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Qualitative spatio-temporal representation and reasoning

= Symbolic way to
represent spatio-temporal knowledge
and draw inferences from it

Common approach:
define set R of relations to describe spatial relationships

use R as primitives for representation
employ techniques from constraint and qualitative reasoning
to reason about the primitives
various domains, typically infinite
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Applications by domain

Time interval relations

I Medical diagnostics Simplified Allen

I Law texts Allen-13

I Business and manufacturing: diagnostics Allen-13
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Applications by domain
Positions, regions (topology)
I Planning, robotics, navigation RCC, Block Algebra, ROC

I Natural language processing Rectangle Alg., . . .

I Image understanding 9-int, CarDir, RCC, Allen

I GIS, spatial query answering 9-int, CarDir, RCC

I Traffic tracking 9-intersection

I CAD and manufacturing LR, RCC
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Applications by domain
Moving point objects, directional information

OPRA, Dipole
I Robotics, navigation, motion planning Flipflop, StarVars

I GIS, spatial query answering QTC

I Traffic tracking Dipole

I Ambient intelligence, smart environments OPRA, RCC
(scene analysis, task modelling)

. . . Dipole DRAfp
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Representation and reasoning tasks required

I Knowledge representation
I Data interpretation
I Inference

I Constraint-based reasoning
(CSP-SAT, -ENT, -MOD, -MIN)

I Neighbourhood-based reasoning
(Relaxing constraints, continuity constraints, dominance space)

I Logical reasoning
(Deduction, abduction)

I Learning
(Inductive logic programming)
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What is a qualitative calculus?

Some answers from the literature

A weak representation of a non-associative relation algebra
[Egenhofer & Rodríguez 1999; Ligozat et al. 2003; Ligozat & Renz 2004]

A system of relations forming a constraint algebra
[Nebel & Scivos 2002]

Commonly agreed ingredients

Set R of relations
Operations ∪,∩, ,̄ ◦,˘ with certain properties
(closure, algebraic properties)
Mapping to a domain with certain properties
(e.g., JEPD)
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And in reality?

Zoo of qualitative calculi

36 implemented in SparQ; many more in the literature
“classical” calculi, usually with strong algebraic properties
(e.g., Allen-13, RCC-8)
more recent calculi, often with weaker algebraic properties
(e.g., Cardinal Direction Relations, Rectangular Cardinal Relations)

;
Research question
To what extent do existing calculi meet the imposed requirements?
; If not, what are minimal requirements?
; How can we classify calculi according to their properties?

Dylla, Mossakowski, Schneider, Wolter Algebraic Properties of Qualitative Spatio-Temporal Calculi 9



Introduction Requirements Algebraic properties Information preservation Conclusion

And in reality?

Zoo of qualitative calculi

36 implemented in SparQ; many more in the literature
“classical” calculi, usually with strong algebraic properties
(e.g., Allen-13, RCC-8)
more recent calculi, often with weaker algebraic properties
(e.g., Cardinal Direction Relations, Rectangular Cardinal Relations)

;

Research question
To what extent do existing calculi meet the imposed requirements?
; If not, what are minimal requirements?
; How can we classify calculi according to their properties?

Dylla, Mossakowski, Schneider, Wolter Algebraic Properties of Qualitative Spatio-Temporal Calculi 9



Introduction Requirements Algebraic properties Information preservation Conclusion

And in reality?

Zoo of qualitative calculi

36 implemented in SparQ; many more in the literature
“classical” calculi, usually with strong algebraic properties
(e.g., Allen-13, RCC-8)
more recent calculi, often with weaker algebraic properties
(e.g., Cardinal Direction Relations, Rectangular Cardinal Relations)

;
Research question
To what extent do existing calculi meet the imposed requirements?
; If not, what are minimal requirements?
; How can we classify calculi according to their properties?

Dylla, Mossakowski, Schneider, Wolter Algebraic Properties of Qualitative Spatio-Temporal Calculi 9



Introduction Requirements Algebraic properties Information preservation Conclusion

On the agenda today

Revisit and generalise the definition of a qualitative calculus

Identify notions of algebras that cover existing calculi

Discuss relevance of algebraic properties for spatial reasoning

Evaluate the algebraic properties of existing calculi
; derive improved generic reasoning procedure

Examine information-preservation properties of calculi
during reasoning
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Calculi à la Ligozat & Renz (1)

Basic notions

Universe (domain) U : spatio-temporal entities
Set R of base relations over U

Uncertain information ; union of base relations
Restriction to binary relations in this work

