
Why modularity? Reuse Background Tools Comparison Understanding

Working Modularly with OWL

Thomas Schneider

School of Computer Science, University of Manchester, UK

27 January 2009



Why modularity? Reuse Background Tools Comparison Understanding

About the project

Title

Composing and decomposing ontologies: a logic-based approach

People involved/interested

Uli Sattler, Bijan Parsia, Thomas Schneider (Manchester)

Frank Wolter, Boris Konev, Dirk Walther (Liverpool)

Ian Horrocks, Bernardo Cuenca Grau (Oxford)

Carsten Lutz (Bremen)



Why modularity? Reuse Background Tools Comparison Understanding

And now . . .

1 Why modularity?

2 A reuse scenario

3 Logical background

4 Tools

5 Comparison of modularisation approaches

6 Understanding ontologies via modules



Why modularity? Reuse Background Tools Comparison Understanding

Crash course: ontologies and description logics

Ontology = collection of statements about a domain (axioms)

Language used: usually logic, often description logic (DL)

Inferences can be drawn from axioms

Domains:

biology, medicine, chemistry, business processes, natural language, . . .



Why modularity? Reuse Background Tools Comparison Understanding

Example axioms + inference

Duck︸ ︷︷ ︸
class

v ∃ feedsOn︸ ︷︷ ︸
property

. Grass︸ ︷︷ ︸
class︸ ︷︷ ︸

class

∀x
(
Duck(x)→ ∃y

(
feedsOn(x , y) ∧ Grass(y)

))

Bird ≡ Duck t Chicken

∀x
(
Bird(x)↔

(
Duck(x) ∨ Chicken(x)

))
Tweety︸ ︷︷ ︸
individual

: Duck Duck(Tweety)

Tweety : Bird

Tweety : ∃feedsOn.Grass



Why modularity? Reuse Background Tools Comparison Understanding

Example axioms + inference

Duck︸ ︷︷ ︸
class

v ∃ feedsOn︸ ︷︷ ︸
property

. Grass︸ ︷︷ ︸
class︸ ︷︷ ︸

class

∀x
(
Duck(x)→ ∃y

(
feedsOn(x , y) ∧ Grass(y)

))
Bird ≡ Duck t Chicken

∀x
(
Bird(x)↔

(
Duck(x) ∨ Chicken(x)

))

Tweety︸ ︷︷ ︸
individual

: Duck Duck(Tweety)

Tweety : Bird

Tweety : ∃feedsOn.Grass



Why modularity? Reuse Background Tools Comparison Understanding

Example axioms + inference

Duck︸ ︷︷ ︸
class

v ∃ feedsOn︸ ︷︷ ︸
property

. Grass︸ ︷︷ ︸
class︸ ︷︷ ︸

class

∀x
(
Duck(x)→ ∃y

(
feedsOn(x , y) ∧ Grass(y)

))
Bird ≡ Duck t Chicken

∀x
(
Bird(x)↔

(
Duck(x) ∨ Chicken(x)

))
Tweety︸ ︷︷ ︸
individual

: Duck Duck(Tweety)

Tweety : Bird

Tweety : ∃feedsOn.Grass



Why modularity? Reuse Background Tools Comparison Understanding

Example axioms + inference

Duck︸ ︷︷ ︸
class

v ∃ feedsOn︸ ︷︷ ︸
property

. Grass︸ ︷︷ ︸
class︸ ︷︷ ︸

class

∀x
(
Duck(x)→ ∃y

(
feedsOn(x , y) ∧ Grass(y)

))
Bird ≡ Duck t Chicken

∀x
(
Bird(x)↔

(
Duck(x) ∨ Chicken(x)

))
Tweety︸ ︷︷ ︸
individual

: Duck Duck(Tweety)

Tweety : Bird

Tweety : ∃feedsOn.Grass



Why modularity? Reuse Background Tools Comparison Understanding

Reasoning tasks

Inference: Does axiom α follow from ontology O?

Satisfiability:
Is there a model of O that interprets class C as nonempty?

