Syntactic vs. semantic locality: How good is a cheap approximation?

Chiara Del Vescovo¹ Pavel Klinov² Bijan Parsia¹ Uli Sattler¹ *Thomas Schneider*³ Dmitry Tsarkov¹

¹School of Computer Science, University of Manchester, UK ²Institute of Artificial Intelligence, University of Ulm, Germany

³Dept. of Computer Science, University of Bremen, Germany

WoMO Graz, 24 July 2012

2 How good is a cheap approximation?

And now ...

2 How good is a cheap approximation?

"Borrow" knowledge from external ontologies

- Provides access to well-established knowledge
- Doesn't require expertise in external disciplines

This scenario is well-understood and implemented.

Reuse one external, monolithic ontology

Reuse one external, monolithic ontology

Reuse one external, monolithic ontology

How much of NCI do we need?

Reuse a part of an external, monolithic ontology

How much of **NCI** do we need?

- **Coverage:** Import *everything* relevant for the chosen terms.
- Economy: Import *only* what's relevant for them. Compute that part quickly.

_			C			
	hom	20	50	hno	d	Or
		as	JU	IIIIe	u	.ei

Reuse parts of several external ontologies

 ${\mathcal M}$ is a module of ${\mathcal O}$ for signature Σ :

- $\bullet \ \mathcal{M} \subseteq \mathcal{O}$
- \mathcal{M} covers \mathcal{O} for Σ , i.e.,

for all compatible \mathcal{O}' , $\mathcal{O}' \cup \mathcal{M}$ preserves all knowledge about Σ in $\mathcal{O}' \cup \mathcal{O}$.

 ${\mathcal M}$ is a module of ${\mathcal O}$ for signature Σ :

- $\bullet \ \mathcal{M} \subseteq \mathcal{O}$
- \mathcal{M} covers \mathcal{O} for Σ , i.e.,

for all \mathcal{O}' that share only Σ -terms with \mathcal{O} , for all axioms η built from terms in Σ :

if η follows from $\mathcal{O}' \cup \mathcal{O}$, then η follows from $\mathcal{O}' \cup \mathcal{M}$.

 ${\mathcal M}$ is a module of ${\mathcal O}$ for signature Σ :

- $\bullet \ \mathcal{M} \subseteq \mathcal{O}$
- \mathcal{M} covers \mathcal{O} for Σ , i.e.,

for all compatible \mathcal{O}' , $\mathcal{O}' \cup \mathcal{M}$ preserves all knowledge about Σ in $\mathcal{O}' \cup \mathcal{O}$.

- ${\mathcal M}$ is a module of ${\mathcal O}$ for signature Σ :
 - $\mathcal{M} \subseteq \mathcal{O}$
 - \mathcal{M} covers \mathcal{O} for Σ , i.e.,

for all compatible \mathcal{O}' , $\mathcal{O}' \cup \mathcal{M}$ preserves all knowledge about Σ in $\mathcal{O}' \cup \mathcal{O}$.

• Coverage $\hat{=}$ preserving entailments;

Without coverage: no encapsulation \rightsquigarrow no module

- ${\mathcal M}$ is a module of ${\mathcal O}$ for signature Σ :
 - $\mathcal{M} \subseteq \mathcal{O}$
 - \mathcal{M} covers \mathcal{O} for Σ , i.e.,

for all compatible \mathcal{O}' , $\mathcal{O}' \cup \mathcal{M}$ preserves all knowledge about Σ in $\mathcal{O}' \cup \mathcal{O}$.

- $\mathcal{O}' \cup \mathcal{O}$ is called Σ -conservative extension (CE) of $\mathcal{O}' \cup \mathcal{M}$ [Ghilardi, Lutz, Wolter 2006]
- Fact: *M* covers *O* for Σ iff *O* is a Σ-CE of *M* → *O*' doesn't determine what counts as a module

How is a minimal Σ -module extracted?

Simple module extraction algorithm:

- $\mathcal{M} \leftarrow \mathcal{O}$
- While M \ {α} covers O for Σ, for some α ∈ M, remove α from M.
- \bullet Output ${\cal M}$

How is a minimal Σ -module extracted?

