
Ontologies+DL Why modularity? Reuse Understanding ontologies

Working Modularly with Ontologies

Chiara Del Vescovo Bijan Parsia Uli Sattler
Thomas Schneider

School of Computer Science, University of Manchester, UK

25 March 2010

Ontologies+DL Why modularity? Reuse Understanding ontologies

About the project

Title

Composing and decomposing ontologies: a logic-based approach

People involved/interested
Chiara Del Vescovo, Rafael Goncalves, Uli Sattler,
Bijan Parsia, Thomas Schneider (Manchester)
Frank Wolter, Boris Konev, Dirk Walther (Liverpool)
Ian Horrocks, Bernardo Cuenca Grau, Yevgeny Kazakov
(Oxford)
Carsten Lutz (Bremen)
Michael Zakharyaschev, Roman Kontchakov (London)

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

And now . . .

1 Ontologies and Description Logic

2 Why modularity?

3 A reuse scenario

4 Understanding ontologies via modules

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Ontology

= collection of statements about a domain (axioms)

Language used: usually logic, often description logic (DL)
Inferences can be drawn from axioms

Domains:
biology, medicine, chemistry, business processes, natural language, . . .

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Example axioms + inferences

Duck︸ ︷︷ ︸
concept

v ∃ feedsOn︸ ︷︷ ︸
role

. Grass︸ ︷︷ ︸
concept︸ ︷︷ ︸

concept

∀x
(
Duck(x)→ ∃y

(
feedsOn(x , y) ∧ Grass(y)

))

Bird ≡ Duck t Chicken
∀x
(
Bird(x)↔

(
Duck(x) ∨ Chicken(x)

))

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Example axioms + inferences

Duck︸ ︷︷ ︸
concept

v ∃ feedsOn︸ ︷︷ ︸
role

. Grass︸ ︷︷ ︸
concept︸ ︷︷ ︸

concept

∀x
(
Duck(x)→ ∃y

(
feedsOn(x , y) ∧ Grass(y)

))
Bird ≡ Duck t Chicken

∀x
(
Bird(x)↔

(
Duck(x) ∨ Chicken(x)

))

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Example axioms + inferences

Duck︸ ︷︷ ︸
concept

v ∃ feedsOn︸ ︷︷ ︸
role

. Grass︸ ︷︷ ︸
concept︸ ︷︷ ︸

concept

∀x
(
Duck(x)→ ∃y

(
feedsOn(x , y) ∧ Grass(y)

))
Bird ≡ Duck t Chicken

∀x
(
Bird(x)↔

(
Duck(x) ∨ Chicken(x)

))

|= Bird u ¬Chicken v ∃ feedsOn.Grass
∀x
((

Bird(x)∧¬Chicken(x)
)
→ ∃y

(
feedsOn(x , y)∧Grass(y)

))

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Example axioms + inferences

Duck︸ ︷︷ ︸
concept

v ∃ feedsOn︸ ︷︷ ︸
role

. Grass︸ ︷︷ ︸
concept︸ ︷︷ ︸

concept

∀x
(
Duck(x)→ ∃y

(
feedsOn(x , y) ∧ Grass(y)

))
Bird ≡ Duck t Chicken

∀x
(
Bird(x)↔

(
Duck(x) ∨ Chicken(x)

))

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Example axioms + inferences

Duck︸ ︷︷ ︸
concept

v ∃ feedsOn︸ ︷︷ ︸
role

. Grass︸ ︷︷ ︸
concept︸ ︷︷ ︸

concept

∀x
(
Duck(x)→ ∃y

(
feedsOn(x , y) ∧ Grass(y)

))
Bird ≡ Duck t Chicken

∀x
(
Bird(x)↔

(
Duck(x) ∨ Chicken(x)

))
Tweety︸ ︷︷ ︸
individual

: Duck Duck(Tweety)

|= Tweety : ∃feedsOn.Grass
∃y
(
feedsOn(Tweety, y) ∧ Grass(y)

)

