The Complexity of Monotone Hybrid Logics over Linear Frames and the Natural Numbers

Stefan Göller¹ Arne Meier² Martin Mundhenk³ Thomas Schneider¹ Michael Thomas⁴ Felix Weiß³

¹Dept. of Computer Science, University of Bremen, Germany

 $^2\mbox{Inst.}$ of Theoretical Comp. Science, University of Hannover, Germany

³Inst. of Computer Science, University of Jena, Germany

⁴TWT GmbH, Germany

AiML 24 August 2012

And now ...

1 Introduction: hybrid logic and satisfiability

- 2 Results
- 3 Summary and outlook

Hybrid logic

... has already been introduced today

We're looking at the extension of standard modal logic with

- nominals i, j, . . .
 name single states in models
- the binder ↓

 $\downarrow\!\! x.\varphi$ binds variable x dynamically to the current state; x in φ is treated as a nominal

• the satisfaction operator \mathbb{Q}_x jumps to the state named by (the nominal or variable) x

The satisfiability problem for \mathcal{HL}

Definition

• A formula φ is satisfiable if there is a model $\mathcal{M} = (W, R, V)$ based on a frame $\mathcal{F} = (W, R)$ an assignment $g: \mathsf{SVAR} \to W$ and a state $s \in W$ such that $\mathcal{M}, g, s \models \varphi$

The satisfiability problem for \mathcal{HL}

Definition

ⓐ A formula φ is satisfiable if there is a model $\mathcal{M} = (W, R, V)$ based on a frame $\mathcal{F} = (W, R)$ an assignment $g: \mathsf{SVAR} \to W$ and a state $s \in W$ such that $\mathcal{M}, g, s \models \varphi$

Let $O \subseteq \{ \Diamond \Box \downarrow \emptyset \}$.

- $\mathcal{L}(O) = \text{set of all } \mathcal{HL}$ -formulas with operators from O

Complexity of satisfiability for \mathcal{HL}

Theorem

 $SAT(\Diamond \Box)$ is PSPACE-complete. (Ladner '77)

 $SAT(\lozenge \square 0)$ is PSPACE-complete. (Areces et al. '99)

 $SAT(\Diamond \Box \downarrow)$ is coRE-complete. (Areces et al. '99)

Complexity of satisfiability for \mathcal{HL}

Theorem

```
SAT(\Diamond \Box) is PSPACE-complete. (Ladner '77)
```

SAT($\Diamond \square 0$) is PSPACE-complete. (Areces et al. '99)

 $SAT(\Diamond \Box \downarrow)$ is coRE-complete. \bigcirc (Areces et al. '99)

↓ Tame ↓?

\mathcal{HL} over restricted frame classes

$\mathfrak F$	condition on frames $(W,R) \in \mathfrak{F}$
trans	R is transitive
equiv	R is an equivalence relation
lin	R is a linear order (transitive, irreflexive, $\forall xy(xRy \text{ or } x = y \text{ or } yRx)$
\mathbb{N}	$(W,R)=(\mathbb{N},<)$
:	

Definition

$$\mathfrak{F}\text{-SAT}(O) = \{ \varphi \in \mathcal{HL}(O) \mid \varphi \text{ is sat. in a model } \textit{based on a frame from } \mathfrak{F} \}$$

${\cal HL}$ satisfiability over restricted frame classes

Theorem				
$trans-SAT(\Diamond\Box\downarrow)$	is NEXPTIME-complete.	(Mundhenk et al.		
equiv-SAT($\Diamond\Box\downarrow$)	is NEXPTIME-complete.	" '05)		
trans-SAT(♦□↓@)	is coRE-complete.	u		
$lin-SAT(\Diamond\Box\downarrow)$	is NP-complete.	(Areces et al. '00)		
$\mathbb{N}\text{-SAT}(\Diamond\Box\downarrow)$	is NP-complete.	и		
lin-SAT(◇□↓@)	is nonelementary.	(Franceschet et al.		
N-SAT(◇ □↓ @)	is nonelementary.	" '03)		

\mathcal{HL} satisfiability over restricted frame classes

Theorem

trans-SAT($\Diamond \Box \downarrow$) is NEXPTIME-complete.

(Mundhenk et al.

equiv-SAT($\Diamond \Box \downarrow$) is NEXPTIME-complete.

'05)

trans-SAT($\Diamond \Box \downarrow \emptyset$) is coRE-complete.

 $lin-SAT(\Diamond \Box \downarrow)$ is NP-complete. (Areces et al. '00)

 \mathbb{N} -SAT($\Diamond \Box \downarrow$)

is NP-complete.

 $lin-SAT(\Diamond \Box \downarrow @)$ is nonelementary. (Franceschet et al.

 \mathbb{N} -SAT($\Diamond \Box \downarrow @$)

is nonelementary.

 (\ddot{x})

'03)

Tame \downarrow further?

