee to provide coverage.

In [14], it was shown how to decompose the signature of an ontology to ob-
tain the dependencies between its terms. In contrast to the previous ones, this
approach is syntax-independent. While gaining information about term depend-
encies is one goal of our approach, we are also interested in the modules of the
ontology.

Among the a-posteriori approaches to GetOne, only some provide logical guar-
antees. Those are usually restricted to “small” DLs where deciding conservative
extensions—which underly coverage—is tractable. Examples are the module ex-
traction feature of CEL [24] and the system MEX [15]. However, we want to
cover DLs up to OWL 2.

There are several logic-based approaches to modularity that function a-priori,
i.e., the modules of an ontology have to be specified in advance using features
that are added to the underlying (description) logic and whose semantics is well-
defined. These approaches often support distributed reasoning; they include C-
OWL [23], E-connections [18], Distributed Description Logics [3], and Package-
Based Description Logics [1]. Even in these cases, however, we may want to
understand the modular structure of the syntactically delineated parts (mod-
ules), because decisions about modular structure have to be taken early in the
modeling which may enshrine misunderstandings. Currently there is no require-

5 http://www.cs.man.ac.uk/~stevensr/ontology/periodic.zip
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ment that these modules provide coverage, so GetStruct can be useful to verify
the imposed structure throughout the development process. Examples were re-
ported in [7], where user attempts to capture the modular structure of their
ontology by separating the axioms into separate files were totally at odds with
the analyzed structure.

2 Preliminaries

Underlying description logics. We assume the reader to be familiar with OWL
and the underlying description logics (DLs) [11, 10]. We consider an ontology to
be a finite set of axioms, which are of the form C v D or C ≡ D, where C,D are
(possibly complex) concepts, or R v S, where R,S are (possibly inverse) roles.
Since we are interested in the logical part of an ontology, we disregard non-logical
axioms. However, it is easy to add the corresponding annotation and declaration
axioms in retrospect once the logical part of a module has been extracted. This
is included in the publicly available implementation of locality-based module
extraction in the OWL API.6

Let NC be a set of concept names, and NR a set of role names. A signature Σ
is a set of terms, i.e., Σ ⊆ NC ∪ NR. We can think of a signature as specifying a
topic of interest. Axioms using only terms from Σ are “on-topic”. For instance,
if Σ = {Animal,Duck,Grass, eats}, then Duck v ∃eats.Grass is on-topic, while
Duck v Bird is off-topic. Given an ontology O (axiom α), its signature is denoted

with Õ (α̃).

Conservative extensions and locality. Conservative extensions (CEs) capture the
above described encapsulation of knowledge. They are defined in [5] as follows.

Definition 1. Let L be a DL, M⊆ O be L-ontologies, and Σ be a signature.

1. O is a deductive Σ-conservative extension (Σ-dCE) of M w.r.t. L if for
all GCI axioms α over L with α̃ ⊆ Σ, it holds that M |= α if and only if
O |= α.

2. M is a dCE-based module for Σ of O if O is a Σ-dCE of M w.r.t. L.

Unfortunately, CEs are hard or even impossible to decide for many DLs,
see [9, 16]. Therefore, approximations have been devised. We focus on syntactic
locality [20] (here for short: locality). Locality-based modules can be efficiently
computed and provide coverage, that is, they capture all the relevant entail-
ments, but not necessarily only those [5, 12]. Although locality is defined for the
DL SHIQ, an extension to SHOIQ(D) is straightforward [5, 12] and has been
implemented in the OWL API.

Definition 2. An axiom α is called syntactically ⊥-local (>-local) w.r.t. sig-
nature Σ if it is of the form C⊥ v C, C v C>, R⊥ v R (R v R>), or
Trans(R⊥) (Trans(R>)), where C is an arbitrary concept, R is an arbitrary role
name, R⊥ /∈ Σ (R> /∈ Σ), and C⊥ and C> are from Bot(Σ) and Top(Σ) as
defined in Table (a) (Table (b)) below.

6 http://owlapi.sourceforge.net
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(a) ⊥-Locality Let A⊥, R⊥ /∈ Σ, C⊥ ∈ Bot(Σ), C>(i) ∈ Top(Σ), n̄ ∈ N \ {0}

Bot(Σ) ::= A⊥ | ⊥ | ¬C> | C u C⊥ | C⊥ u C | ∃R.C⊥ | >n̄ R.C⊥ | >n̄ R⊥.C
Top(Σ) ::= > | ¬C⊥ | C>1 u C>2 | >0R.C

(b) >-Locality Let A>, R> /∈ Σ, C⊥ ∈ Bot(Σ), C>(i) ∈ Top(Σ), n̄ ∈ N \ {0}
Bot(Σ) ::= ⊥ | ¬C> | C u C⊥ | C⊥ u C | >n̄ R.C⊥

Top(Σ) ::= A> | > | ¬C⊥ | C>1 u C>2 | >n̄ R>.C> | >0R.C

It has been shown in [5] thatM⊆ O and all axioms in O \M being ⊥-local

(or all axioms being >-local) w.r.t. Σ ∪ M̃ is sufficient for O to be a Σ-dCE of
M. The converse does not hold: e.g., the axiom A ≡ B is neither ⊥- nor >-local
w.r.t. {A}, but the ontology {A ≡ B} is an {A}-dCE of the empty ontology.

