Correctness and Worst-Case Optimality of Pratt-Style Decision Procedures for Modal and Hybrid Logics

Mark Kaminski¹ Thomas Schneider² Gert Smolka¹

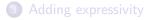
¹Department of Computer Science, Saarland University

²Department of Computer Science, University of Bremen

TABLEAUX, 5 July 2011

And now . . .

2 Pratt's decision procedure revisited



Conclusion

Propositional Dynamic Logic (PDL)

- Expressive extension of modal logic [Fischer, Ladner 1977]
 - One diamond and box per program: $\langle \alpha \rangle$, $[\alpha]$
 - Complex Programs
- PDL-satisfiability is EXPTIME-complete [Pratt 1979]
- Simple worst-case optimal decision procedure by Pratt [1979]
 - Elimination of Hintikka sets
 - Exploits Bounded Model Theorem
 - Best-case exponential in its pure form

Extensions of PDL

We add

- Nominals x, y, \ldots
- Difference modalities D, D
- Converse actions a⁻

(EXPTIME-compl. follows from [de Giacomo 1995], [Areces et al. 2000])

We obtain

- First explicit decision procedure for PDL + these features
- Robustness of Pratt's original procedure
- Refactored proof of the Bounded Model Theorem
 - \rightsquigarrow Transparent proofs, straightforward correctness result
 - \rightsquigarrow Modular addition of expressivity

And now . . .

2 Pratt's decision procedure revisited

3 Adding expressivity

4 Conclusion

Basic notions

• Formulas in NNF, and programs (without tests)

$$s ::= p \mid \neg p \mid s \land s \mid s \lor s \mid \langle \alpha \rangle s \mid [\alpha]s$$
$$\alpha ::= a \mid \alpha\beta \mid \alpha + \beta \mid \alpha^*$$

• Models \mathfrak{M}

- Nonempty set of states
- Transition relations $\xrightarrow{a}_{\mathfrak{M}}$ between states, induce $\xrightarrow{\alpha}_{\mathfrak{M}}$
- Valuation $\mathfrak{M}p$: set of states for every predicate p

•
$$\mathfrak{M}, w \models \langle \alpha \rangle s \iff \exists \text{ state } v \ (w \xrightarrow{\alpha} \mathfrak{M} v \& \mathfrak{M}, v \models s)$$

Syntactic representations of models

Hintikka set H

- Syntactic representation of a state in a model
- Downward-closed set of fmas without obvious contradictions
 - $\{p, \neg p\} \nsubseteq H$
 - $s \wedge t \in H \Longrightarrow s \in H$ and $t \in H$
 - $[\alpha\beta]s \in H \Longrightarrow [\alpha][\beta]s \in H$
 - $[\alpha^*]s \in H \Longrightarrow [\alpha][\alpha^*]s \in H$ and $s \in H$
 - . . .

Formula universe \mathcal{F}

non-empty, finite, small enough set of relevant formulas (Fischer-Ladner closure)

Hintikka system \mathcal{S}

non-empty, finite set of Hintikka sets

Demos

Induced transition relation on Hintikka systems ${\cal S}$

•
$$H \xrightarrow{a}_{\mathcal{S}} H' \iff \forall s \text{ (if } [a]s \in H, \text{ then } s \in H')$$

• $\xrightarrow{\alpha} \mathcal{S}$ induced

$\textbf{Demo} \ \mathcal{D}$

- Hintikka system with ($D\diamond$) $\langle \alpha \rangle s \in H \in D \implies \exists H' \in D (H \stackrel{\alpha}{\longrightarrow}_{D} H' \& s \in H')$
- \bullet Are closed under union $\, \rightsquigarrow \,$ unique max. demo for ${\cal F}$

Demos

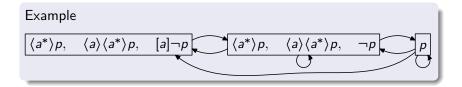
Induced transition relation on Hintikka systems ${\cal S}$

•
$$H \xrightarrow{a}_{\mathcal{S}} H' \iff \forall s \text{ (if } [a]s \in H, \text{ then } s \in H')$$

