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Abstract

This paper establishes undecidability of satisfiability for multi-modal logic equipped
with the hybrid binder ↓ , with respect to frame classes over which the same language
with only one modality is decidable. This is in contrast to the usual behaviour of
many modal and hybrid logics, whose uni-modal and multi-modal versions do not
differ in terms of decidability and, quite often, complexity. The results from this
paper apply to a wide range of frame classes including temporally and epistemically
relevant ones.
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1 Introduction

The bottom line of this paper can be informally summarized by the warning

If you hybridize a multi-modal logic Ln, then expect it to become undecid-
able—even if you only consider frame classes over which the uni-modal
hybridized L is decidable.

We explain this statement and formulate it more precisely.

This paper examines the effects of the interaction between the hybrid
downarrow operator (↓) and multiple modalities on the decidability of the
satisfiability problem of modal logics. The ↓ operator is a very powerful and
desirable means of expression. It allows for binding names to points in a model
(states, points in time, . . . ) and for referring to these points later on. But
this high expressivity makes this operator dangerous in terms of computa-
tional costs. Satisfiability for modal logic equipped with ↓ is undecidable in
general [1]. However, over restricted frame classes, such as transitive frames,

⋆ This paper is a refined version of [12], refining Theorem 3.2 from that paper.
1 Email: mundhenk@cs.uni-jena.de
2 Email: schneider@cs.uni-jena.de
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arbitrary transitive transitive linear equivalence width finite
trees relations 0, 1 width ≥ 2

coRE [1] NExp [13] PSpace [7,c.] NP [7] NExp [13] NP [17] NExp [17]

Table 1
Complexity results (completeness) for the hybrid ↓-language with respect to

different frame classes. A conclusion from cited work is denoted by “c”.

transitive trees, linear orders, or equivalence relations, ↓ is either of no use at
all, or the expressive power added does not lead to undecidability [13]. We
show that for these and other frame classes, satisfiability becomes undecidable
in the bi-modal case.

The consequences of the ↓ operator for the satisfiability problem of hybrid
logics have been examined in many respects. It has been shown in [17] that
decidability over arbitrary frames can be regained under certain syntactic
restrictions concerning the interaction of ↓ and the modal operator 2. In the
same paper, decidability has been recovered by restricting the frame class to
uni-modal frames of bounded width. Other semantic restrictions by means
of temporally relevant frame classes have been shown to sustain decidability
in [7] and [13]. In the case of [7], even interactions of ↓ with other hybrid
operators have been allowed. The complexity results for different frame classes
are summarized in Table 1. Complexity classes are used as defined in [15].

The contribution of this paper is to be seen from two points of view. On
the one hand, our results will imply that many of the decidability statements
from Table 1 do not carry over to the multi-modal ↓-language. On the other
side, this also means that even if we restrict ourselves to frame classes over
which ↓ seems to be (mostly) harmless, adding ↓ to a multi-modal language is
much worse in terms of decidability than adding it to a uni-modal language.
This is how the above warning shall be understood.

Precisely speaking, we prove the following results.

(1) For each frame class containing one particular linear frame, satisfiability
of the bi-modal ↓-language is undecidable.

(2) For each frame class containing one particular ER 3 frame, satisfiability
of the bi-modal ↓-language is undecidable.

It is worth noting that each of these two statements involves a wide range of
frame classes, including temporally (in the first case) and epistemically (in the
second case) relevant ones. This is in agreeable contrast to the fact that most
techniques used to establish complexity results for modal and hybrid logics
are not easily transferable to other frame classes. Two positive examples for
results involving more than one frame class can be found in [11] and [16].
According to our understanding, the generality of our results is due to the
enormous expressive power of ↓ that allows for forcing an arbitrary frame to

3 An ER frame is a multi-modal frame in which each relation is an equivalence relation.
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arbitrary transitive transitive linear equivalence
lang. trees relations (ER)

ML PSpace [11] PSpace [11] PSpace [11,c.] NP [14] NP [11]
MLn PSpace [10] PSpace [10] PSpace-hard [11] NP-hard [14] PSpace [10]

HL PSpace [1] PSpace [2] PSpace [2] NP [2] NP [11,c.]
HLn PSpace [1] PSpace [2] PSpace-hard [11] NP-hard [14] PSpace [10,c.]

HL↓ coRE [1] NExp [13] PSpace [7,c.] NP [7] NExp [13]
HL↓

n
coRE [1,c.] coRE (3.1) coRE (3.1) coRE (3.1) coRE (3.2)

Table 2
Complexity results (completeness) for modal and hybrid languages with respect to

different frame classes. A conclusion from cited work is denoted by “c”. Our
results are typeset in bold, accompanied by the number of the respective theorem.

have many important and very specific properties.

Furthermore, our results give another insight into the lack of robustness
exhibited by ↓ languages. The term “robust” is used in a similar manner as
in [9], here denoting the property that the passage from a uni-modal logic to
its multi-modal version does not destroy decidability or complexity. Many, but
not all, modal and hybrid logics without ↓ are robust in this sense [10,1,2,8,4],
but we will show that ↓-languages lack such a robustness. This contrast be-
comes vivid in Table 2 which contains complexity results for modal (ML) and
hybrid (HL) languages with respect to frame classes covered by our results,
contrasting uni-modal and multi-modal versions.

