
Safe and Economic Re-Use of Ontologies:
A Logic-Based Methodology and Tool Support

Technical Report, 5th November 2008

Ernesto Jiménez-Ruiz1, Bernardo Cuenca Grau2, Ulrike Sattler3,
Thomas Schneider3, and Rafael Berlanga1

1 Universitat Jaume I, Spain, {berlanga,ejimenez}@uji.es
2 University of Oxford, UK, berg@comlab.ox.ac.uk

3 University of Manchester, UK, {sattler,schneider}@cs.man.ac.uk

Abstract Driven by application requirements and using well-under-
stood theoretical results, we describe a novel methodology and a tool
for modular ontology design. We support the user in the safe use of
imported symbols and in the economic import of the relevant part of
the imported ontology. Both features are supported in a well-understood
way: safety guarantees that the semantics of imported concepts is not
changed, and economic import guarantees that no difference can be ob-
served between importing the whole ontology and importing the relevant
part.

1 Motivation

Ontology design and maintenance require an expertise in both the domain of ap-
plication and the ontology language. Realistic ontologies typically model different
aspects of an application domain at various levels of granularity; prominent ex-
amples are the National Cancer Institute Ontology (NCI)4 [1], which describes
diseases, drugs, proteins, etc., and GALEN5, which represents knowledge mainly
about the human anatomy, but also about other domains such as drugs.

Ontologies such as NCI and GALEN are used in bio-medical applications
as reference ontologies, i.e., ontology developers reuse these ontologies and cus-
tomise them for their specific needs. For example, ontology designers use con-
cepts6 from NCI or GALEN and refine them (e.g., add new sub-concepts), gen-
eralise them (e.g., add new super-concepts), or refer to them when expressing
a property of some other concept (e.g., define the concept Polyarticular JRA by
referring to the concept Joint from GALEN).

4 Online browser: http://nciterms.nci.nih.gov/NCIBrowser/Dictionary.do, latest
version: ftp://ftp1.nci.nih.gov/pub/cacore/EVS/NCI Thesaurus

5 http://www.co-ode.org/galen
6 We use the Description Logic terms “concept” and “role” instead of the OWL terms

“class” and “property”.

One of such use cases is the development within the Health-e-Child project
of an ontology, called JRAO, to describe a kind of arthritis called JRA (Juve-
nile Rheumatoid Arthritis).7 Following the ILAR8, JRAO describes the kinds
of JRA. Those are distinguished by several factors such as the joints affected
or the occurrence of fever, and each type of JRA requires a different treatment.
GALEN and NCI contain information that is relevant to JRA, such as detailed
descriptions of the human joints as well as diseases and their symptoms. Figure
1 gives a fragment of NCI that defines JRA. It also shows our reuse scenario,
where C1, . . . , C7 refer to the kinds of JRA to be defined in JRAO.

NCI

JRAO GALEN

Arthropathy

Arthritis Autoimmune
Disease

Rheumatologic
Disorder

Atrophic Arthritis Polyarthritis Rheumatoid Arthritis

Juvenile Chronic Polyarthritis Juvenile Rheumatoid Arthritis

Arthritis diseases

C1

. . .
C7

Joints

Drugs

affects

isTreatedBy

Figure 1. Constructing the ontology JRAO reusing fragments of GALEN and NCI

The JRAO developers want to reuse knowledge from NCI and GALEN for
three reasons: (a) they want to save time through reusing existing ontologies
rather than writing their own; (b) they value knowledge that is commonly ac-
cepted by the community and used in similar applications; (c) they are not
experts in all areas covered by NCI and GALEN.

Currently, GALEN, NCI, and JRAO are written in OWL DL [2], and thus
they come with a logic-based semantics, which allows for powerful reasoning
services for classification and consistency checking. Thus, ontology reuse should
take into account the semantics and, more precisely, should provide the follow-
ing two guarantees. First, when reusing knowledge from NCI and GALEN, the
developers of JRAO do not want to change the original meaning of the reused
7 See http://www.health-e-child.org. This project aims at creating a repository of

ontologies that can be used by clinicians in various applications.
8 Int. League of Associations for Rheumatology http://www.ilarportal.org/

concepts. For example, due to (b) and (c) above, if it followed from the union
of JRAO and NCI that JRA is a genetic disorder, then this should also fol-
low from NCI alone. Second, only small parts of large ontologies like NCI and
GALEN are relevant to the sub-types of JRA. For efficiency and succinctness,
the JRAO developers want to import only those axioms from NCI and GALEN
that are relevant for JRAO. By importing only fragments of NCI and GALEN,
one should not lose important information; for example, if it follows from the
union of JRAO and NCI that JRA is a rheumatologic disorder, then this also
follows from the union of JRAO and the chosen fragment of NCI.

Our scenario has two main points in common with other ontology design
scenarios: the ontology developer wants to reuse knowledge without changing it,
and also to import only the relevant parts of an existing ontology. To support
these scenarios whilst providing the two above guarantees, a logic-based approach
to reuse is required. Current tools that support reuse, however, do not implement
a logic-based solution and thus do not provide the above guarantees—and neither
do existing guidelines and “best practices” for ontology design.

In this paper, we propose a methodology for ontology design in scenarios
involving reuse which is based on a well-understood logic-based framework [3].
We describe a tool that implements this methodology and report on experiments.

2 Preliminaries on Modularity

Based on the application scenario in Section 1, we define the notions of a conser-
vative extension, safety, and module [4, 3]. For simplicity of the presentation, we
restrict ourselves to the description logic SHIQ, which covers most of OWL DL
[2]. Therefore the ontologies, entailments and signatures we consider are relative
to SHIQ. Some extra care needs to be taken to extend the results mentioned
in this section to SHOIQ and therefore OWL DL [3].

