Why modularity?	Reuse	Background	Tools	Comparison	Understanding

Working Modularly with OWL

Thomas Schneider

School of Computer Science, University of Manchester, UK

27 January 2009

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Title

Composing and decomposing ontologies: a logic-based approach

People involved/interested

• Uli Sattler, Bijan Parsia, Thomas Schneider (Manchester)

- Frank Wolter, Boris Konev, Dirk Walther (Liverpool)
- Ian Horrocks, Bernardo Cuenca Grau (Oxford)
- Carsten Lutz (Bremen)

Why modularity?	Reuse	Background	Comparison	Understanding
And now				

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1 Why modularity?

2 A reuse scenario

3 Logical background

4 Tools

5 Comparison of modularisation approaches

6 Understanding ontologies via modules

 Why modularity?
 Reuse
 Background
 Tools
 Comparison
 Understanding

 Crash course:
 ontologies and description logics
 Image: Control of the second description logics
 Image: Control of the second description logics
 Image: Control of the second description logics

Ontology = collection of statements about a domain (axioms)

- Language used: usually logic, often *description logic* (DL)
- Inferences can be drawn from axioms

Domains:

biology, medicine, chemistry, business processes, natural language, ...

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 Why modularity?
 Reuse
 Background
 Tools
 Comparison
 Understanding

 Example axioms + inference

•
$$\underbrace{\text{Duck}}_{\text{class}} \sqsubseteq \exists \underbrace{\text{feedsOn}}_{\text{property}} \cdot \underbrace{\text{Grass}}_{\text{class}}$$

 $\forall x \left(\text{Duck}(x) \rightarrow \exists y (\text{feedsOn}(x, y) \land \text{Grass}(y)) \right)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 Why modularity?
 Reuse
 Background
 Tools
 Comparison
 Understanding

 Example axioms + inference

•
$$\underbrace{\operatorname{Duck}}_{\operatorname{class}} \sqsubseteq \exists \underbrace{\operatorname{feedsOn}}_{\operatorname{property}} \cdot \underbrace{\operatorname{Grass}}_{\operatorname{class}}$$

 $\forall x \left(\operatorname{Duck}(x) \to \exists y \left(\operatorname{feedsOn}(x, y) \land \operatorname{Grass}(y)\right)\right)$
• Bird \equiv Duck \sqcup Chicken
 $\forall x \left(\operatorname{Bird}(x) \leftrightarrow \left(\operatorname{Duck}(x) \lor \operatorname{Chicken}(x)\right)\right)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 Why modularity?
 Reuse
 Background
 Tools
 Comparison
 Understanding

 Example axioms + inference
 Image: Comparison inference
 Image: Comparison inference
 Image: Comparison inference

•
$$\underbrace{\operatorname{Duck}}_{\operatorname{class}} \sqsubseteq \exists \underbrace{\operatorname{feedsOn}}_{\operatorname{property}} \cdot \underbrace{\operatorname{Grass}}_{\operatorname{class}}$$

 $\forall x \left(\operatorname{Duck}(x) \to \exists y \left(\operatorname{feedsOn}(x, y) \land \operatorname{Grass}(y) \right) \right)$
• Bird \equiv Duck \sqcup Chicken
 $\forall x \left(\operatorname{Bird}(x) \leftrightarrow \left(\operatorname{Duck}(x) \lor \operatorname{Chicken}(x) \right) \right)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Reuse Why modularity? Background Understanding Example axioms + inference • Duck $\sqsubseteq \exists$ feedsOn . Grass class class property class $\forall x \big(\mathsf{Duck}(x) \to \exists y \big(\mathsf{feedsOn}(x, y) \land \mathsf{Grass}(y) \big) \big)$ Bird ≡ Duck ⊔ Chicken $\forall x (Bird(x) \leftrightarrow (Duck(x) \lor Chicken(x)))$

• Tweety : Duck Duck(Tweety)

- Tweety : Bird
- Tweety : ∃feedsOn.Grass

- Inference: Does axiom α follow from ontology O?
- Satisfiability: Is there a model of O that interprets class C as nonempty?

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

 Instance checking: Is individual x an instance of C in every model of O?

Inter-reducible; optimised reasoners available

 Why modularity?
 Reuse
 Background
 Tools
 Comparison
 Understanding

 A case for modularity
 Image: Comparison in the second second

Common practice in software engineering

Modular software development allows for:

- Importing/reusing modules
- Collaborative development
- Understanding the code from the interaction between the modules

Wouldn't it be nice ...

... to have this for ontology development as well?

