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Ontology

= collection of statements about a domain (axioms)

Language used: usually logic, often description logic (DL)
Inferences can be drawn from axioms

Domains:
biology, medicine, chemistry, business processes, natural language, . . .
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Example axioms + inferences

Duck︸ ︷︷ ︸
concept

v ∃ feedsOn︸ ︷︷ ︸
role

. Grass︸ ︷︷ ︸
concept︸ ︷︷ ︸

concept

∀x
(
Duck(x)→ ∃y

(
feedsOn(x , y) ∧ Grass(y)

))

Bird ≡ Duck t Chicken
∀x
(
Bird(x)↔

(
Duck(x) ∨ Chicken(x)

))
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Example axioms + inferences

Duck︸ ︷︷ ︸
concept

v ∃ feedsOn︸ ︷︷ ︸
role

. Grass︸ ︷︷ ︸
concept︸ ︷︷ ︸

concept

∀x
(
Duck(x)→ ∃y

(
feedsOn(x , y) ∧ Grass(y)

))
Bird ≡ Duck t Chicken

∀x
(
Bird(x)↔

(
Duck(x) ∨ Chicken(x)

))

|= Bird u ¬Chicken v ∃ feedsOn.Grass
∀x
((

Bird(x)∧¬Chicken(x)
)
→ ∃y

(
feedsOn(x , y)∧Grass(y)

))
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Example axioms + inferences

Duck︸ ︷︷ ︸
concept

v ∃ feedsOn︸ ︷︷ ︸
role

. Grass︸ ︷︷ ︸
concept︸ ︷︷ ︸

concept

∀x
(
Duck(x)→ ∃y

(
feedsOn(x , y) ∧ Grass(y)

))
Bird ≡ Duck t Chicken

∀x
(
Bird(x)↔

(
Duck(x) ∨ Chicken(x)

))
Tweety︸ ︷︷ ︸
individual

: Duck Duck(Tweety)

|= Tweety : ∃feedsOn.Grass
∃y
(
feedsOn(Tweety, y) ∧ Grass(y)

)
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Example axioms + inferences

Duck︸ ︷︷ ︸
concept

v ∃ feedsOn︸ ︷︷ ︸
role

. Grass︸ ︷︷ ︸
concept︸ ︷︷ ︸

concept

∀x
(
Duck(x)→ ∃y

(
feedsOn(x , y) ∧ Grass(y)

))
Bird ≡ Duck t Chicken

∀x
(
Bird(x)↔

(
Duck(x) ∨ Chicken(x)

))
Tweety︸ ︷︷ ︸
individual

: Duck Duck(Tweety)

|= Tweety : ∃feedsOn.Grass
∃y
(
feedsOn(Tweety, y) ∧ Grass(y)

)
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Reasoning tasks

Consistency:
Does ontology O have a model?

Satisfiability:
Is there a model of O that interprets concept C as nonempty?

Subsumption:
Does C v D hold in every model of O?

Instance checking:
Is individual x an instance of C in every model of O?

Inter-reducible; optimised reasoners available
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The Web Ontology Language OWL

W3C-recommended standard since 2004
OWL 2 published on 27 Oct. 2009

OWL Full
Consistency?, Reasoning

OWL DL
Based on DL SROIQ
∃, ∀, counting, role chains and hierarchies, transitivity, inverse
roles, nominals

OWL EL, QL, RL
Sub-profiles for efficient reasoning and application orientation
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A case for modularity

Common practice in software engineering
Modular software development allows for:

Importing/reusing modules
Collaborative development
Understanding the code from the interaction between the
modules

Wouldn’t it be nice . . .
. . . to have this for ontology development as well?
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Three scenarios

Import/reuse

Collaboration Understanding
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Scenario 1: Import/reuse

“Borrow” knowledge about certain terms from external ontologies

Provides access to well-established knowledge
Doesn’t require expertise in external disciplines

This scenario is well-understood and implemented.
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Scenario 2: Collaboration

Collaborative ontology development

Developers work (edit, classify) locally
Extra care at re-combination

This approach is understood, but not implemented yet.
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Scenario 3: Understanding

Visualise the modular structure of an ontology

1,000,000

We’re still playing with this.
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Summing up

Import/reuse

Collaboration Understanding
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A reuse scenario

Import/reuse one external ontology

How much of Animals do we need?
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A reuse scenario

Import/reuse one external ontology

Animals

Farm

knowledge about “Bird”

How much of Animals do we need?
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A reuse scenario

Import/reuse a part of an external ontology

Animals

Farm

Bird

How much of Animals do we need?