This paper is organized as follows. In Section 2 we give the necessary
definitions of hybrid logic and tilings, the tool used to establish undecidability.
Section 3 contains our results, and Section 4 concludes the paper.

2 Preliminaries

We define the basic concepts and notations of hybrid logic and tilings. The
fundamentals of hybrid logic can be found in [1,5]; tilings are defined in [18].

2.1 Hybrid Logic

Hybrid languages are extensions of the modal language allowing for explicit
references to states. Here we introduce the languages relevant for our work.
The definitions and notations are taken from [1,2].

Syntax. Let PROP be a countable set of propositional atoms, NOM be
a countable set of nominals, SVAR be a countable set of state variables,
ATOM = PROP∪NOM∪ SVAR, and n ∈ N>0. It is common practice to
denote propositional atoms by p, q, . . . , nominals by i, j, . . . , and state vari-
ables by x, y, . . . The full n-modal hybrid language HL↓,@

n is the set of all
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formulae of the form

ϕ ::= a | ¬ϕ | ϕ ∧ ϕ′ | 3ℓϕ | @tϕ | ↓x.ϕ ,

where a ∈ ATOM, t ∈ NOM∪ SVAR, x ∈ SVAR, and ℓ ∈ {1, . . . , n}. We use
the well-known abbreviations ∨, →, ↔, ⊤ (“true”), and ⊥ (“false”), as well
as 2ℓϕ = ¬3ℓ¬ϕ.

Whenever we leave ↓ or @ out of the hybrid language, we omit the accord-
ing superscript of HLn. We call the modal language (i. e. without nominals,
@, and ↓) MLn. In the uni-modal case, we omit the subscript 1.

Semantics for HL↓,@
n is defined in terms of Kripke models. A Kripke model

is a triple M =
(

M, (R1, . . . , Rn), V
)

, where M is a nonempty set of states,
Rℓ ⊆ M × M are binary relations — the accessibility relations — , and V :
PROP → P(M) is a function — the valuation function. The structure F =
(

M, (R1, . . . , Rn)
)

is called a frame.

A multi-modal hybrid model is a Kripke model with the valuation function
V extended to PROP∪NOM, where for all i ∈ NOM, |V (i)| = 1. Whenever
it is clear from the context, we will omit “hybrid” and/or “multi-modal” when
referring to models.

In order to evaluate ↓-formulae, an assignment g : SVAR → M for M
is necessary. Given an assignment g, a state variable x and a state m, an
x-variant gx

m of g is defined by gx
m(x) = m and gx

m(x′) = g(x′) for all x′ 6= x.
For any atom a, let [V, g](a) = {g(a)} if a ∈ SVAR, and V (a), otherwise.

Given a model M =
(

M, (R1, . . . , Rn), V
)

, an assignment g, and a state
m ∈M , the satisfaction relation for hybrid formulae is defined by

M, g,m |= a iff m ∈ [V, g](a), a ∈ ATOM,

M, g,m |= ¬ϕ iff M, g,m 6|= ϕ,

M, g,m |= ϕ ∧ ψ iff M, g,m |= ϕ & M, g,m |= ψ,

M, g,m |= 3ℓϕ iff ∃n ∈M(mRℓn & M, g, n |= ϕ),

M, g,m |= @tϕ iff ∃n ∈M(M, g, n |=ϕ & [V, g](t)={n}),

M, g,m |= ↓x.ϕ iff M, gx
m,m |= ϕ.

A formula ϕ is satisfiable if there exist a model M =
(

M, (R1, . . . , Rn), V
)

,
an assignment g for M, and a state m ∈M , such that M, g,m |= ϕ.

Properties of Models and Frames. Let M =
(

M, (R1, . . . , Rn), V
)

be a
hybrid model with the underlying frame F =

(

M, (R1, . . . , Rn)
)

. By R+
ℓ we

denote the transitive closure of Rℓ.

If we require the accessibility relations to have certain properties, we re-
strict the class of relevant frames. The frame classes used in this paper are
defined in Table 3, where only the uni-modal case F = (M,R) is considered.
If we speak of a multi-modal frame having one of these properties, we mean a
frame F =

(

M, (R1, . . . , Rn)
)

such that each (M,Rℓ) has this property.
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frame class abbr. properties

arbitrary frames — —
trees tree acyclic, each point has at most one R-successor

transitive frames trans R is transitive
transitive trees tt R = S+, where (M, S) is a tree
linear orders lin R is transitive, irreflexive, and trichotomous

— trichotomy:
(

∀xy(xRy or x=y or yRx)
)

ER frames ER R is an equivalence relation

Table 3
Relevant frame classes, their abbreviations and definitions

Satisfiability Problems. For any hybrid language HLx
n and any frame

class F, the satisfiability problem HLx
n-F-SAT is defined as follows: Given a

formula ϕ ∈ HLx
n , do there exist a hybrid model M based on a frame from

F, an assignment g for M, and a state m ∈ M such that M, g,m |= ϕ ? (If
↓ is not in the considered language, the assignment g can be left out of this
formulation.) For example, the satisfiability problem over transitive frames
for the bi-modal hybrid ↓ language is denoted by HL↓

2-trans-SAT.

