Which Kind of Module Should I Extract?

Uli Sattler¹ Thomas Schneider¹ Michael Zakharyaschev²

¹School of Computer Science, University of Manchester ²Birkbeck College, London

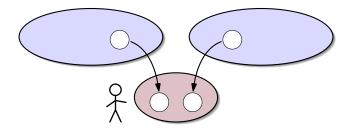
DL, 28 July 2009

And now . . .

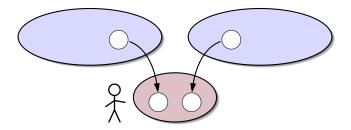
Inseparability relations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Why module extraction?



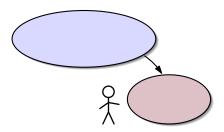
Why module extraction?



- Provides access to well-established knowledge
- Doesn't require expertise in external disciplines

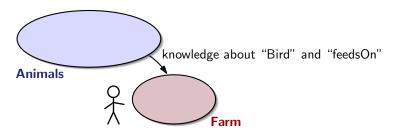
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Why module extraction?



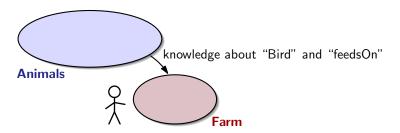
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Why module extraction?



Why module extraction?

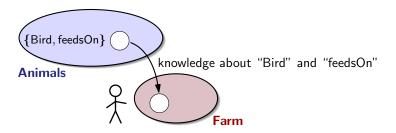
Reuse external ontologies: borrow knowledge about certain terms



How much of Animals do we need?

Why module extraction?

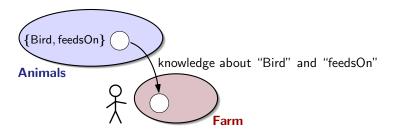
Reuse external ontologies: borrow knowledge about certain terms



How much of Animals do we need?

Why module extraction?

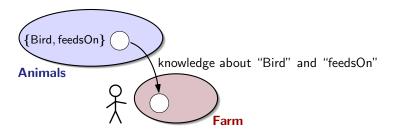
Reuse external ontologies: borrow knowledge about certain terms



CoverageImport everything relevant for the chosen terms.EconomyImport only what's relevant for them.
Compute that module quickly.

Why module extraction?

Reuse external ontologies: borrow knowledge about certain terms

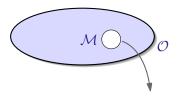


CoverageImport everything relevant for the chosen terms.EconomyImport only what's relevant for them.
Compute that module quickly.

Modules that provide coverage

- Output a Σ -module \mathcal{M} of \mathcal{O} :
 - $\mathcal{M} \subseteq \mathcal{O}$
 - $\mathcal M$ and $\mathcal O$ have the same Σ -entailments:

For all axioms α using only terms from Σ , $\mathcal{O} \models \alpha$ iff $\mathcal{M} \models \alpha$



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Modules that provide coverage

Input	Ontology \mathcal{O} — a set of axioms Signature $\Sigma~~(\text{set of concept and role names from }\mathcal{O})$			
Output	a Σ -module \mathcal{M} of \mathcal{O} :			
• $\mathcal{M} \subseteq \mathcal{O}$				
• $\mathcal M$ and $\mathcal O$ have the same Σ -entailments:				
For all axioms $lpha$ using only terms from Σ ,				
	$\mathcal{O} \models \alpha \text{iff} \mathcal{M} \models \alpha$			

Coverage 🗸

Modules that provide coverage

Input	Ontology \mathcal{O} — a set of axioms Signature Σ (set of concept and role names from \mathcal{O})			
Output	a Σ -module \mathcal{M} of \mathcal{O} :			
• $\mathcal{M} \subseteq \mathcal{O}$				
• $\mathcal M$ and $\mathcal O$ have the same Σ -entailments:				
For all axioms $lpha$ using only terms from ${f \Sigma},$				
	$\mathcal{O} \models \alpha \text{iff} \mathcal{M} \models \alpha$			