2.1 The Notions of Conservative Extension and Safety

As mentioned in Section 1, when reusing knowledge from NCI and GALEN,
the developer of JRAO should not change the original meaning of the reused
concepts. This requirement can be formalised using the notion of a conservative
extension [4, 5]. In the following, we use Sig() to denote the signature of an
ontology or an axiom.9

Definition 1 (Conservative Extension). Let O1 ⊆ O be ontologies, and S
a signature. We say that O is an S-conservative extension of O1 if, for every
axiom α with Sig(α) ⊆ S, we have O |= α iff O1 |= α; O is a conservative
extension of O1 if O is an S-conservative extension of O1 for S = Sig(O1).10

9 SHIQ-axioms are concept or role inclusions C v D, R v S, or transitivity state-
ments Trans(R).

Definition 1 applies to our example as follows: O1 = NCI is the ontology to be
reused, O is the union of JRAO and NCI, S represents the symbols reused from
NCI, such as JRA and Rheumatologic Disorder, and α stands for any axiom over
the reused symbols only, e.g., JRA v Rheumatologic Disorder.

Proposition 2 (Transitivity of Conservative Extensions). Let O be an
S-conservative extension of O1 and O1 an S-conservative extension of O2, then
O is an S-conservative extension of O2.

Proof. Let O be an S-conservative extension of O1; therefore for every axiom α
with Sig(α) ⊆ S, we have O |= α iff O1 |= α. O1 an S-conservative extension
of O2; therefore, O1 |= α iff O2 |= α. Thus, O |= α iff O2 |= α and O is an
S-conservative extension of O2.

Definition 1 assumes that the ontology to be reused (e.g. NCI) is static.
In practice, however, ontologies such as NCI are under development and may
evolve beyond the control of the JRAO developers. Thus, it is convenient to keep
NCI separate from the JRAO and make its axioms available on demand via a
reference such that the developers of the JRAO need not commit to a particular
version of NCI. The notion of safety [3] can be seen as a stronger version of
conservative extension that abstracts from the particular ontology to be reused
and focuses only on the reused symbols.

Definition 3 (Safety for a Signature). Let O be an ontology and S a signa-
ture. We say that O is safe for S if, for every ontology O′ with Sig(O)∩Sig(O′) ⊆
S, we have that O ∪O′ is a conservative extension of O′.

2.2 The Notion of Module

As mentioned in Section 1, by importing only a fragment of NCI and GALEN,
one should not lose important information. This idea can be formalised using
the notion of a module [3]. Intuitively, when checking an arbitrary entailment
over the signature of the JRAO, importing a module of NCI should give exactly
the same answers as if the whole NCI had been imported.

Definition 4 (Module for a Signature). Let O′
1 ⊆ O′ be ontologies and S

a signature. We say that O′
1 is a module for S in O′ (or an S-module in O′)

if, for every ontology O with Sig(O) ∩ Sig(O′) ⊆ S, we have that O ∪ O′ is a
conservative extension of O ∪O′

1 for Sig(O).

Proposition 5 (Properties of Modules).

1. Compactness: Let O′
1 be an S-module in O′ and let S0 ⊆ S, then O′

1 is a
S0-module in O′.

2. Transitivity: Let O′
1 be an S-module in O′ and O′

2 a S-module in O′
1, then

O′
2 is a S-module in O′.

10 SHIQ is a monotonic logic; hence the “only if” in “O |= α iff O1 |= α” is trivial.

Proof. Compactness: O′
1 is a S-module in O′; therefore, by Definition 4, we

have that for every L-ontology O with Sig(O)∩Sig(O′) ⊆ S, it holds that O∪O′

is a conservative extension of O∪O′
1 for Sig(O) w.r.t. L. Since S0 ⊆ S, every O

such that Sig(O) ∩ Sig(O′) ⊆ S0 is such that Sig(O) ∩ Sig(O′) ⊆ S. Therefore,
O′

1 is a S0-module in O′.
Transitivity: Since O′

1 is a S-module in O′ we have that, by Definition 4, for
every L-ontology O with Sig(O) ∩ Sig(O′) ⊆ S it holds that O ∪O′ is a Sig(O)-
conservative extension of O ∪O′

1 w.r.t. L. Since O′
2 a S-module in O′

1, then for
every L-ontology O with Sig(O)∩ Sig(O′

1) ⊆ S it holds that O∪O′
1 is a Sig(O)-

conservative extension of O∪O′
2 w.r.t. L. Since O∪O′ is a Sig(O)-conservative

extension of O∪O′
1 and O∪O′

1 is a Sig(O)-conservative extension of O∪O′
2, by

Proposition 2, O∪O′ is a Sig(O)-conservative extension of O∪O′
2 and therefore

O′
2 is a S-module in O′.

The notions of safety and module are related as follows:

Proposition 6 ([3], Safety vs. Modules). If O′ \O′
1 is safe for S∪ Sig(O′

1),
then O′

1 is an S-module in O′.

2.3 Locality Conditions

The decision problems associated with conservative extensions, safety and mod-
ules—i.e., whether O is an S-conservative extension of O1, whether O is safe
for S, or whether O′

1 is an S-module in O—are undecidable for SHOIQ [6, 3].
Sufficient conditions for safety have been proposed: if an ontology satisfies such
conditions, then we can guarantee that it is safe, but the converse does not
necessarily hold [3]. By means of Proposition 6, such conditions could be used
for extracting modules. A particularly useful condition is locality [3]: it is widely
applicable in practice and it can be checked syntactically.