Instance checking:
Is individual x an instance of C in every model of O?

Inter-reducible; optimised reasoners available



Why modularity? Reuse Background Tools Comparison Understanding

A case for modularity

Common practice in software engineering

Modular software development allows for:

Importing/reusing modules

Collaborative development

Understanding the code from the interaction between the
modules

Wouldn’t it be nice . . .

. . . to have this for ontology development as well?



Why modularity? Reuse Background Tools Comparison Understanding

Three scenarios

Import/reuse

Collaboration Understanding



Why modularity? Reuse Background Tools Comparison Understanding

Three scenarios

Import/reuse

Collaboration Understanding



Why modularity? Reuse Background Tools Comparison Understanding

Scenario 1: Import/reuse

“Borrow” knowledge about certain terms from external ontologies

Provides access to well-established knowledge

Doesn’t require expertise in external disciplines

This scenario is well-understood and implemented.



Why modularity? Reuse Background Tools Comparison Understanding

Scenario 1: Import/reuse

“Borrow” knowledge about certain terms from external ontologies

Provides access to well-established knowledge

Doesn’t require expertise in external disciplines

This scenario is well-understood and implemented.



Why modularity? Reuse Background Tools Comparison Understanding

Scenario 1: Import/reuse

“Borrow” knowledge about certain terms from external ontologies

Provides access to well-established knowledge

Doesn’t require expertise in external disciplines

This scenario is well-understood and implemented.



Why modularity? Reuse Background Tools Comparison Understanding

Scenario 2: Collaboration

Collective ontology development

Developers work (edit, classify) locally

Extra care at re-combination

This approach is understood, but not implemented yet.



Why modularity? Reuse Background Tools Comparison Understanding

Scenario 2: Collaboration

Collective ontology development

Developers work (edit, classify) locally

Extra care at re-combination

This approach is understood, but not implemented yet.



Why modularity? Reuse Background Tools Comparison Understanding

Scenario 2: Collaboration

Collective ontology development

Developers work (edit, classify) locally

Extra care at re-combination

This approach is understood, but not implemented yet.



Why modularity? Reuse Background Tools Comparison Understanding

Scenario 3: Understanding

Visualise the modular structure of an ontology

1,000,000

We’re still playing with this.



Why modularity? Reuse Background Tools Comparison Understanding

Scenario 3: Understanding

Visualise the modular structure of an ontology

We’re still playing with this.



Why modularity? Reuse Background Tools Comparison Understanding

Scenario 3: Understanding

Visualise the modular structure of an ontology

We’re still playing with this.



Why modularity? Reuse Background Tools Comparison Understanding

Summing up

Import/reuse

Collaboration Understanding



Why modularity? Reuse Background Tools Comparison Understanding

Summing up

Import/reuse

Collaboration Understanding



Why modularity? Reuse Background Tools Comparison Understanding

And now . . .

1 Why modularity?

2 A reuse scenario

3 Logical background

4 Tools

5 Comparison of modularisation approaches

6 Understanding ontologies via modules



Why modularity? Reuse Background Tools Comparison Understanding

A reuse scenario

Import/reuse one external ontology

How much of Animals do we need?

How to achieve coverage and economy?



Why modularity? Reuse Background Tools Comparison Understanding

A reuse scenario

Import/reuse one external ontology

Animals

Farm

knowledge about “Bird”

How much of Animals do we need?

How to achieve coverage and economy?



Why modularity? Reuse Background Tools Comparison Understanding

A reuse scenario

Import/reuse one external ontology

Animals

Farm

knowledge about “Bird”

How much of Animals do we need?

How to achieve coverage and economy?



Why modularity? Reuse Background Tools Comparison Understanding

A reuse scenario

Import/reuse a part of an external ontology

Animals

Farm

Bird

How much of Animals do we need?

Coverage: Import everything relevant for the chosen terms.

Economy: Import only what’s relevant for them.

How to achieve coverage and economy?