Coverage: Import everything relevant for the chosen terms.
Economy: Import only what’s relevant for them.

Compute that part quickly.
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A reuse scenario

Import/reuse parts of several external ontologies

Animals Buildings

Farm

Bird Barn

How much of Animals and Buildings do we need?
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The Health-e-Child project

Arthropathy

Arthritis Autoimmune
Disease

Rheumatologic
Disorder

Atrophic Arthritis Polyarthritis Rheumatoid Arthritis

Juvenile Chronic Polyarthritis Juvenile Rheumatoid Arthritis
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The Health-e-Child project

NCI

JRAO Galen

Arthropathy

Arthritis Autoimmune
Disease

Rheumatologic
Disorder

Atrophic Arthritis Polyarthritis Rheumatoid Arthritis

Juvenile Chronic Polyarthritis Juvenile Rheumatoid Arthritis

Arthritis diseases

C1

. . .
C7

Joints

Drugs

affects

isTreatedBy
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A working cycle

Edit your ontology O

Import a module

?
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A working cycle

Edit your ontology O

Load an external ontology E

T ← Specify terms from E

M← mod(T , E)

O ← O ∪M
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A working cycle

Edit your ontology O

Load an external ontology E

T ← Specify terms from E

M← mod(T , E)

O ← O ∪M

Module Coverage
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Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.
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Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Example 1:
Topic: Fox, Bird, feedsOn
On-topic:

Fox v ∀ feedsOn.Bird
Fox t Bird v ∃ feedsOn.>

Bird v ¬Fox
Bird v Bird t Fox

Off-topic:

Duck v Bird

Goal = preserve all on-topic knowledge
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Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?
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Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

Example 2:

Animal ≡ Bird t Fox
Bird ≡ Duck t Chicken
Duck v ∃ feedsOn.Grass

Chicken v ∃ feedsOn.Worm
Fox v ∃ feedsOn.Bird

Farm

Farm ∪ Animals
|=
Animal v ∃ feedsOn.>

Animals
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Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

Example 2:

Animal ≡ Bird t Fox
Bird ≡ Duck t Chicken
Duck v ∃ feedsOn.Grass

Chicken v ∃ feedsOn.Worm
Fox v ∃ feedsOn.Bird

Farm

6|=
Animal v ∃ feedsOn.>

Farm ∪ Animals1

Animals1
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Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

Example 2:
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Bird ≡ Duck t Chicken
Duck v ∃ feedsOn.Grass

Chicken v ∃ feedsOn.Worm
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Animals2

®



Ontologies+DL Why modularity? Reuse Understanding ontologies

Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

Example 2:

Animal ≡ Bird t Fox
Bird ≡ Duck t Chicken
Duck v ∃ feedsOn.Grass

Chicken v ∃ feedsOn.Worm
Fox v ∃ feedsOn.Bird

Farm

6|=
Animal v ∃ feedsOn.>

Farm ∪ Animals3

Animals3
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Module coverage

Goal: Import everything the external ontology knows
about the topic that consists of the specified terms.

Question: Which axioms do we need to import?

Example 2:

Animal ≡ Bird t Fox
Bird ≡ Duck t Chicken
Duck v ∃ feedsOn.Grass

Chicken v ∃ feedsOn.Worm
Fox v ∃ feedsOn.Bird

Farm

Farm ∪ Animals4

|=
Animal v ∃ feedsOn.>

Animals4
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Module coverage

Module E ′ covers ontology E for the specified topic T
if for all concepts C,D built from terms in T :
if O ∪ E |= C v D,
then O ∪ E ′ |= C v D. E

O

E ′

Coverage =̂ preserving entailments

O ∪ E is called conservative extension (CE) of O ∪ E ′

®



Ontologies+DL Why modularity? Reuse Understanding ontologies

Module coverage
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Module coverage

Module E ′ covers ontology E for the specified topic T
if for all concepts C,D built from terms in T :
if O ∪ E |= C v D,
then O ∪ E ′ |= C v D. E

O

E ′

Coverage =̂ preserving entailments

O ∪ E is called conservative extension (CE) of O ∪ E ′

No coverage ; no encapsulation ; no module
With coverage: trade-off minimality↔ computation time
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Module coverage

