The Modular Structure of an Ontology: Atomic Decomposition

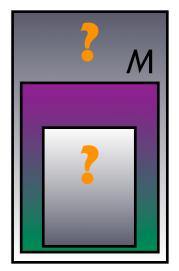
Chiara Del Vescovo¹ Bijan Parsia¹ Uli Sattler¹ Thomas Schneider²

> ¹The University of Manchester, UK ²Universität Bremen, Germany

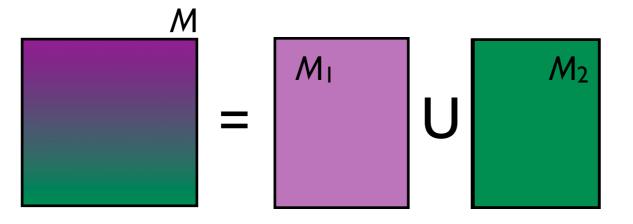
Ontologies & Modules

- An ontology is a finite set of axioms in a (description) logic
- A **module** $M(\Sigma, O) \subseteq O$ encapsulates knowledge w.r.t. a signature Σ : $M \equiv_{\Sigma}^{c} O$

i.e., for all $C \sqsubseteq D$ with sig $(C \sqsubseteq D) \subseteq \Sigma$: $O \vDash C \sqsubseteq D$ iff $M(\Sigma, O) \vDash C \sqsubseteq D$

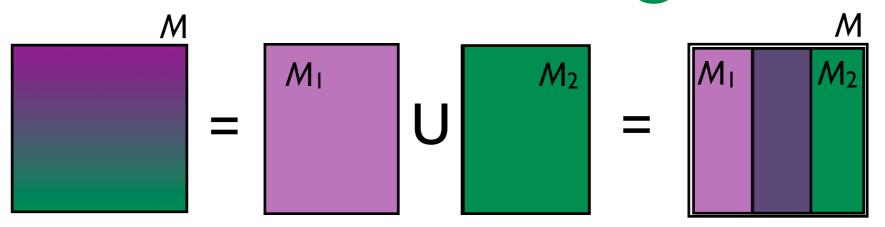

()

M


M({part}, Mereology.owl) = {Trans: part, part InverseOf: PartOf, Trans: partOf}

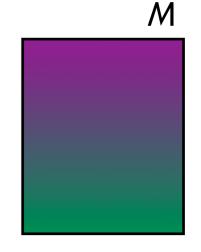
Modular Structure

- Modules are great...if you know your (seed) signature...
 - and for "module local" tasks such as reuse
- Single module extraction does not help if you
 - do not know the right seed signature
 - want to understand other modules
 - want to understand axiom dependency structure
- To analyse the modular structure of the ontology:
 - significant modules
 - significant relations between modules
 - ...which reveals logical dependence between axioms



Are all modules significant?

- To understand *M*, one must
 - understand the dependency structure of M_1
 - understand the dependency structure of M_2
 - **nothing** else: M_1 and M_2 have no further dependencies
- M is **not** significant: it is a **fake** module
 - Thus, M₁ and M₂ may be "significant"
 - knowing that M is "only" a union is important


Are all modules significant?

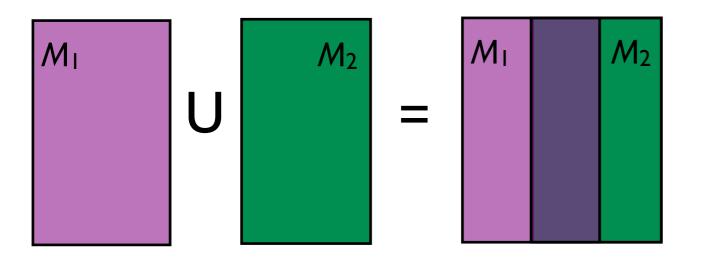
- To understand *M*, one must
 - understand the dependency structure of M_1
 - understand the dependency structure of M_2
 - nothing else: M₁ and M₂ have no further dependencies
- M is **not** significant: it is a **fake** module
 - Thus, M₁ and M₂ may be "significant"
 - knowing that M is "only" a union is important

Are all modules significant?