A locality-based module is computed as follows [5]: given an ontology O,

a seed signature Σ ⊆ Õ and an empty set M, each axiom α ∈ O is tested
whether it is local; if not, α is added toM, the signature Σ is extended with all
terms in α̃, and the test is re-run against the extended signature. Sometimes the
resulting modules are quite large; for example, given the ontology O = {Ci v
D | 1 ≤ i ≤ n}, the module >-mod(D,O) contains the whole ontology. In order
to make modules smaller, we will nest alternatively ⊥- and >-locality on the
previously extracted module: the resulting sets are again mCE-based modules,
called ⊥>- or >⊥-modules, depending on the type of the first extraction [20]. We
can keep nesting the extraction until a fixpoint is reached. The number of steps
needed to reach it can be at most as big as the number of axioms in O [20].

The fixpoint, denoted by the symbol >⊥∗, does not depend on the type of
the first extraction.

Lemma 3. >⊥∗-mod(Σ,O) = ⊥>∗-mod(Σ,O).

Proof. We remember that the notation >⊥-mod(Σ,O) means that the first ex-
traction starts with >-locality. Because of the fixpoint hypothesis, we have:

>⊥∗-mod(Σ,O) = >⊥∗>-mod(Σ,O).

Now, from anti-monotonicity of local axioms, we have that ⊥-mod(Σ,O) ⊆ O;
hence,

>⊥∗>-mod(Σ,⊥-mod(Σ,O)) ⊆ >⊥∗>-mod(Σ,O) = >⊥∗-mod(Σ,O)

||
⊥>∗-mod(Σ,O)

This proves the inclusion “⊇” of the statement. The converse is analogous. �

In contrast, >- and ⊥-modules do not have to be equal—in fact, the former
are usually larger than the latter. Through the nesting, >⊥∗-mod(Σ,O) is always
contained in >-mod(Σ,O) and ⊥-mod(Σ,O).

From now on, we will denote by x-mod(Σ,O) the x-module M extracted
from an ontology O by using the notion of x-locality w.r.t. Σ, where x ∈



{>,⊥,⊥>,>⊥, . . . ,>⊥∗}, including any alternate nesting of these symbols. Fi-

nally, we want to point out that, for M = x-mod(Σ,O), neither Σ ⊆ M̃ nor

M̃ ⊆ Σ needs to hold.

Properties of locality-based modules. We list in this paragraph the properties
of locality-based modules of interest for this paper. Proofs can be found in the
papers cited.

Proposition 4. Let O be an ontology, Σ be a signature, x ∈ {⊥,>,>⊥∗};
let M = x-mod(Σ,O) and Σ′ be a signature with Σ ⊆ Σ′ ⊆ Σ ∪ M̃. Then
x-mod(Σ′,O) =M.
(For x ∈ {⊥,>}, see [5]; the transfer to nested modules is straightforward).

Locality is anti-monotonic: a growing seed signature makes no more axioms
local.

Corollary 5. Let Σ1 and Σ2 be two sets of terms, and let x ∈ {>,⊥}. Then,
Σ1 ⊆ Σ2 implies x-local(Σ2) ⊆ x-local(Σ1) (see [5]).

Remark 6. Some obvious tautologies are always local axioms, for any choice of a
seed signature Σ. Hence, they will not appear in locality-based modules. Anyway,
they do not add any knowledge to an ontology O.

In general, the following are not modules: the union, intersection or comple-
ment of modules; see the following propositions.

Proposition 7. The union of modules is not, in general, a module,

Proof. Consider, for example, the ontology

O = {A v B, B v C, B v D, C u D v E}.

Then,

>⊥∗-mod({A, C}) = {A v B, B v C}
>⊥∗-mod({A, D}) = {A v B, B v D}

but their union is not a module, because whenever we have both C and D in a
seed signature, we get into the module also the axiom C u D v E. �

Proposition 8. The intersection of modules is not, in general, a module.

Proof. Consider, for example, the ontology

O = {A v B, B u C v D, A v C, A v D}.