• $\xrightarrow{\alpha} \mathcal{S}$ induced

$\textbf{Demo} \ \mathcal{D}$

- Hintikka system with ($D\diamond$) $\langle \alpha \rangle s \in H \in D \implies \exists H' \in D (H \xrightarrow{\alpha}_{D} H' \& s \in H')$
- \bullet Are closed under union $\, \rightsquigarrow \,$ unique max. demo for ${\cal F}$



From models to demos

Let \mathfrak{M}, w be a model and state.

$$H(w) = \{s \in \mathcal{F} \mid \mathfrak{M}, w \models s\} \text{ is a Hintikka set.}$$
$$\mathcal{S}(\mathfrak{M}) = \{H_w \mid w \text{ is a state}\}$$

From models to demos

Let \mathfrak{M}, w be a model and state.

$$H(w) = \{s \in \mathcal{F} \mid \mathfrak{M}, w \models s\} \text{ is a Hintikka set.}$$

$$\mathcal{S}(\mathfrak{M}) = \{H_w \mid w \text{ is a state}\}$$

Lemma

• If
$$v \xrightarrow{\alpha} \mathfrak{M} w$$
, then $H(v) \xrightarrow{\alpha} \mathfrak{S}(\mathfrak{M}) H(w)$.

2 $\mathcal{S}(\mathfrak{M})$ is a demo.

Proof: (1) Induction on α . (2) Show (D \diamond) via 1.

From models to demos

Let \mathfrak{M}, w be a model and state.

$$H(w) = \{s \in \mathcal{F} \mid \mathfrak{M}, w \models s\}$$
 is a Hintikka set.

$$\mathcal{S}(\mathfrak{M}) = \{H_w \mid w \text{ is a state}\}$$

Lemma

• If
$$v \xrightarrow{\alpha} \mathfrak{M} w$$
, then $H(v) \xrightarrow{\alpha} \mathfrak{S}(\mathfrak{M}) H(w)$.

2
$$\mathcal{S}(\mathfrak{M})$$
 is a demo.

Proof: (1) Induction on α . (2) Show (D \diamond) via 1.

Demo existence lemma

If $s \in \mathcal{F}$ satisfiable, then there is a demo \mathcal{D} over \mathcal{F} containing s.

Adding expressivity

From demos to models

Let \mathcal{S} be a Hintikka system. $\mathfrak{M}(\mathcal{S})$ consists of:

States : S $\xrightarrow{a} \mathfrak{M}(S) = \xrightarrow{a} S$ $\mathfrak{M}(S)p = \{H \in S \mid p \in H\}$

From demos to models

Let $\mathcal S$ be a Hintikka system. $\mathfrak M(\mathcal S)$ consists of:

States : S $\xrightarrow{a} \mathfrak{M}(S) = \xrightarrow{a} S$ $\mathfrak{M}(S)p = \{H \in S \mid p \in H\}$

Lemma

$$If H \xrightarrow{\alpha}_{\mathcal{S}} H', then H \xrightarrow{\alpha}_{\mathfrak{M}(\mathcal{S})} H'.$$

$$If [\alpha]s \in H \xrightarrow{\alpha}_{\mathfrak{M}(\mathcal{S})} H', then s \in H'.$$

Proof: Both parts via induction on α .

From demos to models

Let S be a Hintikka system. $\mathfrak{M}(S)$ consists of:

States : S $\xrightarrow{a} \mathfrak{M}(S) = \xrightarrow{a} S$ $\mathfrak{M}(S)p = \{H \in S \mid p \in H\}$

Lemma

$$If H \xrightarrow{\alpha}_{\mathcal{S}} H', then H \xrightarrow{\alpha}_{\mathfrak{M}(\mathcal{S})} H'.$$

$$each arr and a for a$$

Proof: Both parts via induction on α .

Demo satisfaction lemma

If \mathcal{D} is a demo, then $\mathfrak{M}(\mathcal{D}), H \models H$ for all $H \in \mathcal{D}$.

Proof: Simple induction on the formulas in H.

Satisfiability and the Bounded Model Theorem

Remember: demo existence and satisfaction

If $s \in \mathcal{F}$ satisfiable, then there is a demo \mathcal{D} over \mathcal{F} containing s.