- Consider a module *M* that is **not** *fake*
- To understand M, one has to understand M
 as a whole
 - all axioms in M logically interact
 - in different ways but interact
- Not fake implies significant: **genuine**

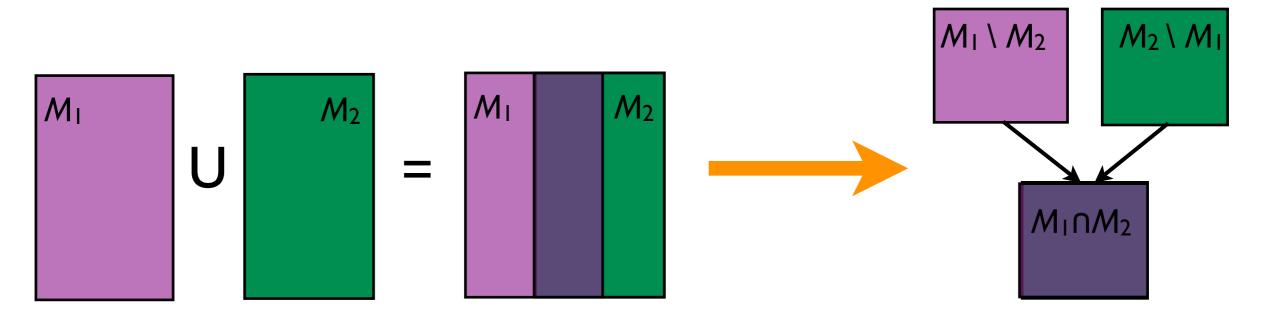
Ratio of Fake to Genuine

- Given a set of genuine modules
 - unions lead to fake modules,
 - the space of fake modules is large (exponential)
 - but not every union of genuine modules is a module
- The cardinality of the set of all modules can and does grow exponentially in the size of O
 - See D., P., S., S., KR 2010 & WoMO 2010
- Is module growth primarily due to trivial combinations?
 - are most modules **fake**?


Yes!

Theorem I: Each genuine module is the smallest module for some axiom $\alpha \in O$.

- The family of genuine modules is linear in |O|
 - ★ Most modules are fake!
- Proof exploits properties of modules
 - uniqueness, monotonicity, self-containedness, ...
 - which are satisfied by all locality-based modules


Relations between Modules

- Genuine modules may overlap
- This exposes significant logical dependence between axioms:
 - axioms in $M_1 \setminus M_2$ depend on axioms in $M_1 \cap M_2$

Relations between Modules

- Genuine modules may overlap
- This exposes significant logical dependence between axioms:
 - axioms in $M_1 \setminus M_2$ depend on axioms in $M_1 \cap M_2$

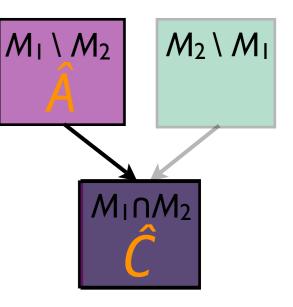
Atoms

 $M_2 \setminus M$

 $M_1 \cap M_2$

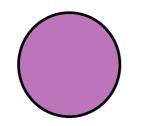
 $M_1 \setminus M_2$

- Arr $\hat{A} \subseteq O$ is an **atom** if it is a maximal set s.t., for each module *M*, either $\hat{A} \subseteq M$ or $\hat{A} \cap M = \emptyset$.
 - The smallest module for an axiom α contains the whole atom to which α belongs!
 - Axioms in an atom are logically interdependent
 - Any two atoms are disjoint
 - The family of atoms is a partition of the ontology
 - Only linearly many atoms
 - Each GM is a disjoint union of atoms

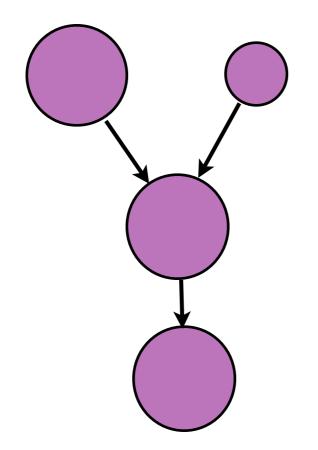

Proposition: There is a 1-1 correspondence between genuine modules and atoms.