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Example axioms + inferences

Duck︸ ︷︷ ︸
concept

v ∃ feedsOn︸ ︷︷ ︸
role

. Grass︸ ︷︷ ︸
concept︸ ︷︷ ︸

concept

∀x
(
Duck(x)→ ∃y

(
feedsOn(x , y) ∧ Grass(y)

))
Bird ≡ Duck t Chicken

∀x
(
Bird(x)↔

(
Duck(x) ∨ Chicken(x)

))
Tweety︸ ︷︷ ︸
individual

: Duck Duck(Tweety)

|= Tweety : ∃feedsOn.Grass
∃y
(
feedsOn(Tweety, y) ∧ Grass(y)

)
®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Reasoning tasks

Consistency:
Does ontology O have a model?

Satisfiability:
Is there a model of O that interprets concept C as nonempty?

Subsumption:
Does C v D hold in every model of O?

Instance checking:
Is individual x an instance of C in every model of O?

Inter-reducible; optimised reasoners available

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

The Web Ontology Language OWL

W3C-recommended standard since 2004
OWL 2 published on 27 Oct. 2009

OWL Full
Consistency?, Reasoning

OWL DL
Based on DL SROIQ
∃, ∀, counting, role chains and hierarchies, transitivity, inverse
roles, nominals

OWL EL, QL, RL
Sub-profiles for efficient reasoning and application orientation

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

The Web Ontology Language OWL

W3C-recommended standard since 2004
OWL 2 published on 27 Oct. 2009

OWL Full
Consistency?, Reasoning

OWL DL
Based on DL SROIQ
∃, ∀, counting, role chains and hierarchies, transitivity, inverse
roles, nominals

OWL EL, QL, RL
Sub-profiles for efficient reasoning and application orientation

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

And now . . .

1 Ontologies and Description Logic

2 Why modularity?

3 A reuse scenario

4 Understanding ontologies via modules

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

A case for modularity

Common practice in software engineering
Modular software development allows for:

Importing/reusing modules
Collaborative development
Understanding the code from the interaction between the
modules

Wouldn’t it be nice . . .
. . . to have this for ontology development as well?

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Three scenarios

Import/reuse

Collaboration Understanding

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Three scenarios

Import/reuse

Collaboration Understanding

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Scenario 1: Import/reuse

“Borrow” knowledge about certain terms from external ontologies

Provides access to well-established knowledge
Doesn’t require expertise in external disciplines

This scenario is well-understood and implemented.

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Scenario 1: Import/reuse

“Borrow” knowledge about certain terms from external ontologies

Provides access to well-established knowledge
Doesn’t require expertise in external disciplines

This scenario is well-understood and implemented.

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Scenario 1: Import/reuse

“Borrow” knowledge about certain terms from external ontologies

Provides access to well-established knowledge
Doesn’t require expertise in external disciplines

This scenario is well-understood and implemented.

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Scenario 2: Collaboration

Collaborative ontology development

Developers work (edit, classify) locally
Extra care at re-combination

This approach is understood, but not implemented yet.

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Scenario 2: Collaboration

Collaborative ontology development

Developers work (edit, classify) locally
Extra care at re-combination

This approach is understood, but not implemented yet.

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Scenario 2: Collaboration

Collaborative ontology development

Developers work (edit, classify) locally
Extra care at re-combination

This approach is understood, but not implemented yet.

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Scenario 3: Understanding

Visualise the modular structure of an ontology

1,000,000

We’re still playing with this.

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Scenario 3: Understanding

Visualise the modular structure of an ontology

We’re still playing with this.

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Scenario 3: Understanding

Visualise the modular structure of an ontology

We’re still playing with this.

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Summing up

Import/reuse

Collaboration Understanding

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Summing up

Import/reuse

Collaboration Understanding

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

And now . . .

1 Ontologies and Description Logic

2 Why modularity?

3 A reuse scenario

4 Understanding ontologies via modules

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

A reuse scenario

Import/reuse one external ontology

How much of Animals do we need?