Then,

>⊥∗-mod({A, B, C}) = {A v B, B u C v D, A v C}
>⊥∗-mod({A, B, D}) = {A v B, B u C v D, A v D}

but their intersection is not a module, because both axioms A v B, B u C v D

are in a module if, and only if, at least one of the axioms A v C, A v D is in the
module. �



Proposition 9. The complement of a module is not, in general, a module.

Proof. Consider, for example, the ontology

O = {A v B, B u C v A t D}.

Then,

>⊥∗-mod({A, B}) = {A v B}

But the set O \ {A v B} made by the axiom B u C v A t D is not a module by
itself. �

The following properties of locality-based modules will be of interest for our
modularization.

Definition 10. Let O be an ontology, M ⊆ O a module, and Σ ⊆ Õ a signa-
ture.
M is called self-contained if it is indistinguishable from O w.r.t. Σ ∪ M̃.
M is called depleting if O\M is indistinguishable from the empty set w.r.t. Σ.

Proposition 11. If S is an inseparability relation that is robust under replace-
ment, then every depleting SΣ-module is a self-contained SΣ-module (see [17]).

Theorem 12. Let S be a monotonic inseparability relation that is robust under
replacement, T a TBox, and Σ a signature. Then there is a unique minimal
depleting SΣ-module of T (see [17]).

Remark 13. From now on, we use the notion of >⊥∗-locality from [20]. How-
ever, the results we obtain can be generalized to every notions of modules that
guarantee the existence of a unique and depleting module for each signature Σ.
In particular, the same conditions guarantee also that such notions of modules
satisfy self-containedness.

Fields of sets and atoms. We want to describe the relationships between an
ontology O and a family F(O) of subsets thereof by means of a well-understood
structure. To this end, we introduce in what follows some notions of algebra.

Definition 14. A field of sets is a pair (O,F ), where O is a set and F is an
algebra over O i.e., set of subsets of O that is closed under intersection, union
and complement. Elements of O are called points, while those of F are called
complexes.

We will make use of a partial order ≤, i.e., a reflexive, transitive, and anti-
symmetric binary relation. Two elements a, b of a poset are called comparable if
a ≤ b or b ≤ a, otherwise they are incomparable. Given a finite set O and a fam-
ily F of subsets of O, we can build the set B(O,F ) by closing the family under
union, intersection and complement. Then B(O,F ) is clearly a field of sets, as
well as a partial order w.r.t. the inclusion relation “⊆”, because ⊆ is reflexive,
transitive and antisymmetric. We focus on the minimal elements of B(O,F ),
i.e., elements a ∈ O such that if there exists no element b of B(O,F ) \ a with
b ⊂ a.



Definition 15. The minimal elements of the B(O,F ) \ ∅ with respect to “⊆”
are called atoms.7 The principal ideal of an element a ∈ O is the set (a] := {x ∈
O |x ≤ a}.

Every finite poset (O,≤) (and every lattice) can be depicted in a graph,
called Hasse diagrams, where nodes are elements of O and edges connect two
elements a ≤ b if there is no element c distinct from a and b such that a ≤ c ≤ b;
for a ≤ b, we will draw b in a position higher than a’s.

3 The Atomic Decomposition

Modules and atoms. In what follows, we are using the notion of >⊥∗-locality
from [20]. However, the approach we present can be applied to any notion of a
module that is monotonic, self-contained, and depleting. These properties have
a deep impact on the modules generated, as described in Proposition 16. See [17]
for more details.

Proposition 16. Any module notion that satisfies monotonicity, self-contained-
ness, and depletingness is such that any given signature generates a unique mod-
ule.

We are going to define a correspondence among ontologies with relative fam-
ilies of modules and fields of sets as defined in Definition 14. Axioms correspond
to points. Let then F(O) denote the family of >⊥∗-modules of O (or let Fx(O)
be such family for each corresponding notion x of module if not univocally spe-
cified). Then F(O) is not, in general, closed under union, intersection and com-
plement: given two modules, neither their union nor their intersection nor the
complement of a module is, in general, a module; hence, only some complexes
correspond to modules. Next, we introduce the (induced) field of modules, that
is the field of sets over F(O). This enables us to use properties of fields of sets
also for ontologies.

Definition 17. Given an ontology O and the family F(O) of >⊥∗-modules of
O, we define the (induced) field of modules B(F(O)) as the closure of the set
F(O) under union, intersection and complement.

Definition 18. A syntactic tautology is an axiom that does not occur in any
module and hence belongs to O \ >⊥∗-mod(Õ,O). A global axiom is an axiom
that occurs in each module, in particular in >⊥∗-mod(∅,O).

Remark 19. To make the presentation easier, we assume that O contains no
syntactic tautologies or global axioms. This is no real restriction: we can always
remove those unwanted axioms that occur in either all or no module, and consider
them separately.