As mentioned in Section 1, when using a symbol from NCI or GALEN, the
JRAO developers may refine or extend its meaning, or refer to it for expressing
a property of another symbol. The simultaneous refinement and generalisation
of a given “external” symbol, however, may compromise safety. For example,
JRAO cannot simultaneously contain the following axioms:

Polyarticular JRA v JRA (⊥-local) (1)
Juvenile Chronic Polyarthritis v Polyarticular JRA (>-local) (2)

where the underlined concepts are reused from NCI, see Figure 1. These axioms
imply Juvenile Chronic Polyarthritis v JRA, and therefore an ontology containing
axioms (1) and (2) is not safe w.r.t. S = {JRA, Juvenile Chronic Polyarthritis}.
Thus, when designing sufficient conditions for safety, we are faced with a fun-
damental choice depending on whether the ontology designer wants to reuse or
generalise the reused concepts. Each choice leads to a different locality condition.

The following definition introduces these conditions and refers to Figure 2,
where C and R denote arbitrary concepts and roles.

Definition 7 (Syntactic ⊥-Locality and >-Locality). Let S be a signature.
An axiom α is ⊥-local w.r.t. S (>-local w.r.t S) if α ∈ Ax(S), as defined in Figure
2 (a) ((b)), where C and R denote arbitrary concepts and roles. An ontology O
is ⊥-local (>-local) w.r.t. S if α is ⊥-local (>-local) w.r.t. S for all α ∈ O.

(a) ⊥-Locality Let A⊥, R⊥ /∈ S, C⊥ ∈ Bot(S), C>(i) ∈ Top(S), n̄ ∈ N \ {0}

Bot(S) ::= A⊥ | ⊥ | ¬C> | C u C⊥ | C⊥ u C | ∃R.C⊥ | > n̄ R.C⊥ | ∃R⊥.C | > n̄ R⊥.C

Top(S) ::= > | ¬C⊥ | C>1 u C>2 | > 0 R.C

Ax(S) ::= C⊥ v C | C v C> | R⊥ v R | Trans(R⊥)

(b) >-Locality Let A>, R> /∈ S, C⊥ ∈ Bot(S), C>(i) ∈ Top(S), n̄ ∈ N \ {0}

Bot(S) ::= ⊥ | ¬C> | C u C⊥ | C⊥ u C | ∃R.C⊥ | > n̄ R.C⊥

Top(S) ::= A> | > | ¬C⊥ | C>1 u C>2 | ∃R>.C> | > n̄ R>.C> | > 0 R.C

Ax(S) ::= C⊥ v C | C v C> | R v R> | Trans(R>)

Figure 2. Syntactic locality conditions

Axiom (2) is >-local w.r.t. S = {Juvenile Chronic Polyarthritis}, and Axiom (1)
is ⊥-local w.r.t. S = {JRA}. Note that the locality conditions allow us to refer to
a reused concept for expressing a property of some other concept; for example,
the axiom Polyarticular JRA v > 5 affects.Joint is ⊥-local w.r.t. S = {Joint}.

Both >-locality and ⊥-locality are sufficient for safety:

Proposition 8 ([3], Locality Implies Safety). If an ontology O is ⊥-local
or >-local w.r.t. S, then O is safe for S.

Propositions 6 and 8 suggest the following definition of modules in terms of
locality.

Definition 9. Let O1 ⊆ O be ontologies, and S a signature. We say that O1 is a
⊥-module (>-module) for S in O if O\O1 is ⊥-local (>-local) w.r.t. S∪Sig(O1).

We illustrate these notions by an example. Figure 3 (a) shows an example ontol-
ogy (TBox). The set of external symbols is S0 = {A, t1, t2}. In order to extract
the ⊥-module, we extend S0 stepwise as in Figure 3 (b). The >-module is ob-
tained analogously and consists of S′

5 = {A,A1, C1, D1, F1, r1, t1, t2} and all
axioms α ∈ O with Sig(α) ⊆ S′

5.
It is clear that ⊥-modules and >-modules are modules as in Definition 4:

Proposition 10 ([3], Locality-based Modules are Modules). Let O1 be
either a ⊥-module or a >-module for S in O and let S′ = S∪ Sig(O1). Then O1

is an S′-module in O.

These modules enjoy an important property which determines their scope: sup-
pose that O1 (O2) is a ⊥-module (>-module) for S in O, then O1 (O2) will
contain all super-concepts (sub-concepts) in O of all concepts in S:

O = { A v A2, A2 v ∀s2.E2, A1 v A, ∀s1.E1 v A1,
A2 v ∃r2.C2, A2 v ∀t2.F2, ∃r1.C1 v A1, ∀t1.F1 v A1 }
A2 v ∀r2.D2, ∀r1.D1 v A1

(a) The TBox

Consideration Consequence

(1) A ∈ S0, A2 6∈ S0 ⇒ A v A2 6∈ Ax(S0) S1 = S0 ∪ {A2}
(2) A2 ∈ S1, C2 6∈ S1 ⇒ ∃r2.C2 ∈ Con(S̄1)

⇒ A2 v ∃r2.C2 6∈ Ax(S1) S2 = S1 ∪ {r2, C2}
(3) A2 ∈ S2, r2 ∈ S2, D2 6∈ S2 ⇒ ∃r2.¬D2 6∈ Con(S̄2)

⇒ ¬∃r2.¬D2 6∈ Con(S2) ⇒ A2 v ∀r2.D2 6∈ Ax(S2) S3 = S2 ∪ {D2}
(4) A2 ∈ S3, s2 6∈ S3, E2 6∈ S3 ⇒ ∃s2.¬E2 ∈ Con(S̄3)

⇒ ¬∃s2.¬E2 ∈ Con(S3) ⇒ A2 v ∀s2.E2 ∈ Ax(S3) S4 = S3

(5) analogous to (3) S5 = S4 ∪ {F2}

S5 = {A, A2, C2, D2, F2, r2, t1, t2}
The ⊥-module consists of S5 and all axioms α ∈ O with Sig(α) ⊆ S5.