2.2 Tilings

Domino tiling problems trace back to Wang [19]. A tile is a unit square, di-
vided into four triangles by its diagonals. A tile type is a colouring of these four
triangles and cannot be rotated. More formally, a tile type T is a quadruple
T =

(

left(T ), right(T ), top(T ), bot(T )
)

of colours. Given a set T of tile types,
a T -tiling is a complete covering of the Z × Z grid with tiles having types
from T , such that each point (x, y) is covered by exactly one tile and adjacent
tiles have the same colour at their common edges. Formally, a T -tiling is a
function τ : Z×Z → T satisfying the following condition for all (x, y) ∈ Z×Z.

right
(

τ(x, y)
)

= left
(

τ(x+ 1, y)
)

& top
(

τ(x, y)
)

= bot
(

τ(x, y + 1)
)

. (1)

Given a tile type T ∈ T , we define RI(T, T ) = {T ′ ∈ T | right(T ) =
left(T ′)} and UP(T, T ) = {T ′ ∈ T | top(T ) = bot(T ′)} in order to denote
the sets of tile types that match T horizontally or vertically, respectively, in a
T -tiling. Condition (1), then, is equivalent to

τ(x+ 1, y) ∈ RI
(

τ(x, y)
)

& τ(x, y + 1) ∈ UP
(

τ(x, y)
)

.

The tiling problem denotes the question whether a given set T of tile types
admits a T -tiling of the Z × Z grid. This problem is coRE-complete, hence
undecidable [3]. It remains coRE-complete if the grid is restricted to the first
quadrant, i. e. N × N. We will make use of both versions in Section 3.
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3 Undecidability of Multi-modal Downarrow Logic

We have observed in Section 1 that for many modal languages, as well as for
the basic hybrid language, algorithms deciding their satisfiability can straight-
forwardly be applied to multi-modal versions of these languages without signif-
icant changes. Hence the complexity often does not increase when proceeding
from uni-modal to multi-modal languages. However, concerning HL↓, this is
not the case because the fundamental properties that led to the proofs of the
decidability results do not carry over to multi-modal versions of this language.

In the case of acyclic frames (linear orders or transitive trees), this “funda-
mental property” is the simple fact that due to the lack of cycles, we can never
get back to points named by ↓. In a frame with two acyclic accessibility re-
lations, however, cycles are possible. For transitive frames, the “fundamental
property” consists of the fact that each cycle is a cluster, i. e. a complete sub-
frame. In a transitive frame for a multi-modal language, there can be cycles
consisting of edges of different accessibility relations which are not necessarily
clusters. This renders the argumentation in the respective proof untransferable
even to bi-modal HL↓. In the case of equivalence relations, the “fundamental
property” is the fact that HL↓ is equivalent to the monadic class of first-order
logic. This equivalence cannot be established for the bi-modal language.

The bi-modal language with ↓ is in fact strong enough to encode tilings
on any frame class between linear and arbitrary frames. This will lead to
the result in Subsection 3.1. Tilings can also be encoded on any frame class
between ER frames and arbitrary frames, although three modalites are needed
in this case. This result is given in Subsection 3.2. The expressive power of ↓
becomes evident in both encodings.

3.1 Between Linear Orders and Arbitrary Frames

In this subsection, we show that HL↓
2 is able to encode tilings of N×N on any

frame class containing one particular linear frame, which we will call Grid in
the following. This ability is not too surprising if one considers the fact that
↓ is powerful enough to force the two accessibility relations to behave as the
“right neighbour” and “upper neighbour” relations in the N×N grid. Since we
are interested in a result as general as possible, we will have to insist on Grid

having two linear (i. e. transitive, irreflexive, and trichotomous) accessibility
relations when constructing this frame. This may seem artificial at some point,
but is justified by the aim to cover as many frame classes as possible.

In order to construct Grid, we start with two accessibility relations Rh

(“horizontal”) and Rv (“vertical”). The frame will consist of points (x, y) ∈
N

2, where (x, y)Rh(x
′, y′) whenever x < x′ and y = y′, and (x, y)Rv(x

′, y′)
whenever x = x′ and y < y′. This situation is shown in Figure 1 (a), where a
full line denotes an Rh edge, and a dashed line stands for an Rv edge. Note
that the transitive closure of both relations is implicit. Clearly, Rh and Rv

are irreflexive. For reasons just stated, we make them trichotomous by adding
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s

t

(a) Transitive
and irreflexive

(b) In addition,
trichotomous

(c) The frame Grid

with spy-/sinkpoint

Fig. 1. Simulating the N × N grid with two relations. The transitive closures are
not drawn.

extra edges as given in Figure 1 (b) and taking the transitive closure again.
More precisely speaking, we make each point on the nth row see each point
on the mth row via Rh, for each m > n; and we make each point on the nth
column see each point on the mth column via Rv, for each m > n.