Coverage 🗸

Economy Minimality

 $\stackrel{!}{\leftrightarrow}$ efficient computability

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Modules that provide coverage

Input	Ontology \mathcal{O} — a set of axioms Signature $\Sigma~~(\text{set of concept and role names from }\mathcal{O})$			
Output	a Σ -module \mathcal{M} of \mathcal{O} :			
• $\mathcal{M} \subseteq \mathcal{O}$				
• ${\mathcal M}$ and ${\mathcal O}$ have the same Σ -entailments:				
For all axioms $lpha$ using only terms from ${f \Sigma}$,				
	$\mathcal{O} \models \alpha \text{iff} \mathcal{M} \models \alpha$			

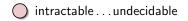
Coverage 🗸

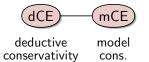
 $\begin{array}{ccc} \textbf{Economy} & \text{Minimality} & \stackrel{!}{\leftrightarrow} & \text{efficient computability} \\ & \text{conservativity-based} \\ & \text{modules} & & \text{locality-based} \\ & \text{modules} \end{array}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Relevant module types

deductive conservativity





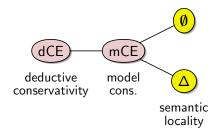
$(x) - (y) x - module(\mathcal{O}, \Sigma) \subseteq y - module(\mathcal{O}, \Sigma)$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

intractable . . . undecidable

Robustness properties

Relevant module types

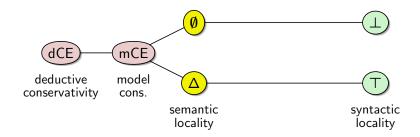


(x) (y) x-module $(\mathcal{O}, \Sigma) \subseteq y$ -module (\mathcal{O}, Σ)

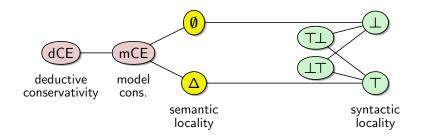
▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

) intractable . . . undecidable

) as difficult as reasoning



▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

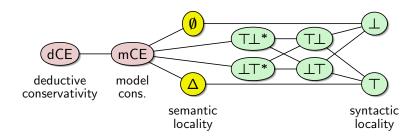


 $\begin{array}{l} (x) - (y) \quad x \text{-module}(\mathcal{O}, \Sigma) \subseteq y \text{-module}(\mathcal{O}, \Sigma) \\ \\ & \bigcirc \quad \text{intractable} \dots \text{undecidable} \\ \end{array}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

as difficult as reasoning

) tractable



(x) (y) x-module $(\mathcal{O}, \Sigma) \subseteq y$ -module (\mathcal{O}, Σ)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

) intractable . . . undecidable

as difficult as reasoning

) tractable

- General framework for comparing module notions that provide coverage
- Identify relevant properties
- Application to conservativity-based and locality-based modules

And now . . .

Inseparability relations

3 Robustness properties

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへぐ

Intuitions

- O₁ and O₂ are inseparable w.r.t. Σ: The knowledge about Σ in O₁ and O₂ can't be distinguished
- Different degrees of distinguishability

Intuitions

- O₁ and O₂ are inseparable w.r.t. Σ: The knowledge about Σ in O₁ and O₂ can't be distinguished
- Different degrees of distinguishability

• Notation:
$$\mathcal{O}_1 \equiv_{\Sigma}^{S} \mathcal{O}_2$$

• \equiv^{S}_{Σ} is an equivalence relation

Intuitions

- O₁ and O₂ are inseparable w.r.t. Σ: The knowledge about Σ in O₁ and O₂ can't be distinguished
- Different degrees of distinguishability

• Notation:
$$\mathcal{O}_1 \equiv^{S}_{\Sigma} \mathcal{O}_2$$

- \equiv^{S}_{Σ} is an equivalence relation
- Inseparability relation: $S = \{ \equiv_{\Sigma}^{S} \mid \Sigma \text{ is a signature} \}$

・ロト ・西ト ・ヨト ・ヨー うらぐ

Different inseparability relations

•
$$\mathcal{O}_1 \stackrel{\text{(dCE)}}{=} \mathcal{O}_2$$
 if:
 \mathcal{O}_1 and \mathcal{O}_2 entail the same Σ -concept subsumptions