Why modularity? Reuse Background Tools Comparison Understanding

A reuse scenario

Import/reuse a part of an external ontology

Animals

Farm

Bird

How much of Animals do we need?

Coverage: Import everything relevant for the chosen terms.

Economy: Import only what’s relevant for them.

How to achieve coverage and economy?



Why modularity? Reuse Background Tools Comparison Understanding

A reuse scenario

Import/reuse parts of several external ontologies

Animals Buildings

Farm

Bird Barn

How much of Animals and Buildings do we need?

How to achieve coverage and economy?



Why modularity? Reuse Background Tools Comparison Understanding

The Health-e-Child project

Arthropathy

Arthritis
Autoimmune

Disease
Rheumatologic

Disorder

Atrophic Arthritis Polyarthritis Rheumatoid Arthritis

Juvenile Chronic Polyarthritis Juvenile Rheumatoid Arthritis



Why modularity? Reuse Background Tools Comparison Understanding

The Health-e-Child project

NCI

JRAO Galen

Arthropathy

Arthritis
Autoimmune

Disease
Rheumatologic

Disorder

Atrophic Arthritis Polyarthritis Rheumatoid Arthritis

Juvenile Chronic Polyarthritis Juvenile Rheumatoid Arthritis

Arthritis diseases

C1

. . .
C7

Joints

Drugs

affects

isTreatedBy



Why modularity? Reuse Background Tools Comparison Understanding

A working cycle

Edit your ontology O

Import a module

?



Why modularity? Reuse Background Tools Comparison Understanding

A working cycle

Edit your ontology O

Load an external ontology E

Specify terms from E to be reused

Get module from E

Import this module into O



Why modularity? Reuse Background Tools Comparison Understanding

A working cycle

Edit your ontology O

Load an external ontology E

Specify terms from E to be reused

Get module from E

Import this module into O

Farm

Animals

Animal, feedsOn

Animals′

Farm ∪ Animals′



Why modularity? Reuse Background Tools Comparison Understanding

A working cycle

Edit your ontology O

Load an external ontology E

Specify terms from E to be reused

Get module from E

Import this module into O

Farm ∪ Animals′

Buildings

DuckHousing, Silo

Buildings′

Farm∪Animals′ ∪Buildings′



Why modularity? Reuse Background Tools Comparison Understanding

A working cycle

Edit your ontology O

Load an external ontology E

Specify terms from E to be reused

Get module from E

Import this module into O

Module Coverage



Why modularity? Reuse Background Tools Comparison Understanding

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.



Why modularity? Reuse Background Tools Comparison Understanding

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Example 1:

Topic: Fox, Bird, feedsOn

On-topic:

Fox v ∀ feedsOn.Bird

Fox t Bird v ∃ feedsOn.>
Bird v ¬Fox

Bird v Bird t Fox

Off-topic:

Duck v Bird

Goal = preserve all on-topic knowledge



Why modularity? Reuse Background Tools Comparison Understanding

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?



Why modularity? Reuse Background Tools Comparison Understanding

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

Example 2:

Animal ≡ Bird t Fox

Bird ≡ Duck t Chicken

Duck v ∃ feedsOn.Grass

Chicken v ∃ feedsOn.Worm

Fox v ∃ feedsOn.Bird

Farm

Farm ∪ Animals

|=
Animal v ∃ feedsOn.>

Animals



Why modularity? Reuse Background Tools Comparison Understanding

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

Example 2:

Animal ≡ Bird t Fox

Bird ≡ Duck t Chicken

Duck v ∃ feedsOn.Grass

Chicken v ∃ feedsOn.Worm

Fox v ∃ feedsOn.Bird

Farm

6|=
Animal v ∃ feedsOn.>

Farm ∪ Animals1

Animals1



Why modularity? Reuse Background Tools Comparison Understanding

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

Example 2:

Animal ≡ Bird t Fox

Bird ≡ Duck t Chicken

Duck v ∃ feedsOn.Grass

Chicken v ∃ feedsOn.Worm

Fox v ∃ feedsOn.Bird

Farm

6|=
Animal v ∃ feedsOn.>

Farm ∪ Animals2

Animals2



Why modularity? Reuse Background Tools Comparison Understanding

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

Example 2:

Animal ≡ Bird t Fox

Bird ≡ Duck t Chicken

Duck v ∃ feedsOn.Grass

Chicken v ∃ feedsOn.Worm

Fox v ∃ feedsOn.Bird

Farm

6|=
Animal v ∃ feedsOn.>

Farm ∪ Animals3

Animals3



Why modularity? Reuse Background Tools Comparison Understanding

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

Example 2:

Animal ≡ Bird t Fox

Bird ≡ Duck t Chicken

Duck v ∃ feedsOn.Grass

Chicken v ∃ feedsOn.Worm

Fox v ∃ feedsOn.Bird

Farm

Farm ∪ Animals4

|=
Animal v ∃ feedsOn.>

Animals3



Why modularity? Reuse Background Tools Comparison Understanding

Module coverage

The module E ′ covers the ontology E for the specified topic T
if for all classes A, B built from terms in T :

if O ∪ E |= A v B,
then O ∪ E ′ |= A v B. E

O

E ′

Coverage =̂ preserving entailments

No coverage ; no encapsulation ; no module

With coverage: trade-off minimality↔ computation time



Why modularity? Reuse Background Tools Comparison Understanding

Module coverage

The module E ′ covers the ontology E for the specified topic T
if for all classes A, B built from terms in T :

if O ∪ E |= A v B,
then O ∪ E ′ |= A v B. E

O

E ′

Coverage =̂ preserving entailments

No coverage ; no encapsulation ; no module

With coverage: trade-off minimality↔ computation time



Why modularity? Reuse Background Tools Comparison Understanding

A working cycle

Edit your ontology O

Load an external ontology E

Specify terms from E to be reused

Get module from E

Import this module into O

Module Coverage

Safety



Why modularity? Reuse Background Tools Comparison Understanding

Safety

Goal: Don’t change the meaning of imported terms.
= Don’t add new knowledge about the imported topic.

Question: Which axioms are we allowed to write?

Example:

Tweety : Duck,¬Flies

Duck v Bird

Animals

Bird v Flies

Farm



Why modularity? Reuse Background Tools Comparison Understanding

Safety

Goal: Don’t change the meaning of imported terms.
= Don’t add new knowledge about the imported topic.

Question: Which axioms are we allowed to write?

Example:

Tweety : Duck,¬Flies

Duck v Bird

Animals

Bird v Flies

Farm



Why modularity? Reuse Background Tools Comparison Understanding

Safety

Goal: Don’t change the meaning of imported terms.
= Don’t add new knowledge about the imported topic.

Question: Which axioms are we allowed to write?

Example:

Tweety : Duck,¬Flies

Duck v Bird

Animals

Bird v Flies

Farm

E



Why modularity? Reuse Background Tools Comparison Understanding

Safety

Goal: Don’t change the meaning of imported terms.
= Don’t add new knowledge about the imported topic.

Question: Which axioms are we allowed to write?

Example:

Tweety : Duck,¬Flies

Duck v Bird

Animals

Bird v Flies

Farm

E

Farm ∪ Animals |= Bird v Flies

but Animals 6|= Bird v Flies



Why modularity? Reuse Background Tools Comparison Understanding

Safety

Our ontology O uses the imported terms safely
if for all classes A, B built from the imported terms:

If E ′ 6|= A v B,
then O ∪ E ′ 6|= A v B, E

O

E ′

Safety =̂ preserving non-entailments



Why modularity? Reuse Background Tools Comparison Understanding

And now . . .

1 Why modularity?

2 A reuse scenario

3 Logical background

4 Tools

5 Comparison of modularisation approaches

6 Understanding ontologies via modules



Why modularity? Reuse Background Tools Comparison Understanding

Module coverage

The module E ′ covers the ontology E for the specified topic T
if for all classes A, B built from terms in T :

if O ∪ E |= A v B,
then O ∪ E ′ |= A v B. E

O

E ′

Coverage =̂ preserving entailments

O may allow “more” interpretations of imported terms than E .