7 Slightly abusing notation, we use B(O,F ) here for the set of complexes in B(O,F ).



An (induced) field of modules is, by construction, a field of sets. It is partially
ordered by ⊆ and, due to the finiteness of O, and can thus be represented via
its Hasse diagram. Next, we define atoms of our field of modules as building
blocks of modules of an ontology; recall that these are the ⊆-minimal complexes
of B(F(O)) \ {∅}.

Definition 20. The family of atoms from B(F(O)) is denoted by A(F(O)) and
is called atomic decomposition.

An atom is a set of axioms such that, for any module, it either contains all
axioms in the atom or none of them. Moreover, every module is the union of
atoms. Next, we show how atoms can provide a succinct representation of the
family of modules. Before proceeding further, we summarize in the following
table the four structures introduced so far and, for each, its elements, source,
maximal size, and mathematical structure.

Structure O F(O) B(F(O)) A(F(O))

Elements axioms α modules M complexes atoms a, b, . . .

Source ontology module closure of atoms of
engineers extractor F(O) B(F(O))

Maximal size baseline exponential exponential linear

Mathem. object set family of sets complete lattice poset

Atoms and their structure. The family A(F(O)) of atoms of an ontology, as in
Definition 20, has many properties of interest for us.

Lemma 21. The family A(F(O)) of atoms of an ontology O is a partition of
O, and thus #A(F(O)) ≤ #O.

Hence the atomic decomposition is succinct ; we will see next whether its
computation is tractable and whether it is indeed a representation of F(O).

The following definition aims at defining a notion of “logical dependence”
between axioms: the idea is that an axiom α depends on another axiom β if,
whenever α occurs in a moduleM then β also belongs toM. A slight extension
of this argument allows us to generalize this idea because, by definition of atoms,
whenever α occurs in a module, all axioms belonging to α’s atom a occur. Hence,
we can formalize this idea by defining a relation between atoms.

Definition 22. (Relations between atoms) Let a 6= b be atoms of an onto-
logy O. Then:

– a is dependent on b (written a � b ) if, for every module M ∈ F(O) such
that a ⊆M, we have b ⊆M.

– a and b are independent if there exist two disjoint modules M1,M2 ∈ F(O)
such that a ⊆M1 and b ⊆M2.

– a and b are weakly dependent if they are neither independent nor dependent;
in this case, there exists an atom c ∈ A(F(O)) which both a and b are
dependent on.



Proposition 23. Def. 22 describes the all and only relations between atoms.

The logical dependence between atoms can, in general, be incomplete: for ex-
ample, consider the following (hypothetical) family of modules: F(O) =
{M1,M2,M3,M4} where M1 = {a, b}, M2 = {a, c}, M3 = {a, b, d} and
M4 = {a, c, d}. Following Definition 22, the atoms b, c and d depend on a. How-
ever, we want our structure to reflect that b and c act as “intermediates” in the
dependency of d on a, i.e., that d depends via “c or b” on a. Since our defin-
ition does not capture disjunctions of occurrences of atoms, we call the pairs
(d, b) and (d, c) problematic. Fortunately, problematic atom pairs do not exist
in an atomic decomposition obtained via locality-based modules, as Lemma 24
shows. Its consequences on the dependency relation on atoms are captured by
Proposition 27.

Lemma 24. Since the >⊥∗ notion of module is monotonic, self-contained, and
depleting, there are no problematic pairs in the set A(F(O)) of atoms over O.

The key to proving Lemma 24 is the following remark:

Remark 25. Let a ∈ A(F(O)) be an atom induced over O by >⊥∗-mod. Then,
for every nonempty set of axioms {α1, . . . , αk} ⊆ a : >⊥∗-mod({α̃1, . . . , α̃k},O)
is the smallest module containing a.

Proof. Let α ∈ a be an axiom, and consider the moduleMα := >⊥∗-mod(α̃,O).
We recall >⊥∗-mod is self-contained and monotonic. Then:

(1) Mα is not empty since it contains α (recall Remark 19).
(2) Mα ⊇ a, by the definition of atoms.
(3) Mα is the unique and thus smallest module for the seed signature α̃.
(4) by monotonicity, enlarging the seed signature α̃ results in a superset ofMα.
(5) by self-containedness and monotonicity, any module M′ that contains α

needs to contain also Mα: M′ = >⊥∗-mod(M̃′,O) = >⊥∗-mod(M̃′ ∪
α̃,O) ⊇ >⊥∗-mod(α̃,O).

(6) because of (2), we have thatMα ⊇ >⊥∗-mod(S̃,O) for every non empty set
of axioms S = {α1, . . . , αk} ⊆ a; in particular, this holds if S = {αi} for any
αi ∈ a.