・ロト ・西ト ・ヨト ・ヨー うらぐ

Different inseparability relations

Different inseparability relations

 O₁ = CE D₂ if: O₁ and O₂ entail the same Σ-concept subsumptions
 O₁ = CO₂ if: O₁ and O₂ have the same models w.r.t. Σ
 O₁ = DO₂ if: O₁ and O₂ have the same ⊥-module w.r.t. Σ

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Different inseparability relations

Analogous definition for

Inseparability relations induce modules

Let S be an inseparability relation, Σ a signature and $\mathcal{M} \subseteq \mathcal{O}$.

${\cal M}$ is called	if	see
an S_{Σ} -module of $\mathcal O$	$\mathcal{M}\equiv^{S}_{\Sigma}\mathcal{O}$	1

Example: S = dCE, $\Sigma = \{Bird, feedsOn\}$, \mathcal{M} contains Grass. **(3)** $\mathcal{O} \models Bird \sqsubseteq \exists feedsOn.\top$ iff $\mathcal{M} \models Bird \sqsubseteq \exists feedsOn.\top$

Inseparability relations induce modules

Let S be an inseparability relation, Σ a signature and $\mathcal{M} \subseteq \mathcal{O}$.

${\cal M}$ is called	if	see
an S_{Σ} -module of $\mathcal O$	$\mathcal{M}\equiv^{\mathcal{S}}_{\Sigma}\mathcal{O}$	1
a self-contained S_{Σ} -module of ${\cal O}$	$\mathcal{M} \equiv^{S}_{\Sigma \cup sig(\mathcal{M})} \mathcal{O}$	2

Example: S = dCE, $\Sigma = \{Bird, feedsOn\}$, \mathcal{M} contains Grass.

 $0 \models \mathsf{Bird} \sqsubseteq \exists \mathsf{feedsOn}. \top \qquad \mathsf{iff} \quad \mathcal{M} \models \mathsf{Bird} \sqsubseteq \exists \mathsf{feedsOn}. \top$

 $O \models \mathsf{Bird} \sqsubseteq \exists \mathsf{feedsOn}.\mathsf{Grass} \quad \mathsf{iff} \quad \mathcal{M} \models \mathsf{Bird} \sqsubseteq \exists \mathsf{feedsOn}.\mathsf{Grass}$

Inseparability relations induce modules

Let S be an inseparability relation, Σ a signature and $\mathcal{M} \subseteq \mathcal{O}$.

${\cal M}$ is called	if	see
an S_{Σ} -module of $\mathcal O$	$\mathcal{M}\equiv^{\mathcal{S}}_{\Sigma}\mathcal{O}$	1
a self-contained S_{Σ} -module of ${\mathcal O}$	$\mathcal{M} \equiv^{S}_{\Sigma \cup sig(\mathcal{M})} \mathcal{O}$	2
a depleting S_{Σ} -module of ${\cal O}$	$\emptyset \equiv^{S}_{\Sigma \cup \operatorname{sig}(\mathcal{M})} \mathcal{O} \setminus \mathcal{M}$	3

Example: S = dCE, $\Sigma = \{Bird, feedsOn\}$, \mathcal{M} contains Grass.

 $0 \models \mathsf{Bird} \sqsubseteq \exists \mathsf{feedsOn.T} \qquad \mathsf{iff} \quad \mathcal{M} \models \mathsf{Bird} \sqsubseteq \exists \mathsf{feedsOn.T}$

 $O \models \mathsf{Bird} \sqsubseteq \exists \mathsf{feedsOn}.\mathsf{Grass} \quad \mathsf{iff} \quad \mathcal{M} \models \mathsf{Bird} \sqsubseteq \exists \mathsf{feedsOn}.\mathsf{Grass}$

And now . . .

