(日)

Safe and Economic Re-Use of Ontologies: A Logic-Based Methodology and Tool Support

Ernesto Jiménez-Ruiz¹ Bernardo Cuenca Grau² Ulrike Sattler³ Thomas Schneider³ Rafael Berlanga¹

¹Computer Languages and Systems, Universitat Jaume I, Spain

²Computing Laboratory, University of Oxford, UK

³Computer Science, University of Manchester, UK

DL, 13-16 May 2008

Why re-use? 000	Our methodology	Tool support O	Perspectives
~			

Our approach in a nutshell

Logic-based methodology for the re-use of ontologies

- Safe use of imported symbols
 - Don't change their meaning!

Economic import of the external ontologies

- Import only the relevant parts . . .
- Is the second second
 - Tool support Protégé plugin
 - Work in progress!

E

Why re-use? Our methodology I ool support Perspectives 000 00000000 0 000	Our approad	ch in a nutchall		
	Why re-use?	Our methodology	Tool support	Perspectives
	000	0000000	O	000

E

(日)

Our approach in a nutshell

Logic-based methodology for the re-use of ontologies

Safe use of imported symbols

1 Don't change their meaning! \checkmark

Economic import of the external ontologies

- Import only the relevant parts . . .
- In the second second
 - Tool support Protégé plugin
 - Work in progress!

Why re-use?	Our methodology	Tool support	Perspectives
000	00000000	O	
\sim			

E

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 ろんの

Our approach in a nutshell

Logic-based methodology for the re-use of ontologies

Safe use of imported symbols

Don't change their meaning!

Economic import of the external ontologies

- Import only the relevant parts . . .
- 0 ... without loss of information! \checkmark

• Work in progress!

Why re-use?	Our methodology	Tool support	Perspectives
000	0000000	0	
\sim			

E

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Our approach in a nutshell

Logic-based methodology for the re-use of ontologies

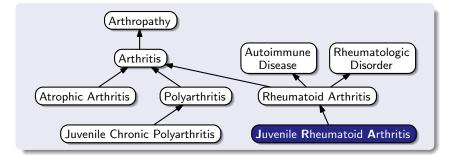
Safe use of imported symbols

Don't change their meaning!

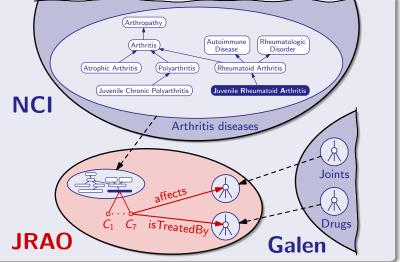
Economic import of the external ontologies

- Import only the relevant parts . . .
- 3 ... without loss of information! 🗸
 - Tool support Protégé plugin
 - Work in progress!

Why re-use?	Our methodology	Tool support	Perspectives
	00000000	o	000
And now			


2 A safe and economic methodology

3 Tool support



(日)

A case for safe and economic re-use

Reasons for re-use

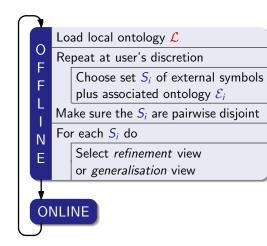
- Saves time for re-writing
- Provides access to well-established knowledge
- Doesn't require expertise in drugs, proteins, anatomy etc.

Guarantees to provide

- [safe] Importing terms doesn't change their meaning.
- [eco] Import all relevant parts of external ontologies.
- [aux] The order of imports doesn't matter.

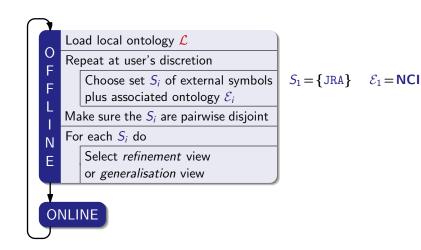
Why re-use? 000	Our methodology	Tool support O	Perspectives 000
And now			RC JRO Gam