(7) the inverted inclusion >⊥∗-mod(α̃i,O) ⊇ Mα also holds by the arbitrarity
of choice of α in a.

�

Corollary 26. Given an atom a, for every axiom α ∈ a we have that Mα =
>⊥∗-mod(ã,O). Moreover, a is dependent on all atoms belonging to Mα \ a.

Proposition 27. The binary relation � is a partial order over the set A(F(O))
of atoms of an ontology O.

Definition 22 and Proposition 27 allow us to draw a Hasse diagram also for
the atomic decomposition A(F(O)), where independent atoms belong to differ-
ent chains, see Figure 1 for the Hasse diagramm of Koala. As an atom can be
dependent on more that one atom; hence, we will have some nodes with more
than one outgoing edge.



Atoms as a module base. As an immediate consequence of our observations so
far, a module is a disjoint finite union of atoms. Conversely, it is not true that
arbitrary unions of atoms are modules. However, we can compute the modules
from A(F(O)), and thus the latter is indeed a succinct representation of all
modules.

Definition 28. The principal ideal of an atom a is the set (a] = {α ∈ b | b ≺
a} ⊆ O.

Proposition 29. For every atom a, (a] is a module.

To get modules from A(F(O)), we need, for each atom a, to store the ⊆-
minimal seed signatures that lead to (a]: we say that an atom a is relevant for a
module >⊥∗-mod(Σ,O) if there is a seed signature Σ′ for (a] with Σ′ ⊆ Σ.

Proposition 30. Let a1, . . . ak, k ∈ N, be all atoms that are relevant for Σ.
Then the module for Σ is the union of principal ideals of these atoms:

>⊥∗-mod(Σ,O) =
⋃k
i=1 (ai].

4 Computing the atomic decomposition

As we have seen, the atomic decomposition is a succinct representation of all
modules of an ontology: its linearly many atoms represent all its worst case
exponentially many modules. Next, we will show how we can compute the
atomic decomposition in polynomial time, i.e., without computing all modules,
provided that module extraction is polynomial (which is the case, e.g., for syn-
tactic locality-based modules). Our approach relies on modules “generated” by
a single axioms, which can be used to generate all others.

Definition 31. Given an ontology O and decomposition A(F(O)), we call mod-
ule M:

1) compact if there exists an atom a in A(F(O)) such that M = (a].

2) α-module if there is an axiom α ∈ O such that M = >⊥∗-mod(α̃,O).

3) fake if there exist two incomparable (w.r.t. set inclusion) modulesM1 6=M2

with M1 ∪M2 =M; a module is called genuine if it is not fake.

Please note that our notion of genuinity is different from the one in [19],
where the incomparable “building” modules were also required to be disjoint.

The following lemma provides the basis for the computation in polynomial
time of the atomic decomposition since it allows us to construct A(F(O)) via
α-modules only.

Lemma 32. The notions of compact, α- and genuine modules coincide.



Algorithm 1 Atomic decomposition

1: Input: An ontology O.
2: Output: The set G of genuine >⊥∗-modules; the poset of atoms (A(F(O)),�);

the set of generating axioms GenAx; for α ∈ GenAx, the cardinality CardAt(α) of its
atom.

3: ToDoAx ← >⊥∗-mod(Õ,O) \ >⊥∗-mod(∅,O)
4: GenAx ← ∅
5: for each α ∈ ToDoAx do
6: Mod(α)← >⊥∗-mod(α̃,O) {6= ∅ due to Line 3}
7: isNew ← true
8: for each β ∈ GenAx do
9: if Mod(α) = Mod(β) then

10: At(β) ← At(β) ∪ {α}
11: CardAt(β) ← CardAt(β) + 1
12: isNew ← false
13: end if
14: end for
15: if isNew then
16: At(α) ← {α}
17: CardAt(α) ← 1
18: GenAx ← GenAx ∪ {α}
19: end if
20: end for
21: for each α ∈ GenAx do
22: for each β ∈ GenAx do
23: if β ∈ Mod(α) then
24: At(β) � At(α)
25: end if
26: end for
27: end for
28: A(F(O)) ← {At(α) | α ∈ GenAx}
29: G ← {Mod(α) | α ∈ GenAx}
30: return [(A(F(O)),�), G, GenAx, CardAt(·)]



Algorithm 1 gives our procedure for computing atomic decompositions that
runs in time polynomial in the size of O (provided that module extraction is
polynomial), and calls a module extractor as many times as there are axioms in
O. It considers, in ToDoAx, all axioms that are neither tautologies nor global, see
Remark 19, and computes all genuine modules, all atoms with their dependency
relation and the cardinalities of all modules and atoms. For each axiom α “gen-
erating” a module, that module is stored in Mod(α) and the corresponding atom
is constructed in At(α); those functions are undefined for axioms outside GenAx.