R is JEPD: jointly exhaustive and pairwise disjoint
Jointly exhaustive: R covers U × U

Partition scheme

Pair (U ,R) with R being JEPD
R contains the identity relation id
and is closed under converse ˘
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Calculi à la Ligozat & Renz (2)

Partition scheme

Pair (U ,R) with R being JEPD
R contains the identity relation id
and is closed under converse ˘

Qualitative calculus

Set of symbolic relations
Plus interpretation ϕ = mapping to a partition scheme
Plus symbolic operations ,̆ � (converse, weak composition)

Converse: ϕ(r )̆ = ϕ(r )̆

Weak composition:
r � s = smallest set T of base rel.s with ϕ(T ) ⊇ ϕ(r) ◦ ϕ(s)

,̆ � usually given by tables
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These requirements are strong

Some calculi violate them

e.g.: Cardinal Direction Relations
Rectangular Cardinal Relations

Their converse only satisfies ϕ(r )̆ ⊇ ϕ(r )̆

; Weaken requirements to partition schemes and calculi!
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Our notion of a calculus

Abstract partition scheme

Pair (U ,R) with R being JEPD
R contains the identity relation id
and is closed under converse ˘

Qualitative calculus

Set of symbolic relations
Plus interpretation = mapping to an abstract part. scheme
Plus symbolic operations ,̆ � (abstract converse & compos.)

Abstract converse: ϕ(r )̆ ⊇ ϕ(r )̆

Abstract composition: ϕ(r � s) ⊇ ϕ(r) ◦ ϕ(s)
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Qualitative spatio-temporal reasoning

Qualitative constraint

Formula xRy with x , y variables, R relation from a calculus C

Qualitative constraint satisfaction problem (QCSP)

Input: set of constraints
Question: Is there a mapping from variables to C’s domain

that satisfies all constraints?

(Analogous definition for other reasoning problems)
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Qualitative spatio-temporal reasoning

Common techniques for solving QCSPs

Some taken over from finite-domain CSPs
(constraint propagation, k-consistency)

Algebraic closure (a-closure)
sufficient condition for consistency
guaranteed by “⊇” of abstract composition
For some calculi, a-closure known to be necessary too

Composition of arbitrary relations R, S is uniquely determined
by the composition results of the base relations in R, S
(composition table)
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Existing qualitative spatio-temporal calculi

•
•
•

•

•

•
•

a-closure —•
decides consistency
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Name Ref. Domain #BR RM
9-Intersection [9] simple 2D regions 8 I [12,16]
Allen’s interval relations [1] intervals (order) 13 A [42]
Block Algebra [2] n-dimensional blocks 13n A [2]
Cardinal Dir. Calculus CDC [10,17] directions (point abstr.) 9 A [17]
Cardinal Dir. Relations CDR [38] regions 218 P
CycOrd, binary CYCb [14] oriented lines 4 U
Dependency Calculus [33] points (partial order) 5 A [33]
Dipole Calculusa DRAf [25,24] directions from line segm. 72 I [46]

DRAfp [24] directions from line segm. 80 I
DRA-connectivity [45] connectivity of line segm. 7 U

Geometric Orientation [7] relative orientation 4 U
INDU [32] intervals (order, rel. dur.n) 25 P
OPRAm, m = 1, . . . , 8 [23,28] oriented points 4m · (4m + 1)
(Oriented Point Rel. Algebra) I [46]
Point Calculus [42] points (total order) 3 A [42]
Qualitat. Traject. Calc. QTCB11 [40,41] moving point obj.s in 1D 9 U

QTCB12 ” ” 17 U
QTCB21 ” moving point obj.s in 2D 9 U
QTCB22 ” ” 27 U
QTCC12 ” ” 81 U
QTCC22 ” ” 305 U

Region Connection Calc. RCC-5 [34] regions 5 A [15]
RCC-8 [34] regions 8 A [35]

Rectangular Cardinal Rel.s RDR [30] regions 36 A [30]
Star Algebra STAR4 [36] directions from a point 9 P
aVariant DRAc is not based on a weak partition scheme – JEPD is violated [24].
#BR: number of base relations
RM: reasoning method used to decide consistency of CSPs with base relns only:

A-closure; Polynomial: reducible to linear programming;
Intractable (assuming P �= NP); Unknown

Table 1. Overview of the binary calculi tested.

