Working Modularly with OWL

Thomas Schneider

School of Computer Science, University of Manchester, UK

27 January 2009

About the project

Title

Composing and decomposing ontologies: a logic-based approach

People involved/interested
e Uli Sattler, Bijan Parsia, Thomas Schneider (Manchester)
e Frank Wolter, Boris Konev, Dirk Walther (Liverpool)
@ lan Horrocks, Bernardo Cuenca Grau (Oxford)

o Carsten Lutz (Bremen)

Why modularity?

And now ...

@ Why modularity?

Why modularity?

Crash course: ontologies and description logics

Ontology = collection of statements about a domain (axioms)

e Language used: usually logic, often description logic (DL)

@ Inferences can be drawn from axioms

Domains:
biology, medicine, chemistry, business processes, natural language, ...

Why modularity?
Example axioms + inference

@ Duck © 3 feedsOn . Grass
~—~— —_——

class property class
—_—

class

‘v’x(Duck(x) — EIy(feedsOn(x,y) A Grass(y)))

Why modularity?
Example axioms + inference

@ Duck C 3 feedsOn . Grass
~—— — —_——

class property class
|

class

‘v’x(Duck(x) — EIy(feedsOn(x,y) A Grass(y)))

@ Bird = Duck U Chicken
‘V’X(Bird(x) — (Duck(x) V Chicken(x)))

Why modularity?
Example axioms + inference

@ Duck C 3 feedsOn . Grass
N~~~ N—— =~
class property class

—_—

class

‘v’x(Duck(x) — EIy(feedsOn(x,y) A Grass(y)))

@ Bird = Duck U Chicken
‘V’X(Bird(x) — (Duck(x) V Chicken(x)))

@ Tweety : Duck Duck(Tweety)
——

individual

Why modularity?
Example axioms + inference

@ Duck © 3 feedsOn . Grass
~—~— —_——

class property class
—_—

class

‘v’x(Duck(x) — EIy(feedsOn(x,y) A Grass(y)))

@ Bird = Duck U Chicken
‘V’X(Bird(x) — (Duck(x) V Chicken(x)))

@ Tweety : Duck Duck(Tweety)
——

individual

@ Tweety : Bird
@ Tweety : IfeedsOn.Grass

Why modularity?

Reasoning tasks

@ Inference: Does axiom « follow from ontology O7?
o Satisfiability:

Is there a model of O that interprets class C as nonempty?
@ Instance checking:

Is individual x an instance of C in every model of O?

Inter-reducible; optimised reasoners available

Why modularity?

A case for modularity

Common practice in software engineering

Modular software development allows for:
@ Importing/reusing modules
e Collaborative development

@ Understanding the code from the interaction between the
modules

Wouldn't it be nice ...

. to have this for ontology development as well?

Why modularity?

Three scenarios

o D
2 @

Import/reuse

1o oY

Collaboration Understanding

Why modularity?

Three scenarios

o D
2 @

Import/reuse

1o oY

Collaboration Understanding

Why modularity?

Scenario 1: Import/reuse

“Borrow" knowledge about certain terms from external ontologies

Why modularity?

Scenario 1: Import/reuse

“Borrow" knowledge about certain terms from external ontologies

x

@ Provides access to well-established knowledge

@ Doesn't require expertise in external disciplines

Why modularity?

Scenario 1: Import/reuse

“Borrow" knowledge about certain terms from external ontologies

x

@ Provides access to well-established knowledge

@ Doesn't require expertise in external disciplines

This scenario is well-understood and implemented.

Why modularity?

Scenario 2: Collaboration

Collective ontology development

1o o R

5=

Why modularity?

Scenario 2: Collaboration

Collective ontology development

1o o R

5=

@ Developers work (edit, classify) locally

@ Extra care at re-combination

Why modularity?

Scenario 2: Collaboration

Collective ontology development

1o o R

5=

@ Developers work (edit, classify) locally

@ Extra care at re-combination

This approach is understood, but not implemented yet.

Why modularity?

Scenario 3: Understanding

Visualise the modular structure of an ontology

1,000,000 %

Why modularity?

Scenario 3: Understanding

Visualise the modular structure of an ontology

Why modularity?

Scenario 3: Understanding

Visualise the modular structure of an ontology

We're still playing with this.

Why modularity?
Summing up

o D
2 @

Import/reuse

1o oY

Collaboration Understanding

Why modularity?
Summing up

o D
2 @

Import/reuse

1o oY

Collaboration Understanding

Reuse

And now ...