(b) Extracting the ⊥-module.

Figure 3. An example illustrating ⊥- and >-modules.

Proposition 11 ([3], Module Scope). Let O be an ontology, X, Y be concept
names in O ∪ {>} ∪ {⊥}, α := (X v Y), β := (Y v X), and OX ⊆ O with
X ∈ S. Then the following statements hold.

(i) If OX is a ⊥-module in O for S, then OX |= α iff O |= α.
(ii) If OX is a >-module in O for S, then OX |= β iff O |= β.

For example, if we were to reuse the concept JRA from NCI as shown in Figure
1 by extracting a ⊥-module for a signature that contains JRA, such a module
would contain all the super-concepts of JRA in NCI, namely Rheumatoid Arthritis,
Autoimmune Disease, Rheumatologic Disorder, Arthritis, and Arthropathy. Since
such a fragment is a module, it will contain the axioms necessary for entailing
those subsumption relations between the listed concepts that hold in NCI.

Finally, given O and S, there is a unique minimal ⊥-module and a unique
minimal >-module for S in O [3]. We denote these modules by UpMod(O,S) and
LoMod(O,S). This is motivated by the alternative terms “upper/lower module”
that refer to the property from Proposition 11. Following a similar approach as
exemplified in Figure 3 (b), the modules can be computed efficiently [3].

3 A Novel Methodology for Ontology Reuse

Based on our scenario in Section 1 and the theory of modularity summarised
in Section 2, we propose a novel methodology for designing an ontology when
knowledge is to be borrowed from several external ontologies. This methodology

provides precise guidelines for ontology developers to follow, and ensures that a
set of logical guarantees will hold at certain stages of the design process.

3.1 The Methodology

We propose the working cycle given in Figure 4. This cycle consists of an off-
line phase—which is performed independently from the current contents of the
external ontologies—and an online phase—where knowledge from the external
ontologies is extracted and transferred into the current ontology. Note that the
separation between offline and online is not strict: The first phase is called “off-
line” simply because it does not need to be performed online. However, the user
may still choose to do so.

The Offline Phase starts with the ontology O being developed, e.g., JRAO.
The ontology engineer specifies the set S of symbols to be reused from external
ontologies, and associates to each symbol the external ontology from which it
will be borrowed. In Figure 4 this signature selection is represented in the Repeat
loop: each Si ⊆ S represents the external symbols to be borrowed from a partic-
ular ontology O′

i; in our example, we have S = S1] S2, where S1 is associated
with NCI and contains JRA, and S2 is associated with GALEN and contains
symbols related to joints and drugs. This part of the offline phase may involve
an “online” component since the developer may browse through the external
ontologies to choose the symbols she wants to import.

Next, the ontology developer decides, for each Si, whether she wants to refine
or generalise the symbols from this set. For instance, in the reuse example shown
in Figure 1, the concept JRA from NCI is refined by the sub-concepts abbreviated
C1, . . . , C7. In both cases, the user may also reference the external symbols via
roles; in our example, certain types of JRA are defined by referencing concepts in
GALEN (e.g., joints) via the roles affects and isTreatedBy. As argued in Section
1, refinement and generalisation, combined with reference, constitute the main
possible intentions when reusing external knowledge. Therefore it is reasonable
for the user, both from the modelling and tool design perspectives, to declare
her intention. This step is represented by the For loop in Figure 4.

At this stage, we want to ensure that the designer of O does not change the
original meaning of the reused concepts, independently of what their particular
meaning is in the external ontologies. This requirement can be formalised using
the notion of safety introduced in Section 2:

Definition 12 (Safety Guarantee). The ontology O guarantees safety w.r.t.
the signatures S1, . . . ,Sn if O is safe for Si for all 1 ≤ i ≤ n.

In the next subsection, we will show how to guarantee safety.

In the Online Phase, the ontology engineer imports the relevant knowledge
from each of the external ontologies. As argued in Section 1 and 2, we aim at
extracting only those fragments from the external ontologies that are relevant
to the reused symbols, and therefore the extracted fragments should be modules
in the sense of Definition 4.

O
F
F
L
I
N
E

Load local ontology O
Repeat at user’s discretion

Choose a set of external symbols Si

plus associated ontology O′
i

Let S = S1] · · ·] Sn

For each Si do
Select refinement or generalisation view

O
N
L
I
N
E

Repeat at user’s discretion
Select an Si

Load external ontology O′
i for Si

Customise scope of module
Extract module OSi from O′

i

Import OSi into O

Safety

Module Coverage

Mod. Independence

Figure 4. The two phases of import with the required guarantees

As shown in Figure 4, the import for each external ontology O′
i is performed

in four steps. First, O′
i is loaded; by doing so, the ontology engineer commits to a

particular version of it. Second, the scope of the module to be extracted from O′
i

is customised; in practice, this means that the ontology engineer is given a view of
O′

i and enabled to extend Si by specifying requirements such as: “The module has
to contain the concept Joint, all its direct super-concepts and two levels of its sub-
concepts”. In the third step, the actual fragment of O′

i is extracted. At this stage,
we should ensure that the extracted fragment is a module for the customised
signature according to Definition 4. Therefore, the following guarantee should
be provided for each external ontology and customised signature:

Definition 13 (Module Coverage Guarantee). Let S be a signature and
O′

S ⊆ O′ ontologies. O′
S guarantees coverage of S in O′ if O′

S is a module for S
in O′.