2 A safe and economic methodology

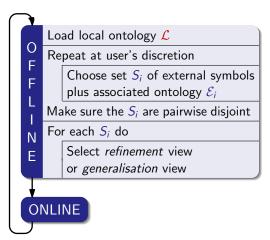

3 Tool support

4 Perspectives

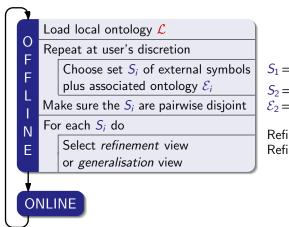
NCI JRAO Galeri


▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

A working cycle: the offline phase

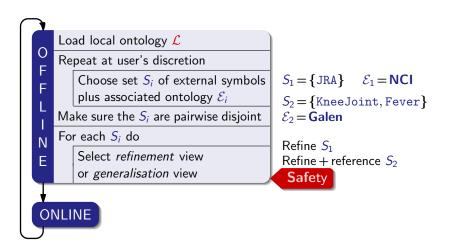


▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙



 $S_1 = \{ JRA \}$ $\mathcal{E}_1 = NCI$ $S_2 = \{ KneeJoint, Fever \}$ $\mathcal{E}_2 = Galen$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙


 $S_1 = \{ JRA \}$ $\mathcal{E}_1 = NCI$ $S_2 = \{ KneeJoint, Fever \}$ $\mathcal{E}_2 = Galen$

Refine S_1 Refine + reference S_2

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

Tool support

Formalising the Safety Guarantee

Safety

Importing terms doesn't change their meaning.

Example

JRAO ∪ NCI ⊨ JRA ⊑ GeneticDisorder iff NCI ⊨ JRA □ GeneticDisorder.

Why	re-use?

Tool support

Formalising the Safety Guarantee

Example

JRAO ∪ NCI ⊨ JRA ⊂ GeneticDisorder iff NCI ⊨ JRA □ GeneticDisorder.

Definition (Safety)

 \mathcal{L} guarantees safety if for every $i = 1, \ldots, n$:

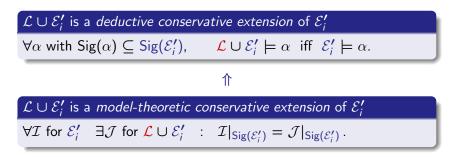
For every \mathcal{E}'_i with $\operatorname{Sig}(\mathcal{L}) \cap \operatorname{Sig}(\mathcal{E}'_i) \subset S_i$, $\mathcal{L} \cup \mathcal{E}'_i$ is a conservative extension of \mathcal{E}'_i .

Why	?

Tool support

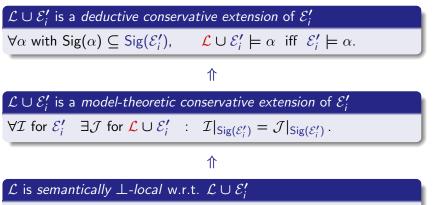
Approximating conservativity

 $\mathcal{L} \cup \mathcal{E}'_i$ is a deductive conservative extension of \mathcal{E}'_i


 $\forall \alpha \text{ with } \mathsf{Sig}(\alpha) \subseteq \mathsf{Sig}(\mathcal{E}'_i), \qquad \mathcal{L} \cup \mathcal{E}'_i \models \alpha \text{ iff } \mathcal{E}'_i \models \alpha.$

Why re-use? 000	Our methodology	Tool suppo O

Approximating conservativity



Why	

Tool support

Approximating conservativity

 $\forall \mathcal{I} \text{ for } \mathcal{E}'_i \quad \exists \mathcal{J} \text{ for } \mathcal{L} \cup \mathcal{E}'_i \quad : \quad \mathcal{I}|_{\operatorname{Sig}(\mathcal{E}'_i)} = \mathcal{J}|_{\operatorname{Sig}(\mathcal{E}'_i)}$ such that $X^{\mathcal{J}} = \emptyset$ for each $X \in \operatorname{Sig}(\mathcal{L}) \setminus S_i$.

Why	

Tool support

Approximating conservativity

*

\mathcal{L} is semantically \perp -local w.r.t. $\mathcal{L} \cup \mathcal{E}'_i$

 $\forall \mathcal{I} \text{ for } \mathcal{E}'_i \quad \exists \mathcal{J} \text{ for } \mathcal{L} \cup \mathcal{E}'_i \quad : \quad \mathcal{I}|_{\operatorname{Sig}(\mathcal{E}'_i)} = \mathcal{J}|_{\operatorname{Sig}(\mathcal{E}'_i)}$ such that $X^{\mathcal{J}} = \emptyset$ for each $X \in \operatorname{Sig}(\mathcal{L}) \setminus S_i$.

Why	re-use?