We will need to refer to the lower left point (the “origin” of the grid) several
times. For this purpose, we introduce a variant of the Spypoint Technique [6,1].
Apart from the fact that the “origin” behaves almost as a spypoint — i. e. all
other points in Grid are accessible from it via some Rh-Rv-path —, we will add
a sinkpoint to the model that is accessible from all other points via Rh and that
sees the spypoint via Rv, cf. Figure 1 (c). Note that the spypoint-sinkpoint
construction does not destroy irreflexivity or trichotomy.

Let ∞ denote the sinkpoint. We formally define Grid =
(

N, (Rh, Rv)
)

by

N = N
2 ∪ {∞} (N2 = N × N),

Rh =
{(

(x, y), (x′, y′)
)

∈(N2)2 | (y = y′ and x < x′) or y < y′
}

∪
(

N
2×{∞}

)

,

Rv =
{(

(x, y), (x′, y′)
)

∈(N2)2 | (x = x′ and y < y′) or x < x′
}

∪
(

{∞}×N
2
)

.

Clearly, Grid is a linear frame. Whenever we will construct a model based
on Grid, we will name the spypoint s and the sinkpoint t, where s and t are
nominals. This is reflected in Figure 1 (c), too. We now formulate our result
as general as possible.

Theorem 3.1 For any bi-modal frame class F with Grid ∈ F, HL↓
2-F-SAT is

undecidable.

Proof. Let T be a set of tile types. We define a formula ϕT that implements
the grid and expresses the tiling. This formula has to be equipped with two
properties. On the one hand, it must be satisfied in some model based on Grid,
given a T -tiling. On the other side, ϕT must enforce that each satisfying arbi-
trary model behaves as the T -tiled N×N grid. Hence, when constructing ϕT ,
we will have to enforce properties like for example transitivity or convergence
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that hold naturally in Grid, while we do not need to enforce e. g. trichotomy.

We start with the conjuncts of ϕT responsible for the grid.

• The spypoint and sinkpoint are as given in Figure 1 (c).

SPY = s ∧ 3h

(

t ∧ 3vs
)

Before we proceed, we define a useful abbreviation that allows us to refer
only to points that are not the sinkpoint.

3
¬t
h ψ = 3h(¬t ∧ ψ) 2

¬t
h ψ = ¬3

¬t
h ¬ψ

Another shortcut is used for the “reflexive closure” of the modal operators.

3
∗
vψ = ψ ∨ 3vψ 2

∗
vψ = ¬3

∗
v¬ψ

3
∗
hψ = ψ ∨ 3

¬t
h ψ 2

∗
hψ = ¬3

∗
h¬ψ

Note that the definition of 3
∗
h already includes 3

¬t
h , hence we do not need to

state “¬t” explicitly whenever we use 3
∗
h or 2

∗
h.

From now on, we will call all points other than the sinkpoint that are
accessible from s via a sequence consisting of at most one Rv edge and at
most one Rh edge Rv-Rh-reachable. Within the set of all Rv-Rh-reachable
points, we can simulate the @ operator. Suppose x is bound to such a point,
then we can assert @xψ at any other point by going directly to the sinkpoint,
from there to the spypoint and then to the point to which x is bound. This
idea is captured by the following definition.

@xψ = 3h

(

t ∧ 3v

(

s ∧ 3
∗
v3

∗
h(x ∧ ψ)

)

)

Note that @xψ only works if the point to which x is bound is Rv-Rh-reachable.
On the other hand, the point y at which @xψ is satisfied, is enforced to see the
sinkpoint horizontally. (As an aside, we could even simulate the “somewhere”
modality E if we left out x on the right-hand side of the above definition.)

For the @ operator and subsequent conjuncts to function properly even
on arbitrary frames, it will be necessary to require that every point accessible
from Rv-Rh-reachable points is Rv-Rh-reachable again. This is ensured by the
following formula enforcing that both relations are transitive within the grid.

• For every Rv-Rh-reachable point x, each point accessible from x via two Rv

(or Rh) edges is accessible from x in one Rv (or Rh) step.

TRANS = 2
∗
v2

∗
h ↓x.

(

2
¬t
h 2

¬t
h ↓y.@x3hy ∧ 2v2v ↓y.@x3vy

)

At first glance, the fact that TRANS uses the @ operator, while the @
operator seems to act on the assumption that the relations are transitive,
appears to expose a cyclic definition. This is not the case because TRANS
operates in an inductive manner, which will become clear further below when
the tiling is constructed from a model satisfying ϕT .
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We will need to refer to neighbours of points. A point y is a right neighbour
of x if xRhy and there is no z such that xRhzRhy. Upper neighbours are defined
analogously. In order to express neighbours, we define “next” operators to be
the following abbreviations.

©hψ = ↓a.3¬t
h ↓b.

