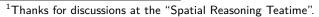
Algebraic Properties of Qualitative Spatio-Temporal Calculi¹

Frank Dylla^a Till Mossakowski^{a,b} Thomas Schneider^c Diedrich Wolter^a

^aCollaborative Research Center on Spatial Cognition (SFB/TR 8), Univ. Bremen ^bGerman Research Center for Artificial Intelligence (DFKI), Bremen ^cDept of Mathematics and Computer Science, University of Bremen

2 August 2013



Dylla, Mossakowski, Schneider, Wolter

Algebraic Properties of Qualitative Spatio-Temporal Calculi

Introduction	Requirements	Algebraic properties	Information preservation	Conclusion
And now				

1 Introduction

2 Requirements to qualitative calculi

3 Algebraic properties

4 Information-preservation properties

Qualitative spatio-temporal representation and reasoning

- = Symbolic way to
 - represent spatio-temporal knowledge
 - and draw inferences from it
 - Common approach:

define set $\ensuremath{\mathcal{R}}$ of relations to describe spatial relationships

- $\bullet\,$ use ${\cal R}$ as primitives for representation
- employ techniques from constraint and qualitative reasoning to reason about the primitives
- various domains, typically infinite

Introduction	Requirements	Algebraic properties	Informa	tion prese	rvation Con	clusion
Applicati	ons by doma	ain				
Time in	terval relations					
► M	edical diagnosti	cs			Simplified Allen	
► La	w texts				Allen-13	
▶ Βι	isiness and mar	nufacturing: diagnost	ics		Allen-13	
		Relation	Symbol	Inverse	Meaning	
		x before y	b	bi		
		x meets y	m	mi	x y	
		x overlaps y	0	oi		
		x during y	d	di		
		x starts y	8	si		
		x finishes y	f	fi		
		x equal y	eq	eq	x y	Ŵ

Introduction	Requirements	Algebraic properties	s Info	rmation preservatio	on Co	nclusion
Applicati	ions by dom	ain				
Positio	ns, regions (topo	ology)				
► PI	anning, robotic	s, navigation	R	CC, Block A	lgebra, ROC	
► Na	atural language	processing		Rectan	gle Alg.,	
► Im	nage understand	ling	:	9-int, CarDir,	RCC, Aller	1
► G	IS, spatial query	/ answering		9-int, 0	CarDir, RCC	-
► Tr	raffic tracking			9	-intersectior	1
► C/	AD and manufa	cturing			LR, RCC	5
				RCC-8		
					\bigcirc	(
			DC	EC	РО	
			TDD TDDI	NITER NITERI		Ŵ

Algebraic Properties of Qualitative Spatio-Temporal Calculi

NTPP, NTPPI

TPP, TPPI

EQ

Information preservation

Conclusion

Applications by domain

Moving point objects, directional information

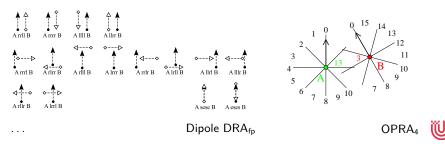
- Robotics, navigation, motion planning
- ► GIS, spatial query answering
- ► Traffic tracking
- Ambient intelligence, smart environments (scene analysis, task modelling)

OPRA, Dipole Flipflop, StarVars

QTC

Dipole

OPRA, RCC



Dylla, Mossakowski, Schneider, Wolter

Algebraic Properties of Qualitative Spatio-Temporal Calculi

Representation and reasoning tasks required

- Knowledge representation
- Data interpretation
- Inference
 - Constraint-based reasoning (CSP-SAT, -ENT, -MOD, -MIN)
 - Neighbourhood-based reasoning (Relaxing constraints, continuity constraints, dominance space)
 - Logical reasoning (Deduction, abduction)
 - Learning (Inductive logic programming)

Introduction	Requirements	Algebraic properties	Information preservation	Conclusion
What is a	qualitative of	calculus?		

Some answers from the literature

- A weak representation of a non-associative relation algebra [Egenhofer & Rodríguez 1999; Ligozat et al. 2003; Ligozat & Renz 2004]
- A system of relations forming a constraint algebra [Nebel & Scivos 2002]

Introduction	Requirements	Algebraic properties	Information preservation	Conclusion
What is a	qualitative o	alculus?		