Finally, the actual module OSi is imported. The effect of this import is that the
ontology O being developed evolves to O∪OSi . This new ontology might violate
safety. Such an effect is obviously undesirable. Hence the following guarantee
should be provided:

Definition 14 (Module Independence Guarantee). Let O be an ontology
and S1,S2 be signatures. O guarantees module independence if, for all O′

1 with
Sig(O)∩ Sig(O′

1) ⊆ S1 and for all O′
2 with Sig(O)∩ Sig(O′

2) ⊆ S2 and Sig(O′
1)∩

Sig(O′
2) = ∅, it holds that O ∪O′

1 ∪ O′
2 is a conservative extension of O ∪O′

1.

Note that, if we dropped the requirement Sig(O′
1) ∩ Sig(O′

2) = ∅, then module
independence would hold if, for all O′

1 as above, O∪O′
1 were safe for S2. However,

this would be a meaningless definition because no O would guarantee module
independence for any S2 with more than one concept name: if we chose S2 =
{A,B}, for concept names A,B, and O′

1 such that it entails A v B, then O∪T ′
1

would not be safe for S2, for any O.
In practice, the requirement Sig(O′

1)∩Sig(O′
2) = ∅ is almost always met since

different reference ontologies usually have different namespaces.

3.2 Achieving the Logical Guarantees

In order to provide the necessary guarantees of our methodology, we will now
make use of the locality conditions introduced in Section 2.3 and some general
properties of conservative extensions, safety and modules.

The Safety Guarantee. In Section 2.3, we argue that the simultaneous refine-
ment and generalisation of an external concept may violate safety. To preserve
safety, we propose to use two locality conditions: ⊥-locality, suitable for refine-
ment, and >-locality, suitable for generalisation. These conditions can be checked
syntactically using the grammars defined in Figure 2, and therefore they can be
easily implemented. In order to achieve the safety guarantee at the end of the
offline phase, we propose to follow the procedure sketched in Figure 5.

Input Ontology O, disjoint signatures S1, . . . ,Sn

a choice among refinement and generalisation for each Si

Output an ontology O1 that guarantees safety

1: O1 := O
2: while exists Si such that O not local according to the selection for Si do

3: check

(
⊥-locality of O1 w.r.t. Si if Si is to be refined

>-locality of O1 w.r.t. Si if Si is to be generalised

4: if non-local then
5: O1 := repair O1 until it is local for Si according to the choice for Si

6: end if
7: end while
8: return O1

Figure 5. A procedure for checking safety

It is immediate to see that the following holds upon completion of the proce-
dure: for each Si, if the user selected the refinement (generalisation) view, then
O is ⊥-local (>-local) w.r.t. Si. This is sufficient to guarantee safety, due to
Proposition 8:

Proposition 15. Let O be an ontology and S = S1] . . .] Sn be the union of
disjoint signatures. If, for each Si, either O is ⊥-local or >-local w.r.t. Si, then
O guarantees safety w.r.t. S1, . . . ,Sn.

The Module Coverage Guarantee. The fragment extracted for each cus-
tomised signature in the online phase must satisfy the module coverage guar-
antee. As seen in Section 2.3, ⊥-locality and >-locality can also be used for
extracting modules in the sense of Definition 4. Given an external ontology O′

and customised signature Si, the scope of the ⊥-module and >-module is de-
termined by Proposition 11: as shown in Figure 3, the ⊥-module will contain
all the super-concepts in O′ of the concepts in Si, whereas the >-module will
contain all the sub-concepts.

The construction in Figure 3 also shows that the extraction of ⊥-modules
or >-modules may introduce symbols not in Si, and potentially unnecessary. To
make the module as small as possible, we proceed as follows, given O′

i and Si:
first, extract the minimal ⊥-module M for S in O′

i; then, extract the minimal
>-module for S in M . The fragment obtained at the end of this process satisfies
the module coverage guarantee as given in the following proposition:

Proposition 16. Let O′
1 = UpMod(O′,S), and O′

2 = LoMod(O′
1,S). Then O′

2

guarantees coverage of S in O′.

Proof. Let S1 = Sig(O′
1) ∪ S and S2 = Sig(O′

2) ∪ S. By Proposition 10, O′
1 is

a S1-module in O′. By Proposition 1, O′
1 is a S-module in O′. By Proposition

10, O′
2 is a S2-module in O′

1. By Proposition 1, O′
2 is a S-module in O′

1. By
Proposition 2, O′

2 is a S-module in O′. By Definition 13, O′
2 guarantees coverage

of S in O′.

The Module Independence Guarantee. When a module is imported in the
online phase (see Figure 4), module independence should be guaranteed—that
is, after importing a module for a signature Si from an external ontology O′

i into
O, the extended ontology O should still satisfy safety. It would be convenient
if ⊥-locality or >-locality of O with respect to each of the signatures S1,S2

guaranteed module independence.11 Unfortunately, this is not the case, as the
following example shows.

Let O = {A v B}, O′
1 = {A ≡ >}, O′

2 = {B v ⊥} with S1 = {A}
and S2 = {B}. Then O is >-local w.r.t. S1 and ⊥-local w.r.t. S2, but O ∪ O′

1

inconsistent and therefore not safe w.r.t. S2.
This example shows that we cannot deduce independence only from safety of

O with respect to both signatures, the reasons being that safety is guaranteed
through different locality types and that the external ontologies entail (here,
even explicitly state) that concept names from the corresponding signatures are
equal to ⊥ or >. The latter problem might be circumvented by checking for
such entailments, but this is not feasible because it involves reasoning, which is
computationally complex for SHIQ/SHOIQ and would destroy the efficiency
of our methodology. However, we can at least guarantee safety for S2 after an
11 In the conference and workshop versions [7, 8, 9] of this report, we have erroneously

claimed that ⊥-locality or >-locality of O with respect to each of the signatures
S1,S2 suffices to guarantee module independence. We apologise for this mistake and
correct it here.

import of O′
1 if we approximate the check for the critical entailments using

locality.

