
Taming Complex Modal and
Description Logics

Zusammenfassung der wissenschaftlichen Arbeiten

vorgelegt dem Rat des
Fachbereichs 3 – Mathematik und Informatik

der Universität Bremen

anstelle einer Habilitationsschrift

von Dr. rer. nat. Thomas Schneider
geboren am 15. Juni 1976 in Leipzig

11. Oktober 2015

Abstract

Modal logics and syntactic variants thereof are widely used in knowledge representation and
verification. The availability of modal logics with a suitable trade-o↵ between expressive power
and computational complexity is paramount for applications. This thesis reports on our work
on “taming” expressive temporal, description, and hybrid logics by identifying computationally
well-behaved fragments and studying modularity. Our work is threefold: it consists of systematic
complexity studies of sub-Boolean fragments of expressive modal(-like) logics, theoretical and
practical studies of module extraction and decomposition of description logic ontologies, and a
complexity study of branching-time temporal description logics.

iii

Contents

1 Introduction 1

2 Complexity of Sub-Boolean Fragments 5
2.1 Introduction . 5
2.2 Boolean Operators and Post’s Lattice . 7
2.3 Linear Temporal Logic . 8
2.4 Description Logic . 16
2.5 Hybrid Logic . 20

3 Module Extraction and Modularization 29
3.1 Introduction . 29
3.2 Logic-Based Module Extraction . 33
3.3 Logic-Based Modularization . 46

4 Branching-Time Temporal Description Logics 57
4.1 Introduction . 57
4.2 Preliminaries . 58
4.3 Results . 60
4.4 Discussion . 62

Bibliography 63

A List of Submitted Papers 77

B Overview of My Contributions 79

C Illustrative Figures for Chapter 2 81

v

Chapter 1

Introduction

Modal logic (ML) has its roots in philosophy. It was devised as an extension of classical
propositional logic that overcomes some of the paradoxes of classical implication, and it was
designed to study the concepts of necessity and possibility. The most influential work connected
to modern ML is C. I. Lewis’s work on symbolic logic from the 1910s [Lew18, LL32]. Lewis
introduced the diamond operator ^ and five logical systems based on axiomatizations of varying
strength. His work led to the study of what we consider modern modal logics: extensions of
classical propositional logic with modalities for speaking and reasoning about concepts such
as obligation, belief, knowledge, and temporal successorship. The foundations for the modern
model theory of ML were laid by the seminal work of Jónsson and Tarski [JT52a, JT52b], Kripke
and Hintikka [Kri59, Kri63a, Kri63b, Hin62], and Lemmon and Scott [LS77].

In addition to their rich philosophical background, modal logics have been found to be very
useful in computer science: for the past few decades, they have been playing an important rôle in
artificial intelligence. Numerous variants of MLs are in use to represent knowledge and draw
inferences; the two most successful groups are certainly the following.

• Temporal logics originate from Prior’s philosophical work on tense logic [Pri57, Pri67,
Pri68]. In the past decades, tense logic was developed into formalisms for specifying
and verifying properties of interactive systems, which is a vital component in the design
of reliable hardware and software, allowing to systematically check relevant system
properties such as correctness, reachability, safety, liveness, fairness. Classical temporal
logics include linear temporal logic LTL [Pnu77], computation tree logic CTL [EC82] and
CTL* [EH86], and propositional dynamic logic PDL [Pra76]. More recently, real-time
and probabilistic variants such as TCTL and PCTL [ACD90, SL94] have been studied.
Based on these logics, a wide range of techniques for model checking (the verification
of interactive systems) has been developed [CGP99, BK08]. Modern model-checking
systems such as SPIN, (Nu)SMV, Uppaal, Kronos, and PRISM [Hol97, Hol04, CCGR00,
BDL04, Yov97, KNP04] can deal with large-scale industrial systems of impressive sizes.

• More recently, the large family of description logics [BCM+03] has become a success-
ful formalism for representing domain knowledge in logical theories (ontologies) and
for performing automated reasoning over this knowledge, with or without instance data.
Description logics have been developed for this purpose and implemented in early knowl-
edge representation systems [BS85, Neb90a, MDW91, Pel91, Mac91]. Nowadays, the
W3C Web Ontology Language OWL1 [HPSv03], based on the powerful description logic
SROIQ [HKS06a], is a widely accepted standard, and OWL ontologies are used in diverse
application areas such as knowledge representation and management, semantic databases,

1http://www.w3.org/TR/owl2-overview

1

http://www.w3.org/TR/owl2-overview

Chapter 1 Introduction

the semantic web, biomedical informatics, the life sciences, linguistics, the geosciences.
Modern ontologies contain up to several hundreds of thousands of logical statements,
and highly optimized reasoning systems such as Racer, FaCT++, CEL, Pellet, and Her-
miT [HM01, TH06, BLS06, SPC+07, MSH09] are able to infer implicit knowledge with
impressive e�ciency. Initially, the development of description logic was independent of
modal logic, but soon it was observed that description logics are notational variants of
modal logics [Sch91, DL94, Sch94]. From now on, we will use the term modal-like logics
for referring to modal and description logics alike.

Though incomparable in success with the above two, hybrid logics have gained attention because
of their distinguishing ability to refer to states in structures directly. Going back to Prior’s and
Bull’s philosophical work [Pri58, Pri67, Pri68, Bul70], hybrid logics are extensions of modal-like
logics with the ability to name single states in structures and to describe specific substructures.
These powerful logics could certainly have become established representation and specification
languages, were it not for their bad computational properties [ABM99, ABM00, FdS03]. Despite
this problem, reasoning with hybrid logics has been implemented in the systems HTab and
Spartacus [HA09, GKS10].

Applications usually impose two rivaling requirements on logics used for representation and
reasoning: on the one hand, a logic should provide high expressive power, allowing to make
statements relevant for the respective application domain in a comfortable and natural way. On
the other hand, they should allow for e�cient reasoning – that is, the relevant decision problems
(e.g., satisfiability, entailment) should admit e�cient procedures that lend themselves easily
to implementation. Unsurprisingly, there is a trade-o↵ between these two requirements: with
increasing expressivity of a formalism, the computational complexity of its associated reasoning
tasks usually increases. A classical example for this trade-o↵ is propositional logic versus
first-order logic: while the former has an NP-complete satisfiability problem, satisfiability for
the latter is undecidable.

The trade-o↵ between expressivity and computational complexity can be observed particularly
well when comparing the wide range of existing description logics: at the “bottom” of this
range, there are lightweight DLs such as those from the EL and DL-Lite families [BBL05,
BBL08, CDL+05, ACKZ09a], which do not even contain full propositional logic and admit
standard reasoning tasks in polynomial time. At the “top”, there are very expressive DLs such
as SROIQ [HKS06a], whose combination of features has been carefully tailored such that
satisfiability is still decidable, although with a rather high complexity (N2EXPTIME-complete
[Kaz08]). SROIQ as well as EL and DL-Lite are considered important modeling languages;
they form the foundation of OWL and its profiles EL and QL, and many modern ontologies are
written in OWL: prominent examples include SNOMED CT, the “Systematized Nomenclature of
Medicine, Clinical Terms”2 [Spa00], which falls within EL, and the NCI Thesaurus [GFH+03].
The NCBO BioPortal ontology repository3 contains almost 400 biomedical ontologies of varying
expressivity and size.

The work reported in this cumulative habilitation thesis approaches the described trade-o↵ from
the direction of hard modal-like logics and studies two specific ways to alleviate reasoning: (a)
by systematically studying fragments obtained by restricting the Boolean part of the logic, and
(b) by advancing logic-based module extraction and modularization techniques. More precisely,

2http://www.ihtsdo.org/snomed-ct
3http://bioportal.bioontology.org

2

http://www.ihtsdo.org/snomed-ct
http://bioportal.bioontology.org

we start from expressive modal-like logics that have computationally hard or even undecidable
standard reasoning problems (satisfiability, model checking, subsumption), and we contribute

in Chapter 2 a systematic study of the computational complexity for syntactic fragments of tem-
poral, description, and hybrid logics obtained by restricting the Boolean operators, which
identifies decidable and tractable fragments, and delineates a fine-grained decidability
and/or tractability border;

in Chapter 3 a comprehensive study of theoretical and practical aspects of logic-based module
extraction and modularization of description logic ontologies written in OWL, fostering
the replacement of a large ontology with one or several logically indistinguishable subsets
(not only) in order to perform reasoning more e�ciently;

in Chapter 4 a pioneering study of new lightweight variants of temporal description logics,
which allow for expressing temporal knowledge in ontologies, and which notoriously
become undecidable when including features such as time-invariant binary relations.

General preliminaries

In Chapters 2 and 4, we will use the standard notions of complexity theory and circuit complexity
as defined, e.g., in [Pap94, AB09]. In particular, we will make use of the following standard
complexity classes and the known inclusions between them.

L ✓ NL ✓ P
✓ NP ✓
✓ CONP ✓ PSPACE ✓ EXPTIME ✓ NEXPTIME ✓ 2EXPTIME ✓ N2EXPTIME ⇢ CORE

Problems that are in no kEXPTIME are called inherently nonelementary. Unless stated otherwise,
our hardness and completeness results will be based on logarithmic-space and polynomial-time
reductions log

m and p
m, and their corresponding equivalences ⌘log

m and ⌘p
m.

3

Chapter 2

Complexity of Sub-Boolean Fragments

2.1 Introduction

As announced in Chapter 1, this chapter will report on a systematic study of the computational
complexity for syntactic fragments of temporal, description, and hybrid logics obtained by
restricting the Boolean operators, which will identify decidable and tractable fragments, and
delineate a fine-grained decidability and/or tractability border.

One obvious choice for obtaining syntactic fragments of expressive modal-like logics would
be to restrict the available modal-like features (modal operators; DL features such as cardinality
restrictions, inverse roles, nominals, complex role hierarchies; hybrid binders) or their interaction.
The literature contains an extensive account of the e↵ects of allowing certain subsets of modal-
like features on the decidability and complexity of reasoning for temporal, description, and hybrid
logic [SC85, HB91, CDLN01, Tob01, BCM+03, HKS06a, HKS06b, Kaz08, ABM99, ABM00].
Consequently, there is generally a clear understanding of good and bad modal-like features or
combinations thereof – those whose presence tends to have mild e↵ects on the complexity of
reasoning, and those which notoriously lead to undecidability or intractability. Some of these
results seem to imply that, in order to obtain computationally easy fragments, one would have to
completely avoid certain bad operators.

However, if we want to keep the bad modal-like operators in order to benefit from their
expressive power, we can try to restrict other features of the logic, such as the Boolean operators
present. This way, we can reduce the expressive power stemming from interactions between
modal-like and Boolean operators without completely forgoing the bad operators. In this chapter,
we thus systematically study the e↵ects of allowing arbitrary sets of Boolean operators in
temporal, hybrid, and description logics on the computational behavior of these logics. The
tractable lightweight description logic EL already mentioned in Chapter 1 is a prominent example
for a computationally well-behaved sub-Boolean fragment of a reasonably expressive modal-like
logic (in this case, the description logicALC). EL allows conjunction and the constant 1 as the
only Boolean operators and the existential quantifier as the only modal-like feature; a number of
its extensions with further modal-like features remain tractable [Bra04, BBL05, BBL08]) and
are thus computationally well-behaved fragments of expressive description logics in the sense of
this chapter.

Rather than considering specific combinations of Boolean operators separately, we study
all combinations (with certain closure properties). This will result in a classification of the
decidability and complexity of the respective decision problem for an infinite family of fragments
for each logic. Our study will not only identify all cases in this framework where the respective
decision problem is decidable or even tractable; it will also provide a better insight into the
sources of hardness by identifying the combinations of modal-like and Boolean operators that
lead to computationally hard or even undecidable fragments.

5

Chapter 2 Complexity of Sub-Boolean Fragments

More precisely, we classify the decidability and computational complexity of the standard
decision problems for the following logics.

1. Linear Temporal Logic (LTL) and its satisfiability and model-checking problem, which are
PSPACE-complete when all Boolean and temporal operators are allowed [SC85] (Section
2.3);

2. The basic DL ALC and several variants of its standard consistency and concept satisfi-
ability problems,1 all of which are EXPTIME-complete when all Boolean operators are
allowed [Sch94, DM00] (Section 2.4);

3. Hybrid logic (HL) with the downarrow binder # and its standard satisfiability problem over
a number of classes of Kripke structures, which is undecidable over all Kripke structures
when all Boolean operators are allowed [BS95, ABM99] (Section 2.5).

In case 2, our results can be seen as a systematic underpinning of the folklore knowledge that
the EL and DL-Lite families are the only reasonably useful ALC fragments whose standard
reasoning tasks relative to unrestricted TBoxes are tractable.

Related work. The e↵ect of Boolean restrictions on the complexity of a logic was first con-
sidered in this systematic way for the case of satisfiability for propositional logic by H. Lewis
in [Lew79]. He established a dichotomy: depending on the set of Boolean operators, satisfiability
is either NP-complete or decidable in polynomial time. Lewis’s classification is complete in
terms of restrictions on the Boolean operators. It follows the structure of Post’s lattice of all
closed sets of Boolean functions [Pos41], which captures the multitude of all sets of Boolean
operators in a strong sense, as we will explain in Section 2.2.

Since Lewis’s seminal study, Post’s lattice has been used for systematically studying the com-
plexity of various decision problems for sub-Boolean fragments of classical and non-classical
logics and constraint satisfaction problems, among them the problems of counting solutions
[RW00], learnability [Dal00], deciding equivalence [Rei01], finding minimal solutions [RV03],
circumscription [Nor05, Tho12], the formula value problem [Sch07], and abduction [CST12] for
propositional logic. For modal logic, Bauland et al. established a trichotomy for the satisfiability
problem over several standard classes of Kripke structures: depending on the allowed Boolean
operators, the problem is PSPACE-complete, CONP-complete, or in P [BHSS06, HSS10]. A
systematic study of this kind has also been applied to various decision and enumeration prob-
lems from default logic [CHS07, BMTV12], autoepistemic logic [CMVT12] and for constraint
satisfaction problems [BCC+04, SS07, SS08, ABI+09, BH09, BBC+10].

We analyze the same systematic Boolean restrictions for the logics and decision problems
listed above combined with restrictions to the modal-like operators. We study decidability and
computational complexity of these infinitely many problems.

Bibliographic notes. The results on LTL in Section 2.3 are from [BSS+09] and [BMS+11];
those on ALC in Section 2.4 appeared in [MS13]; Section 2.5 on hybrid logic was published
in [MMS+10] and [GMM+12].

1Consistency and satisfiability are no longer equivalent when certain Boolean operators are omitted.

6

2.2 Boolean Operators and Post’s Lattice

2.2 Boolean Operators and Post’s Lattice

A Boolean function is a function f : {0, 1}n ! {0, 1}. We identify an n-ary Boolean operator
c with the n-ary Boolean function f as follows: f (a1, . . . , an) = 1 if and only if the formula
c(x1, . . . , xn) becomes true when assigning ai to xi for all 1  i  n. Given a modal-like logic L
that contains propositional logic, we consider arbitrary sub-Boolean fragments L� of L, each of
which allows only a certain set of Boolean operators, which can be nested arbitrarily. The set of
operators expressible in each such L� thus corresponds to a set B of Boolean functions with the
following properties.

1. B is closed under superposition, that is, if B contains an n-ary function f m-ary functions
g1, . . . , gn, then it also contains the m-ary function h defined by

h(a1, . . . , am) = f
�
g1(a1, . . . , am), . . . , gn(a1, . . . , am)

�
.

2. B contains the projections (identities) idn
k , where 1  k  n, defined by

idn
k(a1, . . . , an) = ak.

These two properties are necessary to represent nesting of Boolean operators corresponding
to the functions in B: for example, if we allow binary disjunction ^2 as an operator, then we
implicitly allow all disjunctions ^n of arbitrary arity. The Boolean functions andn corresponding
to ^n are obtained from the binary function and2 via superposition, involving projections:

and3(a1, a2, a3) = and2
⇣
id3

1(a1, a2, a3), and2
�
id3

2(a1, a2, a3), id3
3(a1, a2, a3)

�⌘
etc.

We call a set of Boolean functions that satisfies Properties 1 and 2 a clone [Pip97]. Given a set
B of Boolean functions, we denote with [B] the smallest clone containing B and call B a base
for [B]. It is clear that the set of Boolean operators expressible in a fragment L� as given above
corresponds to a clone. For example, if we allow binary conjunction as the only explicit Boolean
operator in L�, then the corresponding clone is E2 = [{and2}]. There are infinitely many clones,
and Emil Post [Pos41] established their lattice and found a finite base for each clone.

In order to present Post’s lattice, we first need to define some specific Boolean functions and
properties of Boolean functions. From now on, we deliberately use operator symbols for the
corresponding functions, for example ¬ for the unary negation function, ^,_ for the binary
conjunction and disjunction, and � for the binary exclusive-or function, i.e., a1 � a2 = 1 if and
only if a1 , a2. We denote with cn

a the n-ary constant function defined by cn
a(a1, . . . , an) = a. For

c1
1(a) and c1

0(a) we simply write 1 and 0.

Definition 1. Let f be an n-ary Boolean function; let a 2 {0, 1} and m � 2.

• f is a-reproducing if f (a, . . . , a) = a.

• f is monotone2 if a1  b1, . . . , an  bn implies f (a1, . . . , an)  f (b1, . . . , bn).

• f is a-separating if there is some i 2 {1, . . . , n} such that f (a1, . . . , an) = a implies ai = 1.

• f is a-separating of degree m if, for all U ✓ {0, 1}n with |U | = m, the following hold: if
f (a1, . . . , an) = a for all (a1, . . . , an) 2 U, then there is some i 2 {1, . . . , n} such that ai = a
for all (a1, . . . , an) 2 U.

• f is self-dual if f ⌘ dual(f), where dual(f)(a1, . . . , an) = ¬ f (¬a1, . . . ,¬an).

7

Chapter 2 Complexity of Sub-Boolean Fragments

• f is linear if f ⌘ a1 � · · · � an � c for a constant c 2 {0, 1} and variables a1, . . . , an.

In Table 1 we define all clones and give Post’s bases [Pos41] for them. Post’s lattice is given in
Figure 1. Now Lewis’s dichotomy can be described using Post’s lattice as follows, denoting
with SAT(B) the satisfiability problem of the fragment of propositional logic that allows only
Boolean operators corresponding to a given set B of Boolean functions.

Theorem 2. [Lew79] SAT(B) is NP-complete if S1 ✓ [B] and solvable in polynomial time
otherwise.

In a similar fashion, Bauland et al.’s trichotomy for the basic modal logic K can be described as
follows. For a nonempty subset M ✓ {^,⇤} of the two standard modal operators ^ (“possibly”)
and ⇤ (“necessarily”), and a set B of Boolean functions, let KM(B)-SAT be the satisfiability
problem for the fragment of K that allows only the modal operators in M and the Boolean
operators corresponding to B.

Theorem 3. [BHSS06, HSS10] K^,⇤(B)-SAT is

• PSPACE-complete if S11 ✓ [B],

• CONP-complete if E0 ✓ [B] ✓ E, and

• solvable in polynomial time otherwise.

K^(B)-SAT and K⇤(B)-SAT are PSPACE-complete if S1 ✓ [B] and solvable in polynomial time
otherwise.

Bauland et al.’s result is more general and captures multiple modalities, formulas given by
circuits, and di↵erent modal logics such as KD, T, S4, S5, i.e., the modal logics of serial,
reflexive, transitive, and complete frames, respectively.

2.3 Linear Temporal Logic

Linear Temporal Logic (LTL) was introduced by Pnueli in [Pnu77] as a formalism for reasoning
about the properties and the behaviors of parallel programs and concurrent systems, and has
widely been used for these purposes. The standard reasoning tasks include satisfiability and
model checking. The former asks whether, given an LTL formula ', there is a linear path at
whose starting point ' is true; the latter’s existential version additionally receives as input a
Kripke structureM and a state s and asks whether ' is true at some path starting at s inM.
Validity and universal model checking are additional standard reasoning tasks; however, are not
in the scope of our work.

Sistla and Clarke were the first to study the computational complexity of satisfiability and
(existential) model checking. For full LTL with the operators F (eventually), G (invariantly),
X (next-time), U (until), and S (since), they showed that both problems are PSPACE-complete;
for some restrictions to the temporal operators – allowing only {X} or at most {F,G} –, they
established NP-completeness [SC85]. They also showed that the restriction to atomic negation

2 Monotone operators and the corresponding fragments of logics are often called positive, partly for historic reasons,
partly in order to avoid false associations with the distinction between logics with monotonic and non-monotonic
inference. All logics studied in this chapter have monotonic inference, and some of their fragments contain only
monotone (positive) Boolean operators. We have decided to prefer “monotone” to “positive” because of the
established clone name M.

8

2.3 Linear Temporal Logic

Name Definition Base(s)
BF All Boolean functions {_,^,¬}
R0 { f 2 BF | f is 0-reproducing } {^,�}
R1 { f 2 BF | f is 1-reproducing } {_,$}
R2 R1 \ R0 {_, x ^ (y$ z)}
M { f 2 BF | f is monotone } {_,^, 0, 1}
M0 M \ R0 {_,^, 0}
M1 M \ R1 {_,^, 1}
M2 M \ R2 {_,^}
Sn

0 { f 2 BF | f is 0-separating of degree n} {!, hn}
S0 { f 2 BF | f is 0-separating} {!}
Sn

1 { f 2 BF | f is 1-separating of degree n} {x ^ y, dual(hn)}
S1 { f 2 BF | f is 1-separating} {x ^ y}
Sn

02 Sn
0 \ R2 {x _ (y ^ z), hn}

S02 S0 \ R2 {x _ (y ^ z)}
Sn

01 Sn
0 \M {hn, 1}

S01 S0 \M {x _ (y ^ z), 1}
Sn

00 Sn
0 \ R2 \M {x _ (y ^ z), hn}

S00 S0 \ R2 \M {x _ (y ^ z)}
Sn

12 Sn
1 \ R2 {x ^ (y _ z), dual(hn)}

S12 S1 \ R2 {x ^ (y _ z)}
Sn

11 Sn
1 \M {dual(hn), 0}

S11 S1 \M {x ^ (y _ z), 0}
Sn

10 Sn
1 \ R2 \M {x ^ (y _ z), dual(hn)}

S10 S1 \ R2 \M {x ^ (y _ z)}
D { f | f is self-dual} {xy _ xz _ (y ^ z)}
D1 D \ R2 {xy _ xz _ yz}
D2 D \M {xy _ yz _ xz}
L { f | f is linear} {�, 1}
L0 [{�}] {�}
L1 L \ R1 {$}
L2 L \ R2 {x � y � z}
L3 L \ D {x � y � z � 1}
V { f | f is an n-ary or-function or a constant function} {^, 0, 1}
V0 [{_}] [{0} {_, 0}
V1 [{_}] [{1} {_, 1}
V2 [{_}] {_}
E { f | f is an n-ary and-function or a constant function} {^, 0, 1}
E0 [{^}] [{0} {^, 0}
E1 [{^}] [{1} {^, 1}
E2 [{^}] {^}
N [{¬}] [{0} [{1} {¬, 0}, {¬, 1}
N2 [{¬}] {¬}
I { f | f is a projection} [{0, 1} {0, 1}
I0 { f | f is a projection} [{0} {0}
I1 { f | f is a projection} [{1} {1}
I2 { f | f is a projection} ;

The auxiliary function hn is defined by hn(x1, . . . , xn+1) =
Vn+1

i=1 x1 _ x2 _ · · · _ xi�1 _ xi+1 _ · · · _ xn+1 .

Table 1: List of all closed classes of Boolean functions with bases, taken from [BCRV03]

9

Chapter 2 Complexity of Sub-Boolean Fragments

BF

R1 R0

R2

M

M1 M0

M2

S2
0

S2
02 S2

01
S3

0
S2

00
S3

02 S3
01

S3
00

S0

S02 S01

S00

D

D1

D2

V

V1 V0

V2

L

L1 L3 L0

L2

N

N2

I

I1 I0

I2

S2
1

S2
12S2

11
S3

1
S2

10
S3

12S3
11

S3
10

S1

S12S11

S10

E

E0E1

E2

Figure 1: Post’s lattice

10

2.3 Linear Temporal Logic

leads to NP-completeness in the case of {F,X}. These results imply that, under reasonable
complexity-theoretic assumptions, reasoning with LTL is not tractable.

Subsequently, the e↵ect of restricting the set of temporal operators on the complexity of the
satisfiability and model-checking for LTL was studied more systematically in the literature,
together with single restrictions of the Boolean operators: Demri and Schnoebelen [DS02]
investigated satisfiability and existential model checking for restrictions on the set of temporal
operators, their nesting, and the number of atomic propositions. Markey [Mar04] studied the
complexity of all four standard decision problems for LTL fragments with various subsets of
temporal operators (including the past versions of F and X), together with further restrictions on
the interaction between future and past operators, and between temporal operators and negation.
He showed that these fragments are (CO)NP- or PSPACE-complete, respectively. Muscholl
and Walukiewicz [MW05] showed that satisfiability for the LTL variant that allows {F,G}
together with a version of X “guarded” by atomic propositions is NP-complete – in contrast
to PSPACE-completeness for the fragment {F,X} [SC85]. Since only Demri and Schnoebelen
exhibit tractable fragments at all, it can be concluded that a multitude of LTL fragments have an
intractable satisfiability and/or model-checking problem. In fact, not even the restriction to Horn
formulas leads to a decrease in complexity of satisfiability for LTL, as shown earlier by Chen
and Lin [CL93], and Dixon et al. [DFR00].

Fragments of related temporal logics have been investigated too: Emerson et al. [EES90]
studied three fragments of computation tree logic (CTL) with temporal and Boolean restrictions
and showed tractability or NP-completeness. Hemaspaandra [Hem01] showed that satisfiability
for modal logic over linear frames drops from NP-complete to tractable if Boolean operators
are restricted to conjunction and atomic negation. Finally, one of the first to systematically
study the complexity of fragments of modal-like logics was Halpern [Hal95]. He investigated
satisfiability for multimodal logics, bounding the depth of modal operators and the number of
atomic propositions. Only the combination of both restrictions led to tractable fragments.

2.3.1 Basic Notions

Let PROP be a countable set of propositional variables, B be a finite set of Boolean functions, and
T be a set of temporal operators. The set of temporal B-formulas over T is defined inductively
by the grammar

' ::= p | � f (', . . . ,') | ⌧(', . . . ,'),

where p 2 PROP, � f is a Boolean operator (of the appropriate arity) corresponding to a function
f 2 B, and ⌧ is a temporal operator (of the appropriate arity) from T . We consider the unary
temporal operators X (next-time), F (eventually), G (invariantly) and the binary temporal operators
U (until), R (release) and S (since). The set of all temporal B-formulas over T is denoted by
LTLT (B).

LTL-formulas are interpreted over infinite paths of states, which intuitively can be seen as
di↵erent points of time, with propositional assignments. It is common to consider potentially
infinite sets of paths, represented by a class of finite Kripke structures, called transition systems.
A transition system is a triple K = (W,R, ⌘), where W is a finite set of states, R ✓ W ⇥W is a total
binary relation (i.e., for each a 2 W, there is some b 2 W such that aRb), and ⌘ : W ! 2PROPK

for a finite set PROPK ✓ PROP of variables. A path ⇡ in K is an infinite sequence denoted as
(⇡0, ⇡1, . . .), where, for all i � 0, ⇡i 2 W and ⇡iR⇡i+1.

For a transition system K = (W,R, ⌘), a path ⇡ in K, and a temporal B-formula over the

11

Chapter 2 Complexity of Sub-Boolean Fragments

temporal operators {F,G,X,U,R,S} with variables from PROPK , we define in Figure 2 what it
means that ⇡ satisfies ' in ⇡i, denoted by ⇡, i |= '.