Tool support

Approximating conservativity

*

\mathcal{L} is semantically \perp -local w.r.t. $\mathcal{L} \cup \mathcal{E}'_i$

$$\forall \mathcal{I} \text{ for } \mathcal{E}'_i \quad \exists \mathcal{J} \text{ for } \mathcal{L} \cup \mathcal{E}'_i \quad : \quad \mathcal{I}|_{\operatorname{Sig}(\mathcal{E}'_i)} = \mathcal{J}|_{\operatorname{Sig}(\mathcal{E}'_i)}$$
such that $X^{\mathcal{J}} = \emptyset$ for each $X \in \operatorname{Sig}(\mathcal{L}) \setminus S_i$.

↑

\mathcal{L} is syntactically \perp -local w.r.t. S_i

• all GCIs in \mathcal{L} are of the form $C_{\perp} \sqsubseteq C$ or $C \sqsubseteq C_{\top}$ where $C_{\perp}^{\mathcal{I}} = \emptyset$ and $C_{\top}^{\mathcal{I}} = \Delta^{\mathcal{I}}$ follow from *

• similar conditions for RIs and Trans(R) statements

Why re-use? 000	Our methodology 00000000	Tool support O	Perspectives
Providing sat	fety		NCI JRAO Galer

Theorem [Cuenca Grau, Horrocks, Kazakov, Sattler 2007]

If \mathcal{L} is syntactically local w.r.t. each S_i , then \mathcal{L} guarantees safety.

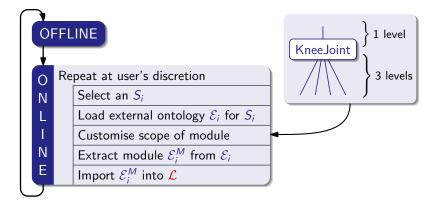
(日)

Why	re-use?

Tool suppo

◆□▶ ◆□▶ ◆目▶ ◆目■ のへ⊙

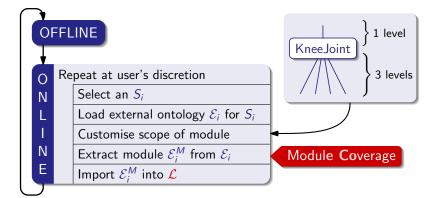
The online phase


OI I	FL	INE
0	Re	peat at user's discretion
Ν		Select an S_i
L		Load external ontology \mathcal{E}_i for S_i
		Customise scope of module
Ν		Extract module \mathcal{E}_i^M from \mathcal{E}_i
E		Import \mathcal{E}_i^M into \mathcal{L}

Why	re-use?

Tool suppo

The online phase



Why	re-use?

Tool support

The online phase

Tool support 0

Formalising the Module Coverage Guarantee

Module coverage

Import all relevant parts of external ontologies.

Example

 $\label{eq:constraint} \begin{array}{c|c|c|c|c|c|c|c|c|} JRA \cup NCI &\models JRA \sqsubseteq GeneticDisorder\\ iff & JRAO \cup NCI-module &\models JRA \sqsubseteq GeneticDisorder. \end{array}$

Definition (Module coverage)

Let $\mathcal{E}_i^M \subseteq \mathcal{E}_i$ with $S_i \subseteq \text{Sig}(\mathcal{E}_i^M)$. \mathcal{E}_i^M guarantees coverage of S_i if:

For every \mathcal{L}' with $\operatorname{Sig}(\mathcal{L}') \cap \operatorname{Sig}(\mathcal{E}_i) \subseteq S_i$, $\mathcal{L}' \cup \mathcal{E}_i$ is a conservative extension of $\mathcal{L}' \cup \mathcal{E}_i'$

Tool support 0

Formalising the *Module Coverage Guarantee*

Module coverage

Import all relevant parts of external ontologies.

Example

Definition (Module coverage)

Let $\mathcal{E}_i^M \subseteq \mathcal{E}_i$ with $S_i \subseteq \operatorname{Sig}(\mathcal{E}_i^M)$. \mathcal{E}_i^M guarantees coverage of S_i if:

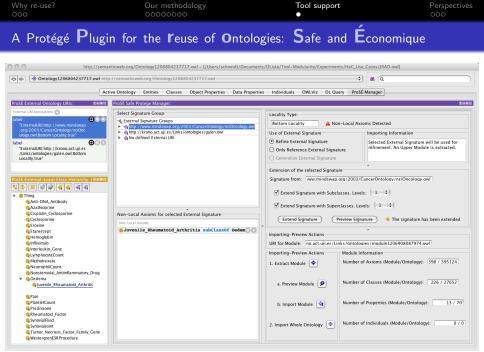
For every \mathcal{L}' with $\operatorname{Sig}(\mathcal{L}') \cap \operatorname{Sig}(\mathcal{E}_i) \subseteq S_i$, $\mathcal{L}' \cup \mathcal{E}_i$ is a conservative extension of $\mathcal{L}' \cup \mathcal{E}_i^M$.