3 Relation Algebras

3.1 Definition

If we focus our attention on spatio-temporal calculi with binary relations, it
is reasonable to ask whether they are relation algebras (RAs). If a calculus is
a RA, it is guaranteed to have properties that allow several optimizations in
constraint reasoners. For example, associativity of the composition operation
� ensures that, if the reasoner encounters a path ArBsCtD of length 3, then
the relation between A and D can be computed “from left to right”. Without
associativity, (r � s) � t as well as r � (s � t) would have to be computed. RAs have
been considered in the literature for spatio-temporal calculi [20,6,26].

An (abstract) RA is defined in [22]; here we use the symbols ∪, �, and id
instead of +, ;, and 1�. Let A be a set containing id and 1, and let ∪, � be binary
and ,̄ ˘ unary operations on A. The relevant axioms (R1–R10, WA, SA, and PL)
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Why relation algebras?

If a calculus is a relation algebra (RA), then . . .

certain optimisations in reasoners are permitted
e.g., associativity of � ensures fast processing of paths:

if a QCSP contains xRy , ySz , zTu,
then compute relation between x , u “from left to right”
without associativity, compute (R � S) � T and R � (S � T )

RAs have been considered for spatio-temporal calculi before.
[Ligozat & Renz 2004, Düntsch 2005, F. Mossakowski 2007]
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What is a relation algebra?8 Frank Dylla, Till Mossakowski, Thomas Schneider, and Diedrich Wolter

R1 r ∪ s = s ∪ r ∪-commutativity
R2 r ∪ (s ∪ t) = (r ∪ s) ∪ t ∪-associativity
R3 r̄ ∪ s̄ ∪ r̄ ∪ s = r Huntington’s axiom
R4 r � (s � t) = (r � s) � t �-associativity
R5 (r ∪ s) � t = (r � t) ∪ (s � t) �-distributivity
R6 r � id = r identity law
R7 (r )̆̆ = r -̆involution
R8 (r ∪ s)̆ = r˘∪ s̆ -̆distributivity
R9 (r � s)̆ = s̆ � r˘ -̆involutive distributivity
R10 r˘� r � s ∪ s̄ = s̄ Tarski/de Morgan axiom
WA ((r ∩ id) � 1) � 1 = (r ∩ id) � 1 weak �-associativity
SA (r � 1) � 1 = r � 1 � semi-associativity
R6l id � r = r left-identity law
PL (r � s) ∩ t̆ = ∅ ⇔ (s � t) ∩ r˘ = ∅ Peircean law
Table 2. Axioms for relation algebras and weaker variants [22].

are given in Table 2. All axioms except PL can be weakened to only one of two
inclusions, which we denote by a superscript ⊇ or ⊆. For example, R⊇

7 denotes
(r )̆̆ ⊇ r. Likewise, we use PL⇒ and PL⇐. Then, A = (A,∪, ,̄ �, ,̆ id) is a

– non-associative relation algebra (NA) if it satisfies Axioms R1–R3, R5–R10;
– semi-associative relation algebra (SA) if it is an NA and satisfies Axiom SA,
– weakly associative relation algebra (WA) if it is an NA and satisfies WA,
– relation algebra (RA) if it satisfies R1–R10,

for all r, s, t ∈ A. Every RA is a WA; every WA is an SA; every SA is an NA.
In the literature, a different axiomatization is sometimes used, for example

in [20]. The most prominent difference is that R10 is replaced by PL, “a more
intuitive and useful form, known as the Peircean law or De Morgan’s Theorem K”
[13]. It is shown in [13, Section 3.3.2] that, given R1–R3, R5, R7–R9, the axioms
R10 and PL are equivalent. The implication PL ⇒ R10 does not need R5 and R8.

Furthermore, Table 2 contains the redundant axiom R6l because it may be
satisfied when some of the other axioms are violated. It is straightforward to
establish that R6 and R6l are equivalent given R7 and R9, see [8].

Due to our minimal requirements to a qualitative calculus given in Def. 2,
certain axioms are always satisfied; see [8] for a proof of the following

Fact 8 Every qualitative calculus satisfies R1–R3, R5, R⊇
7 , R8, WA⊇, SA⊇ for all

(base and complex) relations. This axiom set is maximal: each of the remaining
axioms in Table 2 is not satisfied by some qualitative calculus.

3.2 Discussion of the Axioms

We will now discuss the relevance of the above axioms for spatio-temporal
representation and reasoning. Due to Fact 8, we only need to consider axioms
R4, R6, R7, R9, R10 (or PL) and their weakenings R6l, SA, WA.