⇡, i |= x i↵ x 2 ⌘(⇡i), x 2 PROPK

⇡, i |= � f ('1, . . . ,'n) i↵ f (t1, . . . , tn) = 1, where t j = 1 if ⇡, i |= ' j, and ti = 0 otherwise
⇡, i |= X'1 i↵ ⇡, i + 1 |= '1

⇡, i |= F'1 i↵ ⇡, j |= '1 for some j � i
⇡, i |= G'1 i↵ ⇡, j |= '1 for all j � i
⇡, i |= '1U'2 i↵ there is an ` � i with ⇡, ` |= '2 and, for every i  j < `, ⇡, j |= '1

⇡, i |= '1R'2 i↵ for all ` � i with ⇡, ` |= '2, there is some i  j < ` with ⇡, j |= '1

⇡, i |= '1S'2 i↵ there is an `  i with ⇡, ` |= '2 and, for every ` < j  i, ⇡, j |= '1

Figure 2: Satisfaction relation for LTL

Some temporal operators are often regarded as abbreviations of others because, for example,
F' = true U', G' = ¬F¬', and 'R = ¬((¬')U(¬)). However, these abbreviations rely on
certain Boolean operators, which may not always be present in B.

A path ⇡ is said to satisfy a given formula ' if ⇡, i |= ' for some position i on '. A formula '
is called satisfiable if some path ⇡ satisfies ', and ' is satisfiable in a state w 2 W of a transition
system K = (W,R, ⌘) if, for some path ⇡ in K starting at w, we have ⇡, 0 |= '. We consider
the following decision problems, for every finite set B of Boolean functions and every set T of
temporal operators.

Satisfiability, LTLT (B)-SAT. Given a temporal B-formula ' over T , is ' satisfiable?

Model Checking, LTLT (B)-MC. Given a temporal B-formula ' over T , a transition system
K = (W,R, ⌘) and a state w 2 W, is ' satisfiable in w?

In the literature, a variant of the satisfiability problem is sometimes considered, where we ask if
a formula can be satisfied at the initial state of a path. For all fragments without S, this variant is
computationally equivalent to ours.

Our version of the model-checking problem is also called existential. The universal one, in
contrast, asks whether all paths starting at w in K satisfy ' [Mar04]. In the following, we will
omit this distinction because we will only consider the existential version.

For studying the complexity of the two decision problems, we need to make a few commitments.
First, we assume that the input formula is represented as a string, not as a circuit or DAG, which
would allow for more succinctness and would certainly a↵ect some of the complexity bounds
proven. Second, the complexity of LTLT (B)-MC is measured in the sum of the sizes of all three
inputs ',K,w. Third, we consider simple representations of structures which contain an entry for
each state and one for each edge (pair of states), as opposed to more condensed representations.

In our notation, Sistla and Clarke’s fundamental result can be formulated as follows.

Theorem 4. [SC85] LTLT (^,¬)-SAT and LTLT (^,¬)-MC are

• PSPACE-complete if {U} ✓ T or {F,X} ✓ T, and

• NP-complete if T ✓ {F,G} or T = {X}.

12

2.3 Linear Temporal Logic

2.3.2 Satisfiability

Using Post’s lattice, we examine the satisfiability problem for every possible fragment of LTL
determined by an arbitrary set of Boolean operators and any subset of the five temporal operators
{F,G,X,U,S} studied by Sistla and Clarke. We determine the computational complexity of
these problems, showing that all cases – except for two sets of Boolean operators – are either
PSPACE-complete, NP-complete, or in P.

Among our results, we exhibit cases with nontrivial tractability as well as the smallest possible
sets of Boolean and temporal operators that already lead to NP-completeness or PSPACE-
completeness, respectively. Examples for the first group are cases in which only the unary not
function, or only monotone functions are allowed, but there is no restriction on the temporal
operators. As for the second group, if only the binary function f with f (x, y) = (x ^ y) is
permitted, then satisfiability is NP-complete already in the case of propositional logic [Lew79].
Our results show that the presence of the same function f separates the tractable languages from
the NP-complete and PSPACE-complete ones, depending on the set of temporal operators used.
According to this, minimal sets of temporal operators leading to PSPACE-completeness together
with f are, for example, {U} and {F,X}.

Our results are formulated in Theorem 5 and depicted in Figure 10 (Appendix C).

Theorem 5. LTLT (B)-SAT is

• NP-complete if S1 ✓ [B] and T ✓ {F,G} or T = {X},
• PSPACE-complete if S1 ✓ [B] and T is not covered by the previous case, and

• solvable in polynomial time in all other cases except for [B] = L0 or [B] = L .

The technically most involved proof is that of PSPACE-hardness in the case T = {S}. The
di�culty lies in simulating the quantifier tree of a Quantified Boolean Formula (QBF) in a linear
structure. We do this in three steps: first, we partition a finite prefix of a path ⇡ into 2n subsequent
intervals, each of which satisfies a distinct combination of truth values of the n universally
quantified variables occurring in the given QBF. This requires an LTL-subformula using ^, ¬,
and a constant number of S-operators. Second, we construct another LTL-subformulas using
^, _, ¬, and S, which sets the values for the existentially quantified variables in the previously
delineated intervals. Finally, we rewrite all occurrences of ^, _, ¬ using polynomially-sized
formulas over the base f (x, y) = (x ^ y) of S1, using a standard technique that goes back to a
result of Lewis’s [Lew79].

The two missing cases [B] = L0 or [B] = L are based on the binary xor function and have
already defied classification in [BHSS06, HSS10] for modal logics of reflexive frames classes.
Due to reflexivity, which is implicit in the semantics of LTL, a formula F' is satisfied at some
state whenever ' is. This prohibits attempts to treat the propositional part of a formula separately
from the “remainder” when trying to find decision procedures. On the other hand, the restricted
expressivity of xor makes it di�cult to prove lower bounds.

The results in Theorem 5 establish a homogeneous complexity landscape and reveal a clear
borderline between tractable and intractable fragments: the intractable3 cases are characterized
by the ability to express the Boolean function f (x, y) = x^y, independently of the set of temporal
operators allowed. The further separation between NP- and PSPACE-completeness is determined
solely by the temporal operators allowed.

3Throughout this thesis, we assume P , NP.

13

Chapter 2 Complexity of Sub-Boolean Fragments

2.3.3 Model Checking

Using Post’s lattice, we examine the existential model-checking problem for every possible
fragment of LTL determined by an arbitrary set of Boolean operators and any subset of the five
temporal future operators {F,G,X,U,R}. We separate the model-checking problem for almost all
of these fragments into tractable (here: polynomial-time solvable) and intractable (here: NP-hard
or PSPACE-hard) cases. In contrast to earlier work discussed above, we exhibit many tractable
fragments, and they are even in NL (nondeterministic logarithmic space). As for satisfiability, we
had to leave open the case of the binary xor-operator.

I

V E N

M L

BF
For the model-checking problem, the Boolean con-

stants 0, 1 are irrelevant because they can easily be sim-
ulated using fresh propositional variables that are in-
terpreted as false or true in every state of the input
transition system. Hence the following holds.

Lemma 6. Let B be a finite set of Boolean func-
tions and T be a set of temporal operators. Then
LTLT (B [{0, 1})-MC ⌘log

m LTLT (B)-MC.

Consequently, it su�ces to formulate results only for
clones with both constants, and they will carry over to the corresponding clones with at most
one constant. The figure on the right shows all clones with both constants and their inclusion
structure.

Our results will exhibit a complexity landscape that is much less homogeneous than in the
satisfiability case, inducing a more di↵use tractability borderline. In particular, unlike in the
satisfiability case, there are sets of Boolean operators that lead to both tractable and intractable
model-checking problems in the presence of di↵erent sets of temporal operators. Due to this
e↵ect, we have had to establish more, and less uniform, complexity results, i.e., most of those
apply to only a few combinations of operators. For this reason, we have put a much stronger
focus on establishing tractability versus intractability, abstaining from proving upper bounds for
the intractable cases.

We present the results in Table 2. The top row refers to the clones from above. Entries
“NL-c” denote completeness for NL under logspace many-one reductions; all other entries denote
hardness results for NP and PSPACE. The column “BF” is due to [SC85]; the remaining entries
are our own results.

Our most surprising intractability result is the NP-hardness of the fragment that only allows
the temporal operator U (respectively only its dual R) and no propositional operator at all. That
is, propositional satisfiability can be encoded by a suitable combination of a transition system
and an LTL formula using only U (or R) and no propositional operators at all.

Our technically most complex result is the NL-completeness for the combination of F,G with
_. It relies on being able to verify two properties simultaneously: whether a formula is true at the
initial state of a path, and whether it is true in all states. The variant “in all states” is required to
recursively treat subformulas starting with G. The corresponding nondeterministic algorithm has
a special recursive nature that allows it to be implemented in logarithmic space. This result is our
most surprising tractability result because the combination of F,G with _ features universal and
existential operators at the same time. Given that the combination of F with ^ is already NP-hard
(a consequence of the results in [SC85]), we would have expected the same lower bound already
for the dual combination of G with _. The expected duality eventually occurs in the presence of

14

2.3 Linear Temporal Logic

B I N E V M L BF
T
X NL-c NL-c NL-c NL-c NP-h NL-c NP-h
G NL-c NL-c NL-c NL-c NP-h ? NP-h
F NL-c NL-c NP-h NL-c NP-h ? NP-h
FG NL-c NL-c NP-h NL-c NP-h ? NP-h
FX NL-c NL-c NP-h NL-c NP-h ? PSPACE-h
GX NL-c NL-c NL-c NP-h PSPACE-h ? PSPACE-h
FGX NL-c NL-c NP-h NP-h PSPACE-h ? PSPACE-h
all other combinations NP-h NP-h NP-h NP-h PSPACE-h NP-h PSPACE-h
(i.e., with U or R)

Table 2: Results for LTLT (B)-MC. Hardness is indicated by “h”, completeness by “c”.

the X-operator: the cases T = {F,X} and B = {^}, as well as T = {G,X} and B = {_}, are both
NP-hard.

Corresponding NP and PSPACE upper bounds for the intractable cases are not obvious: Sistla
and Clarke’s upper bounds have been established only for B = {^,_,¬} and do not carry over
automatically to arbitrary sets of Boolean operators. More precisely, it is not clear whether
LTLT (B)-MC can be (logspace- or polytime-) reduced to LTLT (^,_,¬)-MC even though all
operators in B can be expressed using ^,_,¬, the reason being that, for some operators such as
the binary xor (�), the transformation of an LTLT (�)-formula into an equivalent LTLT (^,_,¬)-
formula may incur an exponential blowup. However, from our experiences with similar studies,
we do conjecture completeness.

As indicated above, the borderline between tractable and intractable fragments is rather di↵use.
However, it can be observed that intractability largely correlates with the presence of both
universal and existential operators:

• All fragments with U are NP- or PSPACE-hard (and the semantics of U already nests a
universal into an existential quantifier).

• All fragments that allow all monotone Boolean operators (i.e., ^ and _ at the same time)
are NP- or PSPACE-hard.

• For the remaining fragments to be intractable, it is necessary (but not su�cient) to combine
either ^ and F, or _ and G.

2.3.4 Discussion

To our knowledge, our work is the first to systematically study LTL fragments obtained by
restricting temporal and Boolean operators simultaneously. In comparison to previous work,
we have identified a higher proportion of tractable fragments, making it easier to locate the
tractability border. Our results are complete for all possible sets of Boolean operators and for all
sets of temporal operators that are subsets of either F,G,X,U,S in the case of satisfiability or
F,G,X,U,R in the case of model checking.

Our results show that simultaneous restrictions of the temporal and Boolean operators induce
more tractable than intractable fragments overall. Of course, many of the tractable (and trivial)
fragments are clearly too inexpressive to be taken seriously as specification languages. However,

15

Chapter 2 Complexity of Sub-Boolean Fragments

some tractable fragments are quite expressive, for example those with monotone Boolean
operators (in the case of satisfiability) or with only conjunction (in the case of satisfiability
and model checking). There is clearly a parallel to lightweight description logics such as EL
(see Section 2.1). It is possible that monotone fragments of LTL are su�cient to formulate
specifications in certain applications of verification. These applications could rely on the e�cient
decision procedures emanating from our results.

We chose the temporal operators in the case of satisfiability because they were considered by
Sistla and Clarke [SC85], and in the case of model checking because they are the standard future
operators. We provide more justifications for this choice in our original work [BMS+11].

For future work, it would be tempting to initiate an even more systematic study that is complete
with respect to all possible sets of temporal operators, including past operators (which were
studied previously [SC85, Mar04]), but also operators defined by arbitrary LTL formulas, e.g.
the ternary operator O(↵, �, �) = F↵ _ (�U�), or even operators based on automata [Wol83].
Unfortunately, it is not very realistic to achieve this kind of completeness, because of the
combinatorial explosion incurred:

First, even if one adds only the five past counterparts of the above F,G,X,U,R, the number of
fragments to consider will blow up significantly: 210 � 1 = 1023 instead of 25 � 1 = 31 sets of
temporal operators, each combined with a large number of sets of Boolean operators. Given the
large number of NL-complete fragments in Table 2 and the fact that many of the proofs for their
upper bounds rely on the absence of past operators, we expect that a huge number of additional
single theorems would have to be proven. So far, we can at least say that almost all fragments
containing the S (since) operator are as hard as the corresponding fragments with U, for the
same reasons. However, there are exceptions which are due to the asymmetry that paths have a
first, but no last, state [BMS+09]. Still, it would of course be interesting to find out whether the
conclusion “past is for free” drawn in [Mar04] extends to sub-Boolean fragments of LTL.

Second, a truly systematic account of all possible temporal operators would have to start with
cataloging all definitions of temporal operators in the formalisms mentioned above, analogously
to Post’s lattice of all Boolean functions. Since these formalisms are much more expressive than
propositional logic, it is unclear whether such a research program would be feasible at all (if one
considers that Post’s lattice already took its author several years to establish).

A di↵erent, more feasible, direction for future work is to apply our systematic study to
branching-time temporal logics, such as CTL(*) (but satisfiability has already been classified
[MMTV09]), to the µ-calculus, which extends both LTL and CTL(*), or even to the hybrid
µ-calculus [SV01].

2.4 Description Logic

We already know from Chapter 1 that description logics (DLs) [BCM+03] are a successful family
of knowledge representation languages. They are decidable fragments of first-order logic and
underlie the W3C Web Ontology Language OWL. The main feature of DLs is the ability to
describe concepts (e.g., “a patient who has a history of high blood pressure”), to define new
concepts in terms of others (e.g., “HighRiskPatient” in the context of heart diseases), and to
express background knowledge (e.g., “a patient who has a history of high blood pressure is
someone who has an increased risk of su↵ering a stroke”). Definitions and background knowledge
are specified in terminologies, also called TBoxes, via axioms that relate concept descriptions
with each other, such as concept inclusions. The standard reasoning tasks of satisfiability and

16

2.4 Description Logic

subsumption ask whether a given concept description has a model or whether a given concept
description implies another (in both cases possibly with respect to a given TBox). They have
been studied extensively for various DLs of di↵erent expressivity. Their complexity ranges
between trivial for fragments of the basic DL ALC and N2EXPTIME for the OWL 2 standard
SROIQ. Another factor that determines the complexity is the distinction whether terminological
knowledge, general background knowledge, or no TBoxes at all are allowed.

ForALC with general TBoxes, satisfiability and subsumption are interreducible and EXPTIME-
complete: the upper bound is due to the correspondence with propositional dynamic logic
[Pra78, VW86, DM00], and the lower bound was proved by Schild [Sch94]. To obtain tractable
DLs with tractable reasoning problems, specific fragments ofALC based on restrictions to the
allowed Boolean operators and quantifiers has been studied. Notable examples include members
of the prominent EL and DL-Lite families (see Section 2.1). The following is a brief survey of
the complexity landscape for such specific sub-BooleanALC fragments (it must be observed
that, unlike forALC, the standard reasoning problems are no longer interreducible in the absence
of certain Boolean operators).

• EL allows only conjunctions and existential restrictions [Baa03], and thus satisfiability
for EL is uninteresting because every EL-concept and -TBox is satisfiable. Concept
subsumption with or without TBoxes is tractable in EL [Baa03, Bra04], and it remains
tractable under a variety of extensions such as nominals, concrete domains, role chain
inclusions, and domain and range restrictions [BBL05, BBL08].

• In contrast, the presence of universal quantifiers usually breaks tractability: subsumption
in FL0, which allows only conjunction and universal restrictions, is CONP-complete
[Neb90b]. Relative to TBoxes, the complexity increases to PSPACE-complete for cyclic
TBoxes [Baa96, Kd03] and EXPTIME-complete for general TBoxes [BBL05, Hof05]. In
[DLN+92, DLNN97], concept satisfiability and subsumption for several logics below
and above ALC that extend FL0 with disjunction, negation and existential restrictions
and other features, is shown to be tractable, NP-complete, CONP-complete or PSPACE-
complete.

• EXPTIME-hardness of subsumption relative to general TBoxes can be observed already
in fragments of ALC containing either conjunction or disjunction and both existential
and universal restrictions [GMWK02], or only conjunction, universal restrictions and
unqualified existential restrictions [Don03].

• In the historically first member of the large DL-Lite family, where unqualified existential
restrictions, atomic negation on the right-hand side of concept inclusions, as well as inverse
and functional roles are allowed, satisfiability is tractable [CDL+05]. Several extensions
of DL-Lite are shown to have tractable, NP-complete, or EXPTIME-complete satisfiability
problems in [ACKZ07, ACKZ09a, ACKZ09b].

DLs from the above families with tractable reasoning problems are called lightweight DLs. They
are based on specific sets of allowed Boolean operators and quantifiers (and, in some cases, rely
on further limitations, such as unqualified existential restrictions). Despite the success of the EL
and DL-Lite families, the principled question remains whether it is possible to design lightweight
DLs based on di↵erent restrictions. By giving a systematic account of the complexity of DLs
with restricted Boolean operators and quantifiers, we aim at answering this question. We pursue
the same approach as in the previous section and classify satisfiability with respect to TBoxes for
ALC fragments obtained by arbitrary sets of Boolean operators and quantifiers.

17

Chapter 2 Complexity of Sub-Boolean Fragments

2.4.1 Basic Notions

We use the standard syntax and semantics ofALC [BCM+03], with the Boolean operators u, t,
¬,>,? replaced by arbitrary operators � f corresponding to Boolean functions f : {0, 1}n ! {0, 1}
of arity n. Let NC, NR and NI be sets of atomic concepts, roles and individuals, and let B be
a set of Boolean functions and Q ✓ {9,8} a set of quantifiers. Then the set of ALC-concept
descriptions using only operators from B and Q, for short (B,Q)-concepts, is defined by

C ::= A | � f (C, . . . ,C) | q r.C,

where A 2 NC, r 2 NR, � f 2 B is a Boolean operator corresponding to a function f 2 B, and
q 2 Q is a quantifier. A general (B,Q)-concept inclusion ((B,Q)-GCI) is an axiom of the form
C v D where C,D are B-concepts. A (B,Q)-TBox is a finite set of (B,Q)-GCIs. A (B,Q)-ABox
is a finite set of axioms of the form C(a) or r(a, b), where C is a (B,Q)-concept, r 2 NR and
a, b 2 NI. A (B,Q)-ontology is the union of a (B,Q)-TBox and (B,Q)-ABox (this simplified
view su�ces for our purposes).

An interpretation is a pair I = (�I, ·I), where �I is a nonempty set and the interpretation
function ·I maps every atomic concept to a subset of �I, every role to a binary relation over �I,
and every individual to an element of �I. The interpretation function is extended to arbitrary
(B,Q)-concepts as follows.

� f (C1, . . . ,Cn)I = {x 2 �I | f (t1, . . . , tn) = 1}, where ti = 1 if x 2CIi , and ti = 0 otherwise

9R.CI = {x 2 �I | {y 2 CI | (x, y) 2 RI} , ;}
8R.CI = {x 2 �I | {y 2 CI | (x, y) < RI} = ;}

An interpretation I satisfies the GCI C v D, written I |= C v D, if CI ✓ DI. Furthermore, I
satisfies C(a) or R(a, b) if aI 2 CI or (aI, bI) 2 RI. An interpretation I satisfies a TBox (ABox,
ontology) if it satisfies every axiom therein. It is then called a model of this set of axioms.

The following decision problems are of interest for this section.

Concept satisfiability CSATQ(B):
Given a (B,Q)-concept C, is there an interpretation I s.t. CI , ; ?

TBox satisfiability TSATQ(B):
Given a (B,Q)-TBox T , is there an interpretation I s.t. I |= T ?

TBox-concept satisfiability TCSATQ(B):
Given a (B,Q)-TBox T and a (B,Q)-concept C, is there an I s.t. I |= T and CI , ; ?

Ontology satisfiability OSATQ(B):
Given a (B,Q)-ontology O, is there an interpretation I s.t. I |= O ?

Ontology-concept satisfiability OCSATQ(B):
Given a (B,Q)-ontology O and a (B,Q)-concept C, is there an I s.t. I |= O and CI , ; ?

We are interested in the complexity of these problems. The first, concept satisfiability without
axioms, is already covered by Bauland et al.’s study of the satisfiability problem for modal logic
(Theorem 3) becauseALC is a notational variant of the modal logic K with the quantifiers 9,8
corresponding to the modal operators ^,⇤.

18

2.4 Description Logic

TSATQ(B) I0 I V0 V E0 E N2,N S11 to R0 M L0 L3 to BF else

Q = ; t NL t P t P NL t NP t NP t
Q = {9} t P t EXP t P EXP t EXP t EXP t
Q = {8} t P t P t EXP EXP t EXP t EXP t
Q = {9,8} t EXP t EXP t EXP EXP t EXP t EXP t

remaining

Q = ; NL P NL NP t
Q = {9} P EXPTIME P EXPTIME t
Q = {8} P EXPTIME t
Q = {9,8} EXPTIME t

Table 3: Results for TSAT and the remaining three problems TCSAT,OSAT,OCSAT. All entries
denote completeness. “EXP” abbreviates “EXPTIME”, and “t” stands for “trivial”.

It can easily be seen that there are some reducibilities between the satisfiability problems
independently of B and Q:

CSATQ(B) log
m TCSATQ(B) and

TSATQ(B) log
m TCSATQ(B) log

m OSATQ(B) ⌘log
m OCSATQ(B)

2.4.2 Results and Discussion

Our results are given in Table 3 and Figures 11–14 (Appendix C). They are complete with
respect to arbitrary sets of Boolean operators and quantifiers. We can furthermore extract the
tractability border by listing the maximal tractable sub-Boolean fragments of ALC, i.e., the
maximal combinations of B and Q for which TSATQ(B) (and the other three problems) are
tractable:

1. B = R1 (1-reproducing functions) and Q arbitrary

2. B = R0 (1-reproducing functions) and Q arbitrary – only TSAT

3. B = E (conjunction and both constants) and Q ✓ {9}
4. B = V (disjunction and both constants) and Q ✓ {8}
5. B = N (negation and both constants) and Q = ;

In other words, the maximal lightweight DLs obtained by restricting Boolean operators and
quantifiers are given by this short list. We can now answer our original question by observing
that this list contains no interesting candidate for a lightweight DL other than those that are
already known:

• Item 3 is EL?, the extension of ELwith the?-operator, which is subsumed by the tractable
logic EL++ underlying the OWL EL profile.

19

Chapter 2 Complexity of Sub-Boolean Fragments

• Item 4 is a logic allowing only the duals of the operators in EL?, which can safely be ruled
out as a reasonable modeling language.

• Item 5 is a very simple logic in which one can only express subsumption and disjointness
between concept names, i.e., this logic allows to model only taxonomies with disjointness
information.

• Items 1 and 2 denote the maximal fragments for which satisfiability is even trivial. In
this case, subsumption is the relevant decision problem. Subsumption was studied by
Meier [Mei11], whose results surprisingly yield that subsumption for the cases B = R1
and B = R0 is intractable. The maximal fragments with tractable subsumption (and trivial
satisfiability) are determined by B = E1,Q = {9} and B = V1,Q = {8}, but these are
already subsumed by items 3 and 4.

Our study therefore provides a systematic underpinning of the folklore assumption that the
restrictions to the Boolean operators and quantifiers that underlie the known families of light-
weight DLs lead to the only useful sub-BooleanALC-fragments for which satisfiability in the
presence of general TBoxes is tractable. On the one hand, this conclusion is more general
than the results in [BBL05] that extensions of EL with ¬ and t are intractable. On the other
hand, it is restricted to the case of general TBoxes and can therefore not be transferred to, e.g.,
acyclic TBoxes. Another limitation of our study is that is does not allow any conclusion about
unqualified use of quantifiers, which contributes to the good computational properties of logics
in the DL-Lite family. A study that takes these two aspects into consideration would be a natural
continuation; however, we consider it unlikely that it would yield significant further insights.

If we compare the results of this study with the previously discussed analyses of propositional
and modal logic [Lew79, BHSS06, HSS10] or with our studies for temporal and hybrid logic in
Sections 2.3 and 2.5, we can observe intractable fragments considerably closer to the bottom of
the lattice – even down to the I-clones in the case Q = {9,8}. This di↵erence is not too surprising,
given that TBoxes reintroduce a limited form of implication and conjunction, which induce
su�cient expressive power for encoding EXPTIME-hard problems.

A natural question for future work is whether the complexity landscape, including the trac-
tability border, changes if the use of general concept inclusions is restricted, for example, to
acyclic terminologies, i.e., TBoxes where axioms are cycle-free definitions A ⌘ C with A being
atomic. Theories so restricted are useful for establishing taxonomies, and concept satisfiability
forALC w.r.t. acyclic terminologies is still PSPACE-complete [BH91, Cal96]. Furthermore, a
large part of SNOMED CT is an acyclic EL terminology. Another natural direction for future
work is mentioned above: the investigation of fragments with unqualified quantifiers.

2.5 Hybrid Logic

Hybrid logics extend modal logic with the ability to refer explicitly to states in Kripke structures,
using nominals, the satisfaction operator @, and/or the downarrow binder #. This additional
expressive power is sometimes paid with unsatisfactory computational properties: while the basic
uni-modal language K extended with nominals and @ remains PSPACE-complete [ABM99], the
addition of only # to K leads to undecidability [ABM99].

In order to regain decidability, several syntactic and semantic restrictions of the hybrid
binder language have been considered. Ten Cate and Franceschet in [tF05] have reestablished
decidability by restricting the interactions between # and universal modal operators – such as

20

2.5 Hybrid Logic

⇤, its inverse, and its global counterpart – and, separately, by restricting attention to Kripke
structures of bounded width: depending on the severity of the single restrictions and on the
question whether they are combined, K# is NP-, EXPTIME-, NEXPTIME- or 2EXPTIME-complete.
Our previous work was concerned with di↵erent semantic restrictions for regaining decidability:
K# is NEXPTIME-complete over transitive and complete Kripke structures, and while K#,@ is
undecidable over transitive Kripke structures, it is still NEXPTIME-complete over complete Kripke
structures [MSSW10]. Over equivalence relations, even K extended with the more powerful
“jumping” binder 9 is decidable, namely N2EXPTIME-complete [MS09]. Furthermore, over
acyclic Kripke structures such as linear structures and transitive trees, # on its own does not add
any expressivity; extensions such as K#,@ have been shown to be decidable but nonelementary in
[FdS03, MSSW10]. Elementary fragments have been obtained by bounding the number of state
variables [SW07, Web09, BL10].

We aim for a more detailed view of the complexity landscape of hybrid binder languages that
exhibits a more fine-grained boundary between decidable and undecidable, between elementary
and nonelementary, and between tractable and intractable fragments of K#,@. We systematically
study fragments obtained by restrictions to the Boolean operators as in the previous sections,
combined with restrictions to the modal and hybrid operators, over several classes of Kripke
structures. The unrestricted hybrid language from which we start contains ^ and ⇤, as well as
nominals, @, and #. The classes of Kripke structures that we consider fall into two groups:

• Classes of structures that allow cycles: all structures, transitive structures, total structures
(where every state has at least one successor), and structures with equivalence relations
(ER structures for short)

• Classes of acyclic structures: general linear orders and the special case of the natural
numbers with the “less than” relation

One benefit that we expect from this systematic study is an insight into possible extensions
of specification languages (such as LTL) and knowledge representation languages (such as
DLs) with hybrid operators. Given the negative results listed above, there is no hope to gain
computationally well-behaved logics by just adding # without any restrictions. By considering
sub-Boolean fragments, we hope to lay the foundations for the future design of “lightweight”
hybrid extensions of LTL or DLs that stand a chance of being useful and well-behaved.