Why modularity?	Reuse	Background	Comparison	Understanding
Three scen	arios			

Import/reuse

Collaboration

Understanding

Why modularity?	Reuse	Background	Comparison	Understanding
Three scen	arios			

Import/reuse

Collaboration

Understanding

"Borrow" knowledge about certain terms from external ontologies

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

"Borrow" knowledge about certain terms from external ontologies

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Provides access to well-established knowledge
- Doesn't require expertise in external disciplines

"Borrow" knowledge about certain terms from external ontologies

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Provides access to well-established knowledge
- Doesn't require expertise in external disciplines

This scenario is well-understood and implemented.

Collective ontology development

ヘロト ヘ週ト ヘヨト ヘヨト

æ

 Why modularity?
 Reuse
 Background
 Tools
 Comparison
 Understanding

 Scenario 2: Collaboration

Collective ontology development

- Developers work (edit, classify) locally
- Extra care at re-combination

 Why modularity?
 Reuse
 Background
 Tools
 Comparison
 Understanding

 Scenario 2: Collaboration

Collective ontology development

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

- Developers work (edit, classify) locally
- Extra care at re-combination

This approach is understood, but not implemented yet.

Visualise the modular structure of an ontology

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Visualise the modular structure of an ontology

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Visualise the modular structure of an ontology

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

We're still playing with this.

Why modularity?	Reuse	Background	Comparison	Understanding
Summing u	р			

 $\mathsf{Import}/\mathsf{reuse}$

Collaboration

Understanding

Why modularity?	Reuse	Background	Comparison	Understanding
Summing u	р			

Import/reuse

Collaboration

Understanding

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Why modularity?

- 2 A reuse scenario
- 3 Logical background

4 Tools

- 6 Comparison of modularisation approaches
- 6 Understanding ontologies via modules

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Import/reuse one external ontology

Import/reuse one external ontology

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Import/reuse one external ontology

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

How much of Animals do we need?

Import/reuse a part of an external ontology

How much of Animals do we need?

• **Coverage:** Import *everything* relevant for the chosen terms.

(日)、(型)、(E)、(E)、(E)、(Q)

• Economy: Import *only* what's relevant for them.

Import/reuse a part of an external ontology

How much of Animals do we need?

• Coverage: Import *everything* relevant for the chosen terms.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Economy: Import *only* what's relevant for them.

How to achieve coverage and economy?

Import/reuse parts of several external ontologies

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

(日)、(型)、(E)、(E)、(E)、(Q)

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Example 1:

- Topic: Fox, Bird, feedsOn
- On-topic:

Off-topic:

Fox \sqsubseteq \forall feedsOn.Bird Fox \sqcup Bird \sqsubseteq \exists feedsOn.T Bird \sqsubseteq \neg Fox Bird \sqsubseteq Bird \sqcup Fox Duck ⊑ Bird

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• Goal = preserve all on-topic knowledge

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Question: Which axioms do we need to import?

Question: Which axioms do we need to import?

▲ 伊 ▶ ▲ 国 ▶ ▲ 国 ▶ → 国 → の Q ()

about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

Question: Which axioms do we need to import?

• The module \mathcal{E}' covers the ontology \mathcal{E} for the specified topic \mathcal{T} if for all classes A, B built from terms in \mathcal{T} :

 $\begin{array}{lll} \text{if} & \mathcal{O} \cup \mathcal{E} & \models & A \sqsubseteq B, \\ \text{then} & \mathcal{O} \cup \mathcal{E}' & \models & A \sqsubseteq B. \end{array}$

• Coverage $\hat{=}$ preserving entailments

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• The module \mathcal{E}' covers the ontology \mathcal{E} for the specified topic \mathcal{T} if for all classes A, B built from terms in \mathcal{T} :

$$\begin{array}{lll} \text{if} & \mathcal{O} \cup \mathcal{E} & \models & A \sqsubseteq B, \\ \text{then} & \mathcal{O} \cup \mathcal{E}' & \models & A \sqsubseteq B. \end{array}$$

• Coverage $\hat{=}$ preserving entailments

- No coverage \rightsquigarrow no encapsulation \rightsquigarrow no module
- With coverage: trade-off minimality \leftrightarrow computation time

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Goal: Don't change the meaning of imported terms. = Don't add new knowledge about the imported topic.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Question: Which axioms are we allowed to write?

Goal: Don't change the meaning of imported terms. = Don't add new knowledge about the imported topic.

- Question: Which axioms are we allowed to write?
- Example:

Goal: Don't change the meaning of imported terms. = Don't add new knowledge about the imported topic.

