(日)

The Modular Structure of an Ontology: an Empirical Study

Chiara Del Vescovo Bijan Parsia Uli Sattler Thomas Schneider

School of Computer Science, University of Manchester, UK

DL, 7 May 2010 WoMo, 11 May 2010

Three questions

What is my ontology about?

How many modules does my ontology have?

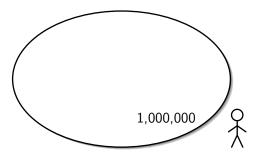
How do we identify relevant modules?

How many modules does my ontology have?

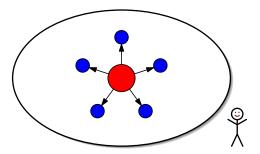
How do we identify relevant modules?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

We can't inspect all its axioms.



We can inspect its modular structure, obtained a posteriori.



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

We bet Robert Stevens

- Ontology about periodic table of the chemical elements
- Logical structure \approx intended modelling?
 - What is its modular structure?
 - What are its main parts?

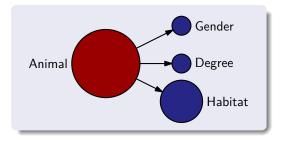
We bet Robert Stevens

- Ontology about periodic table of the chemical elements
- Logical structure \approx intended modelling?
 - What is its modular structure?
 - What are its main parts?
- Challenge: automatic partition into meaningful modules

イロト 不得 トイラト イラト 一日

Modular structure with existing tools

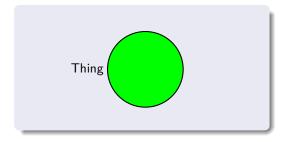
Partition of Koala via E-connections in Swoop



- importing part
 - imported but non-importing part
 - isolated part
 - "imports vocabulary from"

↓ □ ▶ ↓ @ ▶ ↓ @ ▶ ↓ @ ▶ ↓ @

Partition for ontology Periodic



- importing part
 - imported but non-importing part
 - isolated part
- "imports vocabulary from"

A

Locality-based modules (LBMs)

Module extraction serviceInput:ontology \mathcal{O} ; set Σ of terms from \mathcal{O} Output:subset $\mathcal{M} = mod(\Sigma, \mathcal{O})$ of \mathcal{O} Guarantee:for all axioms α with $sig(\alpha) \subseteq \Sigma$:
 $\mathcal{O} \models \alpha$ iff $\mathcal{M} \models \alpha$ (Coverage)

Locality-based modules (LBMs)

Module extraction service

Input:	ontology $\mathcal{O};\;\; set\; \Sigma \; of\; terms\; from\; \mathcal{O}$	
Output:	subset $\mathcal{M} = mod(\Sigma, \mathcal{O})$ of \mathcal{O}	
Guarantee:	for all axioms α with sig $(\alpha) \subseteq \Sigma$: $\mathcal{O} \models \alpha$ iff $\mathcal{M} \models \alpha$	(Coverage)

Modules providing coverage

- \bullet encapsulate knowledge about the topic Σ
- are important for modular import/reuse:
 "Give me all that O knows about the topic Σ"
- are hard to extract if minimality is required

(日)

Locality-based modules (LBMs)

Module extraction service

Input:	ontology $\mathcal{O};\;\; set\; \Sigma \; of\; terms\; from\; \mathcal{O}$	
Output:	subset $\mathcal{M} = mod(\Sigma, \mathcal{O})$ of \mathcal{O}	
Guarantee:	for all axioms α with sig $(\alpha) \subseteq \Sigma$: $\mathcal{O} \models \alpha$ iff $\mathcal{M} \models \alpha$	(Coverage)

LBMs

- provide coverage and therefore encapsulation
- are not always minimal, but often of reasonable size
- can be efficiently computed
- have important robustness properties

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Locality-based modules (LBMs)

Module extraction service

Input:	ontology $\mathcal{O};\;\; set\; \Sigma \;of\;terms\;from\; \mathcal{O}$	
Output:	subset $\mathcal{M} = mod(\Sigma, \mathcal{O})$ of \mathcal{O}	
Guarantee:	for all axioms α with sig $(\alpha) \subseteq \Sigma$: $\mathcal{O} \models \alpha$ iff $\mathcal{M} \models \alpha$	(Coverage)