2.5.1 Basic Notions

We define the standard terminology of hybrid logic as in [At07]. Let PROP be a countable set
of propositional variables, NOM a countable set of nominals, SVAR a countable set of state
variables, and ATOM = PROP [NOM [SVAR. The formulas of hybrid (modal) logic HL are
defined by

' ::= a | � f (', . . . ,') | ^' | ⇤' | #x.' | @t ',

where a 2 ATOM, � f is a Boolean operator corresponding to the Boolean function f , and where
x 2 SVAR and t 2 NOM [SVAR.

HL formulas are interpreted on (hybrid) Kripke structures K = (W,R, ⌘), consisting of a set
of states W, a transition relation R ✓ W ⇥W, and a labeling function ⌘ : PROP [NOM ! 2W

satisfying |⌘(i)| = 1 for all i 2 NOM. In order to evaluate #-formulas, we use assignments
g : SVAR ! W similar to assignments in first-order logic. Given an assignment g, a state variable
x and a state w, the x-variant gx

w of g is the assignment satisfying gx
w(x) = w and gx

w(x0) = g(x0)

21

Chapter 2 Complexity of Sub-Boolean Fragments

for all x , x0. For any a 2 ATOM, let [⌘, g](a) = {g(a)} if a 2 SVAR, and [⌘, g](a) = ⌘(a)
otherwise. The satisfaction relation for HL-formulas is defined in Figure 3.

K, g,w |= a i↵ w 2 [⌘, g](a) a 2 ATOM

K, g,w |= � f ('1, . . . ,'n) i↵ f (t1, . . . , tn) = 1, where ti = 1 if K, g,w |= 'i, and ti = 0 otherwise
K, g,w |= ^' i↵ K, g,w0 |= ' for some w0 2 W with wRw0

K, g,w |= ⇤' i↵ K, g,w0 |= ' for all w0 2 W with wRw0

K, g,w |= @t ' i↵ K, g,w0 |= ' for w0 2 [⌘, g](t)
K, g,w |= #x.' i↵ K, gx

w,w |= '

Figure 3: Satisfaction relation for HL-formulas

A hybrid formula ' is said to be satisfiable if K, g,w |= ' for some Kripke structure K =
(W,R, ⌘), some state w 2 W, and some assignment g : SVAR ! W.

The operator @t shifts evaluation to the state named by t 2 NOM [SVAR. The downarrow
binder #x. binds the state variable x to the current state. The symbols @x, #x. are called hybrid
operators whereas the symbols ^ and ⇤ are called modal operators.

Fragments of HL are defined as follows. Let B be a finite set of Boolean functions and H a set
of hybrid and modal operators. We define HLH(B) to be the set of HL-formulas using only hybrid
and modal operators from H and Boolean operators corresponding to functions from B.

A frame F is a pair (W,R), where W is a set of states and R ✓ W ⇥W a transition relation. We
are interested in the following properties of a frame: (W,R) is called

transitive if uRv ^ vRw! uRw for all u, v,w 2 W
symmetric if uRv! vRu for all u, v 2 W
reflexive if uRu for all u 2 W
total if for all u 2 W there is some v 2 W with uRv
trichotomous if for all u, v 2 W, either uRv or u = v or vRu

We will study the following frame classes.

all all frames
trans all transitive frames
total all total frames
ER all transitive, symmetric, and reflexive frames
lin all transitive, irreflexive, and trichotomous frames
Nat the singleton frame class {(N, <)} ✓ lin

We say that the Kripke structure K = (W,R, ⌘) is based on the frame (W,R).
We study the satisfiability problem for the fragments HLH(B) over frame classes F, which is

defined as follows.

HLH(B)-F-SAT. Given a HLH(B)-formula ', is there a Kripke structure K = (W,R, ⌘) based on a
frame from F, an assignment g : SVAR ! W, and a state w 2 W such that K, g,w |= ' ?

The following theorem summarizes the results for hybrid binder languages with unrestricted
Boolean operators ^,_,¬ that are known from the literature. Since ⇤' ⌘ ¬^¬', the ⇤-operator
is implicitly present in all fragments containing ^ and negation.

22

2.5 Hybrid Logic

Theorem 7. [ABM99, ABM00, FdS03, MS09, MSSW10]

1. HL^,#(^,_,¬)-all-SAT and HL^,#,@(^,_,¬)-all-SAT are CORE-complete.

2. HL^,#(^,_,¬)-trans-SAT is NEXPTIME-complete.

3. HL^,#,@(^,_,¬)-trans-SAT is CORE-complete.

4. HL^,#(^,_,¬)-ER-SAT is NEXPTIME-complete.

5. HL^,#,@(^,_,¬)-ER-SAT is NEXPTIME-complete.

6. HL^,#,@(^,_,¬)-lin-SAT and HL^,#,@(^,_,¬)-Nat-SAT are decidable and nonelementary.

7. HL^,#(^,_,¬)-F-SAT, HL^,@(^,_,¬)-F-SAT, and HL^(^,_,¬)-F-SAT with F 2 {lin,Nat}
are NP-complete.

These results provide (not necessarily tight) upper bounds for the complexity of the problems
we will study. Lower bounds for the fragments with at least one modal operator follow from
Theorem 3.

Our study is divided into two parts. The first part includes frame classes that allow cycles: all,
transitive, total and ER frames. The second part includes the remaining two frame classes from
the list above, which are acyclic. One reason for this separation is the simple observation that the
expressive power of # di↵ers dramatically over the two groups of frame classes: over acyclic
frame classes, the addition of # typically makes the basic modal logic K undecidable or at least
very complex because states where a states variables are bound can be revisited. This is not
possible without cycles, and K with and without # are in fact equally expressive over acyclic
frame classes, where interactions between # and @ are required to add expressive power (and
increase the complexity).

Another reason for the separation is the fact that, over frame classes that allow cycles, we can
sometimes focus on the singleton reflexive frame when proving upper bounds. This obviously
fails for acyclic frame classes, and di↵erent approaches are required.

To provide a more fine-grained analysis of tractable fragments in this section, we will additionally
refer to the complexity class NC1 and use the notion of constant-depth reductions cd for proving
lower bounds, which is an appropriate refinement of logspace and polytime reductions. These
notions are defined, for example, in [Vol99]. It is known that NC1 ✓ L.

2.5.2 Results for Kripke Structures with Cycles

We study the problems HLH(B)-F-SAT for the frame classes F 2 {all, trans, total,ER}, sets H of
hybrid and modal operators with {^, #} ✓ H ✓ {^,⇤, #,@}, and all sets B of Boolean operators
corresponding to clones in Post’s lattice. The HL-fragments in our study are more numerous and
more diverse than the LTL- or ALC-fragments from the previous sections since we combine
four subsets of modal/hybrid operators of very di↵erent expressivity with four frame classes (and
an infinite number of sets of Boolean operators). For this reason, the complexity landscape turns
out to be quite heterogeneous. Our results disclose the tractability and decidability border up to
certain combinations of modal/hybrid and Boolean operators that have withstood complexity
analysis, and we are able to isolate particular sources of (un)decidability or (in)tractability:

• Over all frame classes, the only source of undecidability (if any) is the presence of either
the Boolean operator a ^ ¬b (clone S1) or all self-dual Boolean operators (clone D).

23

Chapter 2 Complexity of Sub-Boolean Fragments

F H | B I2 to R1 I0, I N2,N V0,V E0,E L3, L0, L S11 to M D,S1 to BF
ER ^# trivial 2 NC1 2 NC1 2 NC1 2 NC1 ? NC1-c NEXP-c

^⇤#
^#@ L-c
^⇤#@

total ^# trivial 2 NC1 2 NC1 2 NC1 2 NC1 ? NC1-c CORE-c
^⇤#
^#@ L-c
^⇤#@

trans ^# trivial 2 NC1 2 NC1 2 NC1 2 NC1 ? NC1-c NEXP-c
^⇤# 2 L ? ? ?
^#@ 2 NC1 L-c 2 NC1 2 NC1 NC1-c CORE-c
^⇤#@ L-c L-h NL-h PS-h

all ^# trivial 2 NC1 2 NC1 2 NC1 2 NC1 ? NC1-c CORE-c
^⇤# 2 L ? CONP-h PS-h
^#@ 2 NC1 L-c 2 NC1 2 NC1 NC1-c
^⇤#@ L-c L-h CONP-h PS-h

Legend PS PSPACE h hardness
NEXP NEXPTIME c completeness

Table 4: Results for HLH(B)-F-SAT for frame classes F that allow cycles

• Over ER frames, all fragments are decidable, and the tractability border is the same as the
decidability border in the previous bullet point. In particular, there is a strong dichotomy
between NEXPTIME-complete fragments and fragments in L (most of which are even in
NC1).

• The picture over total frames is almost the same as over ER frames, with “NEXPTIME-
complete” replaced by “CORE-complete”.

• Over the other two frame classes (all frames, transitive frames), we obtain tractable
fragments by allowing only negation and/or constants as Boolean operators, or disallowing
⇤. The combination of ⇤ with conjunction is a particular source of intractability over all
frames, which is already due to results for Hemaspaandra’s Poor Man’s Logic [Hem01].
Over transitive frames, we can only conclude that ⇤ together with @ and all monotone
operators lead to intractability (because this combination is strong enough to encode QBF
validity). Over these two frame classes too, all fragments found tractable are in L or even
in NC1.

For the fragments that are in NC1, our original work [MMS+10] even di↵erentiates between
NC1-completeness and membership in smaller classes of circuit complexity, but we do not make
this distinction here, in order to simplify the presentation.

As in the case of LTL-SAT, we have not been able to classify the cases of Boolean operators
from L3, L0, L based on the binary xor operator, with the same rationale for these cases being
particularly di�cult.

Table 4 and Figures 15–18 (Appendix C) give an overview of our results by frame classes.
Our most interesting result is L-hardness for HL^,⇤,#,@(I2)-F-SAT, i.e., the fragments containing

all four hybrid and modal operators but only the constant 0 as a Boolean operator, over any of the

24

2.5 Hybrid Logic

F H ⇢ {⇤, #,@} H = {⇤, #,@} {^} ✓ H ⇢ {^,⇤, #,@} H = {^,⇤, #,@}
lin NC1 NC1 NP nonelem.
Nat NC1 L NP PSPACE

Table 5: Results for HLH(M)-F-SAT for acyclic frame classes F. “Nonelem.” stands for “decid-
able and nonelementary”; all other entries denote completeness.

four frame classes. While this result confirms the general observation that fragments allowing for
interactions of ⇤ and # tend to be harder than those without ⇤, it is surprising to observe that this
interaction already manifests itself in the absence of almost all Boolean operators. Given this
lack of expressivity, our proof of the lower bound is far from trivial and is based on an intriguing
way to encode of the L-complete problem “order between vertices”.

Our technically most involved result is L-membership for HL^,⇤,#,@(N)-F-SAT, i.e., the frag-
ments from above enriched with negation (and hence the constant 1). It relies on two central
observations: first, any formula in this fragment can be equivalently written as a sequence of
hybrid and modal operators followed by at most one negation operator and one atom. Second,
if the given formula ' ends in ¬x with x being a state variable, it needs to be checked whether,
intuitively put, the “substring” of ' up to ¬x is semantically “forbidden” to reach the state to
which x is bound via #x. For this purpose, certain compatibility conditions between this substring
and the substring leading to #x need to be checked, which involves comparing single positions
and computing scopes of # operators.

2.5.3 Results for Acyclic Kripke Structures

The main open question from the previous subsection is the one for tight upper bounds for
monotone (aka positive) fragments including the ⇤-operator. It is di�cult to make a reliable
conjecture about the open cases: on the one hand, monotone fragments of propositional logic are
simpler than the full Boolean case [Lew79], and the same can be said about LTL satisfiability
(Section 2.3.2). On the other hand, they are as hard as the full Boolean case for modal logic
[BHSS06, HSS10], LTL model-checking (Section 2.3.3), and the four standard decision problems
studied for ALC in Section 2.4.2. We do not know whether the monotone fragments of our
hybrid languages belong to the first or the second group of logics.

Monotone fragments of propositional logic are interesting because many real-life problems
from various application areas can be formulated, for example, as equivalence tests between
monotone formulas [Hag08].

In this subsection, we classify the computational complexity of satisfiability for fragments of
HL^,⇤,#,@(M) over the frame classes lin (linear orders) and Nat (the natural numbers). We thus
study 32 logics, determined by arbitrary combinations of the two frame classes and subsets of
{^,⇤, #,@}. We find that HL^,⇤,#,@(M), which uses all four hybrid/modal operators, is the only
logic that retains the nonelementary complexity from its “full Boolean” counterpart over lin.
Over Nat, it is PSPACE-complete. For all smaller sets of hybrid/modal operators that contain
at least the ^-operator, we show NP-completeness over both frame classes. Over lin we obtain
NC1-completeness for all remaining fragments; over Nat they have the same complexity except
for {⇤, #,@}, which is L-complete. Table 5 and Figure 4 give an overview of these results.

The technique used to establish the nonelementary lower bound reveals the ability of the four
hybrid/modal operators to distinguish between dense and discrete linear orders and deserves

25

Chapter 2 Complexity of Sub-Boolean Fragments

^ ⇤ # @

^⇤ ^# ^@ ⇤# ⇤@ #@

^⇤# ^⇤@ ^#@ ⇤#@

^⇤#@

lin: decidable, nonelementary
Nat: PSPACE-complete

NP-complete

lin: NC1-complete
Nat: L-complete

NC1-complete

Figure 4: Results for HLH(M)-F-SAT for acyclic frame classes F = lin,Nat

a brief explanation. We use a reduction from satisfiability for first-order logic (FOL) with
only one unary predicate P and one binary predicate < which is interpreted as the natural “less
than” relation over the natural numbers. This problem is nonelementary and decidable due to
Stockmeyer’s results [Sto74]. Although our monotone fragment does not have negation, we can
encode P and ¬P enforcing alternating sequences of dense and discrete intervals in a linear frame.
A dense interval is a section of the linear order of states that is isomorphic to the closed interval
[0, 1] over the rational numbers; a discrete interval is a sequence of a finite number of states. The
distinction of “dense” and “discrete” relies on enforcing or forbidding the existence of states
between two given states, which requires all four hybrid/modal operators. This technique fails
over Nat, whose underlying linear order is discrete. Over Nat we can embed the same hybrid
logic into the above first-order language without the unary predicate, which is PSPACE-complete
[FR79]. The corresponding lower bound is via a reduction from QBF validity.

Surprisingly, this di↵erence in complexity between the two frame classes is reversed if we
remove only ^ from the allowed hybrid/modal operators: over lin, we can observe that all
formulas of the form ⇤↵ are easily satisfied in a state without successor, which is the essential
insight needed to reduce HL⇤,#,@(M)-Nat-SAT to satisfiability of monotone propositional formulas,
which is NC1-complete [Sch07]. Over Nat, this idea fails because every state has a successor.
However, we can find a decision procedure that runs in logarithmic space for HL⇤,#,@(M) and in
NC1 for all smaller fragments.

In addition to the complexity results, we have shown that the 30 of the 32 logics that do not
contain all four modal/hybrid operators have a quasi-quadratic size model property: over Nat,
every satisfiable formula ' is satisfiable in a Kripke structure based on (N, <) that has a finite
number of states where nominals and state variables are true, and where the distance between
two consecutive such states is bounded by the modal depth of '. Over lin, the finite interval
between two such “nominal states” may be prefixed by at most one isomorphic copy of the
dense open interval (0, 1) over the rational numbers. Although models of this kind are generally
infinite, they can be represented by a data structure of quadratic size describing the prefix up
to the last nominal state. It is straightforward to extend known model-checking algorithms for
hybrid logic [Fd06] to deal with these symbolic representations without a↵ecting the complexity.
This way we obtain a guess-and-check decision procedure for satisfiability, which entails not

26

2.5 Hybrid Logic

only an alternative argument for NP-membership, but also a new NP-membership result for the
same fragments over the frame class {(Q, <)}.

The question remains whether the PSPACE-complete largest fragment over (N, <) admits
some quasi-polynomial size model property. Furthermore, this study can be extended in several
possible ways: by allowing negation on atomic propositions, by considering frame classes that
consist only of dense frames, such as (Q, <), or by considering arbitrary sets of Boolean operators
as in Section 2.5.2. For atomic negation, it follows quite easily that the largest fragment is of
nonelementary complexity over (N, <), too, and that all fragments except H = {⇤, #,@} are NP-
complete. However, our proof of the quasi-quadratic size model property does not immediately
go through in the presence of negated atomic propositions. Over (Q, <), we conjecture that all
fragments, except possibly for the largest one, have the same complexity and model properties as
over (N, <).

2.5.4 Lessons learned

Our study of hybrid languages exhibits a number of fragments of tractable or intermediate
complexity, which raises hopes that restricting the interaction of # with other operators may
indeed lead to useful extensions of knowledge representation and specification languages. For
example, our results in Table 4 make it seem likely that extensions of lightweight description
logics such as EL with the # operator have reasonable computational properties. However, this
conjecture needs to be tested carefully because, in DLs, one is usually interested in satisfiability or
subsumption with respect to a set of axioms, and it remains to investigate whether the interaction
of those with # will lead to a worse computational behavior.

As a second example, our results in Table 5 show that the monotone fragment of LTLF,G

extended with both # and @ is not harder than plain LTLF,G,X. This fragment can be considered
as a “lightweight” LTL fragment that imposes less restrictions than the successful lightweight
description logic EL because it allows disjunctions and G. It is therefore conceivable that this
fragment turns out to be a useful specification language. It still remains to be seen, however,
whether this language is computationally well-behaved in terms of model checking too. Since
model checking with hybrid binders is not as computationally expensive as satisfiability [Fd06],
there is hope for a positive answer.

As an ambitious goal, it would be interesting to put this study on an even more systematic
footing by systematizing all possible modal/hybrid operators and all possible frame classes.
Similarly to the remarks at the end of Section 2.3, this is likely to be an overly ambitious
research program. A quite substantial step into this more systematic direction has been taken
by Hemaspaandra and Schnoor, who classified the satisfiability problem of the (“full Boolean”)
basic modal logic K over frame classes that can be defined by universal first-order Horn formulas
into NP-complete and PSPACE-hard in [HS08].

27

Chapter 3

Module Extraction and Modularization

3.1 Introduction

Ontologies are logical theories that specify a vocabulary for a domain of interest and describe
the relationships between the terms in that vocabulary. They have manifold applications in areas
such as knowledge representation, knowledge management, semantic databases, the semantic
web, biomedical informatics, the life sciences, linguistics, the geosciences. The needs of these
applications are served by a variety of ontology languages. Description logics (DLs) [BCM+03],
which we have already introduced in the previous chapters, comprise a widely used family of
ontology languages and underlie the W3C Web Ontology Language OWL.

DLs are designed to provide a good trade-o↵ between expressive power and computational
complexity. Expressive DLs, such as ALC and SROIQ, are designed to maximize expres-
sive power while still retaining decidability of standard reasoning tasks such as satisfiabil-
ity and subsumption. Their computational complexity is usually high: ALC is EXPTIME-
complete [Sch94, DM00] and SROIQ is N2EXPTIME-complete [Kaz08]. Despite the high
complexity, reasoning with these DLs can be feasible in practice thanks to highly optimized
reasoning systems [HM01, TH06, BLS06, SPC+07, MSH09].

The success of DLs as ontology languages has been significantly determined by the availability
of reasoning services within sophisticated ontology development systems such as Protégé,1

Swoop [KPS+06], and the TopBraid composer. The traditional standard reasoning services for
DLs are satisfiability and subsumption (studied in Section 2.4), asking whether all terms in
the specified vocabulary are free of contradictions, or making the is-a hierarchy between the
terms of the vocabulary explicit, which is useful for browsing and inspection. In recent years,
however, the need for further reasoning services has arisen. Existing ontologies are more often
considerably large: SNOMED CT [Spa00] has ⇡400,000 logical axioms; the National Cancer
Institute’s (NCI) Thesaurus [GFH+03] has ⇡110,000 logical axioms. These large ontologies pose
serious challenges not only to the best optimized reasoners, but to all constituents of the ontology
development process, such as navigation, editing, comprehension, and debugging. In particular,
the following application scenarios are a↵ected by the problems with handling large ontologies:

Scenario 1: Ontology Reuse. When engineers develop a new ontology, they often want to
import knowledge that is already represented in existing ontologies. If those ontologies are
large, it is not feasible to import them on the whole, for the reasons just stated. It is more
desirable to import a subset of each external ontology that is self-contained with respect to
the respective subdomain of interest, and there are several ways to define self-containment.
Reasoning services are available to check whether a subset of an ontology is self-contained
in this sense, and to extract such subsets.

1http://protege.stanford.edu

29

http://protege.stanford.edu

Chapter 3 Module Extraction and Modularization

Scenario 2: Collaborative Ontology Development. When a team of developers maintains a
large ontology, each expert wants to focus on a part of the ontology that corresponds to her
subdomain of expertise (identified by a subset of its vocabulary) and make modifications
under the assumption that they only touch this part. In particular, they want to make sure
that their modifications have no impact on other, intuitively unrelated parts of the ontology.
Since ontologies are complex logical theories, this is not automatically guaranteed and it
is typically very di�cult to check for such undesired consequences. Reasoning services
are available to verify that unrelated parts of the ontology (again identified by parts of its
vocabulary) have not changed, and signal a potential problem if this is not the case.

Scenario 3: Ontology comprehension. When an ontology developer wants to know whether
the modeling in their large ontology corresponds to their understanding of the domain of
interest, or when an ontology user wants to understand the topics of an ontology and their
logical interrelations, then it is not useful to inspect a monolithic ontology axiom by axiom.
The situation is similar to the task of understanding a large software project: instead of
inspecting each single line of code, users and developers look at the dependencies between
self-contained parts of the code, such as classes, packages, and modules. Analogously,
the ontology user and developer can benefit from a partition of the ontology into logically
self-contained parts that identify an ontology’s main topics and represent the logical
interactions within a topic as well as between topics.

To serve these application scenarios, additional reasoning services are needed: module extraction
and modularization. Module extraction is concerned with determining a subset (module) of an
ontology that “says the same” about a certain vocabulary of interest as the whole ontology. This
task can be generalized to the question whether two arbitrary ontologies that are not necessarily
in the subset relation “say the same” about a certain vocabulary, which is relevant, for example,
for ontology versioning. Two ontologies with a positive answer to this question are called
indistinguishable or inseparable (with respect to the corresponding vocabulary). In all these
cases, there are several ways to define what “says the same” means, and each of them leads to a
dedicated notion of a module or inseparability.

Modularization is concerned with decomposing an ontology into parts that represent its main
topics – again represented by subsets of its vocabulary – and satisfy similarly strong properties
regarding self-containment as modules. While it is straightforward to partition an ontology’s
vocabulary, it is not obvious how to obtain a corresponding partition of the axioms in the
ontology into modules in the above sense. In particular, modules for disjoint subsets of the
vocabulary typically overlap. Therefore, modularization should aim at identifying a partition
whose constituents represent modules in a well-defined way.

From the above considerations, it becomes clear that modules play an important role as proxies
of an ontology that can be used more conveniently because they are smaller and can thus be
loaded, inspected, and reasoned over more e�ciently. In this sense, this chapter on modularity
contributes to the overall aim of the thesis: to identify ways to alleviate reasoning in expressive
modal-like logics. In contrast to the previous chapter, where we systematically searched for
restrictions to the logic that allow for e�cient decision procedures, this chapter is devoted to
studying ways of reducing the size of a theory in order to speed up the decision problems of the
underlying logic, which are typically highly intractable, as in the case of OWL (SROIQ). The
strong logical guarantees required in Scenarios 1–3 and the respective module notions will be the
central subject of study in this chapter.

30

3.1 Introduction

The general topic of ontology modules and modularity is becoming increasingly important
for the engineering of large-scale ontologies. In contrast to software development, where
modularity is a well-understood and widely used paradigm, modularity of ontologies has only
recently developed into an active field of research [CPSK06, KLWW08, CHKS08, JCS+08,
Sun08, SPS09, CHKS10, ACH12, TP12], studying questions such as: How can a module of an
ontology be defined? When is a module self-contained with respect to a certain vocabulary?
How can this be verified algorithmically? How can a module for a given vocabulary be extracted
from a large ontology? Can ontology modules help understand, develop, and e�ciently reason
over a large ontology written in an expressive DL?

The foundation for the strong logical guarantees required in the scenarios above is provided by
conservative extensions (CEs) and the closely related notion of inseparability. The requirement
that a subset O0 of an ontology O be self-contained regarding a vocabulary (set of concept and
role names) ⌃ can be formalized by the requirement that O be a conservative extension (CE)
of O0 with respect to the symbols in ⌃. As mentioned above, it is sometimes more convenient
to replace CEs with inseparability, which does not require that the compared ontologies are in
the subset relation. Intuitively, ontologies O and O0 are ⌃-inseparable if the ⌃-part of O and O0
cannot be distinguished. In Scenario 2 it is important to ensure that the original ontology O is
sig(O) \ ⌃-inseparable from the new ontology O0, where sig(O) is the overall vocabulary of O
and ⌃ is the vocabulary corresponding to the respective domain expert’s topic.

CEs have a long tradition in mathematical logic and are used in software specification to
express that one specification refines another [TM87, BP90, Mai97] and to support modular
specifications [DGS93, Mos04]. It was not until 2006 that the importance of CEs and insep-
arability for modularity was identified by Ghilardi et al. [GLW06]. In the years to follow, a
whole host of research was dedicated to understanding and characterizing CEs of DL ontolo-
gies [KLWW09, LW10, KWZ10], to analyzing the computational properties of deciding CEs
[LWW07, KLWW08, KPS+09, KWZ10, KKL+11], and to defining notions of modules based
on CEs [KLWW08, CHKS08, KWZ10]. There are several variants of CEs, the most classical
being the deductive and model-theoretic ones, see [KLWW09] and Section 3.2.2.

Unfortunately, CEs and inseparability have poor computational properties, which largely forbid
their use in practical applications: the computational complexity of deciding deductive CEs is
typically by an exponential higher than standard satisfiability, and it is undecidable for modest
extensions of the basic DL ALC [GLW06, LWW07]. Model-theoretic CEs are undecidable
already for the lightweight DL EL [LW10], with the notable exception that, when TBoxes are
restricted to being acyclic, model-CEs are decidable in polynomial time for EL and ⇧p

2-complete
forALC [KLWW08]. These predominantly negative results imply that, for DLs of medium or
high expressivity, there is no hope to define a notion of a module based on dCEs if one expects
to be able to extract minimal modules e↵ectively and e�ciently. For this reason, the notion of
locality was introduced [CHKS08], which yields a su�cient condition for being a CE and for
inseparability, and whose computational complexity is not higher than standard satisfiability
(for the semantic version of locality) or even in polynomial time (for the syntactic version).
Locality-based modules are thus a “safe approximation” of CE-based modules in the sense that
they always contain the minimal CE-based module but are typically a bit larger.

Nowadays, locality-based modules (LBMs) play an important role in practical applications.
They have been implemented, to a large part by the author of this thesis, in the OWL API2 (a
powerful Java interface for manipulating ontologies that underlies the ontology editor Protégé)

2http://owlapi.sourceforge.net

31

http://owlapi.sourceforge.net

Chapter 3 Module Extraction and Modularization

and in a web service for module extraction.3 According to the tra�c on various mailing lists
related to OWL and Protégé, ontology engineers make use of LBMs. Furthermore, some
principled approaches to incremental and modular reasoning are based on LBMs [CHKS10,
ACH12, TP12], and some of the above questions have been answered. However, before we
began the work reported in this chapter, locality-based modules had just been invented, and the
following questions were yet to be answered.