Proposition 33. Algorithm 1 is correct.

Proof. Since the algorithm returns four values in Line 30, we have to show that,
before Line 30 is executed, the following four conditions hold.

1. The set G consists of all genuine modules.

Due to Line 29, if suffices to show that {At(α) | α ∈ GenAx} is the set of all
genuine modules.
For the inclusion “⊆”, let α ∈ GenAx and M = Mod(α). Then, due to Line
6, M is the α-module. Via Lemma 32, we conclude that M is a genuine
module.
For the inclusion “⊇”, suppose that M is a genuine module. Then, due to
Lemma 32, M = >⊥∗-mod(α̃,O), for some α ∈ O. Hence, M is computed
in Line 6 during at least one traversal of the for-loop in Lines 5–20. During
the first such traversal, the variable isNew will never be set to false in Line
12; therefore, α is subsequently added to GenAx in Line 18.

2. The computed structure (A(F(O)),�) coincides with the poset of all atoms
and the dependency relation.

We need to show two things.
(a) {At(α) | α ∈ GenAx} = A(F(O))

For the inclusion “⊆”, let α ∈ GenAx. Due to Lines 16 and 10, we have
that

At(α) = {α} ∪ {β 6= α | Mod(α) = Mod(β)}
= {β | Mod(α) = Mod(β)}
= {β | Mα =Mβ},

with the last equality following from Line 6. We need to show that At(α)
is the atom containing α. If β ∈ At(α), then Mα = Mβ . Hence, β is
in the smallest module containing α (Remark 25) and therefore in the
atom containing α. For the converse, if β is in the atom containing α,
then Mα =Mβ (Remark 25), and therefore β ∈ At(α).
For the inclusion “⊇”, let a be an atom. Let α ∈ a be that of a’s ax-
ioms which is handled first in some traversal of the for-loop in Lines
5–20. Then, in that traversal, α enters At(α) in Line 16, and subsequent
traversals add exactly those β to At(α) in Line 10 where Mα = Mβ .
Therefore, At(α) = a.



(b) The algorithm computes that At(β) � At(α) if and only if—for the atoms
b, a represented by At(β), At(α)—it holds that b � a.

Due to Line 24, the algorithm computes that At(β) � At(α) if and only
if β ∈ Mod(α). Via Item 1, this equivalent to β ∈Mα. We want to show
that this last condition is equivalent to the condition “for all modules
M : At(β) ⊆ M implies At(α) ⊆ M”. The direction “⇐” is obvious
when we setM =Mα. For the direction “⇒”, letM be a module with
At(α) ⊆M. ThenMα ⊆M (Remark 25). Since β ∈Mα, we have that
At(β) ⊆M.

3. For every atom a, the set GenAx contains some axiom α ∈ a.

Let a be an atom. Then, due to Item 2, a = At(α) for some α ∈ a with
α ∈ GenAx.

4. For every α ∈ GenAx, CardAt(α) is the cardinality of the atom containing α.

This is ensured by Lines 17 and 11 in connection with Lines 16 and 10.

�

5 Empirical evaluation

We ran Algorithm 1 on a selection of ontologies, including those used in [8, 19],
and indeed managed to compute the atomic decomposition in all cases, even for
ontologies where a complete modularization was previously impossible.

Name #logical DL #Gen. #Con. #max. #max.
axioms mods comp. mod. atom

Koala 42 ALCON (D) 23 5 18 7
Mereology 44 SHIN 17 2 11 4
University 52 SOIN (D) 31 11 20 11
People 108 ALCHOIN 26 1 77 77
miniTambis 173 ALCN (D) 129 85 16 8
OWL-S 277 SHOIN (D) 114 1 57 38
Tambis 595 ALCN (D) 369 119 236 61
Galen 4, 528 ALEHF+ 3, 340 807 458 29

Table 1. Experiments summary

Table 1 summarizes ontology data: size, expressivity, number of genuine mod-
ules, number of connected components, size of largest module and of largest
atom. Our tests were obtained on a 2.16 GHz Intel Core 2 Duo MacBook with
2 GB of memory running Mac OS X 10.5.8; each atomic decomposition was
computed within a couple of seconds, (resp. 3 minutes for Galen).
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Figure 1. The atomic decomposition of Koala

We have also generated a graphical representation using GraphViz8. Our
atomic decompositions show atom size as node size, see e.g. Fig. 1. It shows four
isolated atoms, e.g., Atom 22, consisting of the axiom DryEucalyptForest v
Forest. This means that, although other modules may use 22’s terms, they do
not “need” 22’s axioms for any entailment. Hence, removing (the axioms in)
isolated atoms from the ontology would not result in the loss of any entail-
ments regarding other modules or terms. Of course, for entailments involving
both DryEucalyptForest and Forest and possibly other terms, axioms in isol-
ated atoms may be needed. A similar structure is observable in all ontologies
considered, see the graphs at http://bit.ly/i4olY0 .