General remarks:

• Often sig(\mathcal{M}) $\neq \Sigma$

A

• Different seed signatures can lead to the same module

$$\Sigma_1 \cdots \Sigma_n$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Modular structure via LBMs

A

Want to extract all (relevant) LBMs in order to:

- obtain a finer-grained analysis
- guide users in choosing the right topic(s)
- draw conclusions on characteristics of an ontology:

Modular structure via LBMs

Want to extract all (relevant) LBMs in order to:

- obtain a finer-grained analysis
- guide users in choosing the right topic(s)
- draw conclusions on characteristics of an ontology:
 - To which extent does ${\mathcal O}$ cover its topics?
 - How strongly are certain terms connected in \mathcal{O} ?
 - What is the axiomatic richness of \mathcal{O} ?
 - Does \mathcal{O} have superfluous parts?
 - Agreement between logical and intended intuitive modelling?

And now . . .

How many modules does my ontology have?

How do we identify relevant modules?

●●● ● ● ● ● ● ● ● ● ● ● ● ● ●

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Obvious lower and upper bounds

- Ontologies of size n can have between 1 and 2^n modules.
- (We're working on tighter bounds.)

AB

Obvious lower and upper bounds

- Ontologies of size n can have between 1 and 2^n modules.
- (We're working on tighter bounds.)

A

• Do real-life ontologies fall into the worst case?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

An algorithm that extracts all modules

Results when applied to two small ontologies:

A

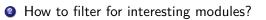
Ontology	#Ax	#Terms	#mods	Theor. Max.	Time
Koala	42	25	3660	33 554 432	9s
Mereology	44	25	1952	33 554 432	3min

An algorithm that extracts all modules

Results when applied to two small ontologies:

Ontology	#Ax	#Terms	#mods	Theor. Max.	Time
Koala	42	25	3660	33 554 432	9s
Mereology	44	25	1952	33 554 432	3min

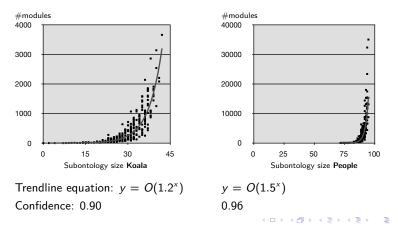
Are 3660 and 1952 "exponential" numbers?



(日)(同)(日)(日)(日)

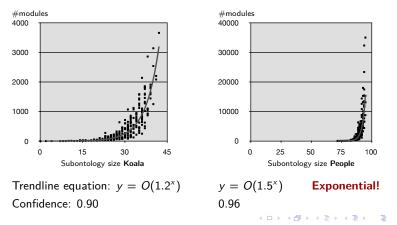
Modularisation of subontologies

- Modularised randomly generated parts of 8 ontologies
- Example growth of module numbers:



Modularisation of subontologies

- Modularised randomly generated parts of 8 ontologies
- Example growth of module numbers:



How many modules does my ontology have?

How do we identify relevant modules?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Unification of similar modules

- Identify sets $\mathfrak{M} = \{\mathcal{M}_1, \dots, \mathcal{M}_k\}$ of modules that differ in only few axioms
- Replace \mathfrak{M} with $\bigcup \mathfrak{M}$ and $\cap \mathfrak{M}$

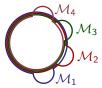
A

- Identify sets $\mathfrak{M} = \{\mathcal{M}_1, \dots, \mathcal{M}_k\}$ of modules that differ in only few axioms
- Replace \mathfrak{M} with $\bigcup \mathfrak{M}$ and $\cap \mathfrak{M}$

(日)

- Identify sets M = {M₁,..., M_k} of modules that differ in only few axioms
- Replace \mathfrak{M} with $\bigcup \mathfrak{M}$ and $\cap \mathfrak{M}$