If so, include more “restricting” axioms into E ′.

Finish when all terms /∈ E ′ can be interpreted as ⊥ or >.

Locality says whether this is possible.



Why modularity? Reuse Background Tools Comparison Understanding

Module coverage

The module E ′ covers the ontology E for the specified topic T
if for all classes A, B built from terms in T :

if O ∪ E |= A v B,
then O ∪ E ′ |= A v B. E

O

E ′

Coverage =̂ preserving entailments

O may allow “more” interpretations of imported terms than E .

If so, include more “restricting” axioms into E ′.

Finish when all terms /∈ E ′ can be interpreted as ⊥ or >.

Locality says whether this is possible.



Why modularity? Reuse Background Tools Comparison Understanding

Notions of covering modules

Minimal coverage-providing modules

based on conservative extensions
hard to compute (intractable/undecidable)

Locality-based modules

based on the above considerations
not minimal, hard to compute

Modules based on syntactic locality

not minimal, easy to compute (tractable)

Computation:

T ← topic; M ← ∅
While there is non-local axiom α w.r.t. T ∪ sig(M) do:

M ← M ∪ {α}

extended topic

We often extract the >-module of the ⊥-module of E .



Why modularity? Reuse Background Tools Comparison Understanding

Notions of covering modules

Minimal coverage-providing modules

based on conservative extensions
hard to compute (intractable/undecidable)

Locality-based modules

based on the above considerations
not minimal, hard to compute

Modules based on syntactic locality

not minimal, easy to compute (tractable)

Computation:

T ← topic; M ← ∅
While there is non-local axiom α w.r.t. T ∪ sig(M) do:

M ← M ∪ {α} extended topic

We often extract the >-module of the ⊥-module of E .



Why modularity? Reuse Background Tools Comparison Understanding

Notions of covering modules

Minimal coverage-providing modules

based on conservative extensions
hard to compute (intractable/undecidable)

Locality-based modules

based on the above considerations
not minimal, hard to compute

Modules based on syntactic locality

not minimal, easy to compute (tractable)

Computation:

T ← topic; M ← ∅
While there is non-local axiom α w.r.t. T ∪ sig(M) do:

M ← M ∪ {α} extended topic

We often extract the >-module of the ⊥-module of E .



Why modularity? Reuse Background Tools Comparison Understanding

And now . . .

1 Why modularity?

2 A reuse scenario

3 Logical background

4 Tools

5 Comparison of modularisation approaches

6 Understanding ontologies via modules



Why modularity? Reuse Background Tools Comparison Understanding

Module extraction in Protégé 4

Nightly build:

http://owl.cs.manchester.ac.uk/2008/iswc-modtut/equinox.zip

Realises import scenario

Provides coverage via locality-based modules

Will soon provide safety too . . .

To be released as Protégé 4 plugin in the near future

(Thanks to Matthew Horridge.)

http://owl.cs.manchester.ac.uk/modularity


Why modularity? Reuse Background Tools Comparison Understanding

Web-based module extraction

http://owl.cs.manchester.ac.uk/modularity

http://owl.cs.manchester.ac.uk/modularity


Why modularity? Reuse Background Tools Comparison Understanding

Web-based module extraction

http://owl.cs.manchester.ac.uk/modularity

Try it! ,

Ontology: http://www.co-ode.org/ontologies/pizza/pizza.owl

Signature “Pizza”, “VegetarianPizza”, or “Country”

Select “Show axioms view”

(Thanks to Matthew Horridge.)

This tool currently ignores non-logical axioms (annotations etc.).

http://owl.cs.manchester.ac.uk/modularity
http://www.co-ode.org/ontologies/pizza/pizza.owl


Why modularity? Reuse Background Tools Comparison Understanding

And now . . .

