The Complexity of Satisfiability for Fragments of Hybrid Logic

Thomas Schneider¹ Michael Thomas⁴

Stefan Göller¹ Arne Meier² Martin Mundhenk³ Felix Weiss³

> ¹University of Bremen ³University of Jena

²University of Hannover ⁴TWT GmbH

6 March 2013

ы	n	+	۰.	<u></u>	
		ь.			
		-		_	

Results: cycles

Results: acyclic

Outlook

And now ...

2 Results for frame classes with cycles

3 Results for acyclic frame classes

Hybrid logic in a nutshell

We're looking at the extension of standard modal logic with

• nominals i, j, \ldots

name single states in models

• the binder \downarrow

 ${\downarrow}x.\varphi$ binds variable x dynamically to the current state; x in φ is treated as a nominal

• the satisfaction operator \mathbb{Q}_{x}

jumps to the state named by (the nominal or variable) x

Recap: modal logic

Outlook

Recap: modal logic

Recap: modal logic

Recap: modal logic

As in \mathcal{FOL} , we have $\Box \varphi \equiv \neg \Diamond \neg \varphi$.

Hybrid logic, $\mathcal{HL}:~\mathcal{ML}$ plus nominals, @, \downarrow

Results: acyclic

Outlook

Hybrid logic

Hybrid logic, \mathcal{HL} : \mathcal{ML} plus nominals, $@, \downarrow$ $@_i$ jumps to the state named *i*:

Hybrid logic, \mathcal{HL} : \mathcal{ML} plus nominals, $@, \downarrow \downarrow$ binds names to states:

Hybrid logic, \mathcal{HL} : \mathcal{ML} plus nominals, $@, \downarrow \downarrow$ binds names to states:

Hybrid logic, \mathcal{HL} : \mathcal{ML} plus nominals, $@, \downarrow \downarrow$ binds names to states:

The satisfiability problem for \mathcal{HL}

Definition

• A formula φ is satisfiable if there is a model $\mathcal{M} = (W, R, V)$ based on a frame $\mathcal{F} = (W, R)$ an assignment $g : SVAR \to W$ and a state $s \in W$ such that $\mathcal{M}, g, s \models \varphi$

The satisfiability problem for \mathcal{HL}

Definition

• A formula φ is satisfiable if there is a model $\mathcal{M} = (W, R, V)$ based on a frame $\mathcal{F} = (W, R)$ an assignment $g : SVAR \rightarrow W$ and a state $s \in W$ such that $\mathcal{M}, g, s \models \varphi$

Let $O \subseteq \{ \Diamond \Box \downarrow \emptyset \}$.

• $\mathcal{HL}(O) = \text{set of all } \mathcal{HL}\text{-formulas with operators from } O$

• SAT(O) = { $\varphi \in \mathcal{HL}(O) \mid \varphi$ is satisfiable}

Outlook

Complexity of satisfiability for \mathcal{HL}

Theorem	
SAT(◇□) is PSpace-comp	ete. (Ladner '77)
SAT(◇□@) is PSpace-comp	ete. (Areces et al. '99)
$SAT(\Diamond \Box \downarrow)$ is undecidable.	(Areces et al. '99)

Outlook

Complexity of satisfiability for \mathcal{HL}

-	-	-	-	
	HL.	r	0	
			~	

\mathcal{HL} over restricted frame classes

\mathfrak{F}	condition on frames $(W,R)\in\mathfrak{F}$
all	—
trans	R is transitive
equiv	R is an equivalence relation
serial	every state has an <i>R</i> -successor
lin	<i>R</i> is a linear order
	(transitive, irreflexive, $\forall xy(xRy \text{ or } x = y \text{ or } yRx)$
\mathbb{N}	$(W,R) = (\mathbb{N},<)$
÷	

Definition

 $\mathfrak{F}-\mathsf{SAT}(O) = \{\varphi \in \mathcal{HL}(O) \mid \varphi \text{ is sat. in a model based on a frame from } \mathfrak{F}\}\$