(

@a¬3h3hb ∧ ψ
)

©vψ = ↓a.3v ↓b.
(

@a¬3v3vb ∧ ψ
)

Whenever ©h and ©v are employed in the following, a and b must be substi-
tuted by fresh state variables. Note that these operators are diamond-style.
We will not introduce an abbreviation for their duals. After we have required
every Rv-Rh-reachable point to have exactly one right and one upper neigh-
bour, the new next operators can be used box-style, as well.

• Every Rv-Rh-reachable point has exactly one right and exactly one upper
neighbour.

NEIGH = 2
∗
v2

∗
h ↓x.

(

©h ↓y.@x¬©h¬y ∧ ©v ↓y.@x¬©v¬y
)

• For every Rv-Rh-reachable point x, the unique point y that is the right neigh-
bour of the upper neighbour of x coincides with the upper neighbour of the
right neighbour of x.

CONV = 2
∗
v2

∗
h ↓x.©v©h ↓y.@x©h©vy

Having implemented the grid, it is straightforward to express the tiling on
it. For this purpose, we define an atomic proposition T for each tile type in
T ∈ T . For the sake of short notation, we will deliberately confuse tile types
with their associated atoms.

• At each point in the grid lies exactly one tile.

TILE = 2
∗
v2

∗
h

∨

T∈T

(

T ∧
∧

T ′ 6=T ¬T ′
)

• The tiling conditions are met.

MATCH = 2
∗
v2

∗
h

∧

T∈T

(

T →
(
∨

T ′∈UP(T,T ) ©vT
′ ∧

∨

T ′∈RI(T,T ) ©hT
′
)

)

Let ϕT = SPY∧TRANS∧NEIGH∧CONV∧TILE∧MATCH. In order to
prove the statement of this theorem, it is sufficient to show that the following
two propositions hold:

(i) If T admits a tiling, then ϕT is satisfiable in Grid.

(ii) If ϕT is satisfiable in an arbitrary model, then T admits a tiling.

Proof of (i). Suppose T is given and admits a tiling of N
2. Then there

exists a function τ : N
2 → T such that for all (x, y) ∈ N

2, Condition (1) from
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Page 5 holds. We construct a model M =
(

N, (Rh, Rv), V
)

based on Grid,
where V is defined by V (s) = {(0, 0)}, V (t) = {∞}, and V (T ) = {(x, y) |
τ(x, y) = T} for each T ∈ T .

We claim that M, (0, 0) |= ϕT and show that each conjunct of ϕT is satis-
fied at (0, 0) in M. Conjunct SPY follows directly from the definitions of Rh

and Rv of Grid. Since both relations are transitive, TRANS holds. Conjuncts
NEIGH and CONV are satisfied because they express basic properties of Rh

and Rv that are based on N
2. TILE and MATCH hold due to the tiling.

Proof of (ii). Let M =
(

M, (Rh, Rv), V
)

be an arbitrary model satisfying
ϕT . Since s, t are nominals, there exist points m0,m∞ ∈M such that V (s) =
{m0} and V (t) = {m∞}. Conjunct SPY implies m0Rhm∞ and m∞Rvm0.
We now define a mapping f : N

2 → M − {m∞} that satisfies the following
conditions for all (x, y) ∈ N

2.

(iii) If x ≥ 1, then f(x, y) is the right neighbour of f(x− 1, y).

(iv) If y ≥ 1, then f(x, y) is the upper neighbour of f(x, y − 1).

(v) If x = 0 and y ≥ 1, then m0Rvf(0, y).

(vi) f(x, y) is Rv-Rh-reachable.

(vii) f(x, y)Rhm∞.

We construct f by induction on n = x+ y, i. e. diagonal-wise with respect
to N

2. The base case consists of n = 0, 1. For n = 0, we set f(0, 0) = m0.
Since m0 is Rv-Rh-reachable, NEIGH together with @ implies that m0 has a
unique right neighbour m1,0 and a unique upper neighbour m0,1. Due to the
definition of @, they both see the sinkpoint via Rh. Set f(1, 0) = m1,0 and
f(0, 1) = m0,1. Now Conditions (iii)–(vii) are satisfied up to the first diagonal.

For the induction step, suppose that f(x, y) has already been defined for
all (x, y) with x + y ≤ n (i. e. from the 0th to the nth diagonal), n ≥ 1, and
Conditions (iii)–(vii) hold up to here. Consider the points on the nth diagonal,
namely mi,n−i = f(i, n − i) for i = 0, . . . , n. Because of (vi), NEIGH applies
and implies that each mi,n−i has a unique horizontal successor mi+1,n−i and a
unique vertical successor m′

i,n+1−i, see Figure 2 (a). Note that the @ operator
works because each mi,n−i satisfies (vi).

Now for each i = 1, . . . , n − 1, the points a = mi,n+1−i and b = m′
i,n+1−i

coincide. To justify this claim, let c = f(i − 1, n − i) (lying on the (n − 1)st
diagonal). Since c has the horizontal successor mi,n−i which has the vertical
successor b, and c has the vertical successormi−1,n+1−i which has the horizontal
successor a, and (vi) holds for c, CONV implies a = b. See also Figure 2 (b).