1 Why modularity?

2 A reuse scenario

3 Logical background

4 Tools

5 Comparison of modularisation approaches

6 Understanding ontologies via modules



Why modularity? Reuse Background Tools Comparison Understanding

Comparison of different approaches

Kind of “module” Covrg. Min. Covered DLs Complexity

All ax’s referencing T 8 any easy

Seidenberg/Rector 8 any easy

Prompt 8 ? easy

The whole ontology 3 88 any easy

MEX (Liverpool) 3 3 acyclic EL easy
conserv.-based mod. 3 3 few hard

locality-based mod. 3 8 ≈OWL1 DL easy

E-connections 3 8 OWL1 DL easy

interpolants-based 3 33 few hard
(no subsets!)



Why modularity? Reuse Background Tools Comparison Understanding

Comparison of different approaches

Kind of “module” Covrg. Min. Covered DLs Complexity

All ax’s referencing T 8 any easy

Seidenberg/Rector 8 any easy

Prompt 8 ? easy

The whole ontology 3 88 any easy

MEX (Liverpool) 3 3 acyclic EL easy
conserv.-based mod. 3 3 few hard

locality-based mod. 3 8 ≈OWL1 DL easy

E-connections 3 8 OWL1 DL easy

interpolants-based 3 33 few hard
(no subsets!)



Why modularity? Reuse Background Tools Comparison Understanding

Comparison of different approaches

Kind of “module” Covrg. Min. Covered DLs Complexity

All ax’s referencing T 8 any easy

Seidenberg/Rector 8 any easy

Prompt 8 ? easy

The whole ontology 3 88 any easy

MEX (Liverpool) 3 3 acyclic EL easy
conserv.-based mod. 3 3 few hard

locality-based mod. 3 8 ≈OWL1 DL easy

E-connections 3 8 OWL1 DL easy

interpolants-based 3 33 few hard
(no subsets!)



Why modularity? Reuse Background Tools Comparison Understanding

And now . . .

1 Why modularity?

2 A reuse scenario

3 Logical background

4 Tools

5 Comparison of modularisation approaches

6 Understanding ontologies via modules



Why modularity? Reuse Background Tools Comparison Understanding

We bet Robert . . .

Ontology about periodic table of the chemical elements

What is “the meat” of it?

We can find it using locality-based modules.



Why modularity? Reuse Background Tools Comparison Understanding

Impetus for the “Meat” idea

Partition of koala.owl via E-connections in Swoop

Animal

Gender

Degree

Habitat

importing part
imported but non-importing part
isolated part

“imports vocabulary from”



Why modularity? Reuse Background Tools Comparison Understanding

Partition for the periodic table ontology

importing part
imported but non-importing part
isolated part

“imports vocabulary from”



Why modularity? Reuse Background Tools Comparison Understanding

“Meat” via locality-based modules

Hope: finer-grained analysis

Difficulties: Computation harder, interpretation unclear

Results so far

416 modules for all ≈ 800 singleton topics
Sizes 0, . . . , 2800; average 1600 (≈ 4 %)
Found small modelling irregularity

Struggle with visualisation

Blowup-free methodology for bigger modules?

What does the collection of all modules tell us?

Modules for topics of axioms?



Why modularity? Reuse Background Tools Comparison Understanding

“Meat” via locality-based modules

Hope: finer-grained analysis

Difficulties: Computation harder, interpretation unclear

Results so far

416 modules for all ≈ 800 singleton topics
Sizes 0, . . . , 2800; average 1600 (≈ 4 %)
Found small modelling irregularity

Struggle with visualisation

Blowup-free methodology for bigger modules?

What does the collection of all modules tell us?

Modules for topics of axioms?



Why modularity? Reuse Background Tools Comparison Understanding

“Meat” via locality-based modules

Hope: finer-grained analysis

Difficulties: Computation harder, interpretation unclear

Results so far

416 modules for all ≈ 800 singleton topics
Sizes 0, . . . , 2800; average 1600 (≈ 4 %)
Found small modelling irregularity

Struggle with visualisation

Blowup-free methodology for bigger modules?

What does the collection of all modules tell us?

Modules for topics of axioms?