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

A reuse scenario

Import/reuse one external ontology

Animals

Farm

knowledge about “Bird”

How much of Animals do we need?

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

A reuse scenario

Import/reuse one external ontology

Animals

Farm

knowledge about “Bird”

How much of Animals do we need?

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

A reuse scenario

Import/reuse a part of an external ontology

Animals

Farm

Bird

How much of Animals do we need?

Coverage: Import everything relevant for the chosen terms.
Economy: Import only what’s relevant for them.

Compute that part quickly.

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

A reuse scenario

Import/reuse parts of several external ontologies

Animals Buildings

Farm

Bird Barn

How much of Animals and Buildings do we need?

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

The Health-e-Child project

Arthropathy

Arthritis Autoimmune
Disease

Rheumatologic
Disorder

Atrophic Arthritis Polyarthritis Rheumatoid Arthritis

Juvenile Chronic Polyarthritis Juvenile Rheumatoid Arthritis

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

The Health-e-Child project

NCI

JRAO Galen

Arthropathy

Arthritis Autoimmune
Disease

Rheumatologic
Disorder

Atrophic Arthritis Polyarthritis Rheumatoid Arthritis

Juvenile Chronic Polyarthritis Juvenile Rheumatoid Arthritis

Arthritis diseases

C1

. . .
C7

Joints

Drugs

affects

isTreatedBy

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

A working cycle

Edit your ontology O

Import a module

?

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

A working cycle

Edit your ontology O

Load an external ontology E

T ← Specify terms from E

M← mod(T , E)

O ← O ∪M

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

A working cycle

Edit your ontology O

Load an external ontology E

T ← Specify terms from E

M← mod(T , E)

O ← O ∪M

Module Coverage

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Example 1:
Topic: Fox, Bird, feedsOn
On-topic:

Fox v ∀ feedsOn.Bird
Fox t Bird v ∃ feedsOn.>

Bird v ¬Fox
Bird v Bird t Fox

Off-topic:

Duck v Bird

Goal = preserve all on-topic knowledge

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

Example 2:

Animal ≡ Bird t Fox
Bird ≡ Duck t Chicken
Duck v ∃ feedsOn.Grass

Chicken v ∃ feedsOn.Worm
Fox v ∃ feedsOn.Bird

Farm

Farm ∪ Animals
|=
Animal v ∃ feedsOn.>

Animals

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

Example 2:

Animal ≡ Bird t Fox
Bird ≡ Duck t Chicken
Duck v ∃ feedsOn.Grass

Chicken v ∃ feedsOn.Worm
Fox v ∃ feedsOn.Bird

Farm

6|=
Animal v ∃ feedsOn.>

Farm ∪ Animals1

Animals1

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

Example 2:

Animal ≡ Bird t Fox
Bird ≡ Duck t Chicken
Duck v ∃ feedsOn.Grass

Chicken v ∃ feedsOn.Worm
Fox v ∃ feedsOn.Bird

Farm

6|=
Animal v ∃ feedsOn.>

Farm ∪ Animals2

Animals2

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

Example 2:

Animal ≡ Bird t Fox
Bird ≡ Duck t Chicken
Duck v ∃ feedsOn.Grass

Chicken v ∃ feedsOn.Worm
Fox v ∃ feedsOn.Bird

Farm

6|=
Animal v ∃ feedsOn.>

Farm ∪ Animals3

Animals3

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

Example 2:

Animal ≡ Bird t Fox
Bird ≡ Duck t Chicken
Duck v ∃ feedsOn.Grass

Chicken v ∃ feedsOn.Worm
Fox v ∃ feedsOn.Bird

Farm

Farm ∪ Animals4

|=
Animal v ∃ feedsOn.>

Animals4

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Module coverage

Module E ′ covers ontology E for the specified topic T
if for all concepts C,D built from terms in T :
if O ∪ E |= C v D,
then O ∪ E ′ |= C v D. E