Let f(0, n+1) = m′
0,n+1 and f(i, n+1−i) = mi,n+1−i, for all i = 1, . . . , n+

1. It follows from this construction that Conditions (iii), (iv), and (vii) are
satisfied for the “new” (x, y) from the (n+1)st diagonal. To end the inductive
construction, we have to show that the “new” (x, y) also satisfy (v) and (vi).

Condition (v) has to be shown for (0, n+1). Since according to the induc-
tion hypothesis, m0Rvf(0, n), TRANS applied to m0 yields m0Rvf(0, n+ 1).
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m0

m0,n

mn,0

mi,n−i
mi+1,n−i

m′
i,n+1−i

m0

mi−1,n−i

mi,n−i

m′
i,n+1−i

mi,n+1−i

mi−1,n+1−i

c
b

a

nth diagonal

(a) Points on the nth diagonal
and their enforced successors

(b) Coincidence of mi−1,n+1−i

and m′
i−1,n+1−i

Fig. 2. The diagonal-wise construction of the grid

Condition (vi) for (0, n+1) follows from (v). For the remaining (i, n+1−i),
we argue as follows. Due to the induction hypothesis, mi−1,n+1−i is Rv-Rh-
reachable. Hence there is some point a which is accessible from m0 in at
most one Rv step and from which mi−1,n+1−i is accessible in at most one Rh

step. If the last “at most one” is in fact 0, then we are done. If it is 1, then
mi,n+1−i is accessible from a in two Rh steps. Since a is Rv-Rh-reachable, too,
TRANS applied to a yields aRhmi,n+1−i, hence mi,n+1−i = f(i, n + 1 − i) is
Rv-Rh-reachable.

With f at our disposal, we can easily define a function τ : N
2 → T as

follows. Let τ(x, y) = T if and only if f(x, y) ∈ V (T ), for each (x, y) ∈ N
2 and

each T ∈ T . The correctness of this definition is ensured by the construction
of f and TILE. Because of MATCH, τ satisfies the tiling conditions. 2

3.2 Between Equivalence Relations and Arbitrary Frames

In this subsection, we show that HL↓
2 is able to encode tilings on any frame

class containing one particular ER frame, which we will call Grid2 in the
following. For the sake of an easy definition of the accessibility relations, we
will consider tilings of the whole Z × Z grid here.

Before we state a result as general as possible, we give a construction of
Grid2 and formally define this bi-modal frame to be Grid2 =

(

N, (R1, R2)
)

,
whose components are given as follows.

• N = (Z × Z) ∪ (Z2 × Z2 × {+}) ∪ {s}, where Z2 = {2z | z ∈ Z}.
Let N ′ denote N − (Z × Z).

• R2 =
⋃

k,l∈Z
minicluster(2k + 1, 2l + 1) ∪ (N ′ ×N ′),

where minicluster(i, j) = {(i, j), (i+ 1, j), (i, j + 1), (i+ 1, j + 1)}2.

• R1 =
⋃

k,l∈Z
Minicluster(2k, 2l),

where Minicluster(i, j) = {(i, j), (i+ 1, j), (i, j + 1), (i+ 1, j + 1), (i, j,+)}2.

These definitions are visualized in Figure 3, where a full line denotes an R1

edge, and a dashed line stands for an R2 edge. Note that due to symmetry,

11
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s

R1 R2

t

s

p

q

a b

cd

r

p

q a b

cd

r

p

q

a b

cd

r

(a) The grid (b) The spypoint construction

Fig. 3. Simulating the Z×Z grid with two equivalence relations. Each line represents
a bidirectional arrow. The transitive (and hence, reflexive) closures are not drawn.

no arrowheads appear. Furthermore, many edges implied by transitivity have
not been drawn for the sake of clarity.

The idea behind the construction of N needs a detailed explanation. First,
each pair (x, y) ∈ Z × Z is a state and represents the point (x, y) from the
Z × Z grid. These points are drawn in Figure 3 (a), where R1 and R2, each
restricted to Z × Z, are shown as well. We call every unit square in the same
drawing a minicluster. Second, for every R1-minicluster, with (2i, 2j) as its
lower left point, there is an additional point (2i, 2j,+) that belongs to the
same R1-cluster. We call these new points local spypoints and collect them in
Z2 × Z2 × {+}. Finally, there is a spypoint s that sees all local spypoints via
R2. This situation is shown in Figure 3 (b).

It is easy to observe that this somewhat intricate construction is necessary.
First of all, there must be a point from which all Z × Z points are reachable.
Otherwise, the tiling conditions, for example, could not be formulated. This
justifies the choice of the spypoint. Now if the spypoint were connected via
each Z×Z point via a single R1 or R2 edge, this clearly would merge many Ri-
miniclusters into one large cluster, which would prevent us from distinguishing
between four directions in the grid. The local spypoints together with the
additional R1 and R2 edges as drawn in Figure 3 (b), allow for accessing all
Z × Z points from s in two steps, while keeping the miniclusters separated.