\mathcal{HL} satisfiability over restricted frame classes

Theorem		
$trans-SAT(\Diamond\Box\downarrow)$	is NEXPTIME-complete.	(Mundhenk et al.
equiv-SAT($\Diamond \Box \downarrow$)	is NEXPTIME-complete.	"''05)
trans-SAT(◇□↓@)) is undecidable.	**
lin-SAT(◇□↓)	is NP-complete.	(Areces et al. '00)
ℕ-SAT(◇□↓)	is NP-complete.	"
lin-SAT(◇□↓@)	is nonelementary.	(Franceschet et al.
N-SAT(◊□↓@)	is nonelementary.	" '03)

\mathcal{HL} satisfiability over restricted frame classes

Theorem			
trans-SAT($\Diamond \Box \downarrow$)	is NEXPTIME-complete.		(Mundhenk et al.
equiv-SAT(◇□↓)	is NEXPTIME-complete.		"''05)
trans-SAT(◇□↓@)	is undecidable.	\odot	"
lin-SAI (◇□↓)	is NP-complete.		(Areces et al. '00)
ℕ-SAT(◇□↓)	is NP-complete.		"
lin-SAT(◇□↓@)	is nonelementary.	\odot	(Franceschet et al.
N-SAT(◇□↓@)	is nonelementary.	\odot	" '03)
		3	
	Tamo	+ ∣ fur	thor?
	Talle	↓ Iur	

Propositional fragments of \mathcal{HL}

 \rightsquigarrow Restrict the set of *propositional* operators! Why?

- **Propositional SAT** is tractable if $\not\rightarrow^1$ is disallowed (Lewis '79)
- LTL-SAT is tractable if \rightarrow is disallowed (Bauland et al. '07)
- SAT for $\mathcal{ML}(\Diamond \Box)$ is tractable if $\not\to$ and \land are disallowed (Bauland et al. '06)
- SAT for certain sub-Boolean description logics is tractable (Baader et al. '98/05/08, Calvanese et al. '05–07)

$${}^{1}x \not\rightarrow y \equiv \neg(x \rightarrow y) \equiv x \land \neg y$$

Göller, Meier, Mundhenk, Schneider, Thomas, Weiß

Intro	Results: cycles	Results: acyclic	Outlook
Overall goal			

Classify \mathfrak{F} -SAT(O, B) for decidability and complexity w.r.t.

- all sets B of Boolean operators
- modal/hybrid operators O with $O \subseteq \{ \diamondsuit \square \downarrow @ \}$

•
$$\mathfrak{F} = \underbrace{\mathsf{all}, \mathsf{trans}, \mathsf{equiv}, \mathsf{serial}}_{\mathsf{allow cycles}}, \underbrace{\mathsf{lin}, \mathbb{N}}_{\mathsf{acyclic}}$$

- Locate border between decidable and undecidable fragments
- Establish tight complexity bounds

	· T	r.	

And now ...

Introduction: hybrid logic and satisfiability

2 Results for frame classes with cycles

3 Results for acyclic frame classes

Scope of the results

We classified \mathfrak{F} -SAT(O, B) for decidability and complexity w.r.t.

- almost all sets B of Boolean operators
- modal/hybrid operators O with $\{\diamondsuit\downarrow\} \subseteq O \subseteq \{\diamondsuit\Box\downarrow\emptyset\}$

•
$$\mathfrak{F} =$$
all, trans, equiv, serial

allow cycles

	-		

Post's lattice

Established 1941 by Emil Post

Theorem (H. R. Lewis 1979) SAT(\emptyset , B) is: \bigcirc NP-complete \bigcirc in P

Theorem (H. R. Lewis 1979) SAT((\emptyset, B) is: O NP-complete O in P

Theorem
(H. R. Lewis 1979)
$SAT(\emptyset, B)$ is:
ONP-complete
\circ in P

Results for all frames

Theorem 1

all-SAT(O, B) is:

- medium? (NP- or PSpace-hard)
- low (L-compl. or below)
- O trivial
- 0?

Results for all frames

Results for transitive frames

Theorem 2

- trans-SAT(O, B) is:
 - undecidable
 - high (NEXPTIME-compl.)
 - medium? (NP- or PSpace-hard)
 - low (L-compl. or below)
 - trivial

Results for serial frames

Results for frames with equivalence relations

Summary and lessons learnt

We have established ...