Propositional fragments of \mathcal{HL}

- → Restrict the set of propositional operators! Why?
 - Propositional SAT is tractable if → is disallowed (Lewis '79)
 - LTL-SAT is tractable if → is disallowed (Bauland et al. '07)
 - SAT for ML(◊□) is tractable if → and ∧ are disallowed (Bauland et al. '06)
 - for HL: all-SAT(⋄↓0) is tractable
 if → and some self-dual operators are disallowed
 (Meier et al. '09)
 - SAT for certain sub-Boolean description logics is tractable (Baader et al. '98/05/08, Calvanese et al. '05–07)

Goal

ullet Consider SAT for ${\cal HL}$

- with modal/hybrid operators $O \subseteq \{ \Diamond \Box \downarrow \emptyset \}$
- ullet with only monotone Boolean operators $\land \lor \bot \top$
- ullet over linear frames and $\mathbb N$
- Notation: $\mathcal{MHL}(O)$, lin-MSAT(O), \mathbb{N} -MSAT(O)
- Why?
 - ullet \mathcal{HL} over linear frames and $\mathbb N$ is an extension of LTL
 - Negation-freeness leads to lower complexity in other logics

Observation

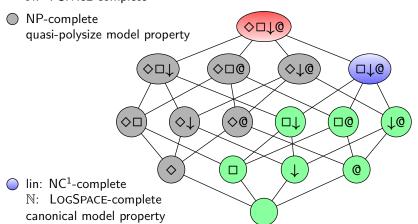
with monotone operators, we can forgo propositional variables (replace them with \top)

And now ...

1 Introduction: hybrid logic and satisfiability

- 2 Results
- Summary and outlook

Overview

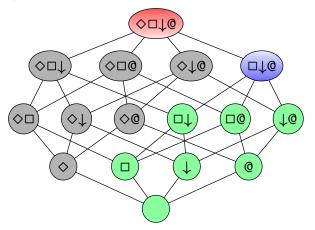


 NC¹-complete canonical model property

The hard cases

lin: decidable, non-elementary

 \mathbb{N} : PSPACE-complete



A nonelementary lower bound

Theorem

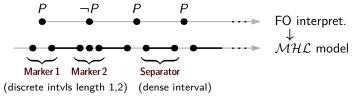
 $lin-MSAT(\diamondsuit \Box \downarrow @)$ is decidable and nonelementary.

Proof sketch.

- Decidability from lin-SAT(♦□↓@) (Franceschet et al. '03)
- ullet Reduce from $\mathcal{FOL}\text{-SAT}$ over $\mathbb N$ with predicates (Stockmeyer'74)
 - \bullet < (natural "less-than" on \mathbb{N})
 - P (one arbitrary unary predicate)
- Encode
 - $\mathcal{FOL}(P, <)$ -interpretations over \mathbb{N} , using no propos. variables
 - ullet formulas from $\mathcal{FOL}(P,<)$ as monotone formulas

Details of the encoding

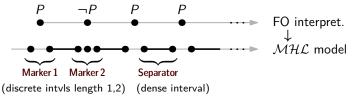
Encode FO interpretations as sequences of intervals:



Use $\mathcal{MHL}(\Diamond\Box\downarrow\emptyset)$ to enforce this structure in a hybrid model

Details of the encoding

• Encode FO interpretations as sequences of intervals:



Use $\mathcal{MHL}(\Diamond\Box\downarrow\emptyset)$ to enforce this structure in a hybrid model

- Encoding of formulas (example):
 - $\forall x (Px \to \exists y (x < y \land \neg Py))$ becomes $\Box_{m} \downarrow x. (1(x) \to \Diamond_{m} \downarrow y. 2(y));$ without implication: $\Box_{m} \downarrow x. (2(x) \lor \Diamond_{m} \downarrow y. 2(y))$
 - $\diamondsuit_{\mathsf{m}}\psi$ = "in some future state that starts a marker, ψ holds" $\square_{\mathsf{m}}\psi$ = "all future states start no marker or satisfy ψ "

A PSPACE upper and lower bound

- Over N, we can no longer use dense-discrete alternation to encode unary predicates.
- SAT for $\mathcal{FOL}(<)$ over $\mathbb N$ is PSPACE-complete (Ferrante, Rackoff '79)

Theorem

 \mathbb{N} -MSAT($\Diamond \Box \downarrow \emptyset$) is PSPACE-complete.