If \mathcal{D} is a demo, then $\mathfrak{M}(\mathcal{D}), H \models H$ for all $H \in \mathcal{D}$.

Satisfiability and the Bounded Model Theorem

Remember: demo existence and satisfaction

If $s \in \mathcal{F}$ satisfiable, then there is a demo \mathcal{D} over \mathcal{F} containing s.

If \mathcal{D} is a demo, then $\mathfrak{M}(\mathcal{D}), H \models H$ for all $H \in \mathcal{D}$.

Consequence

Theorem1 $s \in \mathcal{F}$ is satisfiable iff there is a demo \mathcal{D} over \mathcal{F} containing s.2If $s \in \mathcal{F}$ sat., then s is sat. by a model of size $\leq 2^{|s|}$. (BMT)

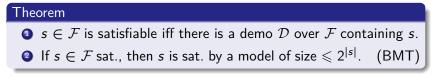
Satisfiability and the Bounded Model Theorem

Remember: demo existence and satisfaction

If $s \in \mathcal{F}$ satisfiable, then there is a demo \mathcal{D} over \mathcal{F} containing s.

If \mathcal{D} is a demo, then $\mathfrak{M}(\mathcal{D}), H \models H$ for all $H \in \mathcal{D}$.

Consequence



Satisfiability test: compute maximal demo, search for s

- $\textcircled{O} \quad \text{Construct system of all Hintikka sets over \mathcal{F}}$
- Prune to the maximal demo and search for s

- $\textcircled{O} \quad \text{Construct system of all Hintikka sets over \mathcal{F}}$
- 2 Prune to the maximal demo and search for s

Pruning = deletion of one Hintikka set violating (D \diamond) $\mathcal{S} \xrightarrow{P} \mathcal{S}'$ single step $\mathcal{S} \xrightarrow{P} \mathcal{S}'$ exhaustive pruning

- $\textcircled{O} \quad \text{Construct system of all Hintikka sets over } \mathcal{F}$
- Prune to the maximal demo and search for s

Pruning = deletion of one Hintikka set violating $(D\diamondsuit)$

 $\mathcal{S} \xrightarrow{\mathsf{P}} \mathcal{S}'$ single step $\mathcal{S} \xrightarrow{\mathsf{P}} \mathcal{S}'$ exhaustive pruning

Theorem

If $\mathcal{S} \xrightarrow{p} \mathcal{S}'$ and \mathcal{S} contains a demo, then \mathcal{S}' is the max. such demo.

Input: formula s

- **(**) Compute the formula universe \mathcal{F} for *s*.
- **3** Compute \mathcal{D} with $\mathcal{H} \stackrel{\mathsf{p}}{\leadsto} \mathcal{D}$.
- s is satisfiable iff $s \in H$ for some $H \in \mathcal{D}$.

Input: formula s

- **(**) Compute the formula universe \mathcal{F} for *s*.
- **3** Compute \mathcal{D} with $\mathcal{H} \stackrel{\mathsf{p}}{\leadsto} \mathcal{D}$.
- s is satisfiable iff $s \in H$ for some $H \in \mathcal{D}$.

Worst-case optimal:

- $|\mathcal{F}| = O(|s|)$
- $|\mathcal{H}| = 2^{O(|s|)}$
- Each pruning step is linear in $|\mathcal{H}|$.
- There can be at most $|\mathcal{H}|$ pruning steps.

And now . . .

2 Pratt's decision procedure revisited

4 Conclusion

Adding expressivity

Demos for PDL with nominals

Nominals = predicates true at exactly one state

S is **nominally coherent (nc)**: Every nominal $x \in F$ occurs in exactly one $H \in S$

 \mathcal{S} is a **demo**:

 ${\mathcal S}$ satisfies (D \diamondsuit) and is nc

Demos for PDL with nominals

Nominals = predicates true at exactly one state

S is **nominally coherent (nc)**: Every nominal $x \in F$ occurs in exactly one $H \in S$

 ${\mathcal S}$ is a ${
m demo:}$

- ${\mathcal S}$ satisfies (D \diamondsuit) and is nc
- \checkmark Satisfiability characterisation and BMT go through
- X Existence of unique max. demo no longer ensured