- \bullet the computational complexity of SAT for all fragments of \mathcal{HL}
 - with *almost all* Boolean operators
 - with modal and hybrid operators $\{\diamondsuit\downarrow\} \subseteq O \subseteq \{\diamondsuit\Box\downarrow\emptyset\}$
 - over cyclic frame classes (all, trans, serial, equiv)
- a complexity border and interesting dichotomy:

 $\begin{array}{rll} \mbox{undecidable (or very hard)} & \leftrightarrow & \mbox{tractable} \\ \mbox{self-dual op.s or} \not \rightarrow & & \mbox{monotone op.s} \end{array}$

And now ...

Introduction: hybrid logic and satisfiability

2 Results for frame classes with cycles

4 Outlook

Scope of the results

We classified \mathfrak{F} -SAT(O, B) for decidability and complexity w.r.t.

- monotone Boolean operators $\land \lor \bot \top$
- modal/hybrid operators O with $O \subseteq \{ \diamondsuit \square \downarrow @ \}$
- $\mathfrak{F} = \mathsf{lin}, \mathbb{N}$ (acyclic)
- Why?
 - $\bullet~\mathcal{HL}$ over linear frames and $\mathbb N$ is an extension of LTL
 - $\bullet~$ M: largest clone with tractable results in the previous part

• Observation

with monotone operators, we can forgo propositional variables (replace them with $\top)$

Classification by modal and hybrid operators

Results: acyclic

Outlook

The hard cases

- lin: decidable, non-elementary
 - \mathbb{N} : PSPACE-complete

The hard cases

- Nonelementary lower bound:
 - Reduction from \mathcal{FOL} -SAT over \mathbb{N} with one unary predicate P (Stockmeyer'74)
 - Encode *P* from an $\mathcal{FOL}(P, <)$ -interpretation using alternations of dense and discrete intervals in lin
- **PS**PACE-membership:

Reduction to SAT for $\mathcal{FOL}(<)$ over \mathbb{N} (Ferrante, Rackoff '79)

• **PS**PACE-hardness:

Straightforward encoding of QBF-SAT

	-

The intermediate cases

The intermediate cases

• Lower bound:

Straightforward reduction from 3-SAT

• Upper bound:

Previous results or obvious consequences (Areces et al. '00)

• Quasi-polysize model property:

If φ satisfiable,

then φ has a model that can be represented polynomially

The easy cases

	+	100	
	ь.		

The easy cases

• Canonical models:

Satisfiability is equivalent to satisfaction in a particular model \sim Most cases reduce to propositional MSAT \sim NC¹-completeness (Schnoor '07)

• LOGSPACE-hardness:

Reduction from "Order between vertices"

• LOGSPACE-membership:

Via *unique assignment and state of evaluation* obtained from the canonical model

Summary and lessons learnt

We have established ...

- \bullet the computational complexity of SAT for all fragments of \mathcal{HL}
 - with monotone Boolean operators $\wedge \lor \bot \top$
 - with modal and hybrid operators $O \subseteq \{ \diamondsuit \square \downarrow \emptyset \}$
 - over acyclic frame classes (lin, $\mathbb N)$
- small-model properties

for all intermediate and easy cases

 \rightsquigarrow upper bounds for other $\mathfrak{F}\subseteq\mathsf{lin}-\mathsf{e.g.},\,\mathbb{Q},\mathbb{R}!$

Interesting observation:

 Fragment (◇□↓@) is harder over lin than over N, but fragment (□↓@) is easier over lin than over N

	. –		
		~	

And now ...

Introduction: hybrid logic and satisfiability

2 Results for frame classes with cycles

3 Results for acyclic frame classes

- Cyclic frame classes: close gaps
 - $\bullet~$ Clones L,L_0,L_3 based on \oplus
 - Upper bounds for some clones below M with $O = \{ \diamondsuit \Box \downarrow Q \}$
- Acyclic frame classes:
 - Small-model property for the PSPACE-complete case?
 - $\bullet\,$ Transport to strictly dense frame classes, e.g., (Q,<)
 - Other combinations of Boolean operators
- Systematise modal/hybrid operators and frame classes
- Consider multi-modal languages

- Cyclic frame classes: close gaps
 - $\bullet~$ Clones L,L_0,L_3 based on \oplus
 - Upper bounds for some clones below M with $O = \{ \diamondsuit \Box \downarrow Q \}$
- Acyclic frame classes:
 - Small-model property for the PSPACE-complete case?
 - $\bullet\,$ Transport to strictly dense frame classes, e.g., (Q,<)
 - Other combinations of Boolean operators
- Systematise modal/hybrid operators and frame classes
- Consider multi-modal languages

The hard cases

- lin: decidable, non-elementary
 - \mathbb{N} : PSPACE-complete

A nonelementary lower bound

Theorem

lin-MSAT($\bigcirc \Box \downarrow @$) is decidable and nonelementary.