1. Do the theoretical properties of LBMs justify their suitability in the scenarios above?
For example, are they robust under imports – that is, is the property of being a module
una↵ected when importing a module of an ontology into an arbitrary other ontology?

2. If so, what is a systematic way to employ LBMs in the three scenarios above?

3. How do LBMs compare with other module notions in terms of size, extraction time, and
usefulness? In particular, what is the typical di↵erence in size between an LBM and the
corresponding minimal CE-based module?

4. How does a user or engineer specify the vocabulary of interest? This is a nontrivial task
because single topics (such as “diseases” or “anatomy” in a medical ontology) do not
correspond to obvious sets of concept and role names.

5. How to determine the modular structure of an ontology, based on logically self-contained
modules, and thus reveal the logical interactions within the ontology?

6. How to make use of this modular structure in order to present, understand, and (collabora-
tively) maintain an ontology, and to optimize reasoning?

In this chapter, we report on several theoretical and empirical studies aimed at making LBMs and
other logic-based module notions usable for the reasoning services and applications discussed
above. The chapter is divided into two parts: Section 3.2 studies LBMs, and Section 3.3
introduces a new modularization technique called Atomic Decomposition.

Our studies of LBMs deal with Questions 1, 2, and 3: we begin with devising a methodology
that explicates the use of LBMs in Scenario 1, proving that LBMs have the required strong
logical properties (Section 3.2.3). We then investigate and confirm robustness properties of
LBMs relevant for all three scenarios (Section 3.2.4). We finish this part with a summary of
empirical studies of LBMs, documenting the usefulness of LBMs and the applicability of our
methodology to real-life import/reuse scenarios (Section 3.2.5).

Our work on Atomic Decomposition (AD) deals with Questions 5 and 6: we begin with
providing empirical evidence that the typical number of modules of an ontology is indeed
prohibitively large, dashing hopes to compute the modular structure from all modules (Section
3.3.2). We then introduce AD as a principled approach to representing all modules in a partition
of the ontology’s axioms, whose computation requires only a linear number of module extractions.
This approach is universal in the sense that it is applicable to all module notions that provide
certain logical guarantees (Section 3.3.3). We show how to use AD to speed up the extraction of
a single module (Section 3.3.4), and provide empirical evidence that AD behaves well in practice,
applying it to a large corpus of existing ontologies and reporting on the shape of the resulting
decompositions (Section 3.3.5). Although we cannot answer Question 4 fully yet, we will argue
that AD bears the potential to help identify of a vocabulary of interest.

3http://mowl-power.cs.man.ac.uk:8080/modularity

32

http://mowl-power.cs.man.ac.uk:8080/modularity

3.2 Logic-Based Module Extraction

It remains to observe that our work focuses on a-posteriori modularity and modularization:
applying module extraction and modularization techniques to existing ontologies. In contrast,
a-priori approaches aim at imposing a modular structure on an ontology to foster its modular
development. These approaches are typically based on heuristics without logical guarantees (such
as the distribution over thematic files), or on extensions of DLs designed to specify ontology
modules and syntactic links between them [BVSH09, ST09, CPS09]. However, AD seems to
have the potential to become an a-priori modularization approach as well: the modular structure
represented in the AD of an ontology at some point of its development process may turn out to
be useful for its further modular development.

Bibliographic notes. The methodology for using LBMs discussed in Section 3.2.3 appeared
in [JCS+08]. Our investigation of robustness properties (Section 3.2.4) is from [SSZ09]. The
empirical studies reported in Section 3.2.5 are published in [JCS+08, SSZ09, DKP+13]. The
foundations of atomic decomposition (Section 3.3.3) are introduced in [DPSS11]; the preparatory
empirical study of module numbers (Section 3.3.2) is from [PS10]. Fast module extraction via
AD (Section 3.3.4) and the study of AD and fast module extraction in practice (Section 3.3.5)
are described in [DGK+11].

3.2 Logic-Based Module Extraction

3.2.1 A Reuse Scenario

We sketch a particular use case for Scenario 1, ontology reuse, in a real-world application –
namely the development of an ontology, called JRAO, to describe a kind of arthritis called
JRA (Juvenile Rheumatoid Arthritis) within the Health-e-Child project.4 This project aimed at
creating a repository of ontologies that can be used by clinicians in various applications.

The specific kinds of JRA to be modeled in JRAO are distinguished by several factors such as
the joints a↵ected, incurred responses (e.g., fever), and the treatment required. Well-established
biomedical ontologies such as NCI (mentioned in Chapter 1) and GALEN5 serve as reference
ontologies: they contain information relevant to JRA, such as detailed descriptions of the human
joints, diseases, symptoms. Figure 5 shows a fragment of NCI that defines JRA, together with
our reuse scenario, where C1, . . . ,C7 refer to the kinds of JRA to be defined in JRAO.

The JRAO developers want to reuse knowledge from NCI and GALEN for three reasons: (a)
they want to save time through reusing existing ontologies rather than writing their own; (b) they
value knowledge that is commonly accepted by the community and used in similar applications;
(c) they are not experts in all areas covered by NCI and GALEN. In doing so, they need to ensure
that JRAO correctly reflects the reused knowledge but does not grow too much. An appropriate
reuse methodology should therefore provide two guarantees.

(1) The use of certain concepts from NCI and GALEN in JRAO should not change their
original meaning.

(2) The JRAO developers want to import only those axioms from NCI and GALEN that are
relevant for JRAO. By importing only fragments of NCI and GALEN, they should not lose
important information.

4http://www.health-e-child.org
5http://www.co-ode.org/galen

33

http://www.health-e-child.org
http://www.co-ode.org/galen

Chapter 3 Module Extraction and Modularization

NCI

JRAO GALEN

Arthropathy

Arthritis Autoimmune Disease Rheumatologic Disorder

Atrophic Arthritis Polyarthritis Rheumatoid Arthritis

Juvenile Chronic Polyarthritis Juvenile Rheumatoid Arthritis

Arthritis diseases

C1

. . .
C7

Joints

Drugs

affects

isTreatedBy

Figure 5: Constructing the ontology JRAO reusing fragments of GALEN and NCI

Our scenario has two main points in common with other ontology design scenarios: the ontology
developer wants to reuse knowledge without changing it, and import only the relevant parts of
an existing ontology. To support these scenarios whilst providing the two above guarantees, a
logic-based approach to reuse is required. Current tools that support reuse, however, do not
implement a logic-based solution and thus do not provide the above guarantees – and neither do
existing guidelines and “best practices” for ontology design.

3.2.2 Basic Notions

We assume familiarity with DLs up to SROIQ [BCM+03, HKS06a], and we will use L to
denote any such DL. We set SROIQ as an “upper bound” because it underlies OWL and
because the original definition of locality-based modules for SHIQ in [CHKS08] can easily be
extended to logics up to SROIQ. We restrict attention to the terminological parts of ontologies,
i.e., to TBoxes. The main reason is that we are concerned with module notions that preserve
terminological knowledge. Nevertheless, these module notions are applicable to ontologies with
ABoxes too.

A signature ⌃ is a set of terms (concept and role names). It specifies a topic of interest:
axioms consisting solely of terms from ⌃ can be thought of as “on-topic”, and all other axioms
as “o↵-topic”. Any concept or role name, TBox, axiom, etc. that uses only terms from ⌃ is called
a ⌃-concept, ⌃-role, etc. Given any such object X, we call the set of terms in X the signature of
X and denote it with Sig(X).

Given an interpretation I, we denote its restriction to the terms in a signature ⌃ with I|⌃. Two
interpretations I and J are said to coincide on a signature ⌃, in symbols I|⌃ = J|⌃, if �I = �J

and XI = XJ for all X 2 ⌃.

34

3.2 Logic-Based Module Extraction

Conservative extensions, safety, and modules. Guarantee (1) above requires a preservation
of knowledge (“should not change their meaning”), which is best captured by the notion of
a conservative extension (CE) [GLW06, LWW07]. Depending on the degree of knowledge
preservation required, CEs come in several variants. We focus on the following basic ones.

Definition 8. Let L be a DL, T1 ✓ T be TBoxes, and ⌃ a signature.

1. T is a deductive ⌃-conservative extension (⌃-dCE) of T1 if, for every axiom ↵ over L with
Sig(↵) ✓ ⌃, we have T |= ↵ i↵ T1 |= ↵.

2. T is a deductive conservative extension (dCE) of T1 if T is a Sig(T1)-dCE of T1.

3. T is a model-theoretic ⌃-cons. extension (⌃-mCE) of T1 if {I|⌃ | I |= T1} = {I|⌃ | I |= T }.
4. T is a model-theoretic conservative extension (dCE) of T1 if T is a Sig(T1)-mCE of T1.

It is clear that T being a (⌃-)mCE ofM implies that T is a (⌃-)dCE ofM.
Definition 8 (1) applies to our example as follows: T1 is the ontology to be reused (NCI), T is

the union of JRAO and NCI, and ⌃ represents the terms reused from NCI. Item (2) captures the
case where we want to reuse all terms from NCI. Items (3) and (4) provide su�cient conditions.

Since the ontology to be reused (NCI) is usually under development beyond the control of
the JRAO developers, it is convenient to make the axioms in NCI available on demand via a
reference such that the developers of JRAO need not commit to a particular version of NCI. The
notion of safety [CHKS08] is a generalization of dCE that abstracts away from the ontology to
be reused and focuses on the reused terms.

Definition 9. Let T be a TBox and ⌃ a signature. T is safe for ⌃ if, for every TBox T 0 with
Sig(T) \ Sig(T 0) ✓ ⌃, we have that T [T 0 is a ⌃-dCE of T 0.

Guarantee (2) requires a preservation of knowledge (“should not lose important information”)
that can be captured by the notion of a module [CHKS08].

Definition 10. Let T 01 ✓ T 0 be TBoxes and ⌃ a signature. T 01 is a ⌃-module in T 0 if, for every
TBox T with Sig(T) \ Sig(T 0) ✓ ⌃, we have that T [T 0 is a Sig(T)-dCE of T [T 01.

The notions of safety and module are related as follows:

Proposition 11. [CHKS08] If T 0 \ T 01 is safe for ⌃ [Sig(T 01), then T 01 is a ⌃-module in T 0.

Locality. The decision problems associated with dCEs, safety and modules are undecidable
already for the fragmentALCQIO of SROIQ [LWW07], and mCEs are undecidable already for
the lightweight DL EL [LW10]. Locality has been proposed as a decidable su�cient condition
for safety: if all axioms in T satisfy the locality conditions, then T is safe, but the converse does
not necessarily hold [CHKS08]. By means of Proposition 11, locality can be used for extracting
modules too. The main reasons for the success of locality are the facts that (a) locality is a
property of a single axioms and does not depend on the other axioms in the ontology, and (b) the
syntactic variant can be checked in polynomial time.

The main intuition underlying locality is to check, given a signature ⌃, whether the axiom in
question can be satisfied independently of the interpretation of the ⌃-terms, but in a restricted
way: by interpreting all non-⌃ terms either as the empty set (;-locality) or as the full domain6

6Or, in the case of roles, the set of all pairs of domain individuals.

35

Chapter 3 Module Extraction and Modularization

(�-locality). This intuition leads to two dual variants of locality, which reflect distinct ways of
reusing terms, namely generalization and refinement. The following definition introduces these
two variants of semantic locality [CHKS08].

Definition 12. An axiom ↵ over a logic L is called ;-local (�-local) w.r.t. signature ⌃ if, for
each interpretation I, there exists an interpretation J such that I|⌃ = J|⌃, J |= ↵, and for
each X 2 Sig(↵) \ ⌃, XJ = ; (for each C 2 Sig(↵) \ ⌃, CJ = � and for each R 2 Sig(↵) \ ⌃,
RJ = � ⇥ �).

It has been shown in [CHKS08] that, if T1 ✓ T and all axioms in T \ T1 are ;-local (or all
axioms are �-local) w.r.t. ⌃ [Sig(T1), then T is a ⌃-mCE of T1. The converse does not hold.

Both ;- and �-locality can be tested using available DL reasoners: just check whether the
axiom ↵0 obtained from ↵ by replacing all non-⌃ terms with ? (or >) is a tautology. In some
cases, ↵0 is not a SROIQ axiom, but standard reasoners can be extended in a straightforward way.
Deciding semantic locality is thus considerably easier than deciding dCE. However, reasoning in
expressive DLs is still complex, e.g. N2EXPTIME-complete for SROIQ.

In order to achieve tractable module extraction, a syntactic approximation of semantic locality
was introduced in [CHKS08]. (Syntactic) ?-locality is based on two grammars defining concept
descriptions that are equivalent to ? or > if all non-⌃ symbols are interpreted as ?. An axiom
C v D is then ?-local if C is ?- or D is >-equivalent. The definition of >-locality is analogous.
It is straightforward to extend both definitions to cover all features of SROIQ, as we have done
in the implementation of locality in the OWL API. Obviously, ?-locality (>-locality) is su�cient
for ;-locality (�-locality). Therefore, all axioms in T \ T1 being ?-local (or all axioms being
>-local) w.r.t. ⌃ [Sig(T1) is su�cient for T to be a ⌃-mCE of T1. The converse does not hold.
Syntactic locality can be tested in polynomial time [CHKS08].

From now on, we use x to refer to any of the four locality variants. We say that a TBox is x-local
if all of its axioms are x-local. All four variants of locality are su�cient for safety:

Proposition 13. [CHKS08] If a TBox T is x-local w.r.t. ⌃, for any x 2 {;,�,?,>}, then T is
safe for ⌃.

Propositions 11 and 13 suggest the following definition of modules in terms of locality.

Definition 14. Let T1 ✓ T be TBoxes and ⌃ a signature. T1 is an x-module for ⌃ in T , for any
x 2 {;,�,?,>}, if T \ T1 is x-local w.r.t. ⌃ [Sig(T1).

It is known that x-modules are modules as in Definition 10:

Proposition 15. [CHKS08] Let T1 be an x-module for ⌃ in T , for any x 2 {;,�,?,>}, and let
⌃0 = ⌃ [Sig(T1). Then T1 is a ⌃0-module in T .

In order to be able to extract a module based on any of the four locality notions x 2 {;,�,?,>}
for some T and ⌃, it is important to observe that there is a unique minimal x-module for ⌃
in T [CHKS08]. These modules are obtained by starting with an empty set of axioms and
subsequently adding axioms from O that are non-local, extending the signature against which
locality is checked with the terms of the added axioms. To avoid confusion, the initial signature
⌃ is called the seed signature for the module. The procedure is given in Algorithm 1, and the
unique minimal locality-based module (from now on called LBM) is introduced in Definition
16. LBMs can be made made smaller by nesting >-extraction (�-extraction) into ?-extraction

36

3.2 Logic-Based Module Extraction

Algorithm 1: Extraction of a locality-based module
input :TBox T , seed signature ⌃, x 2 {;,�,?,>}
output : x-moduleM of O w.r.t. ⌃

M ; T 0 T
repeat

changed false
foreach ↵ 2 T 0 do

if ↵ not x-local w.r.t. ⌃ [Sig(M) then
M M [{↵} T 0 T 0 \ {↵} changed true

until changed = false
returnM

(;-extraction) and vice versa, see Definition 16 (2); the resulting >?-, ?>-modules etc. are still
mCE-based modules in the sense of Definition 10. Finally, iterating this nesting can lead to
even smaller modules, called >?⇤-, ?>⇤-modules etc.; see Definition 16 (3). While locality and
locality-based modules have been introduced in [CHKS08], the nested and iterated variants are
our contribution [JCS+08, SSZ09].

Definition 16. Let x 2 {;,�,?,>}, and T be a TBox and ⌃ a signature.

1. The x-module of T w.r.t. ⌃, written x-mod(⌃,T), is the output of Algorithm 1.

2. The >?-module of T w.r.t. ⌃ is defined by >?-mod(⌃,T) = >-mod(⌃,?-mod(⌃,T)). The
?>-, �;-, and ;�-module of T w.r.t. ⌃ are defined analogously.

3. Let (Mi)i>0 be a sequence of TBoxes withM0 = T andMi+1 = >?-mod(⌃,Mi) for all
i > 0. For the smallest n withMn = Mn+1, we callMn the >?⇤-module of T w.r.t. ⌃,
written >?⇤-mod(⌃,T). Analogously for the ?>⇤-, �;⇤-, and ;�⇤-module of T w.r.t. ⌃.

It is easy to see that >?⇤-mod(⌃,T) = ?>⇤-mod(⌃,T) and �;⇤-mod(⌃,T) = ;�⇤-mod(⌃,T).
Modulo the locality check, Algorithm 1 runs in time cubic in |T | + |⌃| [CHKS08]. Syntactic

LBMs are therefore a feasible approximation for semantic LBMs.

3.2.3 A Logic-Based Methodology for Safe and Economic Reuse of Ontologies

In this section, we propose a methodology, based on LBMs, for designing an ontology in a reuse
scenario where knowledge is to be borrowed from several external ontologies. This methodology
provides precise guidelines for ontology developers to follow, and it ensures that a set of logical
guarantees will hold at certain stages of the design process. Our original work [JCS+08] also
describes a tool that implements this methodology; Section 3.2.5 reports on experiments.

We propose the working cycle given in Figure 6. This cycle consists of an o↵line phase –
which is performed independently of the current contents of the external ontologies – and an
online phase – where knowledge from the external ontologies is extracted and transferred into
the current ontology. The separation between o↵line and online is not strict: The first phase can
be performed o↵line or online, at the user’s discretion. Our original work [JCS+08] contains a
detailed description of both phases. The three marks on the right-hand side of Figure 6 indicate
that the corresponding stages of the methodology require three guarantees:

37

Chapter 3 Module Extraction and Modularization

O
F
F
L
I
N
E

Input T
set of external symbols ⌃ ;
Repeat at user’s discretion

Choose a set of external symbols
plus associated ontology

Extend ⌃ with this set

Result: partitioning ⌃ = ⌃1] · · ·] ⌃n of ⌃

For each ⌃i do

Select refinement or generalization view

Output ⌃1, . . . ,⌃n, T

O
N
L
I
N
E

Input ⌃1, . . . ,⌃n, T
Repeat at user’s discretion

Select a ⌃i

Load external ontology T 0i for ⌃i

Customize scope of module

Extract module T 0⌃i
from T 0i

Import T 0⌃i
into T

Output T enriched with extracted modules

Safety

Module Coverage

Mod. Independence

Figure 6: The two phases of import with the required guarantees

• Safety: The designer of T does not change the original meaning of the reused concepts,
independently of what their particular meaning is in the external ontologies.

• Coverage: The extracted fragment T 0⌃i
is a module of the external TBox T 0 for the

customized signature ⌃i according to Definition 10.

• Module Independence: The TBox T [T⌃i , which evolves from T after importing T⌃i ,
should continue not to violate safety for the remaining imports.

The precise formulation of the three guarantees is as follows.

Definition 17.

1. The TBox T guarantees safety w.r.t. the signatures ⌃1, . . . ,⌃n if T is safe for ⌃i for all
i  n.

2. Let ⌃ be a signature and T 0⌃ ✓ T 0 TBoxes. T 0⌃ guarantees coverage of ⌃ in T 0 if T 0⌃ is a
module for ⌃ in T 0.

38

3.2 Logic-Based Module Extraction

3. Let T be a TBox and ⌃1,⌃2 be signatures. T guarantees module independence if, for
all T 01 with Sig(T) \ Sig(T 01) ✓ ⌃1 and for all T 02 with Sig(T) \ Sig(T 02) ✓ ⌃2 and
Sig(T 01) \ Sig(T 02) = ;, it holds that T [T 01 [T 02 is a conservative extension of T [T 01.

Both safety and coverage can be achieved using ?- and >-locality:

Proposition 18.

1. Let T be a TBox and ⌃ = ⌃1] . . .] ⌃n be the union of disjoint signatures. If, for each ⌃i,
T is either ?-local or >-local w.r.t. ⌃i, then T guarantees safety w.r.t. ⌃1, . . . ,⌃n.

2. Any of the modules ?-mod(⌃,T 0), . . . ,>?-mod(⌃,T 0), . . . ,>?⇤-mod(⌃,T 0), . . . guaran-
tees coverage of ⌃ in T 0.

Module independence can be guaranteed only in a restricted way; see the technical report7 for
details and a discussion of the restriction.

Proposition 19. Let T be a TBox and ⌃1,⌃2 disjoint signatures. If the following conditions are
satisfied, where x denotes either ? or >, then T [T 01 is x-local, and thus safe, w.r.t. ⌃2.

(a) T is x-local with respect to ⌃2.

(b) Sig(T 01) \ ⌃2 = ;.
(c) T 01 is x-local with respect to the empty signature.

We have implemented our methodology in a preliminary tool, a prototype plugin for the Protégé
ontology editor. Section 3.2.5 reports on experiments that indicate that LBMs are indeed of
acceptable size. The problem that remains to be solved is the di�culty to determine a suitable
signature, in particular the seed signature for a module, see Section 3.2.6.

3.2.4 Robustness Properties of Locality-Based Modules

In this section we survey existing logic-based approaches to extracting a module in the sense
of Definition 10, focusing on syntactic approximations via locality. We will compare di↵erent
kinds of LBMs with each other and with CE-based modules. In particular, we will explore nested
LBMs more in-depth than the previous literature. The comparison of module kinds will be based
on examining properties relevant for ontology reuse. It will help learning which modules are
best suited for which requirements.

We have seen that a module T1 of a TBox T w.r.t. a signature ⌃ is a subset of T that is
indistinguishable from T w.r.t. ⌃ for certain classes of entailments. Inseparability relations a
more general: they compare arbitrary ontologies that are not necessarily in the subset relation,
and provide a uniform framework for comparing arbitrary definitions of modules. We study
robustness properties of inseparability relations that have been identified in [KLWW09], and
which are relevant for the corresponding module notions because they ensure that an ontology
developer

• does not need to import a di↵erent module when she restricts the set of terms that she is
interested in (robustness under vocabulary restrictions);

7http://www.informatik.uni-bremen.de/%7Ets/publ/safe-eco-reuse-report.pdf

39

http://www.informatik.uni-bremen.de/%7Ets/publ/safe-eco-reuse-report.pdf

Chapter 3 Module Extraction and Modularization

• does not need to import a di↵erent module when she extends the set of terms that she is
interested in with terms that she does not use in her ontology (robustness under vocabulary
extensions);

• can always import the same module in di↵erent ontologies whenever she is interested in
the same set of relevant terms (robustness under replacement);

• does not need to import two indistinguishable versions of the same ontology (robustness
under joins).

The notions of modules defined so far were induced by CEs and di↵erent notions of locality.
We will now put them into a more general context of modules generated by inseparability
relations. For a given logic L, an inseparability relation is a family S = {⌘S

⌃
| ⌃ is a signature}

of equivalence relations on the set of L-TBoxes. The intuition behind this notion is as follows:
T1 ⌘S

⌃
T2 means that T1 and T2 are indistinguishable w.r.t. ⌃, i.e., they represent the same

knowledge about the topic represented by ⌃. The exact meaning of “indistinguishable” and “the
same knowledge” depends on the precise definition of the inseparability relation. T1 being a
module for ⌃ of T should be equivalent to T1 ✓ T and T1 being inseparable w.r.t. ⌃ from T .

The requirement to preserve entailments or models leads to the following inseparability
relations, which have been examined, among others, in [KLWW09].

• T1 and T2 are ⌃-concept name inseparable, written T1 ⌘c
⌃
T2, if for all ⌃-concept names

C,D, it holds that T1 |= C v D if and only if T2 |= C v D.

• T1 and T2 are ⌃-subsumption inseparable w.r.t. a logic L, written T1 ⌘s
⌃
T2, if for all

terms X and Y that are concept expressions over ⌃ or role names from ⌃, it holds that
T1 |= X v Y if and only if T2 |= X v Y .

• T1 and T2 are ⌃-model inseparable, written T1 ⌘sem
⌃
T2, if {I|⌃ | I |= T1} = {I|⌃ | I |= T2}.

We denote the respective sets of inseparability relations with Sc, Ss, and Ssem. It is easy to see
that, for each signature ⌃, it holds that ⌘sem

⌃
✓ ⌘s

⌃
✓ ⌘c

⌃
.

Inseparability relations induce modules as follows.

Definition 20. Let S be an inseparability relation, T1 ✓ T TBoxes, and ⌃ a signature. T1 is

1. an S⌃-module of T if T1 ⌘S
⌃
T ;

2. a self-contained S⌃-module of T if T1 ⌘S
⌃[Sig(T1) T ;

3. a depleting S⌃-module of T if ; ⌘S
⌃[Sig(T1) T \ T1.

T1 is called a minimal (self-contained, depleting) ⌘⌃-module of T if T1, but no proper subset of
T1, is a (self-contained, depleting) ⌘⌃-module of T .

Due to the shift from ⌃ to ⌃ [Sig(T1), it is not necessarily the case that every self-contained (or
depleting) S⌃-module of T is an S⌃-module of T . However, under certain robustness properties,
this implication holds. While there can be exponentially many minimal S⌃-modules, minimal
depleting modules are uniquely determined – under mild conditions involving inseparability
relations. This last property makes depleting modules essential for at least two applications:

The first application is the above described import scenario. If T1 is a depleting S⌃-module of
T and S satisfies certain robustness properties, then, for every external TBox T 0 that shares with
T only terms from ⌃[Sig(T1), we can import T 0 into T \ T1 because they do not interfere with
each other: (T \ T1) [T 0 ⌘S

⌃0 T 0.

40

3.2 Logic-Based Module Extraction

The second application is the computation of all justifications for an entailment ⌘ of an
ontology T [HPS08]. For appropriate inseparability relations S , Definition 20 (1) ensures that
each SSig(⌘)-module of T contains at least one justification for ⌘, but not necessarily all. It is
relatively easy to show that depletion, together with mild additional properties, guarantees that
every SSig(⌘)-module of T contains all justifications for ⌘.

We define new inseparability relations for LBMs, proceeding by analogy to inseparability
relations for conservativity: TBoxes T1 and T2 are inseparable if they have the same modules,
i.e., if the module extraction algorithm returns the same output for each of them. We have
thus replaced the semantic criterion “the same entailments/models” in conservativity-based
inseparability with a syntactic criterion “the same extraction result”, given that LBMs are defined
algorithmically. While this new type of inseparability imposes much stronger requirements
(“have the same modules” is syntax-dependent), it is the best available computationally cheap
approximation of the computationally hard inseparability relations ⌘s

⌃
and ⌘sem

⌃
, analogously to

how LBMs approximate CE-based modules.
We consider the following inseparability relations for LBMs.

Relation T1 and T2 are in relation if . . .
⌘;
⌃

;-mod(⌃,T1) = ;-mod(⌃,T2)
⌘�⌃ �-mod(⌃,T1) = �-mod(⌃,T2)
⌘?⌃ ?-mod(⌃,T1) = ?-mod(⌃,T2)
⌘>⌃ >-mod(⌃,T1) = >-mod(⌃,T2)

Relation T1 and T2 are in relation if . . .
⌘>?⌃ >?-mod(⌃,T1) = >?-mod(⌃,T2)
⌘?>⌃ ?>-mod(⌃,T1) = ?>-mod(⌃,T2)
⌘>?⇤⌃ >?⇤-mod(⌃,T1) = >?⇤-mod(⌃,T2)

Evidently, they all are equivalence relations. Furthermore, they are related to the previously
defined inseparability relations as follows.

Proposition 21. Let ⌃ be a signature. For any ⌘•⌃ of the above 7 relations, we have ⌘•⌃ ✓ ⌘sem
⌃

.

We can now define the four robustness properties described above.

Definition 22. Let L be a DL. The inseparability relation S is called

1. robust under vocabulary restrictions if, for all L-TBoxes T1,T2 and all signatures ⌃,⌃0

with ⌃ ✓ ⌃0, the following holds: if T1 ⌘S
⌃0 T2, then T1 ⌘S

⌃
T2.