Whenever we will construct a model based on Grid2, we will name the
spypoint s, where s is a nominal. The point (0, 0) is named by the nominal t,
and the local spypoints are labelled by the atomic proposition r. Furthermore,
we will use the atomic propositions p and q to label those points that lie on an
even column or row, respectively. This will enable us to distinguish between
four directions. For this purpose, we define the following abbreviations.

12
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a = p ∧ q ∧ ¬r even row and even column

b = ¬p ∧ q ∧ ¬r even row and odd column

c = ¬p ∧ ¬q ∧ ¬r odd row and odd column

d = p ∧ ¬q ∧ ¬r odd row and even column

All these settings are reflected in Figure 3 (b), too. Again, we formulate our
result as general as possible, involving each class of frames containing Grid2.
This includes the class of ER frames.

Theorem 3.2 For any bi-modal frame class F with Grid2 ∈ F, HL↓
2-F-SAT

is undecidable.

Proof. Let T be a set of tile types. We define a formula ϕT that implements
the grid and expresses the tiling using atomic propositions T for each T ∈ T .
In order to keep every part of ϕT short, we define two kinds of abbreviation.

First, we will have to refer to R1-successors that are not local spypoints,
and to R2-successors that are local spypoints. This is done via new modal
operators 3

′
i,2

′
i and 3

r
i ,2

r
i , where i = 1, 2, given by

3
′
iψ = 3i(¬r ∧ ψ), 3

r
iψ = 3i(r ∧ ψ),

2
′
iψ = ¬3

′
i¬ψ, 2

r
iψ = ¬3

r
i¬ψ.

Second we define abbreviations that give us direct access to the left, right,
upper, and lower neighbour of a given point.

3lψ =
(

a ∧ 32(b∧ψ)
)

∨
(

b ∧ 31(a∧ψ)
)

∨
(

c ∧ 31(d∧ψ)
)

∨
(

d ∧ 32(c∧ψ)
)

3rψ =
(

a ∧ 31(b∧ψ)
)

∨
(

b ∧ 32(a∧ψ)
)

∨
(

c ∧ 32(d∧ψ)
)

∨
(

d ∧ 31(c∧ψ)
)

3uψ =
(

a ∧ 32(d∧ψ)
)

∨
(

b ∧ 32(c∧ψ)
)

∨
(

c ∧ 31(b∧ψ)
)

∨
(

d ∧ 31(a∧ψ)
)

3dψ =
(

a ∧ 31(d∧ψ)
)

∨
(

b ∧ 31(c∧ψ)
)

∨
(

c ∧ 32(b∧ψ)
)

∨
(

d ∧ 32(a∧ψ)
)

As usual, the duals are defined by 2xψ = ¬3x¬ψ, x ∈ {l, r, u, d}. Note that
we are not forced to use 3

′
1 instead of 31 in these definitions, because ¬r is

already required in a, b, c, d.

From now on, we call a point accessible if it is reachable from the spypoint
using an R2 edge to a local spypoint and from there using an R1 edge, where
both edges are bidirectional. Hence, ψ is satisfied at every accessible point
if 2

r
22

′
1ψ is satisfied at the spypoint. Now, the formula ϕT consists of the

following conjuncts.

• The spypoint is named s. It does not satisfy r and sees itself via R2. The
origin is accessible. It is named t and satisfies a. Every point R2-accessible
from the spypoint is labelled r.

SPY = s ∧ ¬r ∧ 32s ∧ 3
r
23

′
1(t ∧ a ∧ 3

r
13

′
2s) ∧ 22(¬s→ r)

13
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• Each accessible point has a unique left, right, upper, and lower neighbour,
respectively. Each of these four neighbours is accessible again. The three
missing conjuncts (“. . . ”) are analogous to the first.

NEIGH = 2
r
22

′
1 ↓x.

[

3l ↓y.3
r
13

′
2

(

s ∧ 3
r
23

′
1

(

y ∧ 3r(x ∧ 2ly)
)

)

∧ . . .
]

• Convergence holds, i. e. for each accessible point x, the (uniquely deter-
mined) point that is the right neighbour of the upper neighbour of x coincides
with the upper neighbour of the right neighbour of x.

CONV = 2
r
22

′
12u2r ↓x.2l2d2r2ux

(Note that it suffices to replace the prefix 2
r
22

′
12u2r by 2

r
22

′
1, but the given

definition of CONV simplifies the considerations at the end of this proof.)

• At each point in the grid lies exactly one tile.

TILE = 2
r
22

′
1

∨

T∈T

(

T ∧
∧

T ′ 6=T ¬T ′
)

• The tiling conditions are met.

MATCH = 2
r
22

′
1

∧

T∈T

(

T →
(
∨

T ′∈UP(T,T ) 2uT
′ ∧

∨

T ′∈RI(T,T ) 2rT
′
)

)

Let ϕT = SPY ∧ NEIGH ∧ CONV ∧ TILE ∧ MATCH. Note that we only
have to require certain properties of Grid2, but not all of them. For example,
it is not necessary to enforce that the Ri are equivalence relations or that each
four points that correspond to an R1-minicluster from Grid2 have a common
local spypoint. The properties enforced by ϕT are chosen such that they are
satisfied by Grid2 on the one hand, and sufficient for a satisfying model to
encode a tiling on the other hand. More precisely, it remains to prove the
following two propositions.