Simple module extraction algorithm:

- $\mathcal{M} \leftarrow \mathcal{O}$
- While M \ {α} covers O for Σ, for some α ∈ M, remove α from M.
- \bullet Output ${\cal M}$

Observation:

Different orders of choosing α can lead to different minimal modules

How is a minimal Σ -module extracted?

Simple module extraction algorithm:

- $\mathcal{M} \leftarrow \mathcal{O}$
- While M \ {α} covers O for Σ, for some α ∈ M, remove α from M.
- Output \mathcal{M}

Problem:

```
How to decide the CE property?
Usually harder than standard reasoning, often undecidable!
[Ghilardi, Lutz, Wolter 2006; Lutz, Walther, Wolter 2007]
```


Approximation 1: semantic locality (\emptyset, Δ)

 \mathcal{M} is a Ø-module of \mathcal{O} for Σ : if every ax. α in $\mathcal{O} \setminus \mathcal{M}$ is Ø-local for Σ i.e., if all non- Σ symbols are replaced by \bot , then α becomes a tautology [Cuenca Grau et al. 2007]

Approximation 1: semantic locality (\emptyset, Δ)

 \mathcal{M} is a Ø-module of \mathcal{O} for Σ : if every ax. α in $\mathcal{O} \setminus \mathcal{M}$ is Ø-local for Σ i.e., if all non- Σ symbols are replaced by \bot , then α becomes a tautology [Cuenca Grau et al. 2007]

Facts:

- the Ø-mod(Σ, O) covers O for Σ
 (but M isn't necessarily a minimal module)
- Deciding semantic locality is as hard as reasoning

Approximation 1: semantic locality (\emptyset, Δ)

 \mathcal{M} is a \emptyset -module of \mathcal{O} for Σ : if every ax. α in $\mathcal{O} \setminus \mathcal{M}$ is \emptyset -local for Σ i.e., if all non- Σ symbols are replaced by \bot , then α becomes a tautology [Cuenca Grau et al. 2007]

Facts:

- the Ø-mod(Σ, O) covers O for Σ
 (but M isn't necessarily a minimal module)
- Deciding semantic locality is as hard as reasoning

Dual notion: Δ -module, Δ -locality

Approximation 2: syntactic locality (\bot, \top)

Approximation 2: syntactic locality (\bot, \top)

Facts:

 The ⊥-mod(Σ, O) contains the Ø-mod(Σ, O) and hence covers O for Σ

(but again isn't necessarily a *minimal* module)

• syntactic locality can be decided efficiently: in poly-time!

Approximation 2: syntactic locality (\bot, \top)

Facts:

 The ⊥-mod(Σ, O) contains the Ø-mod(Σ, O) and hence covers O for Σ

(but again isn't necessarily a *minimal* module)

• syntactic locality can be decided efficiently: in poly-time!

Dual notion: \top -module, \top -locality

Summary: locality-based modules (LBMs)

- Syntactic LBMs are cheap for DLs up to OWL
- Semantic LBMs are expensive for expressive DLs (and infeasible for FOL)
- All LBMs provide coverage, but do not guarantee minimality
- Conservativity-based modules are infeasible for expressive DLs and FOL

And now ...

Facts about *syntactic* locality based modules (LBMs)

- \perp -mod and \top -mod have been implemented: OWL API etc.
- More economic: ⊤⊥*-mod (alternative nesting until fixpoint)
- Previous experiments: $T \perp^*$ -mod often well-sized in practice
 - Experiments with SNOMED (*EL*, 350,000 axioms)
 - Compared modules for 24,000 terms from intensive care unit
 - $\top \perp^*$ -mod (LBM) \Leftrightarrow module based on model-CE (MEX)

Facts about *syntactic* locality based modules (LBMs)

- \perp -mod and \top -mod have been implemented: OWL API etc.
- More economic: ⊤⊥*-mod (alternative nesting until fixpoint)
- Previous experiments: $T \perp^*$ -mod often well-sized in practice
 - Experiments with SNOMED (*EL*, 350,000 axioms)
 - Compared modules for 24,000 terms from intensive care unit
 - $\top \perp^*$ -mod (LBM) \Leftrightarrow module based on model-CE (MEX)

Can you take a little off, please?