Demos for PDL with nominals

Nominals = predicates true at exactly one state

S is **nominally coherent (nc)**: Every nominal $x \in F$ occurs in exactly one $H \in S$

- \mathcal{S} is a **demo**: \mathcal{S} satisfies (D \diamondsuit) and is nc
- ✓ Satisfiability characterisation and BMT go through
- X Existence of unique max. demo no longer ensured

Theorem

If $\mathcal{S} \xrightarrow{p} \mathcal{S}'$, $\mathcal{S}, \mathcal{S}'$ are nc, and \mathcal{S} contains a demo, then \mathcal{S}' is the unique max. demo contained in \mathcal{S} .

Demos for PDL with nominals

Nominals = predicates true at exactly one state

S is **nominally coherent (nc)**: Every nominal $x \in F$ occurs in exactly one $H \in S$

- S is a **demo**: S satisfies (D \diamondsuit) and is nc
- \checkmark Satisfiability characterisation and BMT go through
- X Existence of unique max. demo no longer ensured

Theorem

If $\mathcal{S} \xrightarrow{p} \mathcal{S}'$, $\mathcal{S}, \mathcal{S}'$ are nc, and \mathcal{S} contains a demo, then \mathcal{S}' is the unique max. demo contained in \mathcal{S} .

 \sim Revised decision procedure: *Guess* maximal nc set of Hintikka sets and apply pruning

The decision procedure with nominals

Input: formula s

- **(**) Compute the formula universe \mathcal{F} for *s*.
- **③** Guess a maximal nc subset \mathcal{H}' of \mathcal{H} .
- Compute \mathcal{D} with $\mathcal{H}' \stackrel{\mathsf{p}}{\leadsto} \mathcal{D}$.
- Solution Return "satisfiable" iff \mathcal{D} is no and $s \in H$ for some $H \in \mathcal{D}$.

The decision procedure with nominals

Input: formula s

- **(**) Compute the formula universe \mathcal{F} for *s*.
- **③** Guess a maximal nc subset \mathcal{H}' of \mathcal{H} .
- Compute \mathcal{D} with $\mathcal{H}' \stackrel{\mathsf{p}}{\rightsquigarrow} \mathcal{D}$.
- Solution Return "satisfiable" iff \mathcal{D} is no and $s \in H$ for some $H \in \mathcal{D}$.

Determinise guessing step:

- For every nominal $x \in \mathcal{F}$
 - guess one $H \in \mathcal{H}$ with $x \in H$
 - discard all other H' with $x \in H'$
- Number of binary guesses: poly(|s|)

 \rightsquigarrow Shallow nondeterministic computation tree with $2^{O(|s|)}$ nodes

Demos for PDL with difference modalities

- $Ds \triangleq "s$ is true in some other state"
- $\overline{D}s \triangleq$ "s is true in all other states"

Extend demo conditions

(DD) If $Ds \in H \in \mathcal{D}$, then $\exists H' \in \mathcal{D} \ (H' \neq H \& s \in H')$.

(**D** \overline{D}) If $\overline{D}s \in H \in \mathcal{D}$, then $\forall H' \in \mathcal{D} (H' \neq H \Rightarrow s \in H')$.

Demos for PDL with difference modalities

- $Ds \triangleq "s$ is true in some other state"
- $\overline{\mathsf{D}}s \ \hat{=} \ "s$ is true in all other states"

Extend demo conditions

(DD) If $Ds \in H \in D$, then $\exists H' \in D$ $(H' \neq H \& s \in H')$. (DD) If $\overline{D}s \in H \in D$, then $\forall H' \in D$ $(H' \neq H \Rightarrow s \in H')$.

Difficulties

- With D, $\mathcal{S}(\mathfrak{M})$ does no longer have to be a demo.
- **2** With \overline{D} , demos are again not closed under union.

Ensuring that $\mathcal{S}(\mathfrak{M})$ is a demo

Difficulty 1: with D, $\mathcal{S}(\mathfrak{M})$ does no longer have to be a demo.