2. robust under vocabulary extensions if, for all L-TBoxes T1,T2 and all signatures ⌃,⌃0

with ⌃0 \ (Sig(T1) [Sig(T2)) ✓ ⌃ : if T1 ⌘S
⌃
T2, then T1 ⌘S

⌃0 T2.

3. robust under replacement if, for all L-TBoxes T1,T2, all signatures ⌃ and every L-TBox
T with Sig(T) \ (Sig(T1) [Sig(T2)) ✓ ⌃, the following holds: if T1 ⌘S

⌃
T2, then T1 [

T ⌘S
⌃
T2 [T .

4. robust under joins if, for all L-TBoxes T1,T2 and signatures ⌃ with Sig(T1)\Sig(T2) ✓ ⌃
and every i = 1, 2, the following holds: if T1 ⌘S

⌃
T2, then Ti ⌘S

⌃
T1 [T2.

We have examined the properties of the inseparability relations S;, S�, S?, S>, S>?, S?>, S>?
⇤ ,

and compared them with those of Ssem, Ss, Sc. The results are given in Table 6. The first four
lines give the module notion which is generalized by the respective inseparability relation, and
indicate whether each such module for ⌃ is a (minimal) S⌃-module, or a (minimal) self-contained
S⌃-module, or a (minimal) depleting S⌃-module. For Sc, this question is meaningless because
there is no corresponding standard module notion, apart from redefining ⌃-dCEs to take only

41

Chapter 3 Module Extraction and Modularization

property relation! Ssem Ss Sc S;, S�, S?, S> S>?, S?> S>?
⇤

corresponding module notion mCE dCE — x-mod yz-mod yz⇤-mod
(min.) modules 3� 3� — 3 7 3
(min.) self-contained mod.s 7 7 — 3 3 3
(min.) depleting modules 7 7 — 3 3 3

robustness voc. restr. 3 3 3 3 7 3
robustness voc. ext. 3 (7) (3) 3 7 3
robustness replacement 3 (7) (7) 3 3 3
robustness joins 3 (7) (7) 3 3 3

Symbols: 3, 7 property holds/fails
(3), (7) property holds/fails for many standard description logics
3� property holds except for minimality
— property not considered: no corresponding module notion

Table 6: Properties of inseparability relations for di↵erent module notions

⌃-concept inclusions into account. For Ssem and Ss, it is clear that a dCE-based module according
to Definition 10 (and the analogous notion of an mCE-based module) is not necessarily minimal,
self-contained, or depleting. These properties can, however, easily be achieved by adopting
stronger module notions as in [KLWW08, KPS+09]. Hence, the negative entries in this part
of the table are not problematic, and we can say that LBMs and conservativity-based modules
are equally “good” – except for nested, non-iterated >?- and ?>-modules: a >?-module (?>-
module) is not always an S>?⌃ -module (S?>⌃ -module), which is critical. However, it is always a
minimal self-contained and depleting S>?⌃ -module (S?>⌃ -module).

The remaining four lines indicate whether the respective inseparability relation satisfies the
four robustness properties from Definition 22. The results for Ssem, Ss and Sc are taken from
[CHKS08, KLWW09] those for the locality-based relations are our contribution. This part of
the table reveals the following insights: Both Sc and Ss lack some of the important robustness
properties (but this was already known [KLWW09]). As for the locality-based inseparability
relations, it is truly surprising that S>? and S?> lack two of four robustness properties, while S;,
S�, S?, S>, as well as S>?

⇤ appear to be flawless and as good as Ssem.

In summary, semantic and syntactic LBMs are very robust: two out of three variants enjoy
the same robustness properties as mCE-based modules and are therefore even more robust
than modules based on dCEs. In addition, they are self-contained and depleting. Furthermore,
syntactic LBMs can be extracted e�ciently for all logics up to SROIQ. For most DLs, where
neither semantic LBMs nor dCE- or mCE-based modules can be extracted e�ciently, syntactic
LBMs seem best suited to module extraction scenarios because their smallest variant >?⇤
combines desirable robustness properties with computational feasibility.

3.2.5 Empirical Studies of Locality-Based Modules

To demonstrate the suitability of LBMs for the reuse scenario, we carried out three experimental
studies evaluating the size of the resulting modules and their extraction time, and comparing them
with other module notions. The driving force for these experiments was the natural question of
whether LBMs di↵er from minimal coverage-providing modules in practice and, if yes, by how

42

3.2 Logic-Based Module Extraction

much. In other words, are LBMs a good approximation of minimal coverage-providing modules?
Unfortunately, this question is impossible to answer in general because undecidability of mCEs
and dCEs for DLs of higher expressivity forbids the extraction of minimal coverage-providing
modules. However, it is possible to empirically answer the following questions:

1. How large can LBMs of real-life ontologies become? Can we expect LBMs to be signifi-
cantly smaller than the whole ontology, for seed signatures of reasonable size?

2. For ontologies in lightweight DLs, which permit e↵ective extraction of mCE- or dCE-
based modules, do LBMs di↵er in size and extraction time from the latter and, if yes, by
how much?

3. Do syntactic and semantic LBMs di↵er in size and extraction time and, if yes, by how
much? That is, are syntactic LBMs a good approximation of semantic LBMs?

Answers to these questions will allow for a more informed choice of which module extraction
technique to select under a given set of circumstances.

Initial experiment evaluating ?- and >?-modules. In [JCS+08] we report on an experiment
towards Question 1. We extracted ?- and >?-modules from Galen, NCI, and SNOMED CT for
(a) random seed signatures of varying size and (b) real-life seed signatures from the Health-e-
Child project. The modules obtained in (a) were small on average, and their growth relative to
the signature size was smooth and always linear up to signature size 100. For (b), seed signatures
of size 40–131 from Galen (4170 axioms) led to LBMs of size 490–1151; signatures of size
48–356 from NCI (⇡ 400,000 axioms) led to LBMs of size 300–1258.

In this study we also compared?- and>?-modules for Galen and NCI with ontology fragments
obtained by Seidenberg’s segmentation approach [Sei09], which does not provide coverage or a
similar logical guarantee. The >?-modules were always smaller than the Seidenberg fragments
for the same seed signatures; in the case of Galen, they were orthogonal.

Comparison with other approaches. In [SSZ09] we report on experiments towards Ques-
tions 1 and 2. We extracted ?- and >?⇤-modules for ontologies in lightweight DLs and compared
them with mCE- or dCE-based modules, which can be extracted e↵ectively in these DLs.

We first took three real-life seed signatures for SNOMED CT with terms relevant for an
intensive care unit, and compared the ?- and >?⇤-modules for these signatures with the depleting
mCE-based modules extracted e�ciently via the MEX approach [KLWW08]. The LBMs ex-
tracted from the ⇡ 400,000 axioms in SNOMED for these signatures of size 2,700–24,000 were
of size 15,000–56,000 and thus comprised 4–15% of the whole ontology. In contrast, the size of
the MEX modules ranged between 1,7 and 10%. All modules were extracted in 1–4 seconds.

Second, we extracted LBMs and minimal conservativity-based modules from two DL-LiteNbool
ontologies from a commercial supply-chain management system in [KPS+09] (not part of this
thesis). We extracted >?⇤-modules as a preprocessing step to computing minimal Sc-, Sq- (based
on query-inseparability), and depleting Sq-modules using QBF solvers. We included all singleton
seed signatures and randomly generated seed signatures of size 10; the two ontologies were of
size 1247 and 1283. The di↵erence in size between LBMs and Sc- or Sq-modules was often
considerable, particularly when the Sc-modules consisted only of a few axioms. However, most
of the di↵erence seems to be caused by depletion because, in 5 out of 6 cases, the average size
of LBMs was limited to 150% of the average size of depleting Sq-modules. Each LBM was
extracted in a few seconds, while a depleting Sq-module took up to 30 minutes to compute. The

43

Chapter 3 Module Extraction and Modularization

experimental results in our follow-up work [KKL+11] (not part of this thesis) on modules based
on query inseparability for DL-LiteNcore, which underlies the OWL 2 QL profile, are similar.

In-depth comparison of syntactic LBMs with semantic LBMs and mCE-based modules.
In [DKP+13] we report on a systematic experiment towards Questions 2 and 3. We chose a
large corpus consisting of most ontologies from the NCBO BioPortal ontology repository8 and
selected ontologies from the TONES repository9. The 242 ontologies in this corpus cover a wide
range of expressivity (fromAL to SROIQ(D)) and size (10–16,066 axioms, 10–16,068 terms).
Each ontology was additionally trimmed to a subset that is acyclic and in ELI, in order to be
able to apply MEX. Furthermore we extended the reasoner FaCT++ to be able to test (semantic)
�-locality, which involves tautology checks for axioms using the >-role in a way that violates
the OWL syntax.

We specified Questions 2 and 3 more precisely: we asked (i) whether, for a given seed signature
⌃, it is likely that there is a di↵erence between the syntactic, the semantic, and the MEX modules
for ⌃; if so, the size of the di↵erence;10 and (ii) how feasible the extraction of semantic LBMs
is. For this purpose, we compared (a) ;-semantic with ?-syntactic locality, �-semantic with
>-syntactic locality, (b) ;- with ?-modules, �- with >-modules, �;⇤- with >?⇤-modules, and (c)
MEX modules with �;⇤-modules.

Due to the recursive nature of Algorithm 1, our investigation is both on a

• per-axiom-basis: given axiom ↵ and signature ⌃, is it likely that ↵ is ;-local (�-local,
resp.) w.r.t. ⌃ but not ?-local (>-local, resp.) w.r.t. ⌃?

• per-module basis: given a seed signature ⌃, is it likely that

– ?-mod(⌃,O) , ;-mod(⌃,O), or

– >-mod(⌃,O) , �-mod(⌃,O), or

– >?⇤-mod(⌃,O) , �;⇤-mod(⌃,O), or

– �;⇤-mod(⌃,O) , MEX-mod(⌃,O)?

If yes, is it likely that the di↵erence is large?

We considered two kinds of signatures: genuine and random signatures. Genuine signatures
are the signatures of single axioms in the ontology, and they are interesting for two reasons:
they lead to coherent modules (i.e., modules that cannot be decomposed into the union of two
✓-incomparable modules), and every ontology has only linearly many genuine modules, as
opposed to the exponential number of all signatures. For random signatures, we chose 400
distinct signatures (or all signatures if the ontology contained < 9 terms), each of which includes
every term with probability 0.5. We have set the sample size to 400 because this ensures statistical
significance of the results for the overall population of all modules independently of the ontology
size. Our selection of signatures thus contains small (genuine) and large (random) signatures.

The results of our experiment show that, for the vast majority of the ontologies in our corpus, no
di↵erence between syntactic and semantic locality is observed, for all three variants ? vs. ;, >
vs. �, and >?⇤ vs. �;⇤. More precisely, for 209 out of 242 ontologies and all sampled signatures,
there is no di↵erence between syntactic LBMs and the corresponding semantic LBMs, and

8http://bioportal.bioontology.org
9http://owl.cs.manchester.ac.uk/repository/

10Recall: the MEX module for ⌃ is a subset of the semantic ⌃-module, which is a subset of the syntactic ⌃-module.

44

http://bioportal.bioontology.org
http://owl.cs.manchester.ac.uk/repository/

3.2 Logic-Based Module Extraction

between any axiom being syntactically or semantically local. Hence, for these 209 ontologies,
there is no statistically significant di↵erence between semantic and syntactic locality of any kind,
and between semantic and syntactic LBMs of any kind. The 209 ontologies include Galen and
People, which are renowned for having unusually large ?-modules [CHKS08, PS10]. In most
cases, extracting a semantic and syntactic LBM each took only a few milliseconds. For two
ontologies, the semantic LBM took considerably longer to extract than the syntactic: up to 5
times for nested-modules in MoleculeRole, and up to 34 times in Galen.

Di↵erences between syntactic and semantic locality have been observed in the remaining 33
ontologies. In 6 of these, the di↵erences are solely due to simple tautologies that have entered the
published version by accident. In 21 of the remaining 27 ontologies, the di↵erences a↵ect only
locality of single axioms, and never modules. The remaining 6 ontologies with di↵erences in
modules comprise 4 from BioPortal and 2 from TONES; their sizes range from 170 to 1925, and
their expressivity fromAL to SRIQ(D). Summarizing the detailed tables in our original work
[DKP+13] and its accompanying technical report,11 it can be argued that the observed di↵erences
are negligible for all 6 ontologies: in four cases, the syntactic and corresponding semantic LBM
di↵er by at most 12 axioms. For a fifth ontology, di↵erences greater than 11 axioms (or 2% of
the semantic LBM) occur only for very small seed signatures, and the sixth ontology exhibits
large di↵erences only between >- and �-modules – and never between the more economic >?⇤-
and �;⇤-modules. Module extraction time was always a few milliseconds.

To explain the reasons for the observed di↵erences between semantic and syntactic locality,
we have identified and extensively described four types of axioms that cause these di↵erences by
being ?-local (>-local, respectively) w.r.t. some signature ⌃ but not ;-local (�-local, respectively)
w.r.t. ⌃. We call these four types culprits. Sometimes, culprit axioms “pull” additional axioms
into the syntactic LBM, due to the signature extension during module extraction (Alg. 1). We
conjecture that one culprit type can be avoided by a straightforward extension to the definition of
syntactic locality. For two culprit types, there is no hope for an exhaustive such extension. The
fourth type simply encompasses the above mentioned tautologies.

Di↵erences between LBMs and MEX modules have been observed for 66 of the 242 ontologies
(⇡ 27%). The average di↵erence in module size is at most 13 axioms for genuine seed signatures
and 26 axioms (13% of the MEX module) for random seed signatures. The occurrence of
di↵erences is not correlated with the size of the original ontology, but with its expressivity – and
thus with the amount of trimming necessary to obtain an acyclic ELI subontology. In particular,
all 66 ontologies with di↵erences had been pruned by at least 30 (and at most 12,185) axioms.
Furthermore, these 66 ontologies coincide exactly with those where equivalences occur in the
ELI-TBox. Because of the low expressivity of ELI, we conjecture that MEX- and �;⇤-modules
can only ever di↵er due to the presence of equivalences. We cannot compare extraction times
because the MEX implementation combines loading and module extraction.

In summary, we obtain three main observations from our experiments. (1) In general, there is no
or little di↵erence between semantic and syntactic locality. Hence, the computationally cheaper
syntactic locality is a good approximation of semantic locality. (2) In most cases, there is no or
little di↵erence between LBMs and MEX modules. (3) Though in principle hard to compute,
semantic LBMs can be extracted quite fast in practice, although often not as fast as syntactic
LBMs. Due to results (1) and (2), hardly any benefit can be expected from preferring potentially
smaller modules (MEX or semantic LBMs) to cheaper syntactic LBMs. In the course of our study
we furthermore provided the first implementation of semantic LBMs.

11 https://sites.google.com/site/cheapischeerful/technical-report

45

https://sites.google.com/site/cheapischeerful/technical-report

Chapter 3 Module Extraction and Modularization

3.2.6 Discussion

The task of extracting one coverage-providing module given a seed signature is well understood
and starting to be deployed in standard ontology development environments, such as Protégé 4
and in standalone tools. The extraction of LBMs has already been e↵ectively used in the field
for ontology reuse [JJBR08] as well as a subservice for incremental reasoning [CHKS10] and
modular reasoning [ACH12, TP12].

The di�culty that still has to be overcome is the necessity for the user to know in advance the
right seed signature for a suitable module; i.e., Question 4 from Section 3.1 remains open. There
is currently no general method for constructing a seed signature from an intuitive description
of a topic (such as “all the knowledge about anatomy in NCI”). Even if the final signature of
the module were known, it would not help to determine the seed signature because of the non-
obvious relations between the two. As a result, users are often unsure how to generate a proper
request and confused by the results. To provide guidance for choosing the right seed signature,
an appropriate methodology has yet to be developed, and there are at least two possibilities.
The first is to develop a fundamental theory of topicality, connecting the cognitive notion of
a topic with the logical notion of a vocabulary. First steps in this direction were made by Del
Vescovo et al. in [DPS11], who identified five notions of logical coherence as being central for a
theory of topicality, and showed how to base one of these five on labeled atomic decomposition,
see also the discussion in Section 3.3.6. The second possibility is more heuristic: it consists in
providing tool support that allows the user to “shop” for symbols to include in the seed signature
and inspect a preview of the resulting module until she is satisfied with it.

3.3 Logic-Based Modularization

In the previous section, we have studied the task of extracting one module given a seed signature.
This task, from now on called GetOne, is an important and useful service but, by itself, it tells
us nothing about the modular structure of the ontology as a whole. The modular structure is
determined by the set of all modules and their inter-relations, or at least a suitable subset thereof.
The task of a-posteriori determining the modular structure of an ontology is called GetStruct,
and the task of extracting all modules is called GetAll. While GetOne is well-understood
and often computationally cheap, GetAll and GetStruct have not been examined for module
notions with strong logical guarantees, with a few preliminary exceptions, see Sections 3.3.1
and 3.3.2. If ontology engineers had access to the overall modular structure of the ontology
determined by GetStruct, they might be able to use it to guide their extraction choices and,
supported by the experience described in [CPSK06], to understand its topicality, connectedness,
structure, superfluous parts, or agreement between actual and intended modeling. For example,
by inspecting the modular structure and observing unconnected parts that are intended to be
connected, ontology designers could learn of weakly modeled parts of their ontology.

In the worst case, however, the number of all modules of an ontology is exponential in the
number of terms or axioms in the ontology, as we will see in Section 3.3.2. More importantly,
even for very small ontologies, the number of all modules is far too large for them to be inspected
by a user or even computed; e.g., the tutorial ontology Koala consisting of 42 axioms has 3, 660
modules, and GetAll fails even on many ontologies consisting of less than one hundred axioms.

In Section 3.3.3, we report on new insights regarding the modular structure of ontologies
which leads to a new algorithm for GetStruct that generates a linear-sized, partially ordered set
of modules and atoms which succinctly represent all modules of an ontology. This algorithm can

46

3.3 Logic-Based Modularization

be used with arbitrary module notions that satisfy reasonable properties, including LBMs, and it
runs in polynomial time modulo module extraction. In Section 3.3.4, we describe an algorithm
for fast module extraction based on the result of our algorithm for GetStruct. In Section 3.3.5,
we report on systematic experiments carried out with an implementation of the algorithms for
AD and fast module extraction.

3.3.1 Existing Approaches

One solution to GetStruct is described in [CPSK06] via partitions related to E-connections. When
this approach succeeds, it partitions an ontology into three kinds of subsets: (A) those which
import vocabulary (and axioms) from others, (B) those whose vocabulary (and axiom set) is
imported, and (C) isolated subsets. In various experiments, the numbers of subsets extracted
were quite low, and the graph induced by the “imports” relation between the subsets often
corresponded usefully to user understanding. For example, the tutorial ontology Koala, consisting
of 42 logical axioms, was partitioned into one A-subset about animals and three B-subsets about
genders, degrees and habitats, which are “imports”-related to the former. Furthermore, certain
combinations of these subsets provide coverage [CPSK06]. For Koala, the only such combination
is the whole ontology (though smaller parts of Koala have coverage as well).

This kind of ontology partitions requires rather strong conditions to ensure modular separation.
They have been observed to force together axioms and terms which are logically separable. As
a consequence, some ontologies with a fairly elaborate modular structure have impoverished
E-connections based structures. Furthermore, the robustness properties of the parts (e.g., under
vocabulary extension) are not as well-understood as those of locality-based modules. Partitions
ensure, however, a linear upper bound on the number of subsets.

Another approach to GetStruct was described in [BFZE08] and implemented in ModOnto, a
tool aiming at providing support for working with ontology modules, borrowing intuitions from
software modules. To the best of our knowledge, however, it is not known whether such modules
provide coverage. Furthermore, ModOnto does not aim at obtaining a complete modularization.

A further method for partitioning an ontology is developed in [SK04]. It only takes the concept
hierarchy of the ontology into account and does therefore not provide coverage.

In [KLPW10], a method for decomposing the signature of an ontology is described, with the
aim of disclosing the dependencies between its terms. In contrast to previous such approaches,
this one is syntax-independent. While disclosing term dependencies is one goal of the approach
we develop in Section 3.3.3, we are also interested in the modules of the ontology.

3.3.2 The Modular Structure of an Ontology

We are interested in the question whether the task GetAll can be used as a basis for GetStruct,
that is, whether the modular structure of the ontology as a whole can be determined by extracting
the set of all modules, for some module notion with strong logical guarantees. In the worst
case, an ontology can have exponentially many subsets that are modules, which would make
GetAll infeasible. However, for module notions such as LBMs, which are determined by a seed
signature, it is easy to observe that one module can have several seed signatures. Hence it is
conceivable that, for most real ontologies, only a small proportion of their subsets are in fact
modules; ideally, those could be used directly for GetStruct.

In this section, we report on experiments testing the hypothesis that real ontologies tend to
have a small number of modules. We extracted all syntactic LBMs from real ontologies and

47

Chapter 3 Module Extraction and Modularization

counted their number, to find out whether the suspected combinatorial explosion occurs. In
order to determine the growth rate of module numbers depending on the ontology size, we also
sampled subsets of the ontologies and counted their module numbers.

We performed the experiments on several existing ontologies that we consider to be well
designed and su�ciently diverse. “Well designed” means that these ontologies cover a specific
domain to a certain level of detail; they are axiomatically rich, for example, they do not only con-
nect terms via atomic subsumptions, which would make module extraction rather uninteresting
because the terms in the signature of a module would hardly cause other terms to be included in
the module. We concentrate on well-designed ontologies because we want to understand their
structure. “Diverse” means that these ontologies have di↵erent sizes, expressivities, ratios of
axiom and term numbers, and cover di↵erent domains. We also selected two ontologies which
were successfully and insightfully modularized in [CPSK06]: Koala and OWL-S. Our selection
constitutes a set of ontologies which are commonly discussed in ontology engineering circles
and for which people have strong instincts about their modular structure. For practical reasons,
we restricted ourselves to small ontologies.

Table 7 gives an overview; most ontologies can be found in the TONES repository.12

Name DL expressivity #Logical axioms #Terms (concepts, roles)
Koala ALCON(D) 42 25
Mereology SHIN 44 25
University SOIN(D) 52 39
People ALCHOIN 108 73
miniTambis ALCN(D) 173 226
OWL-S ALCHOIN(D) 277 137
Tambis ALCN(D) 595 494
Galen ALEHF+ 4,528 3,161

Table 7: Ontologies used in the experiments

Only for the two smallest ontologies, Koala and Mereology, were we able to determine all
modules within less than two hours. For the other five, we canceled the computation and
proceeded to subset sampling, as reported below.

Table 8 shows module numbers, overall extraction time, and distribution of module size for
Koala and Mereology. We extracted syntactic >-, ?-, and >?⇤-LBMs (see Section 3.2.2), and
we considered a special kind of >?⇤-LBMs that we have called genuine and denoted >?⇤g. This
notion of a genuine module is an early version and was subsequently strengthened to coincide
with what is called a genuine module in Sections 3.2.5 and 3.3.3. Here, genuine >?⇤-LBMs
exclude modules that are disjoint unions of smaller >?⇤-LBMs – intuitively, such disjoint unions
are uninteresting for the modular structure because they witness that the seed signatures of their
smaller constituent modules do not interact with each other.

The number of modules increases from >- via ?- to >?⇤-LBMs, which is due to the fact
that, typically, >?⇤-LBMs are smaller than ?-LBMs and those are smaller than >-LBMs. In
particular, >-LBMs are notorious for comprising almost the whole ontology, which makes them
unsuitable for the task GetStruct. The module numbers for the other three notions are well below
the theoretical upper bound of 225, but already too large to be useful for GetStruct for these small
ontologies with 42 and 44 logical axioms.

12http://owl.cs.manchester.ac.uk/repository

48

http://owl.cs.manchester.ac.uk/repository

3.3 Logic-Based Modularization

Koala Mereology
> ? >?⇤ >?⇤g > ? >?⇤ >?⇤g

#Modules 12 520 3,660 2,143 40 552 1,952 272
Time [s] 0 1 9 34 0 6 158 158
Min. module size 29 6 0 0 18 0 0 0
Avg. module size 35 27 23 23 26 25 20 22
Max. module size 42 42 42 42 40 40 40 38
Standard deviation 4 6 6 6 6 7 8 8

Table 8: Full modularization of Koala and Mereology

To test the hypothesis that the module size grows sub-exponentially for the examined ontologies,
we sampled subontologies, ordered them by size, and modularized them as before in increasing
order until a single modularization exceeded a preset timeout. The results clearly refute the
hypothesis: Figure 7 shows exemplary scatterplots of the number of >?⇤-LBMs (genuine >?⇤-
LBMs) versus the size of the subset for People and Koala. Each chart additionally shows an
exponential trend line, the least-squares fit through the data points by using an exponential
equation. For more charts and spreadsheets, see the accompanying technical report.13

N
um

be
ro

fm
od

ul
es

(>
?⇤

)

0

1000

2000

3000

4000

0 15 30 45

N
um

be
ro

fg
en

ui
ne

m
od

s
(>
?⇤ g

)

0

1000

2000

3000

0 15 30 45

Subset size Koala Subset size Koala

N
um

be
ro

fm
od

ul
es

(>
?⇤

)

0

2500

5000

7500

10000

0 25 50 75 100

N
um

be
ro

fg
en

ui
ne

m
od

s
(>
?⇤ g

)

0

2500

5000

7500

10000

0 25 50 75 100

Subset size People Subset size People

Figure 7: Numbers of modules (>?⇤, genuine >?⇤) versus subset sizes for Koala and People

13 http://www.informatik.uni-bremen.de/%7Ets/publ/modstrucreport.pdf

49

http://www.informatik.uni-bremen.de/%7Ets/publ/modstrucreport.pdf

Chapter 3 Module Extraction and Modularization

Table 9 shows the trend-line equations, together with their confidence (R2 values), and the
estimated number of modules for the full ontology as per the trend-line equation. The results
with confidence >.8 strongly suggest an exponential dependence of the module number on the
subset size.

Confidence Trend-line equation Estimate
Ontology R2 R2 (g) >?⇤ >?⇤g >?⇤ >?⇤g
People .95 .95 2 · 10�13e.41n 106 106

Mereology .87 .94 1.2e.16n 1.1e.13n 103 102

Koala .90 .88 .45e.21n .50e.19n 103 103

Galen .94 .86 1.2e.24n 1.6e.16n �1099 �1099

University .84 .83 1.7e.19n 1.6e.14n 104 103

OWL-S .82 .84 .0027e.17n .0032e.16n 1017 1017

Tambis .75 .70 1.1e.22n 1.4e.13n 1058 1033

miniTambis .47 .52 2.6e.18n 2.5e.14n 1014 1010

R2, R2 (g) Determination coe�cient of trend lines (>?⇤, >?⇤g)
Estimate Module numbers for full ontology as per trend line

Table 9: Witnesses for exponential behavior

The fundamental conclusion is that the number of modules is exponential in the size of the
ontology for real ontologies, refuting the initial hypothesis. Our estimates show that full modu-
larization is practically impossible already for midsize ontologies. As a consequence, GetStruct
cannot be solved via GetAll but rather requires a more sophisticated approach that contents itself
with a small amount of module extraction. We develop such an approach in the following.

3.3.3 Atomic Decomposition: Foundations

In this section, we are presenting an approach to GetStruct that represents the set of all modules
of an ontology O by a small number of subsets of O, called atoms, and by a dependency relation
between those. This approach is called atomic decomposition. It can be applied to any notion of
a module that is determined by a seed signature and is monotonic, self-contained, and depleting
(and we know from our work in [SSZ09] that robustness under replacement and depletion implies
self-containment). In what follows we will use m to denote any such module notion unless we
make explicit restrictions.

As usual, we view O as a set of logical axioms. To ease presentation we assume, without loss
of generality, that O contains no syntactic tautologies (those axioms occur in no m-module) and
no global axioms (these are axioms that occur in all m-modules). They can be easily removed by
computing m-mod(Sig(O),O) and m-mod(;,O) and considered separately.