Semantic LBMs (\emptyset -mod and Δ -mod)

• ... are contained in the respective syntactic LBM, remember:

$$\begin{split} & \emptyset\operatorname{-mod}(\Sigma,\mathcal{O}) \subseteq \bot\operatorname{-mod}(\Sigma,\mathcal{O}) \\ & \Delta\operatorname{-mod}(\Sigma,\mathcal{O}) \subseteq \top\operatorname{-mod}(\Sigma,\mathcal{O}) \end{split}$$

- ... are extracted using reasoning
- ... have not been implemented yet
- \rightsquigarrow Are they actually (typically, significantly, ...) smaller? How much more expensive is their extraction?

Questions

Given a signature Σ and ontology $\mathcal{O}_{\text{,}}$

• ... how likely is \emptyset -mod $(\Sigma, \mathcal{O}) \subset \bot$ -mod (Σ, \mathcal{O}) , and how large is the difference?

(variation: given axiom α , is it likely that α is \emptyset -local but not \bot -local for Σ ?)

2 ... what is the difference in extraction time?

Questions

Given a signature Σ and ontology $\mathcal{O}_{\text{,}}$

• ... how likely is \emptyset -mod $(\Sigma, \mathcal{O}) \subset \bot$ -mod (Σ, \mathcal{O}) , and how large is the difference?

(variation: given axiom α , is it likely that α is \emptyset -local but not \bot -local for Σ ?)

2 ... what is the difference in extraction time?

Later: the same questions for the pairs

- Δ-mod vs. ⊤-mod
- $\Delta \emptyset^*$ -mod vs. $\top \bot^*$ -mod

Sampling the seed signatures

- \mathcal{O} has exponentially many potential seed signatures Σ .
- Modules for different Σ_1, Σ_2 may coincide.
- Still, \mathcal{O} can have exp. many modules. [Del Vescovo et al., 2010]
- We don't yet know what typical seed signatures are.

Sampling the seed signatures

- \mathcal{O} has exponentially many potential seed signatures Σ .
- Modules for different Σ_1, Σ_2 may coincide.
- Still, \mathcal{O} can have exp. many modules. [Del Vescovo et al., 2010]
- We don't yet know what typical seed signatures are.
- \rightsquigarrow Sample random seed signatures!
 - Sample one Σ : pick each axiom with probability p = 0.5
 - Achieve confidence interval $\pm 5\%$ with confidence level 95%: select 400 random Σ 's (if O is big enough)

Sampling the seed signatures

- $\mathcal O$ has exponentially many potential seed signatures Σ .
- Modules for different Σ_1, Σ_2 may coincide.
- Still, \mathcal{O} can have exp. many modules. [Del Vescovo et al., 2010]
- We don't yet know what typical seed signatures are.
- \rightsquigarrow Sample random seed signatures!
 - Sample one Σ : pick each axiom with probability p = 0.5
 - Achieve confidence interval $\pm 5\%$ with confidence level 95%: select 400 random Σ 's (if O is big enough)
 - Non-random seed signatures

Genuine mod.s (GMs)

- \perp -mod(Sig(α), \mathcal{O}), for $\alpha \in \mathcal{O}$
- $\bullet\,$ every module of ${\cal O}$ is the union of some GMs
- \rightsquigarrow include axiom signatures Sig(α)

The ontology corpus

Name	Expressivity	#Axioms	Sig. size
BioPortal	$\mathcal{ALCN}-\mathcal{SHIN}(\mathcal{D})/$	38–4,735	21-3,161
(148 entries)	$\mathcal{SOIN}(\mathcal{D})$		
TONES			
Galen	ALEHIF +	4,735	3,161
Koala	$\mathcal{ALCON}(\mathcal{D})$	42	32
Mereology	\mathcal{SHIN}	38	21
MiniTambis-rep'd	\mathcal{ALCN}	170	227
OWL-S Profile	$\mathcal{ALCHOIN}(\mathcal{D})$	276	163
People	ALCHOIN	108	96
Tambis-full	$\mathcal{SHIN}(\mathcal{D})$	592	497
University	$\mathcal{SOIN}(\mathcal{D})$	52	44

Results I: cheap is good!

● For 151 out of 156 ontologies, \emptyset -mod and \bot -mod agree, i.e.:

- Given an *arbitrary* Σ , there is *no* difference between
 - \emptyset -mod (Σ, \mathcal{O}) and \perp -mod (Σ, \mathcal{O}) , and
 - any α being Ø-local and \perp -local w.r.t. Σ ,

at a significance level of 0.05.

