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Crash course: ontologies and description logics

Ontology = collection of statements about a domain (axioms)

Language used: usually logic, often description logic (DL)

Inferences can be drawn from axioms

Domains:

biology, medicine, chemistry, business processes, natural language, . . .
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Example axioms + inference

Duck︸ ︷︷ ︸
class

v ∃ feedsOn︸ ︷︷ ︸
property

. Grass︸ ︷︷ ︸
class︸ ︷︷ ︸

class

∀x
(
Duck(x)→ ∃y

(
feedsOn(x , y) ∧ Grass(y)

))

Bird ≡ Duck t Chicken

∀x
(
Bird(x)↔

(
Duck(x) ∨ Chicken(x)

))
Tweety︸ ︷︷ ︸
individual

: Duck Duck(Tweety)

Tweety : Bird

Tweety : ∃feedsOn.Grass
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Reasoning tasks

Inference: Does axiom α follow from ontology O?

Satisfiability:
Is there a model of O that interprets class C as nonempty?

Instance checking:
Is individual x an instance of C in every model of O?

Inter-reducible; optimised reasoners available
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A case for modularity

Common practice in software engineering

Modular software development allows for:

Importing/reusing modules

Collaborative development

Understanding the code from the interaction between the
modules

Wouldn’t it be nice . . .

. . . to have this for ontology development as well?
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Scenario 1: Import/reuse

“Borrow” knowledge about certain terms from external ontologies

Provides access to well-established knowledge

Doesn’t require expertise in external disciplines

This scenario is well-understood and implemented.
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Scenario 2: Collaboration

Collective ontology development

Developers work (edit, classify) locally

Extra care at re-combination

This approach is understood, but not implemented yet.
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Scenario 3: Understanding

Visualise the modular structure of an ontology

1,000,000

We’re still playing with this.
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A reuse scenario

Import/reuse one external ontology

How much of Animals do we need?

How to achieve coverage and economy?
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A reuse scenario

Import/reuse a part of an external ontology
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How much of Animals do we need?

Coverage: Import everything relevant for the chosen terms.

Economy: Import only what’s relevant for them.

How to achieve coverage and economy?
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A reuse scenario

Import/reuse parts of several external ontologies

Animals Buildings

Farm

Bird Barn

How much of Animals and Buildings do we need?

How to achieve coverage and economy?
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The Health-e-Child project

Arthropathy

Arthritis
Autoimmune

Disease
Rheumatologic

Disorder

Atrophic Arthritis Polyarthritis Rheumatoid Arthritis

Juvenile Chronic Polyarthritis Juvenile Rheumatoid Arthritis
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The Health-e-Child project

NCI

JRAO Galen

Arthropathy

Arthritis
Autoimmune

Disease
Rheumatologic

Disorder

Atrophic Arthritis Polyarthritis Rheumatoid Arthritis

Juvenile Chronic Polyarthritis Juvenile Rheumatoid Arthritis

Arthritis diseases

C1

. . .
C7

Joints

Drugs

affects

isTreatedBy
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A working cycle

Edit your ontology O

Import a module

?
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A working cycle
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Import this module into O

Farm

Animals

Animal, feedsOn

Animals′

Farm ∪ Animals′



Why modularity? Reuse Background Tools Comparison Understanding

A working cycle

Edit your ontology O

Load an external ontology E

Specify terms from E to be reused

Get module from E

Import this module into O

Farm ∪ Animals′

Buildings

DuckHousing, Silo

Buildings′

Farm∪Animals′ ∪Buildings′
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A working cycle

Edit your ontology O

Load an external ontology E

Specify terms from E to be reused

Get module from E

Import this module into O

Module Coverage
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Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.
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Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Example 1:

Topic: Fox, Bird, feedsOn

On-topic:

Fox v ∀ feedsOn.Bird

Fox t Bird v ∃ feedsOn.>
Bird v ¬Fox

Bird v Bird t Fox

Off-topic:

Duck v Bird

Goal = preserve all on-topic knowledge
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Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?
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Module coverage

Goal: Import everything the external ontology knows
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Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

Example 2:

Animal ≡ Bird t Fox

Bird ≡ Duck t Chicken

Duck v ∃ feedsOn.Grass

Chicken v ∃ feedsOn.Worm

Fox v ∃ feedsOn.Bird

Farm

Farm ∪ Animals4

|=
Animal v ∃ feedsOn.>

Animals3
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Module coverage

The module E ′ covers the ontology E for the specified topic T
if for all classes A, B built from terms in T :

if O ∪ E |= A v B,
then O ∪ E ′ |= A v B. E

O

E ′

Coverage =̂ preserving entailments

No coverage ; no encapsulation ; no module

With coverage: trade-off minimality↔ computation time
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A working cycle

Edit your ontology O

Load an external ontology E

Specify terms from E to be reused

Get module from E

Import this module into O

Module Coverage

Safety
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Safety

Goal: Don’t change the meaning of imported terms.
= Don’t add new knowledge about the imported topic.