© A reuse scenario

Reuse

A reuse scenario

Import/reuse one external ontology

Reuse

A reuse scenario

Import/reuse one external ontology

knowledge about “Bird"

% Farm

Animals

Reuse

A reuse scenario

Import/reuse one external ontology

knowledge about “Bird"

% Farm

How much of Animals do we need?

Animals

Reuse

A reuse scenario

Import/reuse a part of an external ontology

% al’m

How much of Animals do we need?

o Coverage: Import everything relevant for the chosen terms.

@ Economy: Import only what's relevant for them.

Reuse

A reuse scenario

Import/reuse a part of an external ontology

% al’m

How much of Animals do we need?

o Coverage: Import everything relevant for the chosen terms.

@ Economy: Import only what's relevant for them.

How to achieve coverage and economy?

Reuse

A reuse scenario

Import/reuse parts of several external ontologies

Buildings

Farm

Reuse

The Health-e-Child project

Arthropathy
A
(Atrophic Arthritis) fPonarthritis) (Rheumatoid Arthritis)

(Juvenile Chronic Polyarthritis) Juvenile Rheumatoid Arthritis

Rheumatologic
Disorder

Reuse

The Health-e-Child project

Arthropathy
— Autoimmune Rheumatologic
[Disease] [Disorder]

(Atrophic Arthritis) (Polyarthritis) (Rheumatoid Arthritis)

Juvenile Chronic Polyarthritis Juvenile Rheumatoid Arthritis

Reuse

A working cycle

Edit your ontology OJ

'

Import a module

Reuse

A working cycle

Edit your ontology OJ

v

Load an external ontology 5J

v

Specify terms from £ to be reusedJ

y

Get module from SJ

y

Import this module into OJ

N J

Reuse

A working cycle

Edit your ontology OJ

v

Load an external ontology 5J

v

Specify terms from £ to be reusedJ

y

Get module from SJ

y

Import this module into OJ

N J

Farm

Animals

Animal, feedsOn

Animals’

Farm U Animals’

Reuse

A working cycle

Edit your ontology OJ

v

Load an external ontology 5J

v

Specify terms from £ to be reusedJ

y

Get module from SJ

y

Import this module into OJ

N J

Farm U Animals’

Buildings

DuckHousing, Silo

Buildings’

Farm U Animals’ U Buildings’

Reuse

A working cycle

Edit your ontology OJ

Load an external ontology EJ

Specify terms from £ to be reused)

Get module from SJ Module Coverage]

Import this module into OJ

Reuse

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Reuse

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Example 1:
@ Topic: Fox, Bird, feedsOn
e On-topic: Off-topic:
Fox C V feedsOn.Bird Duck C Bird
Fox U Bird C 3 feedsOn. T
Bird C —Fox

Bird C Bird LI Fox

@ Goal = preserve all on-topic knowledge

Reuse

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

Reuse

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

Example 2:

Animal = Bird LI Fox
Bird = Duck LI Chicken
Duck C 3 feedsOn.Grass
Chicken C 3 feedsOn.Worm
Fox = 3 feedsOn.Bird

Farm U Animals

=
Animal E 3 feedsOn.T

% Farm

Animals

Reuse

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

Example 2:

Animal = Bird U Fox

Farm U Animals;

=
Animal E 3 feedsOn.T

% Farm

Animals;

Reuse

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

Example 2:

Farm U Animals;

=
Animal E 3 feedsOn.T

% Farm

Duck C 3 feedsOn.Grass
Chicken C 3 feedsOn.Worm
Fox = 3 feedsOn.Bird

Animals;

Reuse

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

Example 2:

Animal = Bird U Fox

Duck C 3 feedsOn.Grass
Chicken C 3 feedsOn.Worm
Fox = 3 feedsOn.Bird

Farm U Animals;

=
Animal E 3 feedsOn.T

% Farm

Animalss

Reuse

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

Example 2:

Animal = Bird LI Fox
Bird = Duck LI Chicken
Duck C 3 feedsOn.Grass
Chicken C 3 feedsOn.Worm
Fox = 3 feedsOn.Bird

Farm U Animals,

=
Animal E 3 feedsOn.T

% Farm

Animalss

Reuse

Module coverage

@ The module &£’ covers the ontology £ for the specified topic 7
if for all classes A, B built from terms in 7:
if Oué E ALCB,
then OUE E ALCB.