- Question: Which axioms are we allowed to write?
- Example:

- **Goal:** Don't change the meaning of imported terms. = Don't add new knowledge about the imported topic.
- Question: Which axioms are we allowed to write?
- Example:

- Our ontology O uses the imported terms safely if for all classes A, B built from the imported terms:
 - If $\mathcal{E}' \not\models A \sqsubseteq B$, then $\mathcal{O} \cup \mathcal{E}' \not\models A \sqsubseteq B$,
- Safety $\hat{=}$ preserving non-entailments

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Why modularity?
- 2 A reuse scenario
- 3 Logical background
- 4 Tools
- 5 Comparison of modularisation approaches
- 6 Understanding ontologies via modules

• The module \mathcal{E}' covers the ontology \mathcal{E} for the specified topic \mathcal{T} if for all classes A, B built from terms in \mathcal{T} :

 $\begin{array}{lll} \text{if} & \mathcal{O} \cup \mathcal{E} & \models & A \sqsubseteq B, \\ \text{then} & \mathcal{O} \cup \mathcal{E'} & \models & A \sqsubseteq B. \end{array}$

• Coverage $\hat{=}$ preserving entailments

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• The module \mathcal{E}' covers the ontology \mathcal{E} for the specified topic \mathcal{T} if for all classes A, B built from terms in \mathcal{T} :

 $\begin{array}{lll} \text{if} & \mathcal{O} \cup \mathcal{E} & \models & A \sqsubseteq B, \\ \text{then} & \mathcal{O} \cup \mathcal{E'} & \models & A \sqsubseteq B. \end{array}$

- \mathcal{O} may allow "more" interpretations of imported terms than \mathcal{E} .
- If so, include more "restricting" axioms into \mathcal{E}' .
- Finish when all terms $\notin \mathcal{E}'$ can be interpreted as \perp or \top .
- Locality says whether this is possible.

- Minimal coverage-providing modules based on conservative extensions hard to compute (intractable/undecidable)
- Locality-based modules

based on the above considerations not minimal, hard to compute

 Modules based on syntactic locality not minimal, easy to compute (tractable)

- Minimal coverage-providing modules based on conservative extensions hard to compute (intractable/undecidable)
- Locality-based modules

based on the above considerations not minimal, hard to compute

- Modules based on syntactic locality not minimal, easy to compute (tractable)
- Computation:

 $\begin{array}{ll} \mathcal{T} \leftarrow \text{topic;} & M \leftarrow \emptyset \\ \text{While there is non-local axiom } \alpha \text{ w.r.t. } \underbrace{\mathcal{T} \cup \text{sig}(M)}_{extended topic} \text{do:} \\ & M \leftarrow M \cup \{\alpha\} \\ \end{array}$

- Minimal coverage-providing modules based on conservative extensions hard to compute (intractable/undecidable)
- Locality-based modules

based on the above considerations not minimal, hard to compute

- Modules based on syntactic locality not minimal, easy to compute (tractable)
- Computation:

 $\begin{array}{ll} \mathcal{T} \leftarrow \text{topic;} & M \leftarrow \emptyset \\ \text{While there is non-local axiom } \alpha \text{ w.r.t. } \underbrace{\mathcal{T} \cup \text{sig}(M)}_{M \leftarrow M \cup \{\alpha\}} \text{ do:} \\ & \underbrace{M \leftarrow M \cup \{\alpha\}}_{extended \ topic} \end{array}$

• We often extract the \top -module of the \bot -module of \mathcal{E} .

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Why modularity?
- 2 A reuse scenario
- 3 Logical background

- 5 Comparison of modularisation approaches
- 6 Understanding ontologies via modules

Nightly build:

http://owl.cs.manchester.ac.uk/2008/iswc-modtut/equinox.zip

- Realises import scenario
- Provides coverage via locality-based modules
- Will soon provide safety too ...
- To be released as Protégé 4 plugin in the near future

(Thanks to Matthew Horridge.)

http://owl.cs.manchester.ac.uk/modularity

MANCHESTER

OWL Module Extractor

Ontology source

Paste your ontology, or enter a URL of a document, into the text box below.

http://www.co-ode.org/ontologies/pizza/pizza.owl

Signature

Enter a signature. Put each entity name on a new line. (Accepts full URIs or URI fragments)

Pizza

Modularity type

Select the module type

- ⊖ Top (lower) module
- Bottom (upper) module
- Bottom-of-top (upper-of-lower) module
- Top-of-bottom (lower-of-upper) module

Show axioms view (instead of outputting RDF/XML)

(Extract module)

MANCHESTER

Module: http://www.coode.org/ontologies/pizza/pizza.owl_module.owl

Selected signature

Pizza (http://www.co-ode.org/ontologies/pizza/pizza.owl#Pizza)

Module metrics

Number of axioms: 112 Number of logical axioms: 112 Number of classes: 35 Number of object properties: 7 Number of data properties: 0 Number of individuals: 5