Some answers from the literature

- A weak representation of a non-associative relation algebra [Egenhofer & Rodríguez 1999; Ligozat et al. 2003; Ligozat & Renz 2004]
- A system of relations forming a constraint algebra [Nebel & Scivos 2002]

Commonly agreed ingredients

- Set ${\mathcal R}$ of relations
- Operations ∪, ∩, ⁻, o, ⁻ with certain properties (closure, algebraic properties)
- Mapping to a domain with certain properties (e.g., JEPD)

Zoo of qualitative calculi

- 36 implemented in SparQ; many more in the literature
- "classical" calculi, usually with strong algebraic properties (e.g., Allen-13, RCC-8)
- more recent calculi, often with weaker algebraic properties (e.g., Cardinal Direction Relations, Rectangular Cardinal Relations)

Zoo of qualitative calculi

- 36 implemented in SparQ; many more in the literature
- "classical" calculi, usually with strong algebraic properties (e.g., Allen-13, RCC-8)
- more recent calculi, often with weaker algebraic properties (e.g., Cardinal Direction Relations, Rectangular Cardinal Relations)

Zoo of qualitative calculi

- 36 implemented in SparQ; many more in the literature
- "classical" calculi, usually with strong algebraic properties (e.g., Allen-13, RCC-8)
- more recent calculi, often with weaker algebraic properties (e.g., Cardinal Direction Relations, Rectangular Cardinal Relations)

Research question

To what extent do existing calculi meet the imposed requirements?

- \rightsquigarrow If not, what are minimal requirements?
- \rightsquigarrow How can we classify calculi according to their properties?

- Revisit and generalise the definition of a qualitative calculus
- Identify notions of algebras that cover existing calculi
- Discuss relevance of algebraic properties for spatial reasoning
- Evaluate the algebraic properties of existing calculi
 → derive improved generic reasoning procedure
- Examine information-preservation properties of calculi during reasoning

Introduction	Requirements	Algebraic properties	Information preservation	Conclusion
And now				

1 Introduction

2 Requirements to qualitative calculi

3 Algebraic properties

4 Information-preservation properties

Basic notions

- Universe (domain) \mathcal{U} : spatio-temporal entities
- Set ${\mathcal R}$ of base relations over ${\mathcal U}$
 - Uncertain information \rightsquigarrow union of base relations
 - Restriction to binary relations in this work
- $\bullet \ \mathcal{R}$ is JEPD: jointly exhaustive and pairwise disjoint
 - Jointly exhaustive: ${\mathcal R}$ covers ${\mathcal U}\times {\mathcal U}$

Basic notions

- Universe (domain) \mathcal{U} : spatio-temporal entities
- Set ${\mathcal R}$ of base relations over ${\mathcal U}$
 - Uncertain information \rightsquigarrow union of base relations
 - Restriction to binary relations in this work
- $\bullet \ \mathcal{R}$ is JEPD: jointly exhaustive and pairwise disjoint
 - Jointly exhaustive: ${\mathcal R}$ covers ${\mathcal U}\times {\mathcal U}$

Partition scheme

- $\bullet~\mathsf{Pair}~(\mathcal{U},\mathcal{R})$ with $\mathcal R$ being JEPD
- \mathcal{R} contains the identity relation id and is closed under converse ~

Partition scheme

- \bullet Pair $(\mathcal{U},\mathcal{R})$ with $\mathcal R$ being JEPD
- \mathcal{R} contains the identity relation id and is closed under converse ~

Partition scheme

- Pair $(\mathcal{U}, \mathcal{R})$ with \mathcal{R} being JEPD
- *R* contains the identity relation id and is closed under converse

- Set of symbolic relations
- Plus interpretation $\varphi = {\rm mapping}$ to a partition scheme
- Plus symbolic operations `, ◇ (converse, *weak* composition)

Partition scheme

- Pair $(\mathcal{U}, \mathcal{R})$ with \mathcal{R} being JEPD
- \mathcal{R} contains the identity relation id and is closed under converse ~

- Set of symbolic relations
- Plus interpretation $\varphi = {\rm mapping}$ to a partition scheme
- Plus symbolic operations `, ◇ (converse, *weak* composition)
 - Converse: $\varphi(\vec{r}) = \varphi(r)$

Partition scheme

- Pair $(\mathcal{U}, \mathcal{R})$ with \mathcal{R} being JEPD
- \mathcal{R} contains the identity relation id and is closed under converse ~

- Set of symbolic relations
- $\bullet\,$ Plus interpretation $\varphi=$ mapping to a partition scheme
- Plus symbolic operations `, ◇ (converse, *weak* composition)
 - Converse: $\varphi(r\check{}) = \varphi(r)\check{}$
 - Weak composition:
 - $r \diamond s =$ smallest set T of base rel.s with $\varphi(T) \supseteq \varphi(r) \circ \varphi(s)$