6 Labelling

The atomic decomposition partitions the ontology into highly coherent frag-
ments. However, we still need to understand their structure and access their
content. To this aim, it can be useful to label an atom with the terms that we
find relevant. An obvious candidate is simply the signature of the correspond-
ing genuine module. However, genuine modules, and hence their signatures, can
be too numerous, as well as unstructured. Another candidate is suggested by
Proposition 30: we could label an atom a with the set of all its minimal seed
signatures for which a is relevant. As before, a genuine module can have in prin-
ciple a large number of such signatures, even more numerous than the number
of axioms it contains. So, we suggest here different candidates for a labelling and
discuss them; but we leave applying them for future work.

Definition 34. Given: an ontology O; the atomic decomposition of the onto-
logy A(F(O)) = {a1, a2, . . . , an}; the set of genuine modules G = {Mi |Mi =
(ai], 1 ≤ i ≤ n}. We define the following labelling functions Labj(.) from

8 http://www.graphviz.org/About.php

http://bit.ly/i4olY0
http://www.graphviz.org/About.php


A(F(O)) to Õ:

Lab1(ai) := ãi

Lab2(ai) := ãi \
⋃

b≺ai
Lab2(b)

Lab3(ai) :=
⋃
Σ∈mssig(Mi)

Σ

Lab4(ai) :=
⋃
Σ∈mssig(Mi)

Σ \
⋃

b≺ai
Lab4((b])

Lab1 is defined to label each atom with the vocabulary used in its axioms.
However, an atom a can be large and reuse terms already introduced in the atoms
that a is dependent on. To better represent the “logical dependency” between
terms, we recursively define Lab2 to label an atom only with the “new terms”
introduced.

We want to note that such label can be empty, as in the following example:
let us consider the ontology O = {A v B, C v D, A u C v B t D}. This ontology
generates 3 atoms, one for each axiom, such that the atom a3 = A u C v B t D

is dependent on both the other 2, which are independent of each other. Clearly,
Lab2(a3) is empty, because (a3] reuses terms from the other atoms. Moreover,
let us consider the axiom A v B u (C t ¬C). Then, all the labelling defined so far
will include the term C in the label for the atom containing this axiom, even if
this axiom does not say anything about it.

This behaviour does not occur for labellings Lab3 and Lab4, because C is
not necessary in any of the minimal seed signatures for (a3]. Moreover, these
labellings are also useful to discover “hidden relations” between an atom and
terms that do not occur in it. For example, let us consider the ontology O =
{A ≡ B, B v C, B u D v C t E, D v E, E ≡ F}. Then, each axiom identifies an
atom, and O equals the principal ideal of the atom a3 containing the axiom
B u D v C t E. Although the signature of a3 contains neither A nor F, the set
Σ = {A, F} is indeed a minimal seed signature of the genuine module (a3]. The
need of this axiom for the signature Σ is not evident at first sight. However, the
set of all minimal seed signatures of a module M is in principle exponential in
the size of M̃.

7 Module number estimation via atomic decomposition

In order to test the hypothesis that the number of modules does not grow ex-
ponentially with the size of the ontology, in [8] we tried to compute a full mod-
ularization for the ontologies of different size listed in Table 1 but managed to
compute all modules for two ontologies only, namely Koala and Mereology. Then,
we sampled subontologies of these ontologies, and extracted all of their modules.
The results we obtained made us tend towards rejecting the hypothesis, but they
were not strong enough for a clear rejection.

One plausible application of the atomic decomposition is an estimate of the
number of modules of an ontology: Proposition 30 implies that a module is the
union of principal ideals of the atoms over an antichain. In general, the converse
does not hold, but prima facie this seems to be a reasonable approximation,



and can help us in understanding whether or not the number of modules is
exponential w.r.t. the size of the ontology: as a matter of fact, if all antichains
of an atomic decomposition generate distinct modules, then an efficient way to
find a lower bound of the number of antichains of a poset is simply extracting
the size a of the maximal antichain and compute 2a.