RA relation algebra R1, . . . ,R10

NA non-associative RA R1, . . . ,R10 minus R4
WA, SA weakly/semi-associative RA weakenings of R4

Calculi à la Ligozat & Renz: based on NA’s (by definition)
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R1 r ∪ s = s ∪ r ∪-commutativity
R2 r ∪ (s ∪ t) = (r ∪ s) ∪ t ∪-associativity
R3 r̄ ∪ s̄ ∪ r̄ ∪ s = r Huntington’s axiom
R4 r � (s � t) = (r � s) � t �-associativity
R5 (r ∪ s) � t = (r � t) ∪ (s � t) �-distributivity
R6 r � id = r identity law
R7 (r )̆̆ = r -̆involution
R8 (r ∪ s)̆ = r˘∪ s̆ -̆distributivity
R9 (r � s)̆ = s̆ � r˘ -̆involutive distributivity
R10 r˘� r � s ∪ s̄ = s̄ Tarski/de Morgan axiom
WA ((r ∩ id) � 1) � 1 = (r ∩ id) � 1 weak �-associativity
SA (r � 1) � 1 = r � 1 � semi-associativity
R6l id � r = r left-identity law
PL (r � s) ∩ t̆ = ∅ ⇔ (s � t) ∩ r˘ = ∅ Peircean law
Table 2. Axioms for relation algebras and weaker variants [22].

are given in Table 2. All axioms except PL can be weakened to only one of two
inclusions, which we denote by a superscript ⊇ or ⊆. For example, R⊇

7 denotes
(r )̆̆ ⊇ r. Likewise, we use PL⇒ and PL⇐. Then, A = (A,∪, ,̄ �, ,̆ id) is a
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for all r, s, t ∈ A. Every RA is a WA; every WA is an SA; every SA is an NA.
In the literature, a different axiomatization is sometimes used, for example

in [20]. The most prominent difference is that R10 is replaced by PL, “a more
intuitive and useful form, known as the Peircean law or De Morgan’s Theorem K”
[13]. It is shown in [13, Section 3.3.2] that, given R1–R3, R5, R7–R9, the axioms
R10 and PL are equivalent. The implication PL ⇒ R10 does not need R5 and R8.

Furthermore, Table 2 contains the redundant axiom R6l because it may be
satisfied when some of the other axioms are violated. It is straightforward to
establish that R6 and R6l are equivalent given R7 and R9, see [8].

Due to our minimal requirements to a qualitative calculus given in Def. 2,
certain axioms are always satisfied; see [8] for a proof of the following
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Testing algebraic properties of calculi

Research questions
1 Which calculi correspond to RAs (NAs, WAs, SAs)?
2 Which weaker algebra notions correspond to other calculi?

Experimental setup

Corpus: 31 calculi listed before
Used HETS (Heterogeneous Tool Set) to test

the SparQ implementation of each calculus
against CASL specifications of the RA axioms (+ weakenings)

Some axioms trivially hold ; no need to test them

Parallel tests via SparQ’s built-in function analyze-calculus
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Test results per calculus12 Frank Dylla, Till Mossakowski, Thomas Schneider, and Diedrich Wolter

Calculus Testsa R4 SA WA R6 R6l R7 R9 PL R10
Allen MHS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Block Algebra HS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Cardinal Direction Calculus MHS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

CYCb, Geometric Orientation HS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

DRAfp, DRA-conn. HS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Point Calculus HS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

RCC-5, Dependency Calc. MHS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

RCC-8, 9-Intersection MHS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

STAR4 HS ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

DRAf MHS 19 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

INDU MHS 12 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

OPRAn, n � 8 MHS 21–91b ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

QTCBxx MHS ✓ ✓ ✓ 89–100 ✓ ✓ ✓ ✓

QTCC21 HS 55 ✓ ✓ 99 99 ✓ 2 <1 1
QTCC22 HS 79 ✓ ✓ 99 99 ✓ 3 <1 1
Rectang. Direction Relations HS ✓ ✓ ✓ 97 92 89 66 7 52
Cardinal Direction Relations HS 28 17 ✓ 99 99 98 12 <1 88

acalculus was tested by: M = [26], H = HETS, S = SparQ
b21%, 69%, 78%, 83%, 86%, 88%, 90%, 91% for OPRAn, n = 1, . . . , 8

Table 3. Overview of calculi tested and their properties. The symbol “✓” means that
the axiom is satisfied; otherwise the percentage of counterexamples (relations, pairs or
triples violating the axiom) is given.