Partition scheme

- Pair $(\mathcal{U}, \mathcal{R})$ with \mathcal{R} being JEPD
- \mathcal{R} contains the identity relation id and is closed under converse ~

- Set of symbolic relations
- Plus interpretation $\varphi = {\rm mapping}$ to a partition scheme
- Plus symbolic operations `, ◇ (converse, *weak* composition)
 - Converse: $\varphi(r\check{}) = \varphi(r)\check{}$
 - Weak composition:
 - $r \diamond s =$ smallest set T of base rel.s with $\varphi(T) \supseteq \varphi(r) \circ \varphi(s)$
 - $\check{}, \diamond$ usually given by tables

ntroduction

These requirements are strong

Some calculi violate them

- e.g.: Cardinal Direction Relations Rectangular Cardinal Relations
- Their converse only satisfies $\varphi(\mathbf{r}) \supseteq \varphi(\mathbf{r})$

ntroduction

Requirements

Algebraic properties

Information preservation

Conclusion

These requirements are strong

Some calculi violate them

- e.g.: Cardinal Direction Relations Rectangular Cardinal Relations
- Their converse only satisfies $\varphi(\mathbf{r}) \supseteq \varphi(\mathbf{r})$

\rightsquigarrow Weaken requirements to partition schemes and calculi!

Abstract partition scheme

- \bullet Pair $(\mathcal{U},\mathcal{R})$ with $\mathcal R$ being JEPD
- *R* contains the identity relation idand is closed under converse –

Abstract partition scheme

- Pair $(\mathcal{U}, \mathcal{R})$ with \mathcal{R} being JEPD
- *R* contains the identity relation idand is closed under converse –

- Set of symbolic relations
- Plus interpretation = mapping to an abstract part. scheme
- Plus symbolic operations `, \diamond (abstract converse & compos.)

Abstract partition scheme

- Pair $(\mathcal{U}, \mathcal{R})$ with \mathcal{R} being JEPD
- *R* contains the identity relation idand is closed under converse –

- Set of symbolic relations
- Plus interpretation = mapping to an abstract part. scheme
- Plus symbolic operations `, \diamond (abstract converse & compos.)
 - Abstract converse: $\varphi(r\check{}) \supseteq \varphi(r)\check{}$

Abstract partition scheme

- Pair $(\mathcal{U}, \mathcal{R})$ with \mathcal{R} being JEPD
- *R* contains the identity relation idand is closed under converse –

- Set of symbolic relations
- Plus interpretation = mapping to an abstract part. scheme
- Plus symbolic operations `, \diamond (abstract converse & compos.)
 - Abstract converse: $\varphi(r\check{}) \supseteq \varphi(r)\check{}$
 - Abstract composition: $\varphi(r \diamond s) \supseteq \varphi(r) \circ \varphi(s)$

Qualitative constraint

Formula xRy with x, y variables, R relation from a calculus C

Qualitative constraint

Formula xRy with x, y variables, R relation from a calculus C

Qualitative constraint satisfaction problem (QCSP)

- Input: set of constraints
- Question: Is there a mapping from variables to C's domain that satisfies all constraints?

Qualitative constraint

Formula xRy with x, y variables, R relation from a calculus C

Qualitative constraint satisfaction problem (QCSP)

- Input: set of constraints
- Question: Is there a mapping from variables to C's domain that satisfies all constraints?

(Analogous definition for other reasoning problems)

Common techniques for solving QCSPs

• Some taken over from finite-domain CSPs (constraint propagation, *k*-consistency)

Common techniques for solving QCSPs

- Some taken over from finite-domain CSPs (constraint propagation, *k*-consistency)
- Algebraic closure (a-closure)
 - sufficient condition for consistency guaranteed by "⊇" of abstract composition
 - For some calculi, a-closure known to be necessary too

Common techniques for solving QCSPs

- Some taken over from finite-domain CSPs (constraint propagation, *k*-consistency)
- Algebraic closure (a-closure)
 - sufficient condition for consistency guaranteed by "⊇" of abstract composition
 - For some calculi, a-closure known to be necessary too
- Composition of *arbitrary* relations *R*, *S* is uniquely determined by the composition results of the base relations in *R*, *S* (composition table)