- Given any axiom signature Sig(α), there is no difference between Ø-mod(Sig(α), O) and ⊥-mod(Sig(α), O).
- ② Extracting a Ø-module took up to 6× as long as ⊥-module (average 2.7×)

Results II: cheap seems good enough

• For 2 ontologies from BioPortal,¹ negligible differences:

- Up to 30 out of 3,446 (resp. 6,008) axioms
- Axioms are: r ≡ (r⁻)⁻, for some role (object property) r
 i.e., EquivObjProps(r, inv(inv(r)))

 Uncritical: these are few tautologies (Published version of some BioPortal ontologies is closed under certain entailments)

2 Extraction time up to $6 \times$ on average

¹Experimental Factor Ontology and Software Ontology

Results III: a single type of culprit

For the remaining 3 ont.s,² small differences of 1 common pattern

Example axiom α :

$$M \equiv \underline{S} \sqcap \forall \underline{c}.F \sqcap \forall g.\{m\} \sqcap =3 \underline{c}.\top$$

EquivClasses(M,

S and conly F and g value m and c exactly 3 Thing)

²Koala, miniTambis and Tambis

Results III: a single type of culprit

For the remaining 3 ont.s,² small differences of 1 common pattern

Example axiom α :

$$\mathbb{M} \equiv \underline{\mathbb{S}} \ \sqcap \ \forall \underline{\mathrm{c}}.F \ \sqcap \ \forall g.\{m\} \ \sqcap \ =3 \underline{\mathrm{c}}.\top$$

EquivClasses(M,

S and conly F and g value m and c exactly 3 Thing)

• Suppose
$$\Sigma = \{S, c, g\}$$

- α is not \perp -local because none of its conjuncts is \perp -equiv.
- α is Ø-local:

after replacing M, F with \bot , it becomes a tautology in particular, $\forall c. \bot \sqcap = 3 c. \top$ cannot have any instances

²Koala, miniTambis and Tambis

Results IV: cheap still seems good enough

These culprits have

• no effects on Koala modules

(only singleton differences for locality)

- small effects on miniTambis:
 - \perp -modules up to 4 axioms (3%) larger than Ø-modules
 - \perp -GMs up to 7 axioms (75%) larger than Ø-GMs
- small effects on Tambis:
 - \perp -modules up to 11 axioms (2%) larger than Ø-modules
 - \perp -GMs up to 41 axioms (26%) larger than Ø-GMs
- Extraction time up to 5× on average for Tambis (not measurable for Koala and miniTambis)

Results V: beyond \emptyset - vs. \perp -locality

 Δ -modules cannot always be extracted using DL reasoners:

- Remember locality check: replace non- Σ symbols with \top and test for tautology
- Global restrictions of SROIQ don't allow ⊤-role in number restrictions or role chains
- This affects 39 ontologies in our corpus

For the remaining 117 ontologies, there is no (statistically significant) difference:

- between Δ and \top -modules
- between $\Delta \emptyset^*$ and $\top \bot^*$ -modules

Lessons learnt

- No or little difference btn. semantic and syntactic locality
- → Syntactic locality seems a good approximation of semantic locality
- \rightsquigarrow Cheap is good!
 - (Still, semantic module extraction often fast in practice)

Outlook

- Incorporate the missing 39 (richer) ontologies into
 - Δ vs. \top -locality
 - $\Delta \emptyset^*$ vs. $\top \bot^*$ -locality
- Extend study to larger ontologies
 - NCI has axioms that nest the culprit pattern
 - Not reproducible with the official releases
- Modify sampling
 - Put more weight on small and large seed signatures
 - Measure difference w.r.t. a given *module* → sampling of modules instead of seed signatures
- Include conservativity-based modules (for lightweight DLs)

Outlook

- Incorporate the missing 39 (richer) ontologies into
 - Δ vs. \top -locality
 - $\Delta \emptyset^*$ vs. $\top \bot^*$ -locality
- Extend study to larger ontologies
 - NCI has axioms that nest the culprit pattern
 - Not reproducible with the official releases
- Modify sampling
 - Put more weight on small and large seed signatures
 - Measure difference w.r.t. a given *module* → sampling of modules instead of seed signatures
- Include conservativity-based modules (for lightweight DLs)