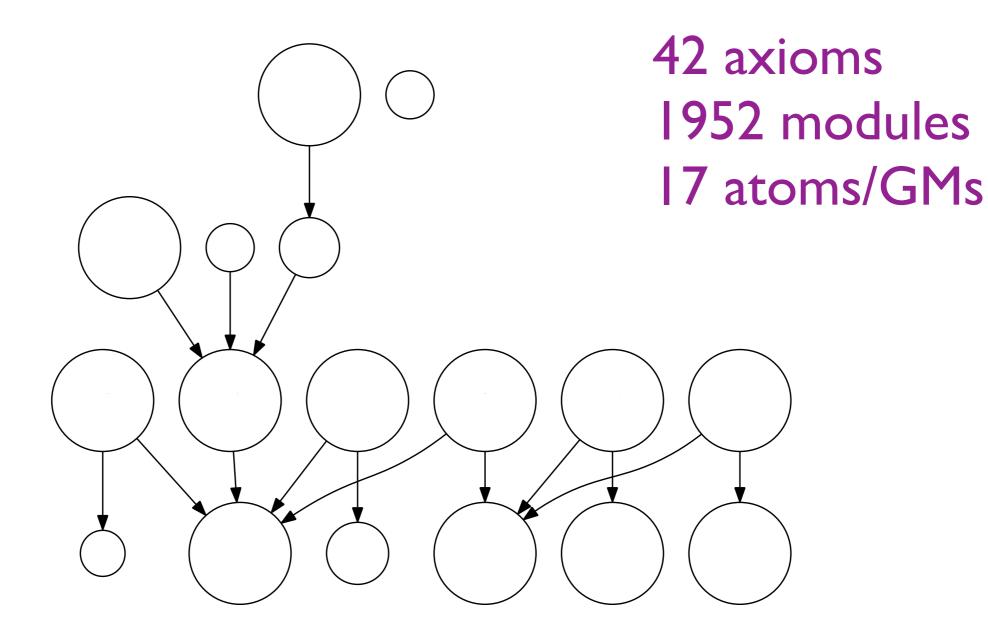
Atomic Decomposition

- Dependence between atoms:
 - $\hat{A} \ge \hat{C}$ if, for each M: $\hat{A} \subseteq M$ implies $\hat{C} \subseteq M$
 - Axioms in \hat{A} logically depend on axioms in \hat{C}


Theorem 2: The relation ≥ is reflexive, antisymmetric, and transitive.

 a Hasse diagram exposes 2 logical dependencies amongst axioms in atoms & between atoms




42 axioms 1952 modules

42 axioms 1952 modules

42 axioms 1952 modules

- Can we compute all genuine modules?
 - and all atoms
 - with their dependencies?
 - ...without computing all modules?!

• Remember:

Theorem I: Each genuine module is the smallest module for some axiom $\alpha \in O$.

- extract $M(sig(\alpha), O)$
 - \leq linearly many module extractions
- AD induced by the comparison of GMs
 - quadratic procedure

In Reality?

- We have decomposed 181 OWL ontologies from NCBO BioPortal
- Decomposability: average
 - nr. axioms/atom: 1.73
 - max nr. axioms/atom: 86
 - nr. axioms/GM: 66
 - max nr. axioms/GM: 143

Future Work

- More on dependency of axioms
 - between atoms and sets of atoms
- Labels for atoms
 - different labels for different tasks
- Applications
 - All Module Count
 - Fast Module Extraction
 - Topicality for Ontology Comprehension: see ICCS 2011
 - • •

Thank you! – Questions?

Decomposability Issues

Ontology \mathcal{O} (ID in BioPortal)	$\#\mathcal{O}$		#Eq.	#Disj.
		Atom	axs.	axs.
Nanoparticle Ontology (1083)	16,267	6,425	42	6,106
Breast Tissue Cell Lines Ontology (1438)	2,734	2,201	0	7
IMGT Ontology (1491)	1,112	729	38	594
SNP Ontology (1058)	3,481	598	30	210
Amino Acid Ontology (1054)	477	445	8	190
Comparative Data Analysis (1128)	804	434	8	190
Family Health History (1126)	1,091	378	0	1
Neural Electromagnetic Ontologies (1321)	2,286	259	21	0
Computer-based Patient Record Ontology (1059)	1,454	238	18	20
Basic Formal Ontology (1332)	95	89	13	41
Ontology of Medically-related Social Entities (1565)	138	100	17	41
Ontology for General Medical Science (1414)	194	102	17	41
Cancer Research and Mgmt Acgt Master (1130)	5,435	3,796	16	42