In principle, it cannot be completely ruled out that associativity is reported to
be violated due to errors in either the implementation of the respective calculus or
the experimental setup. This even applies to non-violations, although it is much
more likely that errors cause sporadic violations than systematic non-violations.
In the case of DRAf, INDU and OPRAm, m = 1, . . . , 8, the relatively high
percentage of violations make implementation errors seem unlikely to be the
cause. However, to obtain certainty that these calculi indeed violate R4, one has
to find concrete counterexamples and verify them using the original definition of
the respective calculus. For DRAf and INDU, this has been done in the literature
[24,3]. Interestingly, the violation of associativity has been attributed to the
absence of strong converse and strong composition, respectively. We remark,
however, that the latter cannot be responsible because, for example, DRAfp has
an associative, but only weak, composition operation. While DRAfp has been
proven to be associative due to strong composition in [24], for OPRAm, it can
be shown that none of the variants for any m are associative (see [29]).

The B-variants of QTC violate only the identity law R6 and R6l. As observed in
[26], it is possible to equip them with a new id relation, modify the interpretation
of the other relations such that they become JEPD, and adapt the converse
and composition table accordingly. The thus modified calculi are then relation
algebras.

The C-variants of QTC additionally violate R4, R9, R10, and PL. We call the
corresponding notion of algebra semi-associative Boolean algebra with converse-
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Test results per algebra notion

Relation algebra (RA)

9-Intersection,  Allen,  Block Alg.,  Card. Dir. Calculus,  CYCb,  Dependency Calc.,
 DRAfp,  DRA-connectivity,  Geometric Orientation,  Point Calc.,  RCC-5, -8,  STAR4

Semi-associative relation algebra
DRAf, INDU, OPRAn (n = 1, ..., 8)

“RA minus id law”
QTCB11, QTCB12, QTCB21, QTCB22

Semi-associative Boolean alg. with conv-involution
QTCC21, QTCC22

Weakly associative Boolean algebra Cardinal Direction Relations

Associative Boolean alg.
Rectangular Dir. Relations

(Abstract partition scheme yields Boolean algebra with distributivity)
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What do we gain from these results?

In the paper: discussion on relevance of axioms to reasoning
; Theoretical underpinning of optimisations implemented
; Optimisations available for a given calculus

; General-purpose reasoning procedure
that exploits algebraic properties when applicable

e.g., if R7,R9 hold, (r )̆̆ = r and (r � s )̆ = s˘� r˘
then yR′x follows from xRy

; reduce memory consumption by 50%
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And now . . .

1 Introduction

2 Requirements to qualitative calculi

3 Algebraic properties

4 Information-preservation properties

5 Conclusion and outlook
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Information preservation by a calculus

Plausible-sounding hypothesis:

Many base relations
; Finer-grained description of the domain possible
; More information in a given set of constraints

Research questions:

I How well do calculi with many relations
make use of the potentially higher information content?

I Does the information content differ between
the 6 groups of calculi established in the algebraic study?
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Measuring information content

To be measured:

How much additional information is obtained by applying � ?
Observe xRy , ySz
Compute R � S and conclude x(R � S)z

; Is it worthwhile to observe xTz too?

Generalise this to chains R1 � · · · � Rk

Information content IC(C, k) of calculus C in k steps:

k = 2: measures “richness” of entries in composition table,
i.e., average size of entries in a cell (inverted)

k > 3: generalisation to chains r1 � · · · � rk
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A similar measure: information overlap

To be measured:

Loss of information incurred
by considering arbitrary relations instead of base relations

Information overlap IO(C, k) of calculus C in k steps:

k = 2: measures overlap btwn. entries in composition table,
i.e., avg. number of base relations shared by two cells

k > 3: generalisation to chains r1 � · · · � rk
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Test results

Tested 24 calculi, for k up to 14
Graphical view for Point Calculus, Allen-13 and INDU:

16 Frank Dylla, Till Mossakowski, Thomas Schneider, and Diedrich Wolter

other calculi, computation was terminated after 14 compositions or if IkC drops
below 0.5.

As a second measure we determine the average degree of overlap that occurs
after k steps of composition for selected calculi. The degree of overlapping
O(Ri, Rj) is determined by counting the number of atomic relations shared by
two relations, normalized by the total number of base relations:

O(Ri, Rj) = |Ri fl Rj |
|Rel| (18)

For example, if two relations in a calculus with eight base relations share four
base relations, the overlap is 0.5. This value indicates how the information content
di�ers between dealing with base relations only versus dealing with arbitrary
relations (and thus how the results on information content generalize to arbitrary
relations). Similar to I(R) and IkC , we define Ok

C to be the average overlap over
all composition chains of length k.