Proof sketch.

- Decidability from lin-SAT(◇□↓@) (Franceschet et al. '03)
- Reduce from \mathcal{FOL} -SAT over \mathbb{N} with predicates (Stockmeyer'74)
 - < (natural "less-than" on \mathbb{N})
 - *P* (one arbitrary unary predicate)
- Encode
 - $\mathcal{FOL}(P, <)$ -interpretations over \mathbb{N} , using no propos. variables
 - formulas from $\mathcal{FOL}(P, <)$ as monotone formulas

Details of the encoding

• Encode FO interpretations as sequences of intervals:

Use $\mathcal{MHL}(\Diamond \Box \downarrow @)$ to enforce this structure in a hybrid model

Details of the encoding

• Encode FO interpretations as sequences of intervals:

Use $\mathcal{MHL}(\Diamond \Box \downarrow @)$ to enforce this structure in a hybrid model

• Encoding of formulas (example):

- $\forall x (Px \rightarrow \exists y (x < y \land \neg Py))$ becomes $\Box_m \downarrow x.(1(x) \rightarrow \diamondsuit_m \downarrow y.2(y));$ without implication: $\Box_m \downarrow x.(2(x) \lor \diamondsuit_m \downarrow y.2(y))$
- ◊_mψ = "in some future state that starts a marker, ψ holds"
 □_mψ = "all future states start no marker or satisfy ψ"

A PSPACE upper and lower bound

- Over ℕ, we can no longer use dense-discrete alternation to encode unary predicates.
- SAT for *FOL*(<) over ℕ is PSPACE-complete (Ferrante, Rackoff '79)

Theorem

 \mathbb{N} -MSAT($\bigcirc \Box \downarrow @$) is PSpace-complete.

- Hardness via straightforward encoding of QBF-SAT
- Membership via reduction to SAT for $\mathcal{FOL}(<)$ over $\mathbb N$

The intermediate cases

NP-completeness

Theorem

 $\diamond \in O \subsetneq \{ \diamond \Box \downarrow @ \} \quad \Rightarrow \quad \text{lin- and } \mathbb{N}\text{-}\mathsf{MSAT}(O) \text{ are NP-complete.}$

- Lower bound: straightforward reduction from 3-SAT uses nominals: one per variable; 2 for "true" and "false"
- Upper bound:
 - lin- and ℕ-MSAT(◇□@): in NP (Areces et al. '00)
 - lin- and \mathbb{N} -MSAT($\Diamond \Box \downarrow$): obvious reduction to \mathbb{N} -MSAT($\Diamond \Box$)
 - lin- and \mathbb{N} -MSAT($\diamond \downarrow @$):

without \Box , \downarrow binds state variables "existentially"

- $\rightsquigarrow\,$ replace with fresh nominals
- \rightsquigarrow straightforward reduction to $\mathbb{N}\text{-}\mathsf{MSAT}(\diamondsuit 0)$

A quasi-polysize model property (QPMP)

Gain:

- Such structures can be represented polynomially
- \bullet With little extra effort, QPMP yields NP upper bounds for SAT over lin, $\mathbb{N},\,\mathbb{Q}$

The easy cases

A canonical model property

Main observation:

without \diamondsuit , we cannot control the order of two states

Consequence:

With (1), we can reduce lin-MSAT($\Box \downarrow @$) to propositional MSAT \rightsquigarrow NC¹-completeness (Schnoor '07)

A LogSpace result over \mathbb{N}

Theorem

 \mathbb{N} -MSAT($\Box \downarrow @$) is LogSpace-complete.

Proof sketch.

- Lower bound: reduction from "Order between vertices"
- Upper bound:

- Use UASEs to replace all SVARs with 0 or 1; relevant information can be computed on-the-fly in LOGSPACE
- Evaluate remaining propositional formula (in NC¹)