Existing qualitative spatio-temporal calculi

	Name	Domain	#BR
	9-Intersection	simple 2D regions	8
•	Allen's interval relations	intervals (order)	13
•	Block Algebra	<i>n</i> -dimensional blocks	13^n
•	Cardinal Dir. Calculus CDC	directions (point abstr.)	9
	Cardinal Dir. Relations CDR	regions	218
	CycOrd, binary CYC _b	oriented lines	4
•	Dependency Calculus	points (partial order)	5
	Dipole Calculus ^a DRA _f	directions from line segm.	72
	DRA_{fp}	directions from line segm.	80
	DRA-connectivity	connectivity of line segm.	7
	Geometric Orientation	relative orientation	4
	INDU	intervals (order, rel. dur.n)	25
	$OPRA_m, m = 1, \dots, 8$	oriented points $4m \cdot (4m)$	n + 1)
	(Oriented Point Rel. Algebra)		
•	Point Calculus	points (total order)	3
	Qualitat. Traject. Calc. QTC_{B11}	moving point obj.s in 1D	9
	QTC_{B12}	22	17
	QTC_{B21}	moving point obj.s in $2D$	9
	QTC_{B22}	"	27
	QTC_{C12}	²³	81
	QTC_{C22}	22	305
•	Region Connection Calc. RCC-5	regions	5
•	RCC-8	regions	8
a-closure —•	Rectangular Cardinal Rel.s RDR	regions	36
decides consistency	Star Algebra STAR ₄	directions from a point	9

Introduction	Requirements	Algebraic properties	Information preservation	Conclusion
And now .				

Introduction

2 Requirements to qualitative calculi

3 Algebraic properties

Information-preservation properties

If a calculus is a relation algebra (RA), then ...

- certain optimisations in reasoners are permitted
- e.g., associativity of \diamond ensures fast processing of paths:
 - if a QCSP contains *xRy*, *ySz*, *zTu*, then compute relation between *x*, *u* "from left to right"
 - without associativity, compute $(R \diamond S) \diamond T$ and $R \diamond (S \diamond T)$

If a calculus is a relation algebra (RA), then ...

- certain optimisations in reasoners are permitted
- e.g., associativity of \diamond ensures fast processing of paths:
 - if a QCSP contains *xRy*, *ySz*, *zTu*, then compute relation between *x*, *u* "from left to right"
 - without associativity, compute $(R \diamond S) \diamond T$ and $R \diamond (S \diamond T)$

RAs have been considered for spatio-temporal calculi before.

[Ligozat & Renz 2004, Düntsch 2005, F. Mossakowski 2007]

Int	-	Ы		~	ы.	~	10
ΠL	10	u	u	C	ur	U	

What is a relation algebra?

R_1	$r \cup s$	$= s \cup r$	\cup -commutativity
R_2	$r \cup (s \cup t)$	$= (r \cup s) \cup t$	\cup -associativity
R ₃	$\overline{\bar{r}\cup\bar{s}}\cup\overline{\bar{r}\cups}$	= r	Huntington's axiom
R_4	$r \diamond (s \diamond t)$	$= (r \diamond s) \diamond t$	\diamond -associativity
R ₅	$(r \cup s) \diamond t$	$= (r \diamond t) \cup (s$	$\diamond t) \diamond$ -distributivity
R_6	$r \diamond id$	= r	identity law
R ₇	(r)	= r	-involution
R ₈	$(r\cup s)$ ັ	$= r \cup s $	-distributivity
R ₉	$(r\diamond s)$ ັ	$= s \diamond r $	-involutive distributivity
R_{10}	$r \diamond \overline{r \diamond s} \cup \bar{s}$	$= \bar{s}$	Tarski/de Morgan axiom

Intr	~	Ы		~	63	~	-
IIILI	U	u	u	C	υı	U	п.

What is a relation algebra?

-				
R_1	$r \cup s$	=	$s \cup r$	\cup -commutativity
R_2			$(r \cup s) \cup t$	\cup -associativity
R ₃	$\overline{\bar{r}\cup\bar{s}}\cup\overline{\bar{r}\cups}$	=	r	Huntington's axiom
R_4	$r \diamond (s \diamond t)$	=	$(r\diamond s)\diamond t$	◇-associativity
R_5	$(r \cup s) \diamond t$	=	$(r\diamond t)\cup(s\diamond t)$	\diamond -distributivity
R_6	$r \diamond id$	=	r	identity law
R ₇	(r)	=	r	-involution
R ₈	$(r \cup s)$ ĭ	=	$r \cup s $	-distributivity
R ₉	$(r \diamond s)$	=	$s \breve{} \diamond r \breve{}$	$\ensuremath{}$ -involutive distributivity
R ₁₀	$r \diamond \overline{r \diamond s} \cup \bar{s}$	=	\bar{s}	Tarski/de Morgan axiom

• RA	relation algebra	R_1,\ldots,R_{10}
• NA	non-associative RA	R_1, \dots, R_{10} minus R_4
• WA, SA	weakly/semi-associative RA	weakenings of R_4

Intr	~	Ы		~	63	~	-
IIILI	U	u	u	C	υı	U	п.