Question: Which axioms are we allowed to write?

Example:

Tweety : Duck,¬Flies

Duck v Bird

Animals

Bird v Flies

Farm
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Safety

Goal: Don’t change the meaning of imported terms.
= Don’t add new knowledge about the imported topic.

Question: Which axioms are we allowed to write?

Example:

Tweety : Duck,¬Flies

Duck v Bird

Animals

Bird v Flies

Farm

E

Farm ∪ Animals |= Bird v Flies

but Animals 6|= Bird v Flies
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Safety

Our ontology O uses the imported terms safely
if for all classes A, B built from the imported terms:

If E ′ 6|= A v B,
then O ∪ E ′ 6|= A v B, E

O

E ′

Safety =̂ preserving non-entailments
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Module coverage

The module E ′ covers the ontology E for the specified topic T
if for all classes A, B built from terms in T :

if O ∪ E |= A v B,
then O ∪ E ′ |= A v B. E

O

E ′

Coverage =̂ preserving entailments

O may allow “more” interpretations of imported terms than E .

If so, include more “restricting” axioms into E ′.

Finish when all terms /∈ E ′ can be interpreted as ⊥ or >.

Locality says whether this is possible.
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Notions of covering modules

Minimal coverage-providing modules

based on conservative extensions
hard to compute (intractable/undecidable)

Locality-based modules

based on the above considerations
not minimal, hard to compute

Modules based on syntactic locality

not minimal, easy to compute (tractable)

Computation:

T ← topic; M ← ∅
While there is non-local axiom α w.r.t. T ∪ sig(M) do:

M ← M ∪ {α}

extended topic

We often extract the >-module of the ⊥-module of E .
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Module extraction in Protégé 4

Nightly build:

http://owl.cs.manchester.ac.uk/2008/iswc-modtut/equinox.zip

Realises import scenario

Provides coverage via locality-based modules

Will soon provide safety too . . .

To be released as Protégé 4 plugin in the near future

(Thanks to Matthew Horridge.)

http://owl.cs.manchester.ac.uk/modularity
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Web-based module extraction

http://owl.cs.manchester.ac.uk/modularity

http://owl.cs.manchester.ac.uk/modularity
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Web-based module extraction

http://owl.cs.manchester.ac.uk/modularity

Try it! ,

Ontology: http://www.co-ode.org/ontologies/pizza/pizza.owl

Signature “Pizza”, “VegetarianPizza”, or “Country”

Select “Show axioms view”

(Thanks to Matthew Horridge.)

This tool currently ignores non-logical axioms (annotations etc.).

http://owl.cs.manchester.ac.uk/modularity
http://www.co-ode.org/ontologies/pizza/pizza.owl
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Comparison of different approaches

Kind of “module” Covrg. Min. Covered DLs Complexity

All ax’s referencing T 8 any easy

Seidenberg/Rector 8 any easy

Prompt 8 ? easy

The whole ontology 3 88 any easy

MEX (Liverpool) 3 3 acyclic EL easy
conserv.-based mod. 3 3 few hard

locality-based mod. 3 8 ≈OWL1 DL easy

E-connections 3 8 OWL1 DL easy

interpolants-based 3 33 few hard
(no subsets!)
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We bet Robert . . .

Ontology about periodic table of the chemical elements

What is “the meat” of it?

We can find it using locality-based modules.
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Impetus for the “Meat” idea

Partition of koala.owl via E-connections in Swoop

Animal

Gender

Degree

Habitat

importing part
imported but non-importing part
isolated part

“imports vocabulary from”
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Partition for the periodic table ontology

importing part
imported but non-importing part
isolated part

“imports vocabulary from”
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“Meat” via locality-based modules

Hope: finer-grained analysis

Difficulties: Computation harder, interpretation unclear

Results so far

416 modules for all ≈ 800 singleton topics
Sizes 0, . . . , 2800; average 1600 (≈ 4 %)
Found small modelling irregularity

Struggle with visualisation

Blowup-free methodology for bigger modules?

What does the collection of all modules tell us?

Modules for topics of axioms?
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