Borrowing standard notions from algebra, we consider the field of subsets of O that is induced
by the family of all m-modules of O:

Definition 23. Let O be an ontology and Fm(O) the family of m-modules of O. The (induced)
field of modules B(Fm(O)) is the closure of Fm(O) under union, intersection, and complement.

B(Fm(O)) is thus a family of subsets of O that is closed under the set operations. This field of
sets is partially ordered by the ✓ relation and, since O is finite, can be represented via its Hasse
diagram. The ✓-minimal elements of B(Fm(O)) \ {;} are called atoms. They are pairwise disjoint

50

3.3 Logic-Based Modularization

and thus form a partition of O; in particular the number of atoms is bounded by the number of
axioms in O. Furthermore, every module is the union of some atoms. Hence the set of atoms is
a succinct representation of all modules of O – provided that we equip it with information that
allows to reconstruct the modules. Even more, we will see that the set of atoms can be computed
in polynomial time modulo module extraction.

Since modules provide coverage, it is natural to say that an axiom ↵ logically depends on
another axiom � if, whenever ↵ occurs in a moduleM, then � also belongs toM. This idea can
be generalized to atoms:

Definition 24. Let a and b be two distinct atoms of an ontology O. We say that

• a depends on b (written a ⌫ b) if, for every moduleM 2 Fm(O) such that a ✓M, we have
b ✓M.

• a and b are independent if there exist two disjoint modulesM1,M2 2 Fm(O) such that
a ✓M1 and b ✓M2.

For a monotonic, self-contained, and depleting module notion, Definition 24 describes the
possible relations between atoms exhaustively, which relies on the following insight.

Proposition 25. For every atom a in B(Fm(O)) and every nonempty set of axioms {↵1, . . . ,↵k} ✓
a, we have that m-mod({Sig(↵1) [. . . [Sig(↵k)},O) is the smallest m-module containing a.

LetM↵ = m-mod(Sig(↵),O) for any axiom ↵ 2 O. As a consequence of Proposition 25, we get:

Corollary 26. Given an atom a, for any axiom ↵ 2 a we have thatM↵ = m-mod(Sig(a),O).
Moreover, a depends on all atoms belonging toM↵ \ a.

The binary relation ⌫ is a partial order over the set of atoms in B(Fm(O)).

We call the set of atoms with the dependency relation ⌫ the atomic decomposition of O, written
AD(O). Definition 24 and Corollary 26 allow us to draw a Hasse diagram for AD(O), too, see
Figure 8 for that of Koala. Atoms are scaled by their size; the arrows represent the ⌫ relation.
There are 23 atoms; four of them are isolated (numbers 9, 13, 15, 22), and the remaining atoms
all depend on two large ones (numbers 7, 5). Those two consist of definitions of the terms central
to the ontology: Animal, Male, Female, Gender, hasGender, and hasHabitat.

As an immediate consequence of our observations so far, a module is a disjoint finite union of
atoms:

Definition 27. The principal ideal of an atom a is the set (a] = {↵ 2 b | b � a} ✓ O.

Proposition 28. For every atom a, (a] is a module.

Conversely, not every union of atoms is necessarily a module. However, we can compute the
modules from AD(O) if we store the ✓-minimal seed signatures that lead to (a]: we say that an
atom a is relevant for a module >?⇤-mod(⌃,O) if there is a seed signature ⌃0 for (a] with ⌃0 ✓ ⌃.

Proposition 29. >?⇤-mod(⌃,O) =
S {(a] | a is relevant for ⌃}.

As a consequence, AD(O) is indeed a succinct representation of all modules: its linearly many
atoms represent all its worst-case exponentially many modules. We can even compute AD(O)
e�ciently, i.e., by a polynomial-time algorithm with a linear number of oracle calls to a module
extractor. If we use syntactic LBMs, then this algorithm has a polynomial-time overall run-
time. The main ingredients are modules “generated” by single axioms, i.e., the linearly many
m-mod(Sig(↵),O) for ↵ 2 O. We call these modules genuine because they can be shown to be
exactly those that are not the union of two incomparable (w.r.t. set inclusion) modules.

51

Chapter 3 Module Extraction and Modularization

Figure 8: The atomic decomposition of Koala

3.3.4 Fast Module Extraction via Atomic Decomposition

The ability to extract modules quickly is important for ontology reuse in semantic web services
such as SSWAP14 (Simple Semantic Web Architecture and Protocol [GSM+09]), or SADI
(Semantic Automated Discovery and Integration [WVM09]). The goal is to speed up module
extraction by precomputing the modular structure and extracting single modules from it with
little to no additional e↵ort. This is clearly useful when many modules need to be extracted from
the same ontology. In this section we describe a module extraction algorithm, called FME for
“Fast Module Extraction”, which is (a) usually faster than the standard ME algorithm and (b)
does not require loading the entire ontology into memory.

As observed in Section 3.3.3, every module is a union of atoms, but the opposite does not
hold. In general, it is hard to determine the set of atoms constituting the module for a given
seed signature ⌃: even axioms whose signatures are disjoint with ⌃ may turn out to be a part of
the module. One way to help determining relevant atoms is to label them, i.e., add information
regarding seed signatures. Here we consider labels which, for every atom a, provide all minimal
seed signatures for the genuine module (a], denoted by MSS(a).

The labels MSS(a) can have several uses. First, every ⌃ 2 MSS(a) can be regarded as a
(minimal) topic that determines (a] and a. Then all MSSs of all atoms constitute all relevant
minimal topics about which the ontology speaks, which can be exploited for comprehension.
Second, the collection of all MSSs guides ontology developers in the extraction of a single
module by suggesting possible topics (MSSs as inputs of the extraction algorithm). In both cases,
the number of topics can be exponential and thus needs to be controlled, e.g., by adjusting the
granularity of the presentation, which is worth being investigated in the future.

Our algorithm for computing MSSs is restricted to ?- and >-modules because it crucially relies
on computing the minimal globalizing signatures (MGSs) of ↵, which are the minimal signatures
14http://sswap.info

52

http://sswap.info

3.3 Logic-Based Modularization

⌃ such that ↵ is local w.r.t. ⌃. The notion of MGSs is not meaningful for a nested module notion
such as >?⇤. The desirable transfer to >?⇤-modules would thus require an entirely new approach.

The algorithm first computes the set MGS(↵) for every axiom ↵ 2 a, comprising the MGSs
of ↵. For atoms a that do not depend on any other atoms, MSS(a) is the union of the MGS(↵)
for all its axioms ↵. For the remaining atoms, the ⌃ 2 MGS(a) are not necessarily minimal seed
signatures for (a]: some ⌃0 (⌃ might be a seed signature for a module (b] with b � a if ⌃ is
contained in the extended signature ⌃0 [Sig((b]) against which locality is checked when the
module (b] is extracted, see Algorithm 1. This constellation needs to be detected for every seed
signature ⌃ 2 MGS(a) and every atom b on which a (transitively) depends; we call this subroutine
elaborating ⌃.

The algorithm requires time exponential in the size of the ontology in the worst case, but has
the anytime property: the subroutine for elaborating a seed signature can be interrupted upon
some timeout, which will result in computing some subset of the MSS set for an atom – in
this case we call the atom dirty. Dirty atoms require special handling during module extraction
because their relevance cannot be determined: our FME algorithm will need to include them
in the module even though they may be irrelevant. Consequently, FME performance depends
directly on the presence of atoms left dirty by the MSS algorithm. The amount of “dirtiness” and
its impact on FME is subject of the evaluation in Section 3.3.5.

The final FME algorithm is now a simple variant of the plain module extraction algorithm
(Algorithm 1), where the addition of all non-local axioms is replaced by the addition of all atoms
relevant for ⌃ [Sig(M) (and all dirty atoms).

The FME algorithm has two important advantages over the standard ME algorithm. First,
it should be faster for most ontologies because it benefits from the labeled AD in two ways:
(i) it exploits labels to quickly detect relevant atoms; (ii) once an atom a is established to be
relevant, the corresponding module (a] is added to the module without further checks. Second, it
consumes substantially less memory since only relevant atoms (and their principal ideals) need
to be loaded. This is especially significant when modules are small compared to the size of the
ontology, which we have observed for most of the BioPortal ontologies (the median module size
for small seed signatures is < 1%), see Section 3.3.5.

In addition, the FME algorithm only needs access to the AD graph and labels, not to the
axioms. This is relevant for maintaining large ontologies, or even large repositories thereof.
Contrary to the standard ME, the FME algorithm can extract modules by loading only the axioms
of relevant (and dirty) atoms. For example, if BioPortal ontologies were maintained in the
decomposed form, it would be possible to provide clients, such as SSWAP, with modules for a
required seed signature in a scalable (from the memory perspective) way.

3.3.5 Atomic Decomposition in Practice

This section is concerned with testing whether AD is useful in practice, providing answers to the
questions of whether all or which ontologies decompose “well”, what it means to decompose
well, and which properties of an ontology lead to “good” decomposability. We discuss and
evaluate the performance of ADs w.r.t. three specific tasks:

Task 1: Ontology reuse and collaborative development (see Scenarios 1 and 2 from Section 3.1)

Task 2: Topicality for ontology comprehension (relevant for Scenario 3 from Section 3.1)

Task 3: Fast module extraction (as discussed in Section 3.3.4)

53

Chapter 3 Module Extraction and Modularization

Our results show that AD is generally a good decomposition for these three scenarios. Of
course “good decomposability” may have a di↵erent meaning in other scenarios.

Task 1 involves several ontology engineers working on distinct modules of an ontology. The
aim is to minimize the risk of conflicts caused by two or more collaborators making changes
to logically related parts of the ontology (i.e., one engineer could be changing the semantics
of terms used by another). Safety (see Section 3.2.2) defines conditions under which there is
no such risk. We assume that each engineer works within their module and uses other terms
in a safe way, and that modules assigned to di↵erent engineers do not overlap. A fine-grained
decomposition is desirable here.

Task 2 is based on the assumption that understanding what an ontology deals with is fostered
by searching for its “topics” and their interrelations [DPS11]. In this case, a good decomposition
should provide a “bird’s-eye” view of the topical structure of an ontology. This means that a very
fine-grained decomposition is undesirable because it does little to help understanding. On the
other hand, large clumps of axioms could aggregate, hence hide, specific topical relations. In this
scenario, a good decomposition should be only modestly fine-grained. In addition, a meaningful
way to label the atoms with their topics is desired.

We tested the AD on a corpus of 181 ontologies from the NCBO BioPortal, which were built
by domain experts and vary greatly in size and expressivity. In order to evaluate granularity
of the AD, we computed three variants, based on ?-, >-, and >?⇤-modules. The >?⇤-AD is a
refinement, w.r.t. set inclusion between atoms, of both ?- and >-AD. The open-source Java
implementation used for our experiments is available: http://tinyurl.com/bioportalFME

To evaluate AD for Tasks 1 and 2, we measured, for every ontology and AD variant, the
average and maximal size of atoms and genuine modules (GMs), and the number of connected
components (CCs) in the AD. Table 10 shows these five measures, averaged over the 181
ontologies.

Average Average Average Average Average
Notion of average size maximum size average size maximum size number of
locality of atoms of atoms of GMs of GMs CCs

>?⇤ 1.73 86 66 143 826
? 2.19 93 73 156 45
> 330.45 1417 1166 2093 1.64

Table 10: Decomposition results for the 181 BioPortal ontologies

Table 10 shows that the >?⇤-AD is quite fine-grained: the average size of an atom is < 2
axioms; indeed, only few ontologies have atoms of size > 10. Next, ?-AD is surprisingly close
in granularity to >?⇤-AD; the two are correlated with strong statistical significance. They even
coincide on 34 of the 181 ontologies, which will become interesting for Task 3, see below.

In contrast, >-AD is substantially coarser; in particular, the average atom is by two orders of
magnitude larger. Given the nature of >-modules observed in Section 3.3.2, this is not surprising;
thus >-ADs are simply not a good choice when small atoms and modules are required.

For the majority of ontologies in our corpus, we observe a good decomposability in terms
of atom size. There are, however some exceptions: 13 ontologies have >?⇤-atoms with more
than 200 axioms (or 50% of all axioms). Some of these large atoms are due to the abundance
of axiom pairs of the form {A ⌘ (B0 t . . . t Bn), PairwiseDisjoint(B0, . . . , Bn)}, introduced by
a specific usage pattern of ontology editors. They lead to large modules due to the signature

54

http://tinyurl.com/bioportalFME

3.3 Logic-Based Modularization

extension in Algorithm 1; this e↵ect can be contained by splitting up the big disjointness axioms
or making disjointness implicit. A more systematic investigation of patterns that lead to huge
atoms remains for future work.

For Task 1, these results are promising since they exhibit a good decomposability of ontologies
for >?⇤-AD and ?-AD, i.e., the existence of small, disjoint sets of axioms that can be safely
updated in parallel. In contrast, for Task 2 we observe that atoms reflect only very fine-grained
topics of an ontology: small atoms do not provide much summarization over axioms. However,
the dependency structure reflects the logical dependency between atoms, and thus can be used to
consider, e.g., dependent components which in turn may better reflect the topics of an ontology.
Of course, to really support ontology comprehension, we might have to consider “most relevant”
atoms of an ontology and, definitely, suitable labelings of modules. Both directions are subject to
further investigation; first steps have been made by Del Vescovo et al. [DPS11, Del11, DPS12].

To evaluate AD for Task 3, we proceeded in two steps. First, we evaluated the MSS labeling
algorithm on the corpus, to assess the feasibility of computing all MSS for all atoms. We set a
5-second timeout for computing labels per atom. The results are given in Table 11.

Total no. Avg. size Avg. number Max. size Number of Max. number
of ont.s of MSS(a) of terms in of MSS(a) ont. with of

all MSS(a) dirty atoms dirty atoms

181 1.4 2.1 4252 5 554

Table 11: Summary of the MSS algorithm evaluation on BioPortal ontologies

For all but 5 ontologies the algorithm was able to compute all MSS for all atoms. Also, the
average label size (that is, the number of MSSs per atom) and the average number of terms in all
MSSs per atom are small: 1.4 and 2.1, respectively (when averaged first within an ontology then
over all ontologies). This is mainly a consequence of the simplicity of the BioPortal ontologies:
their atoms are relevant to only a small number of terms, which leads to a small average number
of atoms (and consequently, axioms) per module, see also below.

The remaining 5 ontologies either do not decompose well or have an interesting property of
the AD graph: certain atoms depend non-transitively on a high number of other atoms. Both
reasons apply to two ontologies for which the MSS algorithm left a large number of atoms dirty
and managed to compute up to several thousand MSS per dirty atom. It would be interesting to
systematically investigate cases where a subset of an ontology turns out to be relevant for such a
high number of distinct, but overlapping, seed signatures, but this is subject to future work.

In the second step, we ran the FME algorithm on the obtain labeled ADs. We randomly generated
300 seed signatures consisting of concept names for every ontology, in three groups of sizes
2, 5, 10. For each size group, we ran both FME and ME algorithms and averaged the results over
all 100 runs. Cumulative statistics for all 181 ontologies are presented in Table 12. Correctness
of the FME algorithm was verified by comparison with the standard ME algorithm.

The results show that good decomposability of BioPortal ontologies indeed implies small
modules on average (column 2) and that the FME algorithm is typically faster than the standard
ME algorithm – but this depends on several factors: decomposability of the ontology (a↵ecting
the size of the module), the average number of labels per atom (determining performance of the
relevance check), and the size of the seed signature (determining the number of relevant atoms).
The results include the ontologies with abundant dirty atoms, where the FME algorithm was up
to 5 times slower, which supports the importance of e�cient labeling.

55

Chapter 3 Module Extraction and Modularization

Size of Avg. (median) rela- Number of Avg. ME Avg. FME Max. FME
seed sig. tive module size in % positive cases runtime (ms) speed-up speed-up

2 0.77 (0.04) 173 1.09 7.33 37.28
5 0.91 (0.08) 169 1.15 3.86 27.12

10 0.99 (0.13) 150 1.18 2.48 8.34
“Relative module size” = size of the module divided by the size of the ontology
“Positive cases” = ontologies for which FME was faster than ME
“Avg. (max.) speed-up” = average (maximal) value of ME time divided by FME time

Table 12: Summary of the FME evaluation on BioPortal ontologies

3.3.6 Discussion and Outlook

We have introduced the atomic decomposition of an ontology, and shown how it is a succinct,
tractable representation of the modular structure of an ontology. Moreover, it can be used to
assemble all other modules without touching the whole ontology and without invoking a direct
module extractor. We have furthermore shown that the majority of ontologies from BioPortal
decompose well, discussed possible reasons for poor decomposability, and implications of
decomposability for possible use cases, including semantic web service annotation and discovery.
In addition, we have devised novel AD-based algorithms for labeling and fast module extraction.

Future work should investigate in depth applications and applicability of AD in ontology
engineering. In particular, precise methodologies are sought for using AD in Scenarios 2 (collab-
orative development) and 3 (comprehension) from Section 3.1, and for answering Question 4
(identifying a suitable module for reuse). All these tasks require a more intuitive labeling of the
atoms; alternative labeling approaches have been described by Del Vescovo et al. in [Del11],
where further applications of AD are described, as well as in [DPS11] together with a theory of
topicality, and in [DPS12] together with a rigid notion of logical relevance.

In addition, AD bears the potential to support the maintenance of ontologies in a decomposed
form, which requires further investigation. The benefits are not restricted to reuse (through fast
module extraction); we also expect benefits for ontology engineering (through the ability to load,
work on, and reason over a smaller part), collaborative development (by obtaining a suitable
partition from the AD), and ontology comprehension (through the ability to focus on small parts
at a time and understand their interactions). Since the computation of AD can be time-consuming,
it is desirable to be able to incrementally update the AD. Our first steps in this direction are
restricted to axiom additions [KDS12]. The maintenance of ontologies in a decomposed form
also requires a better understanding of good and poor decomposability, and modeling guidelines
for developing well decomposable ontologies. Furthermore, since LBMs are syntax-dependent,
it is important to understand the robustness of AD based on LBMs under certain “refactorings”
that naturally occur in the development cycle (such as definitorial extensions – the introduction
of new names for reoccurring complex concepts).

Finally, an extension of our FME algorithms to >?⇤-modules is desirable but nontrivial.

56

Chapter 4

Branching-Time Temporal Description Logics

4.1 Introduction

Classical description logics (DLs) aim at the representation of, and reasoning about, static knowl-
edge. The objective of enhancing DLs with means to capture temporal aspects of knowledge has,
over the past 20 years, led to much e↵ort being spent on the study of temporal description logics
(TDLs), as discussed in detail in the surveys [AF00, LWZ08] and the references therein. TDLs
are useful for applications where knowledge involving a dynamic aspect is to be represented. For
example, it is desirable to model in SNOMED CT concepts such as “a patient who may need a
blood transfusion in the future” or “a disease whose occurrence may cause certain other diseases
in the future”.

A prominent approach to TDLs, following Schild’s original proposal [Sch93], is to combine
DLs with the standard temporal logics LTL and CTL(*), based on a two-dimensional product-
like semantics in the style of many-dimensional DLs [GKWZ03]. In addition to choosing the
component logics, the design of a TDLs requires further choices: whether temporal operators are
applied to concepts, roles and/or TBoxes, or whether we want to define some DL roles or concepts
as rigid, which would mean that they will not change their interpretation over time. For example,
since every human has the same genetic disorders during their life, the relation “has genetic
disorder” between humans and diseases should be modeled by a rigid role hasGeneticDisease.
Consequently, it has been argued that rigid roles are required in applications of TDLs, e.g., in
temporal data modeling [AKRZ14] or in medical ontologies such as SNOMED CT.

If the temporal component is chosen to be LTL, we speak of linear-time TDLs. For these
LTDLs, the landscape of the expressivity and computational complexity is well-understood
[AKL+07, BGL08, FT11, AKRZ14]. Various design choices have been explored, and both
lightweight and expressive DLs have been considered. An important insight gained is that
LTDLs based on ALC become undecidable in the presence of general TBoxes as soon as
temporal operators are applied to concepts and roles, or if rigid roles are allowed.

More generally, combinations of DLs and modal logics allowing for rigid roles and general
TBoxes tend to have very high computational complexity. This can be partly explained by the
well-known correspondence of DL combinations with product modal logics (PMLs) [GKWZ03,
Chapters 3, 14]: the standard reasoning problem in TDLs, concept satisfiability with respect to a
TBox, is then a variant of the global consequence problem in the corresponding PML. Global
consequence is typically undecidable in PMLs [GKWZ03].

In the context of LTDLs, recent work has aimed at regaining decidability in the presence
of rigid roles and general TBoxes, investigating LTDLs based on lightweight DLs from the
EL and DL-Lite families [AKL+07, AKRZ14]. The results exhibit a stark contrast between
decidable DL-Lite based and undecidable EL-based LTDLs. Undecidability in the EL case is
explained by an interaction of non-convexity (the ability to simulate disjunctions, here using only

57

Chapter 4 Branching-Time Temporal Description Logics

LTL-operators) with the known fact that EL with disjunctions can encode ALC; hence these
EL-based LTDLs are as hard as theirALC-counterpart.

From the viewpoint of some DL applications, it has been argued that representing the existence
of di↵erent possible futures, represented by a branching-time structure, is necessary for a more
appropriate modeling [GJL12]: in the medical domain, symptoms or diseases may evolve in
di↵erent ways in the future. As an example, consider the statement: “any patient with diabetes
will possibly develop glaucoma in the future”. In an LTDL it can be modeled as

Patient u 9hasDisease.Diabetes v ^9develops.Glaucoma,

which is too strong – it says that each diabetes patient will eventually develop glaucoma. In
branching-time TDLs we can use the existential path quantifier E together with ^ to state more
carefully that there exists a possible future where the patient develops glaucoma.

In contrast to LTDLs, the study of branching time TDLs (BTDLs) has been limited, mainly
focusing on decidability boundaries obtained in the context of first-order branching temporal
logic [HWZ02, BHWZ04]. Only recently were tight elementary bounds presented for BTDLs
based onALC and EL in the case where only (local) (i.e., non-rigid) roles are allowed [GJL12].

An aspect which, to our knowledge, has received no attention in the context of TDLs is the
restriction of TBoxes to classical or acyclic TBoxes. This is surprising because this restriction is
a fairly obvious design choice: given two observations: (a) it is likely to “ease” the prohibitive
computational behavior in the presence of general TBoxes of LTDLs (and, as we will show,
of BTDLs), and (b) TDLs designed this way seem well-suited as modeling languages for
applications – for example, in the biomedical domain, given that large parts of SNOMED CT
and the Gene Ontology GO [Gen00] are acyclic EL-TBoxes.
The work reported in this chapter thus aims at answering the following two questions.

1. Do BTDLs with rigid roles behave computationally better than LTDLs? Since the standard
way to express a disjunction using LTL operators fails for CTL(*), there is justifiable
hope for convex EL-based BTDLs, which can reasonably be expected to have good
computational properties.

2. Does the restriction to acyclic TBoxes improve the computational properties of TDLs?

To answer these questions, we will study the decidability and complexity of BTDLs obtained
from combining CTL withALC and lightweight DLs from the EL and DL-Lite families, with
rigid roles, with temporal operators restricted to be applied to concepts only, and with general
as well as acyclic TBoxes. We will analyze the decidability and complexity of the standard
reasoning problems.

Bibliographic notes. Our results for general TBoxes appeared in [GJS14]; those for restricted
TBoxes were published in [GJS15].

4.2 Preliminaries

We introduce CTLALC. Let NC and NR be countably infinite sets of concept names and role
names. We assume that NR is partitioned into two countably infinite sets Nrig and Nloc of rigid
role names and local role names, respectively. CTLALC-concepts C are defined by the following
grammar

C := > | A | ¬C | C u D | 9r.C | E�C | E⇤C | E(CUD)

58

4.2 Preliminaries

where A ranges over NC, r over NC. The operators ?,t,8,E^,A⇤,A^,AU can be defined in
terms of the above in the usual way, see also [CGP99]. We moreover consider the strict (·<)
versions of the temporal operators: E⇤<C = E�E⇤C, E(CU<D) = E�E(CUD).

The semantics of CTLALC is given in terms of temporal interpretations, which are infinite
trees whose every node is associated with a classical DL interpretation. Here a tree is a directed
graph T = (W, E) where W ✓ (N \ {0})⇤ is a prefix-closed nonempty set of nodes and E =
{(w,wc) | wc 2 W,w 2 N⇤, c 2 N} a set of edges; we generally assume that wc 2 W and c0 < c
implies wc0 2 W and that E is a total relation. The node " 2 W is the root of T . In the context of
temporal DLs we refer to nodes of T as time points or worlds.

A temporal interpretation is a structure I = (�,T, {Iw}w2W) where T = (W, E) is a tree and,
for each w 2 W, Iw is an interpretation with domain � such that rIw = rIw0 for all r 2 Nrig and
w,w0 2 W. We usually write AI,w instead of AIw , and intuitively d 2 AI,w means that, in the
interpretation I, the object d is an instance of the concept name A at time point w. Moreover,
we make the constant domain assumption, that is, all time points share the same domain �. For
Boolean-complete TDLs, CDA is more general than assuming expanding, decreasing and varying
domains because those can all be reduced to CDA [GKWZ03, Prop. 3.32]. For the sub-Boolean
logics studied here, CDA is not w.l.o.g. Indeed, we will identify a logic where reasoning with
expanding domains cannot be reduced to the constant domain case (unless P = PSPACE).

We now define the semantics of CTLALC-concepts. A path in a tree T = (W, E) starting
at a node w is a minimal set ⇡ ✓ W such that w 2 ⇡ and, for each w0 2 ⇡, there is a c 2 N
with w0c 2 ⇡. We use Paths(w) to denote the set of all paths starting at the node w. For a path
⇡ = w0w1w1 · · · and i � 0, we use ⇡[i] to denote wi. The mapping ·I,w is extended from concept
names to CTLALC-concepts as shown in Figure 9.

>I,w = �

(¬C)I,w = � \CI,w

(C u D)I,w = CI,w \ DI,w

(9r.C)I,w = {d 2 � | 9e.(d, e) 2 rI,w ^ e 2 CI,w}
(E�C)I,w = {d 2 � | d 2 CI,⇡[1] for some ⇡ 2 Paths(w)}
(E⇤C)I,w = {d 2 � | 8 j � 0.d 2 CI,⇡[j] for some ⇡ 2 Paths(w)}
(E(CUD))I,w = {d 2� | 9 j� 0.(d 2DI,⇡[j] ^ (8 0 k< j. d 2CI,⇡[k])) for some ⇡ 2 Paths(w)}

Figure 9: Satisfaction relation for CTLALC-concepts

A general CTLALC-TBox T is a finite set of concept inclusions (CIs) C v D with C,D
CTLALC concepts. An acyclic CTLALC-TBox T is a finite set of concept definitions (CDs)
A ⌘ D with A 2 NC and D a CTLALC concept, such that (1) no two CDs have the same left-hand
side, and (2) there are no CDs A1 ⌘ C1, . . . , Ak ⌘ Ck in T such that Ai+1 occurs in Ci for
1  i  k, where Ak+1 = A1.

A temporal interpretation I satisfies a concept C if CI," , ;; it satisfies a CI C v D, written
I |= C v D, if CI,w ✓ DI,w for all w 2 W; it is a model of a TBox T if it satisfies all CIs in T .
Thus, a TBox T is interpreted globally in the sense that it has to be satisfied at every time point.