What is a relation algebra?

R_1	$r \cup s$	=	$s \cup r$	∪-commutativity
R_2	$r \cup (s \cup t)$			\cup -associativity
R ₃	$\overline{\bar{r}\cup\bar{s}}\cup\overline{\bar{r}\cup s}$	=	r	Huntington's axiom
R_4	$r \diamond (s \diamond t)$	=	$(r\diamond s)\diamond t$	\diamond -associativity
R ₅	$(r\cup s)\diamond t$	=	$(r\diamond t)\cup(s\diamond t)$	\diamond -distributivity
R_6	$r\diamond id$	=	r	identity law
R ₇	(r)	=	r	-involution
R ₈	$(r\cup s)$ ັ			-distributivity
R ₉	$(r\diamond s)$ ັ	=	$s \diamond r $	$\ensuremath{}$ -involutive distributivity
R ₁₀	$r \diamond \overline{r \diamond s} \cup \overline{s}$	=	\bar{s}	Tarski/de Morgan axiom

- RA relation algebra
 RA non-associative RA
 R1,...,R10 minus R4
- WA, SA weakly/semi-associative RA weakenings of R_4

Calculi à la Ligozat & Renz: based on NA's (by definition)

Testing algebraic properties of calculi

Research questions

- Which calculi correspond to RAs (NAs, WAs, SAs)?
- Which weaker algebra notions correspond to other calculi?

Testing algebraic properties of calculi

Research questions

- Which calculi correspond to RAs (NAs, WAs, SAs)?
- Which weaker algebra notions correspond to other calculi?

Experimental setup

- Corpus: 31 calculi listed before
- Used HETS (Heterogeneous Tool Set) to test
 - the SparQ implementation of each calculus
 - against CASL specifications of the RA axioms (+ weakenings)
- \bullet Some axioms trivially hold \leadsto no need to test them

Testing algebraic properties of calculi

Research questions

- Which calculi correspond to RAs (NAs, WAs, SAs)?
- Which weaker algebra notions correspond to other calculi?

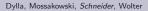
Experimental setup

- Corpus: 31 calculi listed before
- Used HETS (Heterogeneous Tool Set) to test
 - the SparQ implementation of each calculus
 - against CASL specifications of the RA axioms (+ weakenings)
- \bullet Some axioms trivially hold \leadsto no need to test them
- Parallel tests via SparQ's built-in function analyze-calculus

	 ÷	 ~	d		~	÷	1		
ł	 ι	U	u	u	C	L	Ľ	U	

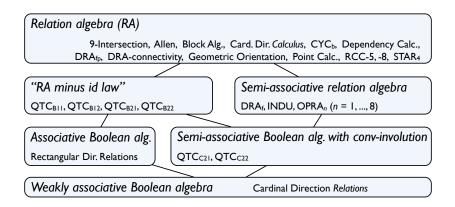
Test results per calculus

Calculus	R_4	SA	WA	R_6	R_{6I}	R_7	R ₉	PL	R ₁₀
Allen	1	1	1	1	1	1	1	1	1
Block Algebra	1	1	1	1	1	1	1	1	1
Cardinal Direction Calculus	1	1	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
CYC _b , Geometric Orientation	n 🗸	1	1	1	1	1	1	1	1
DRA_{fp} , DRA-conn.	1	1	1	1	1	1	1	\checkmark	1
Point Calculus	1	1	1	1	1	1	1	1	1
RCC-5, Dependency Calc.	1	1	1	1	1	1	1	\checkmark	1
RCC-8, 9-Intersection	1	1	1	1	1	1	1	1	1
$STAR_4$	1	1	1	1	1	1	✓	1	1
$\mathrm{DRA}_{\mathrm{f}}$	19	✓	✓	✓	1	✓	✓	1	✓
INDU	12	1	1	1	1	1	1	\checkmark	1
$OPRA_n, n \leq 8$	$21 - 91^{b}$	1	1	1	1	1	1	1	1
QTC_{Bxx}	1	1	1	89-	100	1	1	1	1
QTC _{C21}	55	1	✓	99	99	1	2	$<\!\!1$	1
QTC_{C22}	79	1	1	99	99	1	3	$<\!\!1$	1
Rectang. Direction Relations	1	1	1	97	92	89	66	7	52
Cardinal Direction Relations	28	17	1	99	99	98	12	$<\!\!1$	88



iiUJ

Test results per algebra notion



(Abstract partition scheme yields Boolean algebra with distributivity)