Proposition 17. Let O be an ontology and S1,S2 disjoint signatures. If the
following conditions are satisfied, where x denotes either ⊥ or >, then O ∪ O′

1

is x-local, and therefore safe, with respect to S2.

1. O is x-local with respect to S2.
2. Sig(O′

1) ∩ S2 = ∅.
3. O′

1 is x-local with respect to the empty signature.

Proof. Conditions 2 and 3 imply that O′
1 is x-local with respect to S2. This,

together with 1, yields that O∪O′
1 is x-local with respect to S2. The last step is

due to the fact that both locality types are closed under the union of ontologies,
which immediately follows from their definition.

Two remarks seem appropriate. First, we could as well replace Conditions 2
and 3 with requiring x-locality of O′

1 w.r.t. S2. However, this is generally a
stronger restriction than 3 alone, and would need to be re-checked everytime S2

is changed. Since we can safely assume the signatures of the external ontologies
to be disjoint (see remark at the end of Section 3.1), we automatically have
2, which implies that 3 and x-locality of O′

1 w.r.t. S2 are equivalent. Second,
safety of O w.r.t. S1 is not needed to guarantee safety after the first import.
Consequently, the type x of locality used in 3 is only determined by the type of
locality used to guarantee safety of O w.r.t. S2 in 1.

It remains to describe how to fit the provision of safety after import into our
methodology. Since conventional safety is checked and—if necessary—repaired
during the offline phase, safety after import can only be lost if Condition 3
from Proposition 17 is violated. Checking this condition involves looking at each
external ontology; hence it is only reasonable to perform this check in the online
phase. More precisely, each external ontology T ′

i usually needs to be checked for
⊥-locality and >-locality w.r.t. the empty signature. “Usually” means that we
assume that safety w.r.t the other external ontologies is achieved via different
locality types (⊥ and >). In the unlikely event of achieving safety for all other
external ontologies via the same locality type x, the external ontology T ′

i needs
to be checked for x-locality only.

If this test fails for any external ontology T ′
i , we cannot expect the user to

“repair” safety after import by modifying O′
i. This would contradict one of the

basic assumptions underlying our import scenario: one reason for importing O′
i

is that the developer of O does not need to be an expert in all areas covered
by O′

i. Hence, she cannot be expected to devise the necessary modifications and
to be aware of their consequences. Rather, we propose to still import O′

i with
the risk of sacrificing safety of O w.r.t. any of the remaining signatures. The
latter then needs to be re-checked signature by signature and can be repaired as
described earlier. After this has been done, the online phase continues until the
next violation of the above Condition 3 is encountered.

4 The Ontology Reuse Tool

We have developed a Protégé 412 plugin that supports the methodology pre-
sented in Section 3. The plugin and user manual can be downloaded from
http://krono.act.uji.es/people/Ernesto/safety-ontology-reuse.

The Offline Phase. The first step of the offline phase involves the selection of
the external entities. Our plugin provides functionality for declaring entities as
external as well as for defining the external ontology URI (or signature subgroup)
for the selected entities; this information is stored in the ontology using OWL 1.1
annotations [10] as follows: we use an ontology annotation axiom per external
ontology, an entity annotation axiom to declare an entity external, and an entity
annotation axiom per external entity to indicate its external ontology. The set
of external entities with the same external ontology URI can be viewed as one
of the Si. Finally, the UI of the plugin also allows for the specification, for each
external ontology, whether it will be refined or generalised. Once the external
entities have been declared and divided into groups, the tool allows for safety
checking of the ontology under development w.r.t. each group of external symbols
separately. The safety check uses ⊥-locality (>-locality) for signature groups that
adopt the refinement (generalisation) view. The non-local axioms to be repaired
are appropriately displayed.

Figure 6 shows the ProSÉ tab with the set of signature subgroups in the
top left corner, and the non-local axioms in the bottom left corner. Note that,
in this phase, our tool does allow the user to work completely offline, without
the need of extracting and importing external knowledge, and even without
knowing exactly from which ontology the reused entities will come from. Indeed,
the specification of the URI of the external ontologies is optional at this stage,
and, even if indicated, such URI may not refer to a real ontology, but it may
simply act as a temporary name.

The Online Phase. In the online phase, the user chooses external ontologies
and imports axioms from them. At this stage, the groups of external symbols to
be imported should refer to the location of a “real” external ontology. Once an
external signature group Si has been selected for import, the selected signature
can be customised by adding super-concepts and sub-concepts of the selected
symbols. The tool provides the functionality for previewing the concept hierar-
chy of the corresponding external ontology for this purpose. Once the specific
signature group under consideration has been customised, a module for it can
be extracted. The module is computed using the procedure in Proposition 16;
the user can compute the module, preview it in a separate frame, and either
import it or cancel the process and come back to the signature customisation
stage. The user is also given the option to import the whole external ontology
instead of importing a module. Note that currently the import of a module is
done “by value”, in the sense that the module becomes independent from the
original ontology: if the external ontology on the Web evolves, the previously
extracted module will not change.
12 Ontology Editor Protégé 4: http://www.co-ode.org/downloads/protege-x/

Figure 6. ProSÉ—a Protégé-4 P lugin for Reusing Ontologies: Safe and Économique

The right hand side of the ProSÉ tab (see Figure 6) includes the set of
necessary components to support the proposed steps for the online phase.

5 Evaluation

So far, we have demonstrated our tool to various ontology developers13 who have
expressed great interest, and we are currently working on a proper user study. In
the following, we describe various experiments we have performed to prove that
locality-based modules are reasonably sized compared to the whole ontology.

5.1 Systematic experiments using randomly generated signatures

For each concept name A in NCI, Galen14, or SNOMED15, we have proceeded
as follows.