@ Coverage = preserving entailments

Reuse

Module coverage

@ The module &£’ covers the ontology £ for the specified topic 7
if for all classes A, B built from terms in 7:

if Oufé E ALCB,
then OUE E ALCB.

@ Coverage = preserving entailments

@ No coverage ~» no encapsulation ~» no module

@ With coverage: trade-off minimality < computation time

Reuse

A working cycle

Edit your ontology OJ Safety]

Load an external ontology EJ

Specify terms from £ to be reused)

Get module from SJ

Import this module into OJ

Reuse

Goal: Don't change the meaning of imported terms.
= Don’t add new knowledge about the imported topic.

Question: Which axioms are we allowed to write?

Reuse

Goal: Don't change the meaning of imported terms.
= Don’t add new knowledge about the imported topic.

Question: Which axioms are we allowed to write?

Example:

Tweety : Duck, —Flies
Duck C Bird

Animals
% Bird C Flies
Farm

Reuse

Goal: Don't change the meaning of imported terms.
= Don’t add new knowledge about the imported topic.

Question: Which axioms are we allowed to write?

Example:

Tweety : Duck, —Flies
Duck C Bird

Animals 4
% Bird C Flies
Farm

Reuse

Goal: Don't change the meaning of imported terms.
= Don’t add new knowledge about the imported topic.

Question: Which axioms are we allowed to write?

Example:

Luszalys D = =es Farm U Animals |= Bird C Flies

Duck L. Bird but Animals }£ Bird C Flies

Animals
% Bird C Flies
Farm

Reuse

@ Our ontology O uses the imported terms safely
if for all classes A, B built from the imported terms:

If g ¥ ALCB,
then OUE p ALCB,

@ Safety = preserving non-entailments

Background

© Logical background

Background

Module coverage

@ The module £’ covers the ontology £ for the specified topic 7
if for all classes A, B built from terms in 7:
if Oué¢ E ALCB,
then OUE E ALCB.

o Coverage = preserving entailments

Background

Module coverage

The module £ covers the ontology £ for the specified topic 7°
if for all classes A, B built from terms in 7:

if Oué¢ E ALCB,
then OUE E ALCB.

Coverage = preserving entailments

O may allow “more” interpretations of imported terms than £.
If so, include more “restricting” axioms into &£’.
Finish when all terms ¢ £’ can be interpreted as L or T.

Locality says whether this is possible.

Background

Notions of covering modules

@ Minimal coverage-providing modules

based on conservative extensions
hard to compute (intractable/undecidable)

@ Locality-based modules

based on the above considerations
not minimal, hard to compute

@ Modules based on syntactic locality
not minimal, easy to compute (tractable)

Background

Notions of covering modules

(]

Minimal coverage-providing modules

based on conservative extensions
hard to compute (intractable/undecidable)

Locality-based modules

based on the above considerations
not minimal, hard to compute

Modules based on syntactic locality

not minimal, easy to compute (tractable)

Computation:

T « topic;, M «— 0
While there is non-local axiom a w.r.t. 7 Usig(M) do:
M — MU {a} extended topic

Background

Notions of covering modules

@ Minimal coverage-providing modules

based on conservative extensions
hard to compute (intractable/undecidable)

Locality-based modules

based on the above considerations
not minimal, hard to compute

Modules based on syntactic locality

not minimal, easy to compute (tractable)

(]

Computation:

T « topic;, M «— 0
While there is non-local axiom a w.r.t. 7 Usig(M) do:
M — MU {a} extended topic

@ We often extract the T-module of the L-module of £.

Q Tools

Module extraction in Protégé 4

Nightly build:

http://owl.cs.manchester.ac.uk /2008 /iswc-modtut/equinox.zip

@ Realises import scenario
@ Provides coverage via locality-based modules
@ Will soon provide safety too ...