A concept C is satisfiable with respect to a CTLALC-TBox T if there is a model of T that
satisfies C. A concept D subsumes a concept C with respect to a TBox T , written T |= C v D,
if I |= C v D for all models I of T . For CTLALC and DL-LiteNbool, we consider the concept
satisfiability problem: given a concept C and a TBox T , decide whether C is satisfiable with

59

Chapter 4 Branching-Time Temporal Description Logics

Rigid roles? no yes yes yes
TBoxes general general acyclic empty
CTLALC = EXPTIME1 undecidable nonelementary and decidable

CTLE^
EL , CTLE�

EL  P1 nonelem./undecid.  P  P

CTLE�,E^
EL = EXPTIME1,2 undecidable � CONP,  CONEXPTIME = CONP

CTLE^,A⇤
EL = PSPACE1 nonelementary = PSPACE  PSPACE

1 [GJL12] 2 lower bound follows from our results � hardness  membership = completeness

Table 13: Overview of previous and new complexity results

respect to T . For EL, we consider the subsumption problem: given a TBox T and two concepts
C and D, decide whether D subsumes C with respect to T .

We will denote fragments of CTLALC determined by restrictions to the temporal operators
by putting the available temporal operators as a superscript; for example, CTLE^,A⇤

ALC denotes the
fragment with the only temporal operators E^ and A⇤. Analogously, we use EL and DL-LiteNbool
as subscripts for TDLs based on these lightweight DLs.

4.3 Results

Our results forALC- and EL-based TDLs are summarized – and put into the context of previous
work – in Table 13.

General TBoxes. We start with the combination of CTL and ALC, showing undecidability
of concept satisfiability already for the fragment with only the operators E^ and A⇤. For this
result, we combine results for products of “transitive” PMLs [GKWZ05] with a well-known
DL-technique for encoding transitivity in a TBox [Tob01]. Our result is more general: it says
that the global satisfiability problem for all PMLs determined by frame classes C1 and C2 is
undecidable if C2 contains only transitive frames and if C2 and the class of all transitive frames
in C1 contain frames of arbitrarily large finite or infinite depth.

We continue by investigating the subsumption problem for BTDLs based on EL and several
fragments of CTL. These CTL fragments are subsets of the CTL operators that were previously
shown to lead to a decrease in complexity for the standard CTL satisfiability problem [MMTV09].
We first identify the following non-convex BTDLs.

CTLE^,A^
EL CTLE^E�

EL CTLEU
EL CTLEU<

EL CTLE^<,E⇤<
EL CTLE^,E⇤

EL

We show their undecidability using the technique described above. Next we identify convex
BTDLs based on EL, showing closure under direct products of FO-models:

CTLE�
EL CTLE^

EL CTLE^,A⇤
EL

It is reasonable to hope that these three BTDLs would behave computationally well, given that this
is typically the case for convex logics, including two-dimensional ones: e.g, the combination of
EL with the CTL operator E^ in the case where only local roles are allowed [GJL12] is tractable,
and various combinations of the modal logic S5 with EL are easier than the correspondingALC
variant [LS10, GJLS11]. Surprisingly, we show that the above three logics are undecidable or at

60

4.3 Results

least nonelementary, see Table 13. The proofs of these results are challenging and technically
involved because the absence of disjunction makes it di�cult to use standard techniques for
establishing lower complexity bounds, such as tilings. For the undecidability of CTLE�

EL we use a
reduction from the halting problem of 2-counter automata introduced by Minsky [Min67]; for the
nonelementary lower bound of CTLE^

EL we show how to encode k-exponential counters, adopting
Stockmeyer’s technique [Sto74], and then reduce from the word problem of k-exponentially
space-bounded Turing machines.

Finally, we investigate concept satisfiability for BTDLs based on DL-LiteNbool, showing that the
technique developed in [AKRZ14] for LTDLs is robust in the sense that it can be carried over to
most BTDLs based on CTL. This technique consists in reducing CTLDL-LiteNbool

to the one-variable
fragment of first-order temporal logic, and then eliminating existential quantifiers to obtain an
equivalent CTL formula. We thus obtain tight complexity bounds, namely PSPACE- and EXPTIME-
completeness, according to the complexity for the corresponding CTL fragments [MMTV09].
Unfortunately, elimination of the quantifiers does not work for full CTLDL-LiteNbool

because the
original shifting technique [AKRZ14, Lemma 4.2] relies on the past being unbounded, which
is not the case for the standard CTL semantics. However, the problem can be circumvented by
(1) disallowing local roles – which makes shifting superfluous – or (2) restricting the temporal
operators to those that are tolerant to a certain variant of unraveling into the temporal direction,
related to stutter invariance [Lam83]. We thus obtain:

Theorem 30. Concept satisfiability relative to general TBoxes is EXPTIME-complete for
CTLDL-LiteNbool

without local roles and for CTLEU,E⇤
DL-LiteNbool

, and PSPACE-complete for CTLE^
DL-LiteNbool

.

A more systematic investigation of CTLDL-LiteNbool
is left for future work; we plan to pursue an

automata-based approach in the style of [GJL12].

Restricted TBoxes. As above, we start with CTLALC, showing that satisfiability relative to
empty and acyclic TBoxes is nonelementary and decidable. To establish the upper bound,
we proceed in two steps analogously to Hodkinson et al. [HWZ00, HWZ02]: we characterize
satisfiability by the existence of a quasimodel [GKWZ03] and encode the latter as a formula
in monadic second-order logic, which is decidable over countably branching trees [Rab69].
Thanks to unfolding [Neb90b], there is no di↵erence between the cases of acyclic TBoxes and
the empty TBox. The nonelementary lower bound holds already for CTLE^

ALC and CTLE�
ALC: they

are notational variants of the PMLs S4 ⇥ K and K ⇥ K, whose satisfiability problem is inherently
nonelementary [GJL15].

We continue by replacing ALC with EL and maintaining the restriction to E^,E� and
empty TBoxes. We show that the resulting TDLs are decidable in P with one of the two
operators, and CONP-complete with both. The P upper bound is obtained by extending the
known characterization of EL subsumption via homomorphisms between concept description
trees [BKM99] to the two-dimensional case: given two CTLE�

EL -concepts C,D, we have C v D if
and only if D is satisfied in the root of the canonical model of C. While constructing the latter is
straightforward, showing its canonicity is technically intricate. The same technique goes through
with minor modifications for CTLE^

EL . The CONP upper bound for CTLE�,E^
EL is obtained by

combining the previous machinery with expansion vectors, which were introduced by Haase and
Lutz [HL08] for proving CONP membership of ELtrans, i.e., EL extended with transitive roles.
The matching lower bound is due to a straightforward reduction from ELtrans.

61

Chapter 4 Branching-Time Temporal Description Logics

Our main results are the P- and PSPACE-completeness for CTLEL fragments over acyclic
TBoxes: we lift the P upper bound for CTLE�

EL and CTLE^
EL to the case of acyclic TBoxes and

show that the addition of A⇤ leads to PSPACE-completeness. For the P upper bound, we use
a two-dimensional variant of the standard EL completion algorithm [BBL05], which relies on
the input TBox being acyclic. For the PSPACE upper bound, a suitable extension of the same
procedure would require an exponentially-sized data structure. To avoid its full computation, our
PSPACE procedure computes only single paths, explores each such trace in a tableau-like fashion,
and enumerates all traces in an appropriate order. Here, acyclicity is crucial for bounding the
length of traces polynomially. The matching PSPACE lower bound is via a reduction from QBF
validity. By a slight variation of that reduction, we are able to show that CTLE�

EL and CTLE^
EL

with rigid roles, acyclic TBoxes, and expanding domains are already PSPACE-hard.
As for CTLE�,E^

EL over acyclic TBoxes, unfolding immediately yields a CONEXPTIME upper
bound. This time we cannot obtain a lower bound via a reduction from EL with transitive roles
(which is PSPACE-hard over acyclic TBoxes [HL08]) because Haase and Lutz’ hardness proof
uses two roles, which cannot both be modeled by the temporal dimension. It remains for future
work to search for tight complexity bounds; we are currently trying to combine the general idea
behind expansion vectors with our completion procedure.

All upper bounds are una↵ected if rigid concepts are included.

4.4 Discussion

With our results, we have made progress towards understanding the landscape of the computa-
tional complexity and expressivity of BTDLs allowing for rigid roles. We identified EL-based
BTDLs that are convex but nevertheless computationally badly behaved over general TBoxes.

By restricting the TBoxes, we have obtained a relatively low complexity for the same BTDLs,
which is in stark contrast with the negative results for general TBoxes. The restriction to acyclic
TBoxes has thus enabled us to identify the first computationally well-behaved TDLs with rigid
roles based on EL and classical temporal logics.

Our positive results for CTLEL over empty TBoxes are of significance for PMLs too: they
entail that implication for the positive fragments of K ⇥ K and S4 ⇥ K is in P.

The picture of the complexity landscape of TDLs with rigid roles obtained thus far can be
extended in several ways. First, over general TBoxes, decidability could be regained by certain
modifications, such as considering expanding domains (which might cause the complexity to
drop over general TBoxes), or by replacing DL-Litebool with DL-Litecore (which was successful
for LTDLs [AKRZ14]). Second, the positive results obtained over acyclic TBoxes encourage
attempts to enrich the language, e.g., by adding role inclusions, by allowing temporal roles, by
studying cyclic TBoxes, or by changing the temporal component to LTL or even the µ-calculus.

62

Bibliography

[AB09] S. Arora and B. Barak. Computational Complexity – A Modern Approach. Cam-
bridge University Press, 2009.

[ABI+09] E. Allender, M. Bauland, N. Immerman, H. Schnoor, and H. Vollmer. The com-
plexity of satisfiability problems: Refining Schaefer’s theorem. J. of Computer and
System Sciences, 75(4):245–254, 2009.

[ABM99] C. Areces, P. Blackburn, and M. Marx. A road-map on complexity for hybrid
logics. In Proc. of CSL-99, volume 1683 of LNCS, pages 307–321. Springer-Verlag,
1999.

[ABM00] C. Areces, P. Blackburn, and M. Marx. The computational complexity of hybrid
temporal logics. Logic J. of the IGPL, 8(5):653–679, 2000.

[ACD90] R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking for real-time systems.
In Proc. of LICS-90, pages 414–425. IEEE Computer Society, 1990.

[ACH12] A. Armas Romero, B. Cuenca Grau, and I. Horrocks. MORe: Modular combination
of OWL reasoners for ontology classification. In Proc. of ISWC-12 (1), volume
7649 of LNCS, pages 1–16. Springer-Verlag, 2012.

[ACKZ07] A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. DL-Lite in the
light of first-order logic. In Proc. of AAAI-07, pages 361–366, 2007.

[ACKZ09a] A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. Adding weight to
DL-Lite. In Proc. of DL 2009, CEUR-WS, 2009.

[ACKZ09b] A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite
family and relations. J. of Artificial Intelligence Research, 36:1–69, 2009.

[AF00] A. Artale and E. Franconi. A survey of temporal extensions of description logics.
Ann. of Mathematics and Artificial Intelligence, 30(1-4):171–210, 2000.

[AKL+07] A. Artale, R. Kontchakov, C. Lutz, F. Wolter, and M. Zakharyaschev. Temporalising
tractable description logics. In Proc. of TIME-07, pages 11–22. IEEE Computer
Society Press, 2007.

[AKRZ14] A. Artale, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev. A cookbook
for temporal conceptual data modelling with description logics. ACM Trans.
Computational Logic, 15(3):25, 2014.

[At07] C. Areces and B. ten Cate. Hybrid logics. In Handbook of Modal Logic, volume 3,
chapter 14, pages 821–868. Elsevier, 2007.

63

Chapter 4 Branching-Time Temporal Description Logics

[Baa96] F. Baader. Using automata theory for characterizing the semantics of terminological
cycles. Ann. of Mathematics and Artificial Intelligence, 18(2-4):175–219, 1996.

[Baa03] F. Baader. Terminological cycles in a description logic with existential restrictions.
In Proc. of IJCAI-03, pages 325–330. Morgan Kaufmann, 2003.

[BBC+10] M. Bauland, E. Böhler, N. Creignou, S. Reith, H. Schnoor, and H. Vollmer. The
complexity of problems for quantified constraints. Theory of Computing Systems,
47(2):454–490, 2010.

[BBL05] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc. of IJCAI-05,
pages 364–369, 2005.

[BBL08] F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope further. In Proc. of
OWLED-08DC, 2008.

[BCC+04] M. Bauland, P. Chapdelaine, N. Creignou, M. Hermann, and H. Vollmer. An
algebraic approach to the complexity of generalized conjunctive queries. In Proc.
of SAT-04, 2004.

[BCM+03] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

[BCRV03] E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with Boolean blocks, part
I: Post’s lattice with applications to complexity theory. SIGACT News, 34(4):38–52,
2003.

[BDL04] G. Behrmann, A. David, and K. G. Larsen. A tutorial on Uppaal. In Revised
Lectures of SFM-RT ’04, volume 3185 of LNCS, pages 200–236. Springer-Verlag,
2004.

[BFZE08] C. Bezerra, F. Freitas, A. Zimmermann, and J. Euzenat. ModOnto: A tool for
modularizing ontologies. In Proc. of WONTO-08, volume 427 of CEUR-WS.org,
2008.

[BGL08] F. Baader, S. Ghilardi, and C. Lutz. LTL over description logic axioms. In Proc. of
KR-08, pages 684–694. AAAI Press, 2008.

[BH91] F. Baader and B. Hollunder. A terminological knowledge representation system
with complete inference algorithms. In Proc. of PDK-91, volume 567 of LNCS,
pages 67–86. Springer-Verlag, 1991.

[BH09] M. Bauland and E. Hemaspaandra. Isomorphic implication. Theory of Computing
Systems, 44(1):117–139, 2009.

[BHSS06] M. Bauland, E. Hemaspaandra, H. Schnoor, and I. Schnoor. Generalized modal sat-
isfiability. In Proc. of STACS-06, volume 3884 of LNCS, pages 500–511. Springer-
Verlag, 2006.

[BHWZ04] S. Bauer, I. Hodkinson, F. Wolter, and M. Zakharyaschev. On non-local proposi-
tional and weak monodic quantified CTL. J. of Logic and Computation, 14(1):3–22,
2004.

64

[BK08] C. Baier and J.-P. Katoen. Principles of Model Checking. The MIT Press, 2008.

[BKM99] F. Baader, R. Küsters, and R. Molitor. Computing least common subsumers in
description logics with existential restrictions. In Proc. of IJCAI-99. Morgan
Kaufmann, 1999.

[BL10] L. Bozzelli and R. Lanotte. Complexity and succinctness issues for linear-time
hybrid logics. Theoretical Computer Science, 411(2):454–469, 2010.

[BLS06] F. Baader, C. Lutz, and B. Suntisrivaraporn. CEL – a polynomial-time reasoner
for life science ontologies. In Proc. of IJCAR-06, volume 4130 of LNCS, pages
287–291. Springer-Verlag, 2006.

[BMS+09] M. Bauland, M. Mundhenk, T. Schneider, H. Schnoor, I. Schnoor, and H. Vollmer.
The tractability of model-checking for LTL: the good, the bad, and the ugly frag-
ments. In Proc. of M4M-5, volume 231 of ENTCS, pages 277–292, 2009.

[BMS+11] M. Bauland, M. Mundhenk, T. Schneider, H. Schnoor, I. Schnoor, and H. Vollmer.
The tractability of model checking for LTL: the good, the bad, and the ugly
fragments. ACM Trans. Computational Logic, 12(2):13, 2011.

[BMTV12] O. Beyersdor↵, A. Meier, M. Thomas, and H. Vollmer. The complexity of reasoning
for fragments of default logic. J. of Logic and Computation, 22(3):587–604, 2012.

[BP90] P. Byers and D. Pitt. Conservative extensions: A cautionary note. EATCS-Bulletin,
41, 1990.

[Bra04] S. Brandt. Polynomial time reasoning in a description logic with existential
restrictions, GCI axioms, and—what else? In Proc. of ECAI-04, pages 298–302.
IOS Press, 2004.

[BS85] R. J. Brachman and J. G. Schmolze. An overview of the KL-ONE knowledge
representation system. Cognitive Science, 9(2):171–216, 1985.

[BS95] P. Blackburn and J. Seligman. Hybrid languages. J. of Logic, Language and
Information, 4(3):251–272, 1995.

[BSS+09] M. Bauland, T. Schneider, H. Schnoor, I. Schnoor, and H. Vollmer. The complexity
of generalized satisfiability for linear temporal logic. Logical Methods in Computer
Science, 5(1), 2009.

[Bul70] R. Bull. An approach to tense logic. Theoria, 36:282–300, 1970.

[BVSH09] J. Bao, G. Voutsadakis, G. Slutzki, and V. Honavar. Package-based description
logics. In Stuckenschmidt et al. [SPS09], pages 349–371.

[Cal96] D. Calvanese. Reasoning with inclusion axioms in description logics: Algorithms
and complexity. In Proc. of ECAI-96, pages 303–307. John Wiley & Sons, 1996.

[CCGR00] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new symbolic
model checker. Int. J. on Software Tools for Technology Transfer, 2(4):410–425,
2000.

65

Chapter 4 Branching-Time Temporal Description Logics

[CDL+05] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. DL-Lite:
Tractable description logics for ontologies. In Proc. of AAAI-05, pages 602–607.
AAAI Press / The MIT Press, 2005.

[CDLN01] D. Calvanese, G. De Giacomo, M. Lenzerini, and D. Nardi. Reasoning in expressive
description logics. In J. A. Robinson and A. Voronkov, editors, Handbook of
Automated Reasoning, pages 1581–1634. Elsevier and MIT Press, 2001.

[CGP99] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.

[CHKS08] B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Modular reuse of
ontologies: Theory and practice. J. of Artificial Intelligence Research, 31:273–318,
2008.

[CHKS10] B. Cuenca Grau, C. Halaschek-Wiener, Y. Kazakov, and B. Suntisrivaraporn. Incre-
mental classification of description logics ontologies. J. of Automated Reasoning,
44(4):337–369, 2010.

[CHS07] P. Chapdelaine, M. Hermann, and I. Schnoor. Complexity of default logic on
generalized conjunctive queries. In Proc. of LPNMR-07, volume 4483 of LNCS,
pages 58–70. Springer-Verlag, 2007.

[CL93] C.-C. Chen and I-P. Lin. The computational complexity of satisfiability of temporal
Horn formulas in propositional linear-time temporal logic. Information Processing
Letters, 45(3):131–136, 1993.

[CMVT12] N. Creignou, A. Meier, H. Vollmer, and M. Thomas. The complexity of reasoning
for fragments of autoepistemic logic. ACM Trans. Computational Logic, 13(2),
2012.

[CPS09] B. Cuenca Grau, B. Parsia, and E. Sirin. Ontology integration using E-connections.
In Stuckenschmidt et al. [SPS09], pages 293–320.

[CPSK06] B. Cuenca Grau, B. Parsia, E. Sirin, and A. Kalyanpur. Modularity and web
ontologies. In Proc. of KR-06, pages 198–209, 2006.

[CST12] N. Creignou, J. Schmidt, and M. Thomas. Complexity classifications for proposi-
tional abduction in Post’s framework. J. of Logic and Computation, 22(5):1145–
1170, 2012.

[Dal00] V. Dalmau. Computational Complexity of Problems over Generalized Formulas.
PhD thesis, Universitat Politécnica de Catalunya, 2000.

[Del11] C. Del Vescovo. The modular structure of an ontology: Atomic decomposition
towards applications. In Proc. of DL 2011, volume 745 of CEUR-WS.org, 2011.

[DFR00] C. Dixon, M. Fisher, and M. Reynolds. Execution and proof in a Horn-clause
temporal logic. In H. Barringer, M. Fisher, D. Gabbay, and G. Gough, editors,
Advances in Temporal Logic, volume 16 of Applied Logic Series, pages 413–433.
Kluwer, 2000.

66

[DGK+11] C. Del Vescovo, D. Gessler, P. Klinov, B. Parsia, U. Sattler, T. Schneider, and
A. Winget. Decomposition and modular structure of BioPortal ontologies. In Proc.
of ISWC-11, volume 7031 of LNCS, pages 130–145. Springer-Verlag, 2011.

[DGS93] R. Diaconescu, J. Goguen, and P. Stefaneas. Logical support for modularisation.
In G. Huet and G. Plotkin, editors, Logical Environments. Cambridge University
Press, 1993.

[DKP+13] C. Del Vescovo, P. Klinov, B. Parsia, U. Sattler, T. Schneider, and D. Tsarkov.
Empirical study of logic-based modules: Cheap is cheerful. In Proc. of ISWC-13
(1), volume 8218 of LNCS, pages 84–100. Springer-Verlag, 2013.

[DL94] G. De Giacomo and M. Lenzerini. Boosting the correspondence between descrip-
tion logics and propositional dynamic logics. In Proc. of AAAI-94, pages 205–212.
AAAI Press, 1994.

[DLN+92] F. M. Donini, M. Lenzerini, D. Nardi, B. Hollunder, W. Nutt, and A. Marchetti-
Spaccamela. The complexity of existential quantification in concept languages.
Artificial Intelligence, 53(2-3):309–327, 1992.

[DLNN97] F. M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept
languages. Information and Computation, 134(1):1–58, 1997.

[DM00] F. M. Donini and F. Massacci. EXPTIME tableaux forALC. Artificial Intelligence,
124(1):87–138, 2000.

[Don03] F. M. Donini. Complexity of reasoning. In Baader et al. [BCM+03], pages 96–136.

[DPS11] C. Del Vescovo, B. Parsia, and U. Sattler. Topicality in logic-based ontologies. In
Proc. of ICCS-11, volume 6828 of LNCS, pages 187–200. Springer-Verlag, 2011.

[DPS12] C. Del Vescovo, B. Parsia, and U. Sattler. Logical relevance in ontologies. In Proc.
of DL 2012, volume 846 of CEUR-WS.org, 2012.

[DPSS10] C. Del Vescovo, B. Parsia, U. Sattler, and T. Schneider. The modular structure of an
ontology: an empirical study. In Proc. of DL 2010, volume 573 of CEUR-WS.org,
2010.

[DPSS11] C. Del Vescovo, B. Parsia, U. Sattler, and T. Schneider. The modular structure
of an ontology: Atomic decomposition. In Proc. of IJCAI-11, pages 2232–2237,
2011.

[DS02] S. Demri and P. Schnoebelen. The complexity of propositional linear temporal
logics in simple cases. Information and Computation, 174(1):84–103, 2002.

[EC82] E. A. Emerson and E. M. Clarke. Using branching time temporal logic to synthesize
synchronization skeletons. Science of Computer Programming, 2:241–266, 1982.

[EES90] E. A. Emerson, M. Evangelist, and J. Srinivasan. On the limits of e�cient temporal
decidability. In Proc. of LICS-90, pages 464–475. IEEE Computer Society Press,
1990.

67

Chapter 4 Branching-Time Temporal Description Logics

[EH86] E. A. Emerson and J. Y. Halpern. “Sometimes” and “not never” revisited: on
branching versus linear time temporal logic. J. of the ACM, 33(1):151–178, 1986.

[Fd06] M. Franceschet and M. de Rijke. Model checking for hybrid logics (with an
application to semistructured data). J. of Applied Logic, 4(3):279–304, 2006.

[FdS03] M. Franceschet, M. de Rijke, and B.-H. Schlinglo↵. Hybrid logics on linear
structures: Expressivity and complexity. In Proc. of TIME-03, pages 166–173.
IEEE Computer Society Press, 2003.

[FR79] J. Ferrante and C. W. Racko↵. The Computational Complexity of Logical Theories.
Springer-Verlag, 1979.

[FT11] E. Franconi and D. Toman. Fixpoints in temporal description logics. In Proc. of
IJCAI-11, pages 875–880. AAAI Press, 2011.

[Gen00] The Gene Ontology Consortium. Gene ontology: Tool for the unification of biology.
Nature Genetics, 25:25–29, 2000.

[GFH+03] J. Golbeck, G. Fragoso, F. Hartel, J. Hendler, J. Oberthaler, and B. Parsia. The
National Cancer Institute’s thesaurus and ontology. J. of Web Semantics, 1(1):75–
80, 2003.

[GJL12] V. Gutiérrez-Basulto, J. C. Jung, and C. Lutz. Complexity of branching temporal
description logics. In Proc. of ECAI-12, volume 242 of Frontiers in AI and Appl.,
pages 390–395. IOS Press, 2012.

[GJL15] S. Göller, J. C. Jung, and M. Lohrey. The complexity of decomposing modal and
first-order theories. ACM Trans. Computational Logic, 16(1):9:1–9:43, 2015.

[GJLS11] V. Gutiérrez-Basulto, J. C. Jung, C. Lutz, and L. Schröder. A closer look at the
probabilistic description logic Prob-EL. In Proc. of AAAI-11. AAAI Press, 2011.

[GJS14] V. Gutiérrez-Basulto, J. C. Jung, and T. Schneider. Lightweight description logics
and branching time: a troublesome marriage. In Proc. of KR-14. AAAI Press,
2014.

[GJS15] V. Gutiérrez-Basulto, J. C. Jung, and T. Schneider. Lightweight temporal descrip-
tion logics with rigid roles and restricted TBoxes. In Proc. of IJCAI-15, pages
3015–3021. AAAI Press, 2015.

[GKS10] D. Götzmann, M. Kaminski, and G. Smolka. Spartacus: A tableau prover for
hybrid logic. ENTCS, 262:127–139, 2010.

[GKWZ03] D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-dimensional modal
logics: theory and applications, volume 148 of Studies in Logic. Elsevier, 2003.

[GKWZ05] David Gabelaia, Agi Kurucz, Frank Wolter, and Michael Zakharyaschev. Products
of ‘transitive’ modal logics. J. of Symbolic Logic, 70(3):993–1021, 2005.

[GLW06] S. Ghilardi, C. Lutz, and F. Wolter. Did I damage my ontology? A case for
conservative extensions in description logics. In Proc. of KR-06, pages 187–197,
2006.

68

[GMM+12] S. Göller, A. Meier, M. Mundhenk, T. Schneider, M. Thomas, and F. Weiß. The
complexity of monotone hybrid logics over linear frames and the natural numbers.
In Proc. of AiML-9, pages 261–278. College Publications, 2012.

[GMWK02] R. Givan, D. A. McAllester, C. Witty, and D. Kozen. Tarskian set constraints.
Information and Computation, 174(2):105–131, 2002.

[GSM+09] D. Gessler, G. S. Schiltz, G. D. May, S. Avraham, C. D. Town, D. M. Grant,
and R. T. Nelson. SSWAP: A simple semantic web architecture and protocol for
semantic web services. BMC Bioinformatics, 10, 2009.

[HA09] G. Ho↵mann and C. Areces. HTab: a terminating tableaux system for hybrid logic.
ENTCS, 231:3–19, 2009.

[Hag08] M. Hagen. Algorithmic and Computational Complexity Issues of Monet. PhD
thesis, University of Jena, 2008.

[Hal95] J. Y. Halpern. The e↵ect of bounding the number of primitive propositions and
the depth of nesting on the complexity of modal logic. Artificial Intelligence,
75(2):361–372, 1995.

[HB91] B. Hollunder and F. Baader. Qualifying number restrictions in concept languages.
In Proc. of KR-91, pages 335–346. Morgan Kaufmann, 1991.

[Hem01] E. Hemaspaandra. The complexity of Poor Man’s Logic. J. of Logic and Computa-
tion, 11(4):609–622, 2001.

[Hin62] J. Hintikka. Knowledge and Belief. Cornell University Press, 1962.

[HKS06a] I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible SROIQ. In Proc.
of KR-06, pages 57–67. AAAI Press, 2006.

[HKS06b] I. Horrocks, O. Kutz, and U. Sattler. The irresistible SRIQ. In Proc. of OWLED-05,
volume 188 of CEUR-WS.org, 2006.

[HL08] C. Haase and C. Lutz. Complexity of subsumption in the EL family of description
logics: Acyclic and cyclic TBoxes. In Proc. of ECAI-08, 2008.

[HM01] V. Haarslev and R. Möller. RACER system description. In Proc. of IJCAR-01,
volume 2083 of LNAI. Springer-Verlag, 2001.

[Hof05] Martin Hofmann. Proof-theoretic approach to description-logic. In Proc. of LICS-
05, pages 229–237. IEEE Computer Society, 2005.

[Hol97] G. J. Holzmann. The model checker SPIN. IEEE Trans. on Software Engineering,
23(5):279–295, 1997.