(i) If T admits a tiling, then ϕT is satisfiable in Grid2.

(ii) If ϕT is satisfiable in an arbitrary model, then T admits a tiling.

Proposition (i) is shown as in the proof of Theorem 3.1.

Proof of (ii). Let M =
(

M, (R1, R2), V
)

be an arbitrary model satisfying
ϕT at m0. Because of SPY, V (s) = {m0}. SPY also implies that there is an
accessible point m0,0 satisfying t and a. We define a mapping f : Z×Z →M

satisfying the following conditions for all (x, y) ∈ Z × Z.

(iii) f(x, y) is accessible

(iv) (a) 2 | x ⇔ M, f(x, y) |= p

(b) 2 | y ⇔ M, f(x, y) |= q

(v) (a) x ≥ 1 ⇒
(

M, f(x−1, y) |= p ⇒ f(x−1, y)R1f(x, y)R1f(x−1, y)
)

(b) x ≥ 1 ⇒
(

M, f(x−1, y) |= ¬p ⇒ f(x−1, y)R2f(x, y)R2f(x−1, y)
)
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m0

m0,n

mn,0

mi,n−i
mi+1,n−i

m′
i,n+1−i

Fig. 4. Points on the nth diagonal and their enforced successors

(c) y ≥ 1 ⇒
(

M, f(x, y−1) |= q ⇒ f(x, y−1)R1f(x, y)R1f(x, y−1)
)

(d) y ≥ 1 ⇒
(

M, f(x, y−1) |= ¬q ⇒ f(x, y−1)R2f(x, y)R2f(x, y−1)
)

We construct f by induction on n = |x|+ |y|. For a given n ∈ N, all points
(x, y) satisfying |x|+ |y| = n lie on a square that is rotated by 45 degrees and
whose corners are (n, 0), (−n, 0), (0, n), and (0,−n). In the considerations to
follow, we restrict ourselves to the first quadrant, i. e. N × N. The arguments
for the other three quadrants are analogous. Note that we cannot restrict the
whole proof to N × N since this would cause more intricate definitions of R1,
R2, and NEIGH owing to an extra treatment of the margins of the grid.

The base case consists of n = 0, 1. Set f(0, 0) = m0,0. Now NEIGH
implies that there exist accessible m1,0,m0,1 ∈ M such that M,m1,0 |= b;
M,m0,1 |= d; and there exist R1-edges in both directions between m0,0 and
each of these two new points. Set f(1, 0) = m1,0 and f(0, 1) = m0,1. Clearly,
Conditions (iii)–(v) hold for all x, y with x+ y ≤ 1.

For the induction step, suppose that f(x, y) has already been defined and
satisfies Conditions (iii)–(v) for all (x, y) with x+y ≤ n. Consider the points on
the nth diagonal, namely mi,n−i = f(i, n− i) for i = 0, . . . , n. Because of (iii),
NEIGH applies, hence each mi,n−i has a unique right neighbour mi+1,n−i and
a unique upper neighbour m′

i,n+1−i, see Figure 4.

By an argumentation analogous to that in the proof of Theorem 3.1, we
conclude from CONV thatmi,n+1−i and m′

i,n+1−i coincide for each i = 1, . . . , n.
Set f(0, n+ 1) = m′

0,n+1 and f(i, n+ 1 − i) = mi,n+1−i, i = 1, . . . , n+ 1. Now
this construction and NEIGH imply (iii)–(v) for all x, y with x+ y ≤ n+ 1.

Now we define τ : Z × Z → T as follows. Let τ(x, y) = T if and only if
f(x, y) ∈ V (T ), for each (x, y) ∈ Z × Z and each T ∈ T . The correctness
of this definition is ensured by the construction of f and TILE. Because of
MATCH, τ satisfies the tiling conditions. 2

4 Conclusion

We have shown that the interaction between multiple modalities and the ↓
operator leads to undecidability over a wide range of frame classes. This jus-
tifies the warning we gave in the Introduction. Corollary 4.1 provides evidence
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of the fact that our results cover frame classes well-known from temporal (1)
and epistemic (2) logic. Statement (2) refers to many important frame classes
whose accessibility relations are generalizations of equivalence relations.

Corollary 4.1

(1) For any bi-modal frame class F ∈ {lin, tt, trans}, HL↓
2-F-SAT is undecid-

able.

(2) For any bi-modal frame class F containing ER, HL↓
2-F-SAT is undecid-

able.

Let us make a technical remark concerning the results stated in Theo-
rems 3.1 and 3.2. A closer look at the formulae ϕT occurring in the proofs
reveals that only two nominals s and t are used. They can as well be replaced
by two more bound state variables. Furthermore, the ϕT do not contain any
free state variables. Hence, both statements do in fact hold for the nominal-
free fragments of all sentences (formulae without free state variables) of HL↓

2.
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