Example

$$\mathcal{F} = \{p, Dp\}, \quad \mathfrak{M} = \bigvee_{v}^{p} \bigvee_{w}^{p}$$
$$\mathfrak{M}, v \models Dp \quad \Rightarrow Dp \in H(v) = H(w)$$
But $\mathcal{S}(\mathfrak{M}) = \{H(v)\} \quad \Rightarrow (DD)$ violated

Ensuring that $\mathcal{S}(\mathfrak{M})$ is a demo

Difficulty 1: with D, $\mathcal{S}(\mathfrak{M})$ does no longer have to be a demo.

Example

$$\mathcal{F} = \{p, Dp\}, \quad \mathfrak{M} = \bigvee_{v}^{p} \bigvee_{w}^{p}$$
$$\mathfrak{M}, v \models Dp \quad \Rightarrow Dp \in H(v) = H(w)$$
$$\mathsf{But} \ \mathcal{S}(\mathfrak{M}) = \{H(v)\} \quad \Rightarrow (\mathsf{DD}) \text{ violated}$$

- Introduce auxiliary nominal x(Ds) for every $Ds \in \mathcal{F}$
- x(Ds) denotes a state satisfying s if one exists
- Then all other states satisfy Ds.

Ensuring that $\mathcal{S}(\mathfrak{M})$ is a demo

Difficulty 1: with D, $\mathcal{S}(\mathfrak{M})$ does no longer have to be a demo.

Example

$$\mathcal{F} = \{p, Dp\}, \quad \mathfrak{M} = \bigvee_{v}^{p} \bigvee_{w}^{p}$$
$$\mathfrak{M}, v \models Dp \quad \Rightarrow Dp \in H(v) = H(w)$$
$$\mathsf{But} \ \mathcal{S}(\mathfrak{M}) = \{H(v)\} \quad \Rightarrow (\mathsf{DD}) \text{ violated}$$

- Introduce auxiliary nominal x(Ds) for every $Ds \in \mathcal{F}$
- x(Ds) denotes a state satisfying s if one exists
- Then all other states satisfy Ds.

Nice model M

Whenever s is satisfiable in \mathfrak{M} , then so is $s \wedge x(Ds)$. $\rightsquigarrow S(\mathfrak{M})$ is a demo

Pruning with difference modalities

Pruning step $\mathcal{S} \xrightarrow{\mathsf{P}} \mathcal{S}'$: delete one $H \in \mathcal{S}$ violating (D \diamondsuit) or (DD).

Pruning with difference modalities

Pruning step $\mathcal{S} \xrightarrow{p} \mathcal{S}'$: delete one $H \in \mathcal{S}$ violating (D \diamondsuit) or (DD).

Difficulty 2: with \overline{D} , demos are again not closed under union.

Solution

- Guess maximal $\mathcal{H}' \subseteq \mathcal{H}$ that is no *and* satisfies $(D\overline{D})$.
- Determinisation similar to nominals

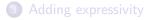
Adding expressivity

Tests and converse actions ...

- ... require minor changes to proof machinery for model-demo correspondence
- ... do not affect the decision procedures

And now . . .

2 Pratt's decision procedure revisited



Summary

We have obtained

- Pratt-style, worst-case optimal decision procedure for PDL + hybrid operators
- Transparent proofs of BMT and correctness
- Modular addition of expressivity

Summary

We have obtained

- Pratt-style, worst-case optimal decision procedure for PDL + hybrid operators
- Transparent proofs of BMT and correctness
- Modular addition of expressivity

We are missing

- Average-case efficiency
- Efficient implementation for the hybrid language

- Basis: [Pratt 1979] = [Fischer, Ladner 1979] + pruning
- Variants:
 - [Harel 1984], [Kozen, Tiuryn 1990], [Harel et al. 2000] simultaneous or non-standard induction; separate proofs for BMT and correctness
 - [Blackburn et al. 2001] Hintikka sets are maximal; no tests