Inseparability relations

(4日) (個) (目) (目) (目) (の)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Robustness properties (1)

S is robust under vocabulary restrictions:

If
$$\mathcal{O}_1 \equiv_{\Sigma}^{S} \mathcal{O}_2$$
 and $\Sigma' \subseteq \Sigma$, then $\mathcal{O}_1 \equiv_{\Sigma'}^{S} \mathcal{O}_2$.

Robustness properties (1)

S is robust under vocabulary restrictions:

If
$$\mathcal{O}_1 \equiv_{\Sigma}^{S} \mathcal{O}_2$$
 and $\Sigma' \subseteq \Sigma$, then \mathcal{O}_2

$$\mathcal{O}_1 \equiv^{S}_{\Sigma'} \mathcal{O}_2.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Consequences:

 $\begin{array}{ll} \mbox{If } \mathcal{M} \mbox{ is a } \Sigma\mbox{-module of } \mathcal{O} & \mbox{ and } \Sigma' \subseteq \Sigma, \\ \mbox{then } \mathcal{M} \mbox{ is a } \Sigma'\mbox{-module of } \mathcal{O}. \end{array}$

 \rightsquigarrow On restricting the signature, no new import is necessary.

Robustness properties (2)

Vocabulary extensions

If \mathcal{M} is a Σ -module of \mathcal{O} and $(\Sigma' \setminus \Sigma) \cap sig(\mathcal{O}) = \emptyset$, then \mathcal{M} is a Σ' -module of \mathcal{O} .

 \rightsquigarrow On extending the signature with terms outside \mathcal{O} , no new import is necessary.

Robustness properties (2)

Vocabulary extensions

If \mathcal{M} is a Σ -module of \mathcal{O} and $(\Sigma' \setminus \Sigma) \cap sig(\mathcal{O}) = \emptyset$, then \mathcal{M} is a Σ' -module of \mathcal{O} .

- \rightsquigarrow On extending the signature with terms outside $\mathcal{O},$ no new import is necessary.
- Replacement

If \mathcal{M} is a Σ -module of \mathcal{O} and $(\operatorname{sig}(\mathcal{O}') \setminus \Sigma) \cap \operatorname{sig}(\mathcal{O}) = \emptyset$, then $\mathcal{M} \cup \mathcal{O}'$ is a Σ -module of $\mathcal{O} \cup \mathcal{O}'$.

 \rightsquigarrow The module relation is compatible with imports.

Robustness properties (2)

Vocabulary extensions

If \mathcal{M} is a Σ -module of \mathcal{O} and $(\Sigma' \setminus \Sigma) \cap sig(\mathcal{O}) = \emptyset$, then \mathcal{M} is a Σ' -module of \mathcal{O} .

- \rightsquigarrow On extending the signature with terms outside $\mathcal{O},$ no new import is necessary.
- Replacement

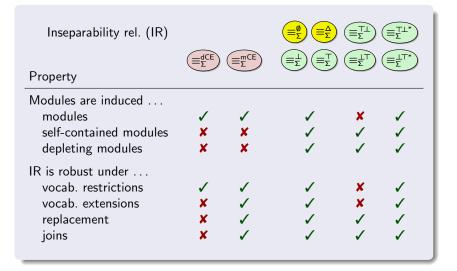
If \mathcal{M} is a Σ -module of \mathcal{O} and $(\operatorname{sig}(\mathcal{O}') \setminus \Sigma) \cap \operatorname{sig}(\mathcal{O}) = \emptyset$, then $\mathcal{M} \cup \mathcal{O}'$ is a Σ -module of $\mathcal{O} \cup \mathcal{O}'$.

 \rightsquigarrow The module relation is compatible with imports.

Joins

If we have two indistinguishable ontologies, it suffices to import one of them.

Overview of properties



◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

And now . . .

Inseparability relations

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Conclusions

- mCE-based and (most) locality-based modules are very robust.
- dCE-based modules are not robust.
- Locality-based modules can be extracted efficiently.
 → Intermediate step for extracting mCE-based modules

Conclusions

- mCE-based and (most) locality-based modules are very robust.
- dCE-based modules are not robust.
- Locality-based modules can be extracted efficiently.
 → Intermediate step for extracting mCE-based modules

Thank you.