Module E ′ covers ontology E for the specified topic T
if for all concepts C,D built from terms in T :
if O ∪ E |= C v D,
then O ∪ E ′ |= C v D. E

O

E ′

Coverage =̂ preserving entailments

O ∪ E is called conservative extension (CE) of O ∪ E ′

Minmal covering modules via CEs
CEs hard to impossible to decide
Tractable approximation: syntactic locality
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A working cycle

Edit your ontology O

Load an external ontology E

T ← Specify terms from E

M← mod(T , E)

O ← O ∪M

Module Coverage

Safety
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Safety

Goal: Don’t change the meaning of imported terms.
= Don’t add new knowledge about the imported topic.

Question: Which axioms are we allowed to write?

Example:

Tweety : Duck,¬Flies
Duck v Bird

Animals
Bird v Flies

Farm
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Safety

Goal: Don’t change the meaning of imported terms.
= Don’t add new knowledge about the imported topic.

Question: Which axioms are we allowed to write?

Example:

Tweety : Duck,¬Flies
Duck v Bird

Animals
Bird v Flies

Farm

E

Farm ∪ Animals |= Bird v Flies
but Animals 6|= Bird v Flies
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Safety

Our ontology O uses the imported terms safely
if for all concepts C,D built from the imported terms:
if E ′ 6|= C v D,
then O ∪ E ′ 6|= C v D, E

O

E ′

Safety =̂ preserving non-entailments
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Comparison of different approaches

Kind of “module” Covrg. Min. Covered DLs Complexity

All ax’s referencing T 8 any easy

Seidenberg/Rector 8 any easy

Prompt 8 ? easy

The whole ontology 3 88 any easy

conserv.-based mod. 3 3 few hard
MEX (Liverpool) 3 3 acyclic EL easy

locality-based mod. 3 8 ≈OWL2 easy

E-connections 3 8 OWL1 easy

interpolants-based 3 33 few hard
(no subsets!)
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Module extraction in Protégé 4

Nightly build:

http://owl.cs.manchester.ac.uk/2008/iswc-modtut/equinox.zip

Realises import scenario
Provides coverage via locality-based modules
We’re working on safety . . .
To be released as Protégé 4 plugin soon

(Thanks to Matthew Horridge.)

®
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Web service for module extraction

http://owl.cs.manchester.ac.uk/modularity

®
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We bet Robert Stevens . . .

Ontology about periodic table of the chemical elements
What is its modular structure?
What is “the meat” of it?
We can find it using locality-based modules.
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Impetus for the “Meat” idea

Partition of koala.owl via E-connections in Swoop

Animal

Gender

Degree

Habitat

importing part
imported but non-importing part
isolated part

“imports vocabulary from”
®
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Partition for the periodic table ontology

importing part
imported but non-importing part
isolated part

“imports vocabulary from”
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“Meat” via locality-based modules

Hopes:

Finer-grained analysis

Guidance for users to choose the right topic(s)
(module signature 6= T )

Draw conclusions on characteristics of an ontology:
topicality, connectedness, axiomatic richness, superfluous
parts, modelling
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“Meat” via locality-based modules

Problem:

Ontologies of size n can have up to 2n modules

But do real-life ontologies fall into the worst case?
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Results so far

Highly optimised algorithm to extract all modules

Ontology #Ax #Terms #mods Theor. Max. time
Koala 42 25 3660 33 554 432 9s
Mereology 44 25 1952 33 554 432 3min

Not scalable

Single module numbers don’t say much
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Subset sampling

For 8 ontologies, we modularised randomly generated
subontologies

Mostly “negative” results
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Trendline equation: y = O(1.5x ), confidence 0.96
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Weight analysis

Ordered all 3660 modules of Koala by weight
Weight(M) = PullingPower(M) · Cohesion(M)

PullingPower(M) = #terms in M
|smallest seed signature for M|

How many terms are needed
to “pull” all the terms into M?

Cohesion(M) = #minimal seed signatures of M
|smallest seed signature for M|

How strongly are terms in M
held together?

Inspected heaviest modules
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Weight analysis
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Outlook

Find heaviest modules without computing all modules

Relation between module number and justificatory structure
of an ontology

Collaborative ontology development using modules

Modules that are no subsets

Modularity for belief revision

Thank you.
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