- Hardness via straightforward encoding of QBF-SAT
- Membership via reduction to SAT for $\mathcal{FOL}(<)$ over $\mathbb N$

The intermediate cases

NP-complete **♦□**1@ quasi-polysize model property <>↓@ **◇□@** □1@ **♦**@ □@ 10 0

NP-completeness

Theorem

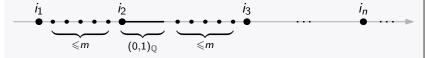
```
\diamondsuit \in O \subsetneq \{\diamondsuit \Box \downarrow \emptyset\} \quad \Rightarrow \quad \mathsf{lin- \ and \ } \mathbb{N}\text{-MSAT}(O) \ \mathsf{are \ NP\text{-}complete}.
```

- Lower bound: straightforward reduction from 3-SAT uses nominals: one per variable; 2 for "true" and "false"
- Upper bound:
 - lin- and \mathbb{N} -MSAT($\Diamond \square 0$): in NP (Areces et al. '00)
 - lin- and \mathbb{N} -MSAT($\Diamond \Box \downarrow$): obvious reduction to \mathbb{N} -MSAT($\Diamond \Box$)
 - lin- and N-MSAT(♦↓@):
 - without \Box , \downarrow binds state variables "existentially"
 - → replace with fresh nominals
 - \rightarrow straightforward reduction to N-MSAT(\Diamond 0)

A quasi-polysize model property (QPMP)

Theorem

Every $\varphi \in \text{lin-MSAT}(\lozenge \square @)$ of modal depth m has a model which,



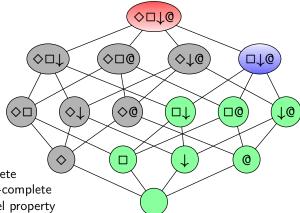
between two successive nominal states, has $\leqslant m$ further states, possibly preceded by one copy of the dense interval $(0,1)_{\mathbb{Q}}$.

Proof idea: States with distance > m from nominal states satisfy the same modal formulas of modal depth $\le m$

Gain:

- Such structures can be represented polynomially
- With little extra effort,
 QPMP yields NP upper bounds for SAT over lin, N, Q

The easy cases



○ lin: NC¹-complete
 N: LOGSPACE-complete
 canonical model property

 NC¹-complete canonical model property

A canonical model property

Theorem

- (1) Every $\varphi \in \text{lin-MSAT}(\Box \downarrow \emptyset)$ is satisfiable
 - in a one-state structure
 - ullet under an assignment g that maps all SVARs to the only state.
- (2) Every $\varphi \in \mathbb{N}\text{-MSAT}(\Box \downarrow \mathbb{Q})$ is satisfiable
 - in $(\mathbb{N},<)$
 - ullet under an assignment g that maps all SVARs to 0.

Main observation:

without ⋄, we cannot control the order of two states

Consequence:

With (1), we can reduce lin-MSAT($\Box\downarrow @$) to propositional MSAT \rightsquigarrow NC¹-completeness (Schnoor '07)

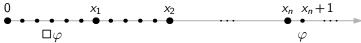
A LogSpace result over $\mathbb N$

Theorem

 \mathbb{N} -MSAT($\square \downarrow \emptyset$) is LogSpace-complete.

Proof sketch.

- Lower bound: reduction from "Order between vertices"
- Upper bound:
 - Despite □, every subformula has a unique assignment and state of evaluation (UASE)



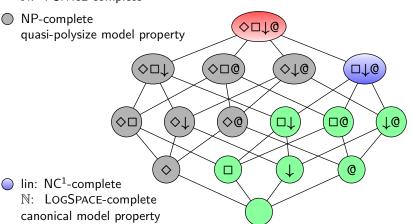
- Use UASEs to replace all SVARs with 0 or 1;
 relevant information can be computed on-the-fly in LOGSPACE
- Evaluate remaining propositional formula (in NC¹)

And now ...

1 Introduction: hybrid logic and satisfiability

- 2 Results
- Summary and outlook

Result overview



 NC¹-complete canonical model property

Summary

We have established . . .

- ullet the computational complexity of SAT for all fragments of ${\cal HL}$
 - ullet with monotone Boolean operators $\land \lor \bot \top$
 - with modal/hybrid operators $O \subseteq \{ \Diamond \Box \downarrow \emptyset \}$
 - ullet over linear frames and ${\mathbb N}$
- small-model properties for all intermediate and easy cases
- made an interesting observation:
 - Fragment $(\lozenge \Box \downarrow 0)$ is **harder** over lin than over $\mathbb N$
 - Fragment $(\Box \downarrow 0)$ is easier over lin than over $\mathbb N$
 - ullet All other fragments have the same complexity over lin and ${\mathbb N}$

Outlook

- Does $\mathcal{MHL}(\Diamond\Box\downarrow\emptyset)$ have a small-model property over \mathbb{N} ?
- Which of our results can be carried over to strictly dense frame classes, e.g., (Q,<)?
- Complexity of HL-fragments with other combinations of Boolean operators over acyclic frame classes?

Outlook

- Does $\mathcal{MHL}(\Diamond \Box \downarrow @)$ have a small-model property over \mathbb{N} ?
- Which of our results can be carried over to strictly dense frame classes, e.g., (ℚ,<)?
- Complexity of HL-fragments with other combinations of Boolean operators over acyclic frame classes?

Thank you.