- Identify sets M = {M₁,..., M_k} of modules that differ in only few axioms
- Replace \mathfrak{M} with $\bigcup \mathfrak{M}$ and $\cap \mathfrak{M}$



A

(日)

- Identify sets M = {M₁,..., M_k} of modules that differ in only few axioms
- Replace \mathfrak{M} with $\bigcup \mathfrak{M}$ and $\bigcap \mathfrak{M}$

Unification of similar modules

- Identify sets M = {M₁,..., M_k} of modules that differ in only few axioms
- Replace \mathfrak{M} with $\bigcup \mathfrak{M}$ and $\bigcap \mathfrak{M}$

 Outcome for Koala: no significant reduction in module numbers

イロト 不得 トイヨト イヨト

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Genuine and fake modules

- Identify modules that are an agglomeration of other modules and contain no new information
- \mathcal{M} is *fake* if there is partition $\mathcal{M} = \mathcal{M}_1 \uplus \cdots \uplus \mathcal{M}_k$ with pairwise disjoint sig (\mathcal{M}_i) .

A

• All other modules are genuine.

Genuine and fake modules

- Identify modules that are an agglomeration of other modules and contain no new information
- *M* is *fake* if there is partition *M* = *M*₁ ⊎ · · · ⊎ *M_k* with pairwise disjoint sig(*M_i*).

- All other modules are genuine.
- Outcome for **Koala**: 66% of the 3660 modules are genuine.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

... by scalesperson Chiara ;-)

A

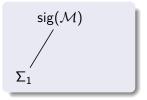
イロト イポト イヨト イヨト 二日

• Number of terms in the module

т

A

- Number of terms in the module m
- Minimal size of seed signatures

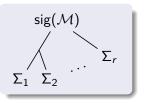


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

đ

s

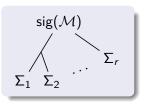
- Number of terms in the module m
- Minimal size of seed signatures s
- Number of different minimal seed signatures r



・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

đ

- Number of terms in the module m
- Minimal size of seed signatures s
- Number of different minimal seed signatures r
- \rightsquigarrow PullingPower(\mathcal{M})



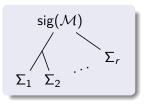
・ロト ・四ト ・ヨト ・ヨト

A

3

- Number of terms in the module m
- Minimal size of seed signatures s
- Number of different minimal seed signatures r

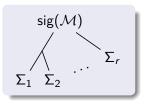
$$\rightarrow$$
 PullingPower(\mathcal{M}) $\frac{m}{s}$



・ロト ・四ト ・ヨト ・ヨト

A

- Number of terms in the module m
- Minimal size of seed signatures s
- Number of different minimal seed signatures r
- \rightsquigarrow PullingPower(\mathcal{M}) $\frac{m}{s}$
- \rightsquigarrow Cohesion(\mathcal{M})



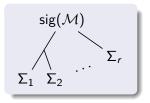
・ロト ・四ト ・ヨト ・ヨト

AC

- Number of terms in the module m
- Minimal size of seed signatures s
- Number of different minimal seed signatures r

$$\rightarrow$$
 PullingPower(\mathcal{M}) $\frac{m}{s}$

$$\rightsquigarrow$$
 Cohesion(\mathcal{M}) $\frac{r}{s}$



イロン イ理 とく ヨン イ ヨン

A

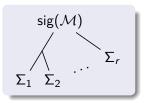
э

- Number of terms in the module m
- Minimal size of seed signatures s
- Number of different minimal seed signatures r