@ To be released as Protégé 4 plugin in the near future

(Thanks to Matthew Horridge.)

http://owl.cs.manchester.ac.uk/modularity

Web-based module extraction

http://owl.cs.manchester.ac.uk/modularity

Module: http://www.co-
OWL Module Extractor ode.org/ontologies/ pizza/pizza.owl_module.owl

Selected signature

Ontology source Pizza (nttp://vmw.c-ode orgfontologies/piza/pizza. ol #P1zz2)
Paste your ontology, or enter

2 URL of a document, into the text box below, Module metrics

it/ www co~ode.org/ontologies, pizzal pizza.owl o of mxiome: 112

er o logical axioms: 112
er of classes: 35

er of object properties: 7
er of Gata properties: 0
Number of individuals: 5

4 Module axioms

Topping SubClassOf PizzaTopp
ChocsoTopping Do Fintopony.
ignature i

paTooping
Enter a signature. Put each entity name on a new line. (Accepts full URIS or URI fragments) el
pong
Pizza GraessTepon Disortn VegeanisTorps
o (TS some rasseTorr)
o coptand (merea . Engi ——
i a5
o ThinAndCripyBasa
DomainConcept DigonWin VauoParttor
oc0f hasiciness same Mid
g
HorbSceTopsing
)
oping
ShTopping DisginWith VegetabiTopping
Modularity type sy o
UiTopping DisomWin KerbSpoaTopping
Select the module type

© Top (lower) module
ot FrutTopping DefomWin VegeassTorong

O Bottom (upper) module HeroSpiceTopping SubClassO PizaTopping

O Botton P (upper-of-lower) module

@ Top-of-bottom (lower-of-upper) module

@Show axioms view (instead of outputting RDF/XML)

(Bract modsle)

http://owl.cs.manchester.ac.uk/modularity

Web-based module extraction

http://owl.cs.manchester.ac.uk/modularity

Try it! ©
@ Ontology: http://www.co-ode.org/ontologies/pizza/pizza.owl
@ Signature “Pizza", “VegetarianPizza", or “Country”
@ Select “Show axioms view"

(Thanks to Matthew Horridge.)

This tool currently ignores non-logical axioms (annotations etc.).

http://owl.cs.manchester.ac.uk/modularity
http://www.co-ode.org/ontologies/pizza/pizza.owl

Comparison

© Comparison of modularisation approaches

Comparison

Comparison of different approaches

Kind of “module” Covrg. Min. Covered DLs Complexity
All ax's referencing 7 | X any easy
Seidenberg/Rector X any easy
Prompt b 4 ? easy

Comparison

Comparison of different approaches

Kind of “module” Covrg. Min. Covered DLs Complexity
All ax's referencing 7 | X any easy
Seidenberg/Rector X any easy
Prompt b 4 ? easy
The whole ontology v XX any easy
MEX (Liverpool) v v acyclic EC easy
conserv.-based mod. v v few hard
locality-based mod. | v/ X ~OWL1DL easy
E-connections v X OWL1DL easy

Comparison

Comparison of different approaches

Kind of “module” Covrg. Min. Covered DLs Complexity
All ax's referencing 7 | X any easy
Seidenberg/Rector X any easy
Prompt b 4 ? easy
The whole ontology v XX any easy
MEX (Liverpool) v v acyclic EC easy
conserv.-based mod. v v few hard
locality-based mod. | v/ X ~OWL1DL easy
E-connections v X OWL1DL easy
interpolants-based v v/ few hard

(no subsets!)

Understanding

And now . ..

@ Understanding ontologies via modules

Understanding

We bet Robert . ..

@ Ontology about periodic table of the chemical elements
@ What is “the meat” of it?

@ We can find it using locality-based modules.

Understanding

Impetus for the “Meat” idea

Partition of koala.owl via E-connections in Swoop

Gender
Animal

Degree

Habitat

@ importing part
@ imported but non-importing part
© isolated part

—» ‘“imports vocabulary from

Understanding

Partition for the periodic table ontology

@ importing part
@ imported but non-importing part
© isolated part

—» ‘“imports vocabulary from

Understanding

“Meat” via locality-based modules

@ Hope: finer-grained analysis

o Difficulties: Computation harder, interpretation unclear

Understanding

“Meat” via locality-based modules

@ Hope: finer-grained analysis

o Difficulties: Computation harder, interpretation unclear

@ Results so far

e 416 modules for all =800 singleton topics
o Sizes 0,...,2800; average 1600 (=4 %)
e Found small modelling irregularity

Understanding

“Meat” via locality-based modules

Hope: finer-grained analysis

Difficulties: Computation harder, interpretation unclear

Results so far

e 416 modules for all =800 singleton topics
o Sizes 0,...,2800; average 1600 (=4 %)
e Found small modelling irregularity

@ Struggle with visualisation

@ Blowup-free methodology for bigger modules?
@ What does the collection of all modules tell us?
°

Modules for topics of axioms?