O

E ′

Coverage =̂ preserving entailments

O ∪ E is called conservative extension (CE) of O ∪ E ′

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Module coverage

Module E ′ covers ontology E for the specified topic T
if for all concepts C,D built from terms in T :
if O ∪ E |= C v D,
then O ∪ E ′ |= C v D. E

O

E ′

Coverage =̂ preserving entailments

O ∪ E is called conservative extension (CE) of O ∪ E ′

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Module coverage

Module E ′ covers ontology E for the specified topic T
if for all concepts C,D built from terms in T :
if O ∪ E |= C v D,
then O ∪ E ′ |= C v D. E

O

E ′

Coverage =̂ preserving entailments

O ∪ E is called conservative extension (CE) of O ∪ E ′

No coverage ; no encapsulation ; no module
With coverage: trade-off minimality↔ computation time

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Module coverage

Module E ′ covers ontology E for the specified topic T
if for all concepts C,D built from terms in T :
if O ∪ E |= C v D,
then O ∪ E ′ |= C v D. E

O

E ′

Coverage =̂ preserving entailments

O ∪ E is called conservative extension (CE) of O ∪ E ′

Minmal covering modules via CEs
CEs hard to impossible to decide
Tractable approximation: syntactic locality

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

A working cycle

Edit your ontology O

Load an external ontology E

T ← Specify terms from E

M← mod(T , E)

O ← O ∪M

Module Coverage

Safety

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Safety

Goal: Don’t change the meaning of imported terms.
= Don’t add new knowledge about the imported topic.

Question: Which axioms are we allowed to write?

Example:

Tweety : Duck,¬Flies
Duck v Bird

Animals
Bird v Flies

Farm

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Safety

Goal: Don’t change the meaning of imported terms.
= Don’t add new knowledge about the imported topic.

Question: Which axioms are we allowed to write?

Example:

Tweety : Duck,¬Flies
Duck v Bird

Animals
Bird v Flies

Farm

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Safety

Goal: Don’t change the meaning of imported terms.
= Don’t add new knowledge about the imported topic.

Question: Which axioms are we allowed to write?

Example:

Tweety : Duck,¬Flies
Duck v Bird

Animals
Bird v Flies

Farm

E

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Safety

Goal: Don’t change the meaning of imported terms.
= Don’t add new knowledge about the imported topic.

Question: Which axioms are we allowed to write?

Example:

Tweety : Duck,¬Flies
Duck v Bird

Animals
Bird v Flies

Farm

E

Farm ∪ Animals |= Bird v Flies
but Animals 6|= Bird v Flies

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Safety

Our ontology O uses the imported terms safely
if for all concepts C,D built from the imported terms:
if E ′ 6|= C v D,
then O ∪ E ′ 6|= C v D, E

O

E ′

Safety =̂ preserving non-entailments

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Comparison of different approaches

Kind of “module” Covrg. Min. Covered DLs Complexity

All ax’s referencing T 8 any easy

Seidenberg/Rector 8 any easy

Prompt 8 ? easy

The whole ontology 3 88 any easy

conserv.-based mod. 3 3 few hard
MEX (Liverpool) 3 3 acyclic EL easy

locality-based mod. 3 8 ≈OWL2 easy

E-connections 3 8 OWL1 easy

interpolants-based 3 33 few hard
(no subsets!)

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Comparison of different approaches

Kind of “module” Covrg. Min. Covered DLs Complexity

All ax’s referencing T 8 any easy

Seidenberg/Rector 8 any easy

Prompt 8 ? easy

The whole ontology 3 88 any easy

conserv.-based mod. 3 3 few hard
MEX (Liverpool) 3 3 acyclic EL easy

locality-based mod. 3 8 ≈OWL2 easy

E-connections 3 8 OWL1 easy

interpolants-based 3 33 few hard
(no subsets!)

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Comparison of different approaches

Kind of “module” Covrg. Min. Covered DLs Complexity

All ax’s referencing T 8 any easy

Seidenberg/Rector 8 any easy

Prompt 8 ? easy

The whole ontology 3 88 any easy

conserv.-based mod. 3 3 few hard
MEX (Liverpool) 3 3 acyclic EL easy

locality-based mod. 3 8 ≈OWL2 easy

E-connections 3 8 OWL1 easy

interpolants-based 3 33 few hard
(no subsets!)