[Hol04] G. J. Holzmann. The SPIN Model Checker – primer and reference manual. Addison-
Wesley, 2004.

[HPS08] M. Horridge, B. Parsia, and U. Sattler. Laconic and precise justifications in OWL.
In Proc. of ISWC-08, volume 5318 of LNCS, pages 323–338. Springer-Verlag,
2008.

69

Chapter 4 Branching-Time Temporal Description Logics

[HPSv03] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to
OWL: The making of a web ontology language. J. of Web Semantics, 1(1):7–26,
2003.

[HS08] E. Hemaspaandra and H. Schnoor. On the complexity of elementary modal logics.
In Proc. of STACS-08, volume 1 of LIPIcs, pages 349–360. Schloss Dagstuhl, 2008.

[HSS10] E. Hemaspaandra, H. Schnoor, and I. Schnoor. Generalized modal satisfiability. J.
of Computer and System Sciences, 76(7):561–578, 2010.

[HWZ00] I. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable fragments of first-order
temporal logics. Ann. of Pure and Applied Logic, 106:85–134, 2000.

[HWZ02] I. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable and undecidable
fragments of first-order branching temporal logics. In Proc. of LICS-02, pages
393–402. IEEE Computer Society Press, 2002.

[JCS+08] E. Jiménez-Ruiz, B. Cuenca Grau, U. Sattler, T. Schneider, and R. Berlanga Llavori.
Safe and economic re-use of ontologies: A logic-based methodology and tool
support. In Proc. of ESWC-08, volume 5021 of LNCS, pages 185–199. Springer-
Verlag, 2008.

[JJBR08] A. Jimeno, E. Jiménez-Ruiz, R. Berlanga, and D. Rebholz-Schuhmann. Use of
shared lexical resources for e�cient ontological engineering. In Proc. of SWAT4LS-
08, volume 435 of CEUR-WS.org, 2008.

[JT52a] B. Jónsson and A. Tarski. Boolean algebras with operators, Part I. American J. of
Mathematics, 73:891–939, 1952.

[JT52b] B. Jónsson and A. Tarski. Boolean algebras with operators, Part II. American J. of
Mathematics, 74:127–162, 1952.

[Kaz08] Y. Kazakov. RIQ and SROIQ are harder than SHOIQ. In Proc. of KR-08, pages
274–284. AAAI Press, 2008.

[Kd03] Y. Kazakov and H. de Nivelle. Subsumption of concepts in FL0 for (cyclic)
terminologies with respect to descriptive semantics is PSPACE-complete. In DL-
2003, volume 81 of CEUR-WS.org, 2003.

[KDS12] P. Klinov, C. Del Vescovo, and T. Schneider. Incrementally updateable and persis-
tent decomposition of OWL ontologies. In Proc. of OWLED-12, volume 849 of
CEUR-WS.org, 2012.

[KKL+11] B. Konev, R. Kontchakov, M. Ludwig, T. Schneider, F. Wolter, and M. Za-
kharyaschev. Conjunctive query inseparability of OWL 2 QL TBoxes. In Proc. of
AAAI-11. AAAI Press, 2011.

[KLPW10] B. Konev, C. Lutz, D. Ponomaryov, and F. Wolter. Decomposing description logic
ontologies. In Proc. of KR-10. AAAI Press, 2010.

[KLWW08] B. Konev, C. Lutz, D. Walther, and F. Wolter. Semantic modularity and module
extraction in description logics. In Proc. of ECAI-08, volume 178 of Frontiers in
AI and Appl., pages 55–59. IOS Press, 2008.

70

[KLWW09] B. Konev, C. Lutz, D. Walther, and F. Wolter. Formal properties of modularization.
In Stuckenschmidt et al. [SPS09], pages 25–66.

[KNP04] M. Z. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model
checking with PRISM: a hybrid approach. Int. J. on Software Tools for Technology
Transfer, 6(2):128–142, 2004.

[KPS+06] A. Kalyanpur, B. Parsia, E. Sirin, B. Cuenca Grau, and J. Hendler. Swoop: A Web
ontology editing browser. J. of Web Semantics, 4(2):144–153, 2006.

[KPS+09] R. Kontchakov, L. Pulina, U. Sattler, T. Schneider, P. Selmer, F. Wolter, and
M. Zakharyaschev. Minimal module extraction from DL-Lite ontologies using
QBF solvers. In Proc. of IJCAI-09, pages 836–841, 2009.

[Kri59] S. Kripke. A completeness theorem in modal logic. J. of Symbolic Logic, 24(1):1–
14, 1959.

[Kri63a] S. Kripke. Semantical analysis of modal logic I: Normal modal propositional
calculi. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik,
6:67–96, 1963.

[Kri63b] S. Kripke. Semantical considerations on modal logic. Acta Philosophica Fennica,
16:83–94, 1963.

[KWZ10] R. Kontchakov, F. Wolter, and M. Zakharyaschev. Logic-based ontology compari-
son and module extraction, with an application to DL-Lite. Artificial Intelligence,
174(15):1093–1141, 2010.

[Lam83] Leslie Lamport. What good is temporal logic? In Prof. of IFIP Congress, pages
657–668, 1983.

[Lew18] C. I. Lewis. A survey of symbolic logic. University of California Press, 1918.
Reprint, New York, 1960.

[Lew79] H. Lewis. Satisfiability problems for propositional calculi. Mathematical Systems
Theory, 13:45–53, 1979.

[LL32] C. I. Lewis and C. H. Langford. Symbolic logic. Dover, 1932. Corrected reprint,
New York, 1959.

[LS77] E. Lemmon and D. Scott. An Introduction to Modal Logic. Blackwell, 1977.

[LS10] C. Lutz and L. Schröder. Probabilistic description logics for subjective uncertainty.
In Proc. of KR-10. AAAI Press, 2010.

[LW10] C. Lutz and F. Wolter. Deciding inseparability and conservative extensions in the
description logic EL. J. of Symbolic Computation, 45(2):194–228, 2010.

[LWW07] C. Lutz, D. Walther, and F. Wolter. Conservative extensions in expressive descrip-
tion logics. In Proc. of IJCAI-07, pages 453–458, 2007.

[LWZ08] C. Lutz, F. Wolter, and M. Zakharyaschev. Temporal description logics: A survey.
In Proc. of TIME-08, pages 3–14. IEEE Computer Society Press, 2008.

71

Chapter 4 Branching-Time Temporal Description Logics

[Mac91] R. MacGregor. The evolving technology of classification-based knowledge repre-
sentation systems. In J. F. Sowa, editor, Principles of Semantic Networks, pages
385–400. Morgan Kaufmann, 1991.

[Mai97] T. Maibaum. Conservative extensions, interpretations between theories and all that!
In Proc. of CAAP/FASE-97, volume 1214 of LNCS, pages 40–66. Springer-Verlag,
1997.

[Mar04] N. Markey. Past is for free: on the complexity of verifying linear temporal
properties with past. Acta Informatica, 40(6–7):431–458, 2004.

[MDW91] E. Mays, R. Dionne, and R. Weida. K-REP system overview. SIGART Bull.,
2(3):93–97, 1991.

[Mei11] A. Meier. On the Complexity of Modal Logic Variants and their Fragments. PhD
thesis, Leibniz University of Hannover, 2011.

[Min67] M. L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc., 1st
edition, 1967.

[MMS+10] A. Meier, M. Mundhenk, T. Schneider, M. Thomas, V. Weber, and F. Weiß. The
complexity of satisfiability for fragments of hybrid logic – part I. J. of Applied
Logic, 8(4):409–421, 2010.

[MMTV09] A. Meier, M. Mundhenk, M. Thomas, and H. Vollmer. The complexity of satisfia-
bility for fragments of CTL and CTL*. Int. J. Found. Comput. Sci., 20(5):901–918,
2009.

[Mos04] P. Mosses, editor. CASL Reference Manual, volume 2960 of LNCS. Springer-Verlag,
2004.

[MS09] M. Mundhenk and T. Schneider. The complexity of hybrid logics over equivalence
relations. J. of Logic, Language and Information, 18(4):493–514, 2009.

[MS13] A. Meier and T. Schneider. Generalized satisfiability for the description logic ALC.
Theoretical Computer Science, 505:55–73, 2013.

[MSH09] B. Motik, R. Shearer, and I. Horrocks. Hypertableau reasoning for description
logics. J. of Artificial Intelligence Research, 36:165–228, 2009.

[MSSW10] M. Mundhenk, T. Schneider, T. Schwentick, and V. Weber. Complexity of hybrid
logics over transitive frames. J. of Applied Logic, 8(4):422–440, 2010.

[MW05] A. Muscholl and I. Walukiewicz. An NP-complete fragment of LTL. Int. J. Found.
Comput. Sci., 16(4):743–753, 2005.

[Neb90a] B. Nebel. Reasoning and Revision in Hybrid Representation Systems, volume 422
of LNCS. Springer-Verlag, 1990.

[Neb90b] B. Nebel. Terminological reasoning is inherently intractable. Artificial Intelligence,
43(2):235–249, 1990.

72

[Nor05] G. Nordh. A trichotomy in the complexity of propositional circumscription. In
Proc. of LPAR 2004, volume 3452 of LNCS, pages 257–269. Springer-Verlag, 2005.

[Pap94] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[Pel91] C. Peltason. The BACK system – an overview. SIGART Bull., 2(3):114–119, 1991.

[Pip97] N. Pippenger. Theories of Computability. Cambridge University Press, 1997.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proc. of FOCS-77, pages 46–67.
IEEE Computer Society Press, 1977.

[Pos41] E. Post. The two-valued iterative systems of mathematical logic. Annals of
Mathematical Studies, 5:1–122, 1941.

[Pra76] V. R. Pratt. Semantical considerations on Floyd-Hoare logic. In Proc. of FOCS-76,
pages 109–121. IEEE Computer Society Press, 1976.

[Pra78] V. R. Pratt. A practical decision method for propositional dynamic logic: Prelimi-
nary report. In Proc. of STOC-78, pages 326–337. ACM, 1978.

[Pri57] A. N. Prior. Time and Modality. Oxford: University Press, 1957.

[Pri58] A. Prior. The syntax of time-distinctions. Franciscan Studies, 18:105–120, 1958.

[Pri67] A. N. Prior. Past, Present and Future. Oxford: Clarendon Press, 1967.

[Pri68] A. N. Prior. Papers on Time and Tense. Oxford: Clarendon Press, 1968.

[PS10] B. Parsia and T. Schneider. The modular structure of an ontology: An empirical
study. In Proc. of KR-10. AAAI Press, 2010.

[Rab69] M. O. Rabin. Decidability of second-order theories and automata on infinite trees.
Trans. of the American Math. Society, 141:1–35, 1969.

[Rei01] S. Reith. Generalized Satisfiability Problems. PhD thesis, Universität Würzburg,
2001.

[RV03] S. Reith and H. Vollmer. Optimal satisfiability for propositional calculi and con-
straint satisfaction problems. Information and Computation, 186(1):1–19, 2003.

[RW00] S. Reith and K. W. Wagner. The complexity of problems defined by Boolean
circuits. In Proc. of Int. Conf. Mathematical Foundation of Informatics ’99, pages
25–28, 2000.

[SC85] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal
logics. J. of the ACM, 32(3):733–749, 1985.

[Sch91] K. Schild. A correspondence theory for terminological logics: Preliminary report.
In Proc. of IJCAI-91, pages 466–471. Morgan Kaufmann, 1991.

[Sch93] K. Schild. Combining terminological logics with tense logic. In Proc. of EPIA-93,
volume 727 of LNCS, pages 105–120. Springer-Verlag, 1993.

73

Chapter 4 Branching-Time Temporal Description Logics

[Sch94] K. Schild. Terminological cycles and the propositional µ-calculus. In Proc. of
KR-94, pages 509–520. Morgan Kaufmann, 1994.

[Sch07] H. Schnoor. Algebraic Techniques for Satisfiability Problems. PhD thesis, Univer-
sität Hannover, 2007.

[Sei09] J. Seidenberg. Web ontology segmentation: Extraction, transformation, evaluation.
In Stuckenschmidt et al. [SPS09], pages 211–243.

[SK04] H. Stuckenschmidt and M. Klein. Structure-based partitioning of large concept
hierarchies. In Proc. of ISWC-04, volume 3298 of LNCS, pages 289–303. Springer-
Verlag, 2004.

[SL94] R. Segala and N. A. Lynch. Probabilistic simulations for probabilistic processes.
In Proc. of CONCUR-94, volume 836 of LNCS, pages 481–496. Springer-Verlag,
1994.

[Spa00] K.A. Spackman. Managing clinical terminology hierarchies using algorithmic
calculation of subsumption: Experience with SNOMED-RT. J. of the Amer. Med.
Informatics Ass., 2000.

[SPC+07] E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical
OWL-DL reasoner. J. of Web Semantics, 5(2):51–53, 2007.

[SPS09] H. Stuckenschmidt, C. Parent, and S. Spaccapietra, editors. Modular Ontologies:
Concepts, Theories and Techniques for Knowledge Modularization, volume 5445
of LNCS. Springer-Verlag, 2009.

[SS07] H. Schnoor and I. Schnoor. Enumerating all solutions for constraint satisfaction
problems. In Proc. of STACS-07, volume 4393 of LNCS, pages 694–705. Springer-
Verlag, 2007.

[SS08] H. Schnoor and I. Schnoor. Partial polymorphisms and constraint satisfaction
problems. In Complexity of Constraints, volume 5250 of LNCS, pages 229–254.
Springer-Verlag, 2008.

[SSZ09] U. Sattler, T. Schneider, and M. Zakharyaschev. Which kind of module should I
extract? In Proc. of DL 2009, volume 477 of CEUR-WS.org, 2009.

[ST09] L. Serafini and A. Tamilin. Composing modular ontologies with Distributed
Description Logics. In Stuckenschmidt et al. [SPS09], pages 321–347.

[Sto74] L. J. Stockmeyer. The complexity of decision problems in automata theory and
logic. PhD thesis, Massachusetts Institute of Technology (MIT), 1974.

[Sun08] B. Suntisrivaraporn. Module extraction and incremental classification: A pragmatic
approach for EL+ ontologies. In Proc. of ESWC-08, volume 5021 of LNCS, pages
230–244. Springer-Verlag, 2008.

[SV01] U. Sattler and M. Y. Vardi. The hybrid µ-calculus. In Proc. of IJCAR-01, volume
2083 of LNCS, pages 76–91. Springer-Verlag, 2001.

74

[SW07] T. Schwentick and V. Weber. Bounded-variable fragments of hybrid logics. In
STACS-07, volume 4393 of LNCS, pages 561–572. Springer-Verlag, 2007.

[tF05] B. ten Cate and M. Franceschet. On the complexity of hybrid logics with binders.
In CSL-05, volume 3634 of LNCS, pages 339–354. Springer-Verlag, 2005.

[TH06] D. Tsarkov and I. Horrocks. FaCT++ description logic reasoner: System descrip-
tion. In Proc. of IJCAR-06, volume 4130 of LNCS, pages 292–297. Springer-Verlag,
2006.

[Tho12] M. Thomas. The complexity of circumscriptive inference in Post’s lattice. Theory
of Computing Systems, 50(3):401–419, 2012.

[TM87] W. Turski and T. Maibaum. The Specification of Computer Programs. Addison
Wesley, 1987.

[Tob01] S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge
Representation. PhD thesis, RWTH Aachen, 2001.

[TP12] D. Tsarkov and I. Palmisano. Divide et impera: Metareasoning for large ontologies.
In Proc. of OWLED-12, volume 849 of CEUR-WS.org, 2012.

[Vol99] H. Vollmer. Introduction to Circuit Complexity – a Uniform Approach. Texts in
Theoretical Computer Science. Springer-Verlag, 1999.

[VW86] M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of
programs. J. of Computer and System Sciences, 32(2):183–221, 1986.

[Web09] V. Weber. Branching-time logics repeatedly referring to states. J. of Logic, Lan-
guage and Information, 18(4):593–624, 2009.

[Wol83] P. Wolper. Temporal logic can be more expressive. Information and Control,
56(1/2):72–99, 1983.

[WVM09] M. D. Wilkinson, B. Vandervalk, and L. McCarthy. SADI semantic web services –
’cause you can’t always GET what you want! In Proc. of APSCC-09, pages 13–18,
2009.

[Yov97] S. Yovine. KRONOS: A verification tool for real-time systems. Int. J. on Software
Tools for Technology Transfer, 1(1-2):123–133, 1997.

75

Appendix A

List of Submitted Papers

Papers are listed per chapter and in the order of their appearance in this thesis.

Chapter 2: Complexity of Sub-Boolean Fragments

[BSS+09] M. Bauland, T. Schneider, H. Schnoor, I. Schnoor, and H. Vollmer. The Complex-
ity of Generalized Satisfiability for Linear Temporal Logic. Logical Methods in
Computer Science, 5(1), 2009.

[BMS+11] M. Bauland, M. Mundhenk, T. Schneider, H. Schnoor, I. Schnoor, and H. Vollmer.
The Tractability of Model-Checking for LTL: The Good, the Bad, and the Ugly
Fragments. ACM Transactions on Computational Logic, 12(2), 2011.

[MS13] A. Meier and T. Schneider. Generalized Satisfiability for the Description Logic
ALC. Theoretical Computer Science, 505:55–73, 2013.

[MMS+10] A. Meier, M. Mundhenk, T. Schneider, M. Thomas, V. Weber, and F. Weiß. The
Complexity of Satisfiability for Fragments of Hybrid Logic – Part I. Journal of
Applied Logic, 8, 409–421, 2010.

[GMM+12] S. Göller, A. Meier, M. Mundhenk, T. Schneider, M. Thomas, and F. Weiß. The
Complexity of Monotone Hybrid Logics over Linear Frames and the Natural Num-
bers. In Proc. of AiML-12, College Publications, pg. 261–278, 2012.

Chapter 3: Module Extraction and Modularization

[JCS+08] E. Jiménez-Ruiz, B. Cuenca Grau, U. Sattler, T. Schneider, and R. Berlanga Llavori.
Safe and Economic Re-Use of Ontologies: A Logic-Based Methodology and Tool
Support. In Proc. of ESWC-08, volume 5021 of LNCS, pg. 185–199. Springer-
Verlag, 2008. Nominated for Best Paper Award.

[SSZ09] U. Sattler, T. Schneider, and M. Zakharyaschev. Which Kind of Module Should I
Extract? In Proc. of DL 2009, volume 477 of CEUR-WS.org, 2009.

[DKP+13] C. Del Vescovo, P. Klinov, B. Parsia, U. Sattler, T. Schneider, and D. Tsarkov.
Empirical Study of Logic-Based Modules: Cheap Is Cheerful. In Proc. of ISWC-
13 (1), LNCS 8218, pg. 84–100. Springer-Verlag, 2013. Nominated for Best Paper
Award.

77

Appendix A List of Submitted Papers

[PS10] B. Parsia and T. Schneider. The Modular Structure of an Ontology: an Empirical
Study. In Proc. of KR-10, pg. 584–586, 2010.

[DPSS11] C. Del Vescovo, B. Parsia, U. Sattler, and T. Schneider. The Modular Structure of
an Ontology: Atomic Decomposition. In Proc. of IJCAI-11, pg. 2232–2237, 2011.

[DGK+11] C. Del Vescovo, D. Gessler, P. Klinov, B. Parsia, U. Sattler, T. Schneider, and A.
Winget. Decomposition and Modular Structure of BioPortal Ontologies. In Proc. of
ISWC-11, LNCS 7031, pg. 130–145, 2011.

Chapter 4: Branching-Time Temporal Description Logics

[GJS14] V. Gutiérrez Basulto, J. C. Jung, and T. Schneider. Lightweight Description Logics
and Branching Time: a Troublesome Marriage. In Proc. of KR-14, AAAI Press,
2014.

[GJS15] V. Gutiérrez Basulto, J. C. Jung, and T. Schneider. Lightweight Temporal De-
scription Logics with Rigid Roles and Restricted TBoxes. In Proc. of IJCAI-15,
pg. 3015–3021, AAAI Press, 2015.

78

Appendix C

Illustrative Figures for Chapter 2

The following pages contain overviews of our results in the sections 2.3.2, 2.4.2, and 2.5.2,
arranged in Post’s lattice.

81

Appendix C Illustrative Figures for Chapter 2

BF

R1 R0

R2

M

M1 M0

M2

S2
0

S2
02 S2

01
S3

0
S2

00
S3

02 S3
01

S3
00

S0

S02 S01

S00

D

D1

D2

V

V1 V0

V2

L

L1 L3 L0

L2

N

N2

I

I1 I0

I2

S2
1

S2
12S2

11
S3

1
S2

10
S3

12S3
11

S3
10

S1

S12S11

S10

E

E0E1

E2

L

L0

NP-compl. if T = {F,G}
or T = {X}

PSPACE-cpl. otherwise

in P

trivial

open

Figure 10: Results for LTLT (B)-SAT, Section 2.3.2

82

BF

R1 R0

R2

M

M1 M0

M2

S2
0

S2
02 S2

01
S3

0
S2

00
S3

02 S3
01

S3
00

S0

S02 S01

S00

D

D1

D2

V

V1 V0

V2

L

L1 L3 L0

L2

N

N2

I

I1 I0

I2

S2
1

S2
12S2

11
S3

1
S2

10
S3

12S3
11

S3
10

S1

S12S11

S10

E

E0E1

E2

NP-complete

P-complete

NL-complete

trivial

TSAT
TCSAT,OSAT,OCSAT

Figure 11: Results for TSAT;(B), TCSAT;(B), OSAT;(B), and OCSAT;(B), Section 2.4.2

83

Appendix C Illustrative Figures for Chapter 2

BF

R1 R0

R2

M

M1 M0

M2

S2
0

S2
02 S2

01
S3

0
S2

00
S3

02 S3
01

S3
00

S0

S02 S01

S00

D

D1

D2

V

V1 V0

V2

L

L1 L3 L0

L2

N

N2

I

I1 I0

I2

S2
1

S2
12S2

11
S3

1
S2

10
S3

12S3
11

S3
10

S1

S12S11

S10

E

E0E1

E2

N2

N

L0L3

L

D

S11

S2
11

S3
11

S1

S2
1

S3
1

M0

M

R0

BF

V

V0

EXPTIME-complete

P-complete

trivial

TSAT
TCSAT,OSAT,OCSAT

Figure 12: Results for TSAT9(B), TCSAT9(B), OSAT9(B), and OCSAT9(B), Section 2.4.2

84

BF

R1 R0

R2

M

M1 M0

M2

S2
0

S2
02 S2

01
S3

0
S2

00
S3

02 S3
01

S3
00

S0

S02 S01

S00

D

D1

D2

V

V1 V0

V2

L

L1 L3 L0

L2

N

N2

I

I1 I0

I2

S2
1

S2
12S2

11
S3

1
S2

10
S3

12S3
11

S3
10

S1

S12S11

S10

E

E0E1

E2

N2

N

L0L3

L

D

S11

S2
11

S3
11

S1

S2
1

S3
1

M0

M

R0

BF

E

E0

EXPTIME-complete

P-complete

trivial

TSAT
TCSAT,OSAT,OCSAT

Figure 13: Results for TSAT8(B), TCSAT8(B), OSAT8(B), and OCSAT8(B), Section 2.4.2

85

Appendix C Illustrative Figures for Chapter 2

BF

R1 R0

R2

M

M1 M0

M2

S2
0

S2
02 S2

01
S3

0
S2

00
S3

02 S3
01

S3
00

S0

S02 S01

S00

D

D1

D2

V

V1 V0

V2

L

L1 L3 L0

L2

N

N2

I

I1 I0

I2

S2
1

S2
12S2

11
S3

1
S2

10
S3

12S3
11

S3
10

S1

S12S11

S10

E

E0E1

E2

N2

N

L0L3

L

D

S11

S2
11

S3
11

S1

S2
1

S3
1

M0

M

R0

BF

V

V0

E

E0

I

I0

EXPTIME-complete

trivial

TSAT
TCSAT,OSAT,OCSAT

Figure 14: Results for TSAT9,8(B), TCSAT9,8(B), OSAT9,8(B), and OCSAT9,8(B), Section 2.4.2

86

BF

R1 R0

R2

M

M1 M0

M2

S2
0

S2
02 S2

01
S3

0
S2

00
S3

02 S3
01

S3
00

S0

S02 S01

S00

D

D1

D2

V

V1 V0

V2

L

L1 L3 L0

L2

N

N2

I

I1 I0

I2

S2
1

S2
12S2

11
S3

1
S2

10
S3

12S3
11

S3
10

S1

S12S11

S10

E

E0E1

E2

D S1

S2
1

S3
1

R0

BF

L3 L0

L

NEXPTIME-complete

2 NC1 without @
L-complete with @

2 NC1

trivial

open

Figure 15: Results for HLH(B)-ER-SAT, Section 2.5.2

87

Appendix C Illustrative Figures for Chapter 2

BF

R1 R0

R2

M

M1 M0

M2

S2
0

S2
02 S2

01
S3

0
S2

00
S3

02 S3
01

S3
00

S0

S02 S01

S00

D

D1

D2

V

V1 V0

V2

L

L1 L3 L0

L2

N

N2

I

I1 I0

I2

S2
1

S2
12S2

11
S3

1
S2

10
S3

12S3
11

S3
10

S1

S12S11

S10

E

E0E1

E2

D S1

S2
1

S3
1

R0

BF

L3 L0

L

CORE-complete

2 NC1 without @
L-complete with @

2 NC1

trivial

open

Figure 16: Results for HLH(B)-total-SAT, Section 2.5.2

88

BF

R1 R0

R2

M

M1 M0

M2

S2
0

S2
02 S2

01
S3

0
S2

00
S3

02 S3
01

S3
00

S0

S02 S01

S00

D

D1

D2

V

V1 V0

V2

L

L1 L3 L0

L2

N

N2

I

I1 I0

I2

S2
1

S2
12S2

11
S3

1
S2

10
S3

12S3
11

S3
10

S1

S12S11

S10

E

E0E1

E2

D S1

S2
1

S3
1

R0

BF

L3 L0

L

NEXPTIME-c. without @
CORE-compl. with @

NC1-compl. without ⇤
PSPACE-hard with ⇤,@

2 NC1 without ⇤
L-hard with ⇤,@

2 NC1 without ⇤
NL-hard with ⇤,@

2 NC1 without @
L-complete with @

2 NC1 without ⇤
2 L with ⇤

trivial

open

Figure 17: Results for HLH(B)-trans-SAT, Section 2.5.2

89

Appendix C Illustrative Figures for Chapter 2

BF

R1 R0

R2

M

M1 M0

M2

S2
0

S2
02 S2

01
S3

0
S2

00
S3

02 S3
01

S3
00

S0

S02 S01

S00

D

D1

D2

V

V1 V0

V2

L

L1 L3 L0

L2

N

N2

I

I1 I0

I2

S2
1

S2
12S2

11
S3

1
S2

10
S3

12S3
11

S3
10

S1

S12S11

S10

E

E0E1

E2

D S1

S2
1

S3
1

R0

BF

L3 L0

L

CORE-complete

NC1-compl. without ⇤
PSPACE-hard with ⇤

2 NC1 without ⇤
L-hard with ⇤,@

2 NC1 without ⇤
CONP-hard with ⇤

2 NC1 without @
L-complete with @

2 NC1 without ⇤
2 L with ⇤

trivial

open

Figure 18: Results for HLH(B)-all-SAT, Section 2.5.2

90

	Introduction
	Complexity of Sub-Boolean Fragments
	Introduction
	Boolean Operators and Post's Lattice
	Linear Temporal Logic
	Description Logic
	Hybrid Logic

	Module Extraction and Modularization
	Introduction
	Logic-Based Module Extraction
	Logic-Based Modularization

	Branching-Time Temporal Description Logics
	Introduction
	Preliminaries
	Results
	Discussion

	Bibliography
	List of Submitted Papers
	Overview of My Contributions
	Illustrative Figures for Chapter 2