– For each pair (u, `) between (0, 0) and (3, 3), we have constructed the signa-
ture S(A, u, `) by taking A, its super-concepts in the next u levels and its
sub-concepts in the next ` levels.

13 Thanks to Elena Beißwanger, Sebastian Brandt, Alan Rector, and Holger Stenzhorn
for valuable comments and feedback.

14 We have used a fragment of GALEN expressible in OWL: http://krono.act.uji.
es/Links/ontologies/galen.owl/view

15 SNOMED describes health care terminology. 16

– We have extracted O′
1 = UpMod(O′,SA) and O′

2 = LoMod(O′
1,SA), see

Prop. 16.

In the remainder of this section, we refer to the modules O′
1 and O′

2 men-
tioned above as UM (Upper Module) and LUM (Lower of Upper Module).
These names are motivated by the fact that the ⊥-module (the >-module) for
a signature S contains the super-concepts (sub-concepts) of all concepts in S.

We have grouped the extracted modules according to the size of the input
signature in order to evaluate its impact on the size of the modules. Figure
7 shows the obtained results for a small version of Galen17 that consists of
4170 axioms. The size of a module is the number of its axioms. The following
conclusions can be drawn from the empirical results, where the initial signatures
S(A, u, `) contained between 1 and 330 entities.

1. The modules obtained are small on average—99% of UMs have at most 487
axioms (∼ 12% of the size of Galen) and 99% of the LUMs contain at most
and 386 axioms (∼ 9% of the size of Galen).

2. The growth in the size of the modules with respect to the size of the initial
signature is smooth and linear up to initial signatures containing 100 entities.

We have similar findings for NCI (395,124 axioms) and SNOMED (389,541 ax.).

Figure 7. Module information obtained from Galen. (left) Module average size against
max size. (right) Frequency distributions for module sizes

5.2 Individual experiments based on “real-life” signatures

In addition to the “synthetic” experiments, we have undertaken some real exper-
iments in the context of the Health-e-Child project’s user scenario, see Section 1.
17 http://krono.act.uji.es/Links/ontologies/galen.owl/view

The experiments focus on JRA and Cardiomyopathies (CMP)—a group of dis-
eases that are central to the project. Using our tool, members of the project have
manually selected signatures that are relevant to JRA and Cardiomyopathies
from both Galen and NCI, expanded these signatures as in the case of the syn-
thetic tests, and extracted the corresponding modules. For example, in the case
of JRA in Galen, the initial signature and expanded signature consisted of 40 and
131 entities. The following tables show the sizes of all signatures and modules
extracted from (a) Galen and (b) NCI.

(a) Disease JRA JRA CMP (b) Disease JRA JRA CMP
Signature size 40 131 77 Signature size 48 356 124

axioms 490 1151 614 #axioms 300 1258 537
concepts 296 663 334 #concepts 193 613 283
roles 69 116 56 # roles 17 21 10

5.3 Comparisons with other segmentation algorithms.

We are currently carrying out experiments where we compare locality-based
modules with fragments obtained via other segmentation algorithms, for instance
[11, 12, 13]. The aim of this ongoing work is to compare modules and segments
for the same signature with respect to their size, content, and computation time.
Most of these other segmentation algorithms do not provide logical guarantees,
and it is worthwhile to find out how heavily these guarantees are broken.

Based on real-life signatures consisting of 40 and 48 entities taken from Galen
and NCI similarly as in the previous subsection, we have computed UMs, LUMs
and segments according to the approach in [12]. We call the latter segments
SR segments, referring to the authors of that paper. By now, we have obtained
the following findings, see also http://krono.act.uji.es/people/Ernesto/
safety-ontology-reuse/module-experiments for more details.

– The size of the Galen-LUMs is 40–70% of the size of the corresponding SR
segments. In each case, the overlap is large, but both kinds of fragments
contain entities and axioms that the other does not contain.

– The Galen-UMs are slightly larger than the SR segments. Except for very
few entities and axioms, the latter are subsets of the UMs.

– The NCI-LUMs are very small subsets (2–45%) of the SR segments.
– The NCI-UMs and the SR segments coincide. This might be caused by the

pure taxonomic character of NCI.

Furthermore, we are currently extracting larger modules from SNOMED,
again in order to compare them with other segments based on the same initial
signature. From three signatures containing some 4,000, 16,000, and 24,000 class
names that have proven to be relevant in practice over the last few years, we
have extracted modules comprising approximately 4%, 10%, and 15% of the
whole ontology.

6 Related Work

Ontology Engineering Methodologies. Several ontology engineering meth-
odologies can be found in the literature; prominent examples are Methontology
[14], On-To-Knowledge (OTK) [15], and ONTOCLEAN [16]. These methodolo-
gies, however, do not address ontology development scenarios involving reuse.
Our proposed methodology is complementary and can be used in combination
with them.
Ontology Segmentation and Ontology Integration Techniques. In the
last few years, a growing body of work has been developed addressing Ontology
Modularisation, Ontology Mapping and Alignment, Ontology Merging, Ontology
Integration and Ontology Segmentation, see [17, 18, 19] for surveys. This field
is diverse and has originated from different communities.

In particular, numerous techniques for extracting fragments of ontologies
are known. Most of them, such as [11, 12, 13], rely on syntactic heuristics for
detecting relevant axioms. These techniques do not attempt to formally specify
the intended outputs and do not provide any guarantees.
Ontology Reuse techniques. There are various proposals for “safely” com-
bining modules; most of these proposals, such as E-connections, Distributed
Description Logics and Package-based Description Logics propose a specialised
semantics for controlling the interaction between the importing and the imported
modules to avoid side-effects, for an overview see [20]. In contrast, in our paper
we assume that reuse is performed by simply building the logical union of the
axioms in the modules under the standard semantics. We provide the user with
a collection of reasoning services, such as safety testing, to check for side-effects.
Our paper is based on other work on modular reuse of ontologies [21, 22, 6, 5]
which enables us to provide the necessary guarantees. We extend this work with
a methodology and tool support.