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Module extraction in Protégé 4

Nightly build:

http://owl.cs.manchester.ac.uk/2008/iswc-modtut/equinox.zip

Realises import scenario
Provides coverage via locality-based modules
We’re working on safety . . .
To be released as Protégé 4 plugin soon

(Thanks to Matthew Horridge.)

®

http://owl.cs.manchester.ac.uk/modularity

Ontologies+DL Why modularity? Reuse Understanding ontologies

Web service for module extraction

http://owl.cs.manchester.ac.uk/modularity

®

http://owl.cs.manchester.ac.uk/modularity

Ontologies+DL Why modularity? Reuse Understanding ontologies

And now . . .

1 Ontologies and Description Logic

2 Why modularity?

3 A reuse scenario

4 Understanding ontologies via modules

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

We bet Robert Stevens . . .

Ontology about periodic table of the chemical elements
What is its modular structure?
What is “the meat” of it?
We can find it using locality-based modules.

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Impetus for the “Meat” idea

Partition of koala.owl via E-connections in Swoop

Animal

Gender

Degree

Habitat

importing part
imported but non-importing part
isolated part

“imports vocabulary from”
®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Partition for the periodic table ontology

importing part
imported but non-importing part
isolated part

“imports vocabulary from”
®

Ontologies+DL Why modularity? Reuse Understanding ontologies

“Meat” via locality-based modules

Hopes:

Finer-grained analysis

Guidance for users to choose the right topic(s)
(module signature 6= T)

Draw conclusions on characteristics of an ontology:
topicality, connectedness, axiomatic richness, superfluous
parts, modelling

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

“Meat” via locality-based modules

Problem:

Ontologies of size n can have up to 2n modules

But do real-life ontologies fall into the worst case?

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Results so far

Highly optimised algorithm to extract all modules

Ontology #Ax #Terms #mods Theor. Max. time
Koala 42 25 3660 33 554 432 9s
Mereology 44 25 1952 33 554 432 3min

Not scalable

Single module numbers don’t say much

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Results so far

Highly optimised algorithm to extract all modules

Ontology #Ax #Terms #mods Theor. Max. time
Koala 42 25 3660 33 554 432 9s
Mereology 44 25 1952 33 554 432 3min

Not scalable

Single module numbers don’t say much

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Subset sampling

For 8 ontologies, we modularised randomly generated
subontologies

Mostly “negative” results

N
um

be
r

of
m

od
ul

es

0

10000

20000

30000

40000

0 25 50 75 100

N
um

be
r

of
ge

nu
in

e
m

od
ul

es
0

10000

20000

30000

40000

0 25 50 75 100

Subontology size People Subontology size People

Trendline equation: y = O(1.5x), confidence 0.96

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Weight analysis

Ordered all 3660 modules of Koala by weight
Weight(M) = PullingPower(M) · Cohesion(M)

PullingPower(M) = #terms in M
|smallest seed signature for M|

How many terms are needed
to “pull” all the terms into M?

Cohesion(M) = #minimal seed signatures of M
|smallest seed signature for M|

How strongly are terms in M
held together?

Inspected heaviest modules

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Weight analysis

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Outlook

Find heaviest modules without computing all modules

Relation between module number and justificatory structure
of an ontology

Collaborative ontology development using modules

Modules that are no subsets

Modularity for belief revision

Thank you.

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Outlook

Find heaviest modules without computing all modules

Relation between module number and justificatory structure
of an ontology

Collaborative ontology development using modules

Modules that are no subsets

Modularity for belief revision

Thank you.

®

Ontologies+DL Why modularity? Reuse Understanding ontologies

Outlook

Find heaviest modules without computing all modules

Relation between module number and justificatory structure
of an ontology

Collaborative ontology development using modules

Modules that are no subsets

Modularity for belief revision

Thank you.
K