$$\rightsquigarrow$$
 PullingPower(\mathcal{M}) $\frac{m}{s}$

$$\rightsquigarrow$$
 Cohesion (\mathcal{M}) $\frac{\mathcal{M}}{\mathcal{M}}$

Weight(
$$\mathcal{M}$$
) $w = \frac{r \cdot m}{s^2}$



イロト イヨト イヨト イヨト

A

э

Animal $\sqsubseteq \ge 1$ hasHabitat Animal $\Box = 1$ hasGender DryEucalyptForest
Forest Female $\equiv \exists$ hasGender. {female} Forest 🗆 Habitat GraduateStudent □ Student GraduateStudent $\overline{\Box} \exists$ hasDegree.({BA} \sqcup {BS}) \top \Box \forall hasDegree . Degree Koala 🗌 🗄 hasHabitat . DryEucalyptForest $\top \Box \leq 1$ has Gender Koala 🗖 Marsupials ∃ hasGender ⊑ Animal ⊤ □ ∀ hasGender. Gender KoalaWithPhD \equiv Koala $\sqcap \exists$ hasDegree. {PhD} ∃ hasHabitat 🗆 Animal Male $\equiv \exists$ hasGender. {male} ⊤ ⊑ ∀ hasHabitat . Habitat Marsupials 🗆 Animal $\top \Box \leq 1$. isHardWorking BA : Degree Parent \equiv Animal $\sqcap \ge 1$ hasChildren BS : Degree Parent C Animal MA : Degree Person C Animal PhD : Degree Person $\Box \neg$ Marsupials female : Gender Quokka $\Box \exists$ isHardworking. {true} male : Gender Quokka 🗖 Marsupials Rainforest 🗆 Forest TasmanianDevil 🗆 Marsupials University 🗆 Habitat ∃ hasChildren □ Animal ⊤ □ ∀ hasChildren . Animal ∃ hasDegree □ Person MaleStudentWith3Daughters \equiv Student $\sqcap \forall$ hasChildren . Female $\sqcap \exists$ hasGender . {male} $\sqcap = 1$ hasChildren Student \equiv Person $\square \exists$ hasHabitat. University $\square \exists$ isHardworking. {true}

> 를 《로》《로》《唱》《曰》 (Ma

MaleStudentWith3Daughters, isHardWorking, University, Student, Parent, hasChildren

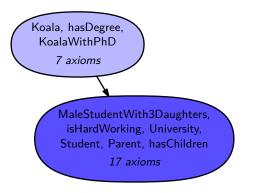
17 axioms

{Student, Parent} {Student, hasChildren} {MaleStudentWith3Daughters} {hasChildren, University, isHardWorking} {Parent, University, isHardWorking}

Æ

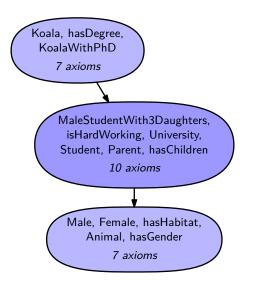
э

イロト イポト イヨト イヨト



∃ 990

イロト イヨト イヨト イヨト

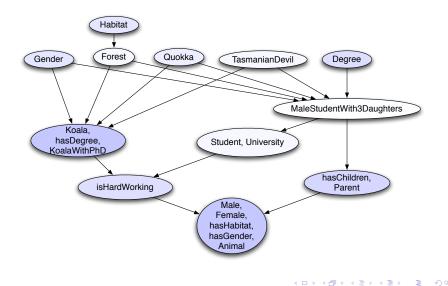


A

э

イロト イヨト イヨト イヨト

After the first 12 heaviest modules



đ

Work in progress

Is it necessary for the weight analysis to compute all modules?

Work in progress

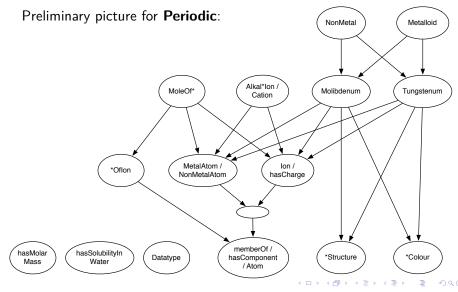
Is it necessary for the weight analysis to compute all modules?

Remember: Weight(\mathcal{M}) $w = \frac{r \cdot m}{s^2}$

 \rightsquigarrow search within modules with very small seed signatures

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

Work in progress



- Find heaviest modules without computing all modules
- How many modules can ontologies have?
- Relation module number \leftrightarrow justificatory structure

- Find heaviest modules without computing all modules
- How many modules can ontologies have?
- Relation module number \leftrightarrow justificatory structure