7 Lessons Learned and Future Work

We have described a logic-based approach to the reuse of ontologies that is both
safe (i.e., we guarantee that the meaning of the imported symbols is not changed)
and economic (i.e., we import only the module relevant for a given set of symbol
and we guarantee that we do not lose any entailments compared to the import
of the whole ontology). We have described a methodology that makes use of
this approach, have implemented tool support for it in Protégé, and report on
experiments that indicate that our modules are indeed of acceptable size.

In the future, we will extend the tool support so that the user can “shop”
for symbols to reuse: it will allow to browse an ontology for symbols to reuse
and provide a simple mechanism to pick them and, on “check-out”, will compute
the relevant module. Moreover, we are working on more efficient ways of module
extraction that make use of already existing computations. Next, we plan to
carry out a user study to learn more about the usefulness of the interface and
how to further improve it. Finally, our current tool support implements a “by
value” mechanism: modules are extracted and added at the user’s request. In

addition, we would like to support import “by reference”: a feature that checks
whether the imported ontology has changed and thus a new import is necessary.

Acknowledgements

This work was partially supported by the PhD Fellowship Program of the Ge-
neralitat Valenciana, by the Fundació Caixa Castelló-Bancaixa, and by the UK
EPSRC grant no. EP/E065155/1.

References

[1] Golbeck, J., Fragoso, G., Hartel, F.W., Hendler, J.A., Oberthaler, J., Parsia, B.:
The National Cancer Institute’s Thésaurus and Ontology. J. of Web Semantics
1(1) (2003) 75–80

[2] Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: The making of a web ontology language. J. of Web Semantics 1(1) (2003)
7–26

[3] Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of on-
tologies: Theory and practice. J. of Artificial Intelligence Research 31 (2008)
273–318

[4] Ghilardi, S., Lutz, C., Wolter, F.: Did I damage my ontology? A case for conser-
vative extensions in description logics. In Doherty, P., Mylopoulos, J., Welty, C.,
eds.: Proc. of KR-06, AAAI Press (2006) 187–197

[5] Lutz, C., Walther, D., Wolter, F.: Conservative extensions in expressive descrip-
tion logics. In: Proc. of IJCAI-07, AAAI (2007) 453–459

[6] Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: A logical framework for
modularity of ontologies. In: Proc. of IJCAI-07, AAAI (2007) 298–304

[7] Jiménez-Ruiz, E., Cuenca Grau, B., Sattler, U., Schneider, T., Berlanga, R.: Safe
and economic re-use of ontologies: A logic-based methodology and tool support. In
Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M., eds.: ESWC. Volume
5021 of LNCS., Springer (2008) 185–199

[8] Jiménez-Ruiz, E., Cuenca Grau, B., Sattler, U., Schneider, T., Berlanga, R.: Safe
and economic re-use of ontologies: A logic-based methodology and tool support.
Volume 353., CEUR (http://ceur-ws.org/) (2008)

[9] Jiménez-Ruiz, E., Cuenca Grau, B., Sattler, U., Schneider, T., Berlanga, R.: Safe
and economic re-use of ontologies: A logic-based methodology and tool support.
In: Proc. of OWLED. (2008)

[10] Motik, B., Patel-Schneider, P.F., Horrocks, I.: OWL 1.1 Web Ontology Language
Structural Specification and Functional-Style Syntax. W3C Member Submission
(2007)

[11] Noy, N., Musen, M.: The PROMPT suite: Interactive tools for ontology mapping
and merging. Int. J. of Human-Computer Studies 6(59) (2003)

[12] Seidenberg, J., Rector, A.L.: Web ontology segmentation: analysis, classification
and use. In: Proc. of WWW 2006, ACM (2006) 13–22

[13] Jiménez-Ruiz, E., Berlanga, R., Nebot, V., Sanz, I.: Ontopath: A language for
retrieving ontology fragments. In: Proc. of ODBASE, LNCS. (2007) 897–914

[14] M. Fernandez, A. Gomez-Perez, e.a.: Methontology: From ontological art towards
ontological engineering. In: AAAI, Stanford, USA. (1997)

[15] Sure, Y., Staab, S., Studer, R.: On-to-knowledge methodology. In: In Handbook
on Ontologies. Edited by S. Staab and R. Studer (eds.). Springer. (2003)

[16] Guarino, N., Welty, C.: Evaluating ontological decisions with ontoclean. Commun.
ACM 45(2) (2002) 61–65

[17] Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: The state of the art. The
Knowledge Engineering Review 18 (2003) 1–31

[18] Noy, N.F.: Semantic integration: A survey of ontology-based approaches. SIG-
MOD Record 33(4) (2004) 65–70

[19] Noy, N.F.: Tools for mapping and merging ontologies. In Staab, S., Studer, R.,
eds.: Handbook on Ontologies. International Handbooks on Information Systems.
Springer (2004) 365–384

[20] Cuenca Grau, B., Kutz, O.: Modular ontology languages revisited. In: Proc. of
the Workshop on Semantic Web for Collaborative Knowledge Acquisition. (2007)

[21] Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Just the right amount:
extracting modules from ontologies. In Williamson, C.L., Zurko, M.E., Patel-
Schneider, P.F., Shenoy, P.J., eds.: WWW, ACM (2007) 717–726

[22] Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Ontology reuse: Better
safe than sorry. In: Proc. of DL 2007. Volume 250 of CEUR WS Proc. (2007)