In the paper: discussion on relevance of axioms to reasoning

- $\rightsquigarrow\,$ Theoretical underpinning of optimisations implemented
- \rightsquigarrow Optimisations available for a given calculus

In the paper: discussion on relevance of axioms to reasoning

- $\rightsquigarrow\,$ Theoretical underpinning of optimisations implemented
- \rightsquigarrow Optimisations available for a given calculus
- → General-purpose reasoning procedure that exploits algebraic properties when applicable

In the paper: discussion on relevance of axioms to reasoning

- \rightsquigarrow Theoretical underpinning of optimisations implemented
- \rightsquigarrow Optimisations available for a given calculus
- → General-purpose reasoning procedure that exploits algebraic properties when applicable

e.g., if R_7 , R_9 hold, $(r)^{\circ} = r$ and $(r \diamond s)^{\circ} = s^{\circ} \diamond r^{\circ}$ then yR'x follows from xRy

In the paper: discussion on relevance of axioms to reasoning

- \rightsquigarrow Theoretical underpinning of optimisations implemented
- \rightsquigarrow Optimisations available for a given calculus
- → General-purpose reasoning procedure that exploits algebraic properties when applicable

e.g., if R_7 , R_9 hold, $(r)^{\circ} = r$ and $(r \diamond s)^{\circ} = s^{\circ} \diamond r^{\circ}$ then yR'x follows from xRy

 $\rightsquigarrow\,$ reduce memory consumption by 50%

Introduction	Requirements	Algebraic properties	Information preservation	Conclusion
And now .				

Introduction

2 Requirements to qualitative calculi

3 Algebraic properties

Information-preservation properties

Information preservation by a calculus

Plausible-sounding hypothesis:

Many base relations

- \rightsquigarrow Finer-grained description of the domain possible
- \rightsquigarrow More information in a given set of constraints

Information preservation by a calculus

Plausible-sounding hypothesis:

Many base relations

- \rightsquigarrow Finer-grained description of the domain possible
- \rightsquigarrow More information in a given set of constraints

Research questions:

- How well do calculi with many relations make use of the potentially higher information content?
- Does the information content differ between the 6 groups of calculi established in the algebraic study?

Measuring information content

To be measured:

- $\bullet\,$ How much additional information is obtained by applying $\diamond\,?$
 - Observe *xRy*, *ySz*
 - Compute $R \diamond S$ and conclude $x(R \diamond S)z$
 - \rightsquigarrow Is it worthwhile to observe *xTz* too?
- Generalise this to chains $R_1 \diamond \cdots \diamond R_k$

Measuring information content

To be measured:

- $\bullet\,$ How much additional information is obtained by applying $\diamond\,?$
 - Observe xRy, ySz
 - Compute $R \diamond S$ and conclude $x(R \diamond S)z$
 - \rightsquigarrow Is it worthwhile to observe *xTz* too?
- Generalise this to chains $R_1 \diamond \cdots \diamond R_k$
- Information content IC(C, k) of calculus C in k steps:
 - k = 2: measures "richness" of entries in composition table, i.e., average size of entries in a cell (inverted)

Measuring information content

To be measured:

- $\bullet\,$ How much additional information is obtained by applying $\diamond\,?$
 - Observe xRy, ySz

Compute $R \diamond S$ and conclude $x(R \diamond S)z$

- \rightsquigarrow Is it worthwhile to observe *xTz* too?
- Generalise this to chains $R_1 \diamond \cdots \diamond R_k$

Information content IC(C, k) of calculus C in k steps:

- k = 2: measures "richness" of entries in composition table, i.e., average size of entries in a cell (inverted)
- $k \ge 3$: generalisation to chains $r_1 \diamond \cdots \diamond r_k$

A similar measure: information overlap

To be measured:

Loss of information incurred by considering arbitrary relations instead of base relations

A similar measure: information overlap

To be measured:

Loss of information incurred by considering arbitrary relations instead of base relations

Information overlap IO(C, k) of calculus C in k steps:

• k = 2: measures overlap btwn. entries in composition table, i.e., avg. number of base relations shared by two cells

A similar measure: information overlap

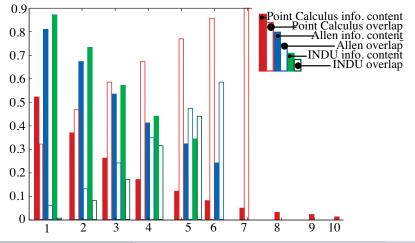
To be measured:

Loss of information incurred by considering arbitrary relations instead of base relations

Information overlap IO(C, k) of calculus C in k steps:

- k = 2: measures overlap btwn. entries in composition table, i.e., avg. number of base relations shared by two cells
- $k \ge 3$: generalisation to chains $r_1 \diamond \cdots \diamond r_k$

- Tested 24 calculi, for k up to 14
- Graphical view for Point Calculus, Allen-13 and INDU:



Introduction	Requirements	Algebraic properties	Information preservation	Conclusion
Striking o	observations			

- \bullet Point Calculus has low information preservation (IC $\downarrow~$ IO $\uparrow)$
- The opposite for INDU

In	troduction	Requirements	Algebraic properties	Information preservation	Conclusion
S	Striking ob	servations			

- \bullet Point Calculus has low information preservation (IC $\downarrow~$ IO $\uparrow)$
- The opposite for INDU
- Differences between QTC variants (not in graph)
 - B11, B12, C21: IC eventually increases with k
 - B21: IC(QTC_{B21}, k) = 0 for $k \ge 2$

Introduction	Requirements	Algebraic properties	Information preservation	Conclusion
Striking o	bservations			

- Point Calculus has low information preservation (IC $\downarrow~$ IO $\uparrow)$
- The opposite for INDU
- Differences between QTC variants (not in graph)
 - B11, B12, C21: IC eventually increases with k
 - B21: IC(QTC_{B21}, k) = 0 for $k \ge 2$
- \bullet Point calculus and \mbox{QTC}_{B22} have very similar values for IC, but not for IO

Introduction	Requirements	Algebraic properties	Information preservation	Conclusion
Striking of	observations	i i		

- \bullet Point Calculus has low information preservation (IC $\downarrow~$ IO $\uparrow)$
- The opposite for INDU
- Differences between QTC variants (not in graph)
 - B11, B12, C21: IC eventually increases with k
 - B21: IC(QTC_{B21}, k) = 0 for $k \ge 2$
- \bullet Point calculus and QTC_{B22} have very similar values for IC, but not for IO
- \bullet No observable relation between IC/IO and algebraic properties

Introduction	Requirements	Algebraic properties	Information preservation	Conclusion
And now				

Introduction

2 Requirements to qualitative calculi

3 Algebraic properties

Information-preservation properties

Introduction	Requirements	Algebraic properties	Information preservation	Conclusion
Conclusio	n			

We have ...

- weakened requirements to spatio-temporal calculi to accommodate existing calculi
- discussed algebraic properties of binary calculi
- classified existing calculi according to their algebraic properties
- measured the information preservation by existing calculi

Intr	~	Ы		~	43	~	-
IIILI	O	u	u	C	u	U	п.

Algebraic properties

Information preservation

Conclusion

- Test more calculi \rightsquigarrow implement!
- Extend to ternary relations

Intr	~	Ы		~	43	~	-
IIILI	O	u	u	C	u	U	п.

Algebraic properties

Information preservation

Conclusion

- Test more calculi → implement!
- Extend to ternary relations
- Investigate combinations of different aspects of space
 - Weak combinations of calculi
 - ≈ "Cross-product" of two calculi, e.g., INDU, DIA [Pujari et al. 1999, Renz 2001]

Intr	~	Ы		~	43	~	-
IIILI	0	u	u	C	u	U	п.