Module axioms

CheeseTopping SubClassOI PizzaTopping CheeseTopping DisjointWith FishTopping CheeseTopping DisjointWith FruitTopping CheeseTopping DisjointWith HerbSpiceTopping CheeseTopping DisjointWith MeatTopping CheeseTopping DisjointWith NutTopping CheeseTopping DisjointWith VegetableTopping CheeseyPizza EquivalentTo Pizza and (hasTopping some CheeseTopping) Country EquivalentTo DomainConcect and (America, England, France, Germany, Italy)) DeepPanBase SubClassOf PizzaBase DeepPanBase DisjointWith ThinAndCrispyBase DomainConcept DisjointWith ValuePartition FishTopping SubClassOI hasSpiciness some Mid FishTopping DisjointWith FruitTopping FishTopping DisjointWith HerbSpiceTopping FishTopping DisjointWith NutTopping FishTopping DisjointWith SauceTopping FishTopping DisjointWith VegetableTopping FruitTopping SubClassOf PizzaTopping FruitTopping DisjointWith HerbSpiceTopping FruitTopping DisjointWith SauceTopping FruitTopping DisjointWith VegetableTopping

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 - のへで

http://owl.cs.manchester.ac.uk/modularity

Try it! 🙂

- Ontology: http://www.co-ode.org/ontologies/pizza.owl
- Signature "Pizza", "VegetarianPizza", or "Country"
- Select "Show axioms view"

(Thanks to Matthew Horridge.)

This tool currently ignores non-logical axioms (annotations etc.).

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Why modularity?
- 2 A reuse scenario
- 3 Logical background

4 Tools

- 5 Comparison of modularisation approaches
- Onderstanding ontologies via modules

Why m	odularity? Reuse		Background		Tools Com	iparison	Under	standing
Comparison of different approaches							\mathbf{P}	
	Kind of "module"		Covrg.	Min.	Covered DLs	Comple	xity	
	All ax's referencing	Τ	×		any	easy		
	${\sf Seidenberg}/{\sf Rector}$		×		any	easy		
	Prompt		×		?	easy		

Why m	odularity? Reuse	Background		Tools Comp	arison Understanding	
Cor	mparison of differe	ent app	proach	nes	Rec R	
	Kind of "module"	Covrg.	Min.	Covered DLs	Complexity	
	All ax's referencing <i>'I</i> Seidenberg/Rector	×		any any	easy easy	
	Prompt	×		?	easy	
	The whole ontology	<i>s</i>	××	any acyclic <i>EC</i>	easy	
	conservbased mod.	1	<i>✓</i>	few	hard	
	Iocality-based mod. E-connections	✓ ✓	×	\approx OWL 1 DL OWL 1 DL	easy easy	

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

vviiy iik	Redse	Duckground		Com	onderstanding	5
Comparison of different approaches						
	Kind of "module"	Covrg.	Min.	Covered DLs	Complexity	
	All ax's referencing ${\cal T}$	×		any	easy	
	Seidenberg/Rector	×		any	easy	
	Prompt	×		?	easy	
	The whole ontology	1	XX	any	easy	
	MEX (Liverpool) conservbased mod.	1 1	√ √	acyclic <i>EL</i> few	easy hard	
	locality-based mod.	1	×	pprox OWL 1 DL	easy	
	E-connections	1	×	OWL 1 DL	easy	
·	interpolants-based (no subsets!)	1	11	few	hard	
				Image: A transformed and A	▶ < 분 ▶ < 분 ▶ 분 · · · · · · · · · · · · · · · · ·	C

Comparison

- Why modularity?
- 2 A reuse scenario
- 3 Logical background

4 Tools

- 6 Comparison of modularisation approaches
- 6 Understanding ontologies via modules

• Ontology about periodic table of the chemical elements

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- What is "the meat" of it?
- We can find it using locality-based modules.

Partition of koala.owl via E-connections in Swoop

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

"imports vocabulary from"

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

importing part
imported but non-importing part
isolated part

"imports vocabulary from"

- Hope: finer-grained analysis
- Difficulties: Computation harder, interpretation unclear

- Hope: finer-grained analysis
- Difficulties: Computation harder, interpretation unclear

- Results so far
 - 416 modules for all \approx 800 singleton topics
 - Sizes 0,..., 2800; average 1600 (≈4%)
 - Found small modelling irregularity

- Hope: finer-grained analysis
- Difficulties: Computation harder, interpretation unclear
- Results so far
 - 416 modules for all \approx 800 singleton topics
 - Sizes 0,..., 2800; average 1600 (≈4%)
 - Found small modelling irregularity

- Struggle with visualisation
- Blowup-free methodology for bigger modules?
- What does the collection of all modules tell us?

Modules for topics of axioms?