Why re-use? Our methodology 000 0000000		Tool support O	Perspectives	
Providing covera	age		NC Calm	

- Coverage is again provided using locality.
- Locality-based modules = syntactic approximations of conservativity-based modules

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

- in general not minimal
- efficiently computable


Why re-use?	Our methodology	Tool support	Perspectives
000	00000000	O	000
And now			

2 A safe and economic methodology

3 Tool support

4 Perspectives

Why re-use?	Our methodology	Tool support	Perspectives	
000	00000000	o		
And now				

2 A safe and economic methodology

3 Tool support

Tool support 0 Perspectives ●00

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

"Shopping for symbols"

Extend module scope customisation:

- Browse external ontology and pick symbols
- At each stage, view resulting module
- "Check out" module

 \rightarrow Treemaps?

- Optimise module extraction
- Import "by reference" as opposed to "by value"
- Multi-user scenario
- Module extraction service at owl.cs.manchester.ac.uk

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

- Modularity tool tutorial at ISWC 2008
- Perform user study and improve interface

- Optimise module extraction
- Import "by reference" as opposed to "by value"
- Multi-user scenario
- Module extraction service at owl.cs.manchester.ac.uk

(日)

- Modularity tool tutorial at ISWC 2008
- Perform user study and improve interface

- Optimise module extraction
- Import "by reference" as opposed to "by value"
- Multi-user scenario
- Module extraction service at owl.cs.manchester.ac.uk

▲ロト ▲帰ト ▲ヨト ▲ヨト 三回日 のの⊙

- Modularity tool tutorial at ISWC 2008
- Perform user study and improve interface

Why re-use?	Our methodology	Tool support	Perspectives
000	00000000	O	00●
Invitation			

We want you...

- ... to work with us on incorporating our services into your workflows!
- ... r favourite ontologies and real-life signatures!

Contact

schneider@cs.man.ac.uk

Why re-use?	Our methodology	Tool support	Perspectives
000	00000000	O	00●

We want you...

- ... to work with us on incorporating our services into your workflows!
- ... r favourite ontologies and real-life signatures!

Contact

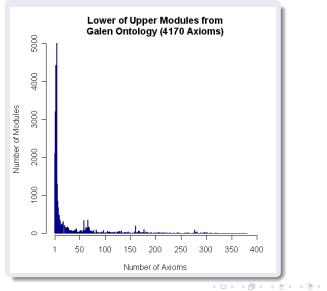
schneider@cs.man.ac.uk

Thank you!

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 ろんの

Setting

- Randomly generated signatures of size 1...330
- Computed *Lower of Upper Module (LUM)* for each such signature


Results

• 99 % of Galen LUMs contain < 5 % of Galen's axioms

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三回日 ろんの

similar findings for NCI

Statistics

▲ 王 ► 王 ► ○ < ○

Setting

LUMs for manually selected signatures from **Galen** and **NCI** (*Health-e-Child* context: JRA + Cardiomyopathies)

Results

Ext. Ont.	# Sig.	# axic	oms
Galen	11	105	(2.5%)
Galen	72	620	(14.9%)
Galen	76	736	(17.6%)
NCI	18	488	(0.1%)
NCI	124	4751	(1.2%)
NCI	144	5057	(1.3%)

Comparing experiments

Setting

- SNOMED (health care; restricted language; 350,000 axioms)
- Initial signatures: terms from intensive care unit
- Compared UM, LUM to MEX (conservativity-based modules) and SRS (Seidenberg/Rector segments)

Results

		#:	axioms	in %	ſ	• R ⊑ S	
_	# Sig.	MEX	SRS	(L)UM		● C ⊑ D	
	4,000	2	2	4		• <i>C</i> ≡ <i>D</i>	
	16,000	7	7	10			
	24,000	10	10	15	\sim	MEX SRS	
-	time	4–5 s	1 s	4–7 s	-	LUM	1

Protégé and ProSÉ

- protege.stanford.edu
- krono.act.uji.es/people/Ernesto/safety-ontology-reuse

Health-e-Child

• www.health-e-child.org

NCI and Galen

- o nciterms.nci.nih.gov/NCIBrowser/Dictionary.do
- ftp1.nci.nih.gov/pub/cacore/EVS/NCIThesaurus
- www.co-ode.org/galen