Unfortunately, the measure 2a is not always a lower bound of the actual
number of modules. For example, consider the ontology O = {Ai v Ai+1 | i =
0, . . . , n− 1}, which consists of a single subsumption path p. The atomic decom-
position of O consists of n independent atoms: >⊥∗-mod({Ai, Ai+1},O) = {Ai v
Ai+1}, for every i = 0, . . . , n− 1. Hence, the maximal antichain is of size n, and
we would estimate that O has 2n modules. However, the modules of O are all
subpaths of p: for seed signatures Σ of size < 2, >⊥∗-mod(Σ,O) = ∅; for all
other Σ, >⊥∗-mod(Σ,O) is the smallest subpath of p containing all concepts in

Σ. The actual module number is therefore only n(n−1)
2 . The explanation for the

difference lies in the fact that atoms are not really independent, since they share
parts of the minimal seed signatures of their induced modules.

Based on the module numbers from that previous experiment, we have now
performed an atomic decomposition of all the subontologies, computed the length
a of the maximal antichain as well as the ratio between 2a and the number of
modules for the respective ontology. If that ratio is greater (less) than 1, then
the value 2a overestimates (underestimates) the module number. The picture
below contains plots of the measured ratios against the subontology size for 3
ontologies. The y-axis is scaled logarithmically, ensuring that ratios r and 1/r
have the same vertical distance from the value 1.
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To interpret the plots for every ontology O and its collections of subsets, the
following observations are of interest.

How much does the maximal, minimal, or average ratio differ from 1?
If it tends to differ much in one direction, the estimate needs to be scaled. If
it differs erratically, then the estimate will not be useful.

Does the maximal (minimal) ratio grow (shrink) when the size of O grows?
If it does, the the growth (shrinkage) function needs to be qualified for the
estimate to be useful. It is problematic to predict the function if it differs
between ontologies.

Are the differences to the “ideal” ratio 1 the same for the ratios >1 and <1?
If they are not and if such an imbalance only occurs for some ontologies, then
we should ask the question what property of the ontology is responsible for
it. The degree of imbalance could then serve as gauge for that property.



How much do the maximal and the minimal ratio differ?
Their quotient represents a margin for the estimate. E.g., if the maximal
and minimal ratio are 3.0 and 0.5, then we can conclude from the measured
value x = 2a that O has between 0.333x and 2x modules. The quotient is 6;
therefore we can estimate the module number up to one order of magnitude.
Quotients > 10 decrease precision to more orders of magnitude.

We made the following observations for the ontologies we examined.

Koala. The ratio ranges from 0.36 to 2.61. For example, if we measure a maximal
antichain of length 10 for any subontology of Koala, then we can estimate that

the module number is between 210

2.61 ≈ 392 and 210

0.36 ≈ 2, 844. The plot shows
an even balance between “> 1” and “< 1” ratios. The minimal ratio seems
to be constant with growing subontology size, but the maximal ratio seems
to grow slightly. The quotient between max and min is 7.25.

Mereology. The observations are similar, with a slight imbalance towards ratios
< 1. The min and max ratio are 0.40 and 1.42, yielding a quotient of only
3.55.

People. The ratio is almost always < 1; it ranges from 0.09 to 1.14. This yields
a quotient of 12.67, i.e., the prediction of the module number is only up to
two orders of magnitude. For example, for a maximal antichain of length 10,
the number of modules can now be between 898 and 11,378. Furthermore,
the underestimation appears to grow with the ontology size.

University. The ratio is evenly distributed and ranges from 0.25 to 5.35. The
quotient of 21.4 is even larger than for People.

Galen. There is almost always a ratio < 1, and the underestimation appears to
grow with the subontology size. For the first 28 subontologies of very small
size (up to 26 out of Galen’s 4,528 axioms), we already obtain a quotient of
1.14/0.04 = 28.5.

In summary, the ratio behaves quite differently for these five ontologies, and this
restricts its use as an estimate of the module number. For some ontologies, the
measured value 2a tends to underestimate the module numbers, for others, there
is no tendency. For some ontologies, the margin for the estimate obtained from
2a is simply too large.

8 Conclusion and outlook

We have presented the atomic decomposition of an ontology, and shown how it
is a succinct, tractable representation of the modular structure of an ontology:
it is of polynomial size and can be computed in polynomial time in the size of
the ontology (provided module extraction is polynomial), whereas the number
of modules of an ontology is exponential in the worst case and prohibitely large
in cases so far investigated. Moreover, it can be used to assemble all other mod-
ules without touching the whole ontology and without invoking a direct module
extractor.



Future work is three-fold: first, we will try to compute, from the atomic de-
composition, more precise upper and lower bounds for the number of all modules
to answer an open question from [19]. Second, we will continue to investigate
suitable labels for atoms, e.g., suitable representation of seed and module sig-
natures, and how to employ the atomic decomposition for ontology engineering,
e.g., to compare the modular structure with engineers’ intuitive understanding
of the domain and thus detect modelling errors, and to identify suitable modules
for reuse. Third, we will investigate when module extraction using the atomic
decomposition is faster than using a module extractor.
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