- Basis: [Pratt 1979] = [Fischer, Ladner 1979] + pruning
- Variants:
 - [Harel 1984], [Kozen, Tiuryn 1990], [Harel et al. 2000] simultaneous or non-standard induction; separate proofs for BMT and correctness
 - [Blackburn et al. 2001] Hintikka sets are maximal; no tests
- Complexity results without explicit decision procedure: [Passy, Tinchev 1991], [de Giacomo 1995], [Areces et al. 2000]

\bullet Tableau construction instead of ${\cal H}$

- for PDL: [Pratt 1980]
- for PDL⁻: [Goré, Widmann 2009+10] more practical and implemented
- for HL with D, D: [Kaminski, Smolka 2010] Hintikka sets replaced by clauses and support NEXPTIME with nominals

\bullet Tableau construction instead of ${\cal H}$

- for PDL: [Pratt 1980]
- for PDL⁻: [Goré, Widmann 2009+10] more practical and implemented
- for HL with D, D: [Kaminski, Smolka 2010] Hintikka sets replaced by clauses and support NEXPTIME with nominals
- Notions related to demos: Hintikka structures for CTL in [Emerson, Halpern 1985] Richer: explicit transition relation, multiset of Hintikka sets

Future work

- $\bullet\,$ Extension to hybrid $\mu\text{-calculus}$ and/or graded modalities
- Towards implementation: Interleave tableau construction and guessing for nominals

Future work

- $\bullet\,$ Extension to hybrid $\mu\text{-calculus}$ and/or graded modalities
- Towards implementation: Interleave tableau construction and guessing for nominals

Guess maximal $\mathcal{H}' \subseteq \mathcal{H}$ that is nc and satisfies (DD) If $Ds \in H \in \mathcal{H}'$, then $\forall H' \in \mathcal{H}' \ (H' \neq H \Rightarrow s \in H')$. Guess maximal $\mathcal{H}' \subseteq \mathcal{H}$ that is nc and satisfies (DD) If $Ds \in H \in \mathcal{H}'$, then $\forall H' \in \mathcal{H}' \ (H' \neq H \Rightarrow s \in H')$.

For every $\overline{D}s$, 3 cases for its occurrence in a max. demo $\mathcal{D} \subseteq \mathcal{H}$. **1** $\overline{D}s$ not in \mathcal{D} .

 \rightsquigarrow discard all Hintikka sets containing $\overline{D}s$ \rightsquigarrow neither \mathcal{H} nor \mathcal{H}' violates ($D\overline{D}$) with $\overline{D}s$. Guess maximal $\mathcal{H}' \subseteq \mathcal{H}$ that is nc and satisfies (DD) If $Ds \in H \in \mathcal{H}'$, then $\forall H' \in \mathcal{H}'$ ($H' \neq H \Rightarrow s \in H'$).

For every $\overline{D}s$, 3 cases for its occurrence in a max. demo $\mathcal{D} \subseteq \mathcal{H}$.

1 $\overline{\mathsf{D}}s$ not in \mathcal{D} .

 \rightsquigarrow discard all Hintikka sets containing $\overline{D}s$ \rightsquigarrow neither \mathcal{H} nor \mathcal{H}' violates ($D\overline{D}$) with $\overline{D}s$.

All Hintikka sets in *D* contain *s*.
 → discard all Hintikka sets not containing *s*

Guess maximal $\mathcal{H}' \subseteq \mathcal{H}$ that is nc and satisfies (DD) If $Ds \in H \in \mathcal{H}'$, then $\forall H' \in \mathcal{H}' \ (H' \neq H \Rightarrow s \in H')$.

For every $\overline{D}s$, 3 cases for its occurrence in a max. demo $\mathcal{D} \subseteq \mathcal{H}$.

1 $\overline{\mathsf{D}}s$ not in \mathcal{D} .

 \rightsquigarrow discard all Hintikka sets containing $\overline{D}s$ \rightsquigarrow neither \mathcal{H} nor \mathcal{H}' violates ($D\overline{D}$) with $\overline{D}s$.

- All Hintikka sets in D contain s.
 → discard all Hintikka sets not containing s
- D contains H, H' with Ds ∈ H and s ∈ H', w.l.o.g. s ∉ H.
 → s ∉ H; no H' ≠ H contains Ds
 → choose one H containing Ds and not s; discard all other Hintikka sets containing Ds or not s