Algebraic properties

Information preservation

Conclusion

- Test more calculi → implement!
- Extend to ternary relations
- Investigate combinations of different aspects of space
 - Weak combinations of calculi
 - ≈ "Cross-product" of two calculi, e.g., INDU, DIA [Pujari et al. 1999, Renz 2001]
 - Strong combinations
 - ≈ "Re-invent", e.g., RCC + relative size [Gerevini & Renz 2002]

Intr	od		+io	-
IIILI	ou	uc	ιυ	11

Algebraic properties

Information preservation

Conclusion

- Test more calculi → implement!
- Extend to ternary relations
- Investigate combinations of different aspects of space
 - Weak combinations of calculi
 - ≈ "Cross-product" of two calculi, e.g., INDU, DIA [Pujari et al. 1999, Renz 2001]
 - Strong combinations
 - ≈ "Re-invent", e.g., RCC + relative size [Gerevini & Renz 2002]
 - Homomorphisms between calculi
 - Embedding into FOL

Intr	od		+io	-
IIILI	ou	uc	ιυ	11

Algebraic properties

Information preservation

Conclusion

Outlook

- Test more calculi → implement!
- Extend to ternary relations
- Investigate combinations of different aspects of space
 - Weak combinations of calculi
 - ≈ "Cross-product" of two calculi, e.g., INDU, DIA [Pujari et al. 1999, Renz 2001]
 - Strong combinations
 - ≈ "Re-invent", e.g., RCC + relative size [Gerevini & Renz 2002]
 - Homomorphisms between calculi
 - Embedding into FOL

Thank you.

Quantitative account: IC for all calculi

Calculus	0	1	2	3	4	5	6	7	8	9	10	11	$12 \ 13 \ 14$
Allen	92.3	81.4	66.8	52.8	41.1	31.8	24.5	18.9	14.5	11.2	8.6	6.6	$5.1 \ 3.9 \ 3.0$
Block Algebra	99.4	96.5	89.0	77.7	65.3	53.4	43.0	34.1	27.0	21.1	16.4	12.8	$9.9\ 7.7\ 5.9$
CDC	88.9	76.8	60.4	44.5	31.6	21.9	14.9	10.1	6.8	4.6	3.1	2.0	$1.4\ 0.9\ 0.6$
CYC_b	75.0	62.5	46.9	32.8	21.9	14.1	8.8	5.4	3.2	1.9	1.1	0.6	0.4
DRA_{fp}	98.8	89.9	69.0	45.0	25.8	13.4	6.5	3.0	1.3	0.6	0.2		
DRA-con	85.7	74.6	59.0	43.4	30.4	20.5	13.5	8.7	5.6	3.5	2.2	1.3	$0.8 \ 0.5 \ 0.3$
Point Calculus	66.7	51.9	37.0	25.5	17.3	11.6	7.8	5.2	3.5	2.3	1.5	1.0	$0.7 \ 0.5$
RCC-5	80.0	56.8	34.9	19.7	10.6	5.5	2.7	1.3	0.6	0.3			
RCC-8	87.5	62.3	38.0	21.1	11.0	5.5	2.6	1.2	0.6	0.3			
$STAR_4$	88.9	66.9	45.0	28.5	17.4	10.3	6.0	3.5	2.0	1.1	0.6	0.4	
DRA_f	98.6	90.6	70.4	46.3	26.7	13.9	6.7	3.0	1.3	0.6	0.2		
INDU	96.0	86.9	72.5	57.5	44.1	33.2	24.7	18.2	13.4	9.9	7.2	5.3	$4.0\ 2.9\ 2.1$
OPRA ₁	95.0	82.0	55.8	30.8	14.5	6.2	2.4	0.9	0.3				
$OPRA_2$	98.6	90.3	64.1	32.9	13.0	4.3	1.3	0.3					
$OPRA_3$	99.4	93.1	71.4	40.2	16.7	5.6							
$OPRA_4$	99.6	94.6	76.7	48.0									
QTC_{B11}	88.9	90.0	93.2	95.8	97.5	98.6	99.1	99.5	99.7				
QTC_{B12}	94.1	91.2	90.5	91.3	92.8	94.2	95.6						
QTC_{B21}	88.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	$0.0 \ 0.0 \ 0.0$
QTC_{B22}	96.3	51.9	37.0	25.5	17.3	11.6	7.8	5.2	-3.5	2.3	1.5	1.0	$0.7\ 0.5\ 0.3$
QTC_{C21}	98.8	92.5	76.6	68.6	69.5	73.0	76.5	79.4	81.8	83.7	85.2	86.4	87.4
QTC_{C22}	99.5	95.1	78.0	69.3	51.2								
RDR	97.2	82.6	63.2	45.7	32.0	22.0	15.0	10.1	6.8	4.6	3.1	2.0	$1.4\ 0.9\ 0.6$
CDR	99.5	78.8	60.9	48.9	39.6	32.1	26.1	21.2	17.2	14.0	11.4	9.3	$7.6\ 6.2\ 5.1$