Ok
C =

q
Ri,Rjœrk O(Ri, Rj)

|Rel|k+1 (19)

The results of the two measures are summarized in Figure 2 and Table 4,
showing information content versus length k of composition chains.
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Figure 2. Information content and overlap after k compositions for selected calculi

Figure 2 shows that the average information content for the Point Calculus
after 1 step is ¥ 0.52 and additionally, the overlap of ¥ 0.33 is already quite high
after a single composition. Therefore, in order to obtain detailed information it
is reasonable to also observe rAC between objects A and C even if rAB and rBC
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C to be the average overlap over
all composition chains of length k.

Ok
C =

q
Ri,Rjœrk O(Ri, Rj)

|Rel|k+1 (19)

The results of the two measures are summarized in Figure 2 and Table 4,
showing information content versus length k of composition chains.
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Figure 2. Information content and overlap after k compositions for selected calculi

Figure 2 shows that the average information content for the Point Calculus
after 1 step is ¥ 0.52 and additionally, the overlap of ¥ 0.33 is already quite high
after a single composition. Therefore, in order to obtain detailed information it
is reasonable to also observe rAC between objects A and C even if rAB and rBC
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Striking observations

Point Calculus has low information preservation (IC↓ IO↑)
The opposite for INDU

Differences between QTC variants (not in graph)
B11, B12, C21: IC eventually increases with k
B21: IC(QTCB21, k) = 0 for k > 2

Point calculus and QTCB22 have very similar values for IC,
but not for IO

No observable relation between IC/IO and algebraic properties
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And now . . .

1 Introduction

2 Requirements to qualitative calculi

3 Algebraic properties

4 Information-preservation properties

5 Conclusion and outlook
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Conclusion

We have . . .

weakened requirements to spatio-temporal calculi
to accommodate existing calculi
discussed algebraic properties of binary calculi
classified existing calculi according to their
algebraic properties
measured the information preservation by existing calculi
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Outlook

Test more calculi ; implement!
Extend to ternary relations

Investigate combinations of different aspects of space
Weak combinations of calculi
≈ “Cross-product” of two calculi, e.g., INDU, DIA

[Pujari et al. 1999, Renz 2001]

Strong combinations
≈ “Re-invent”, e.g., RCC + relative size

[Gerevini & Renz 2002]
Homomorphisms between calculi
Embedding into FOL

Thank you.
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Quantitative account: IC for all calculi
Algebraic Properties of Qualitative Spatio-Temporal Calculi 17

Calculus 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Allen 92.3 81.4 66.8 52.8 41.1 31.8 24.5 18.9 14.5 11.2 8.6 6.6 5.1 3.9 3.0
Block Algebra 99.4 96.5 89.0 77.7 65.3 53.4 43.0 34.1 27.0 21.1 16.4 12.8 9.9 7.7 5.9
CDC 88.9 76.8 60.4 44.5 31.6 21.9 14.9 10.1 6.8 4.6 3.1 2.0 1.4 0.9 0.6
CYCb 75.0 62.5 46.9 32.8 21.9 14.1 8.8 5.4 3.2 1.9 1.1 0.6 0.4
DRAfp 98.8 89.9 69.0 45.0 25.8 13.4 6.5 3.0 1.3 0.6 0.2
DRA-con 85.7 74.6 59.0 43.4 30.4 20.5 13.5 8.7 5.6 3.5 2.2 1.3 0.8 0.5 0.3
Point Calculus 66.7 51.9 37.0 25.5 17.3 11.6 7.8 5.2 3.5 2.3 1.5 1.0 0.7 0.5
RCC-5 80.0 56.8 34.9 19.7 10.6 5.5 2.7 1.3 0.6 0.3
RCC-8 87.5 62.3 38.0 21.1 11.0 5.5 2.6 1.2 0.6 0.3
STAR4 88.9 66.9 45.0 28.5 17.4 10.3 6.0 3.5 2.0 1.1 0.6 0.4
DRAf 98.6 90.6 70.4 46.3 26.7 13.9 6.7 3.0 1.3 0.6 0.2
INDU 96.0 86.9 72.5 57.5 44.1 33.2 24.7 18.2 13.4 9.9 7.2 5.3 4.0 2.9 2.1
OPRA1 95.0 82.0 55.8 30.8 14.5 6.2 2.4 0.9 0.3
OPRA2 98.6 90.3 64.1 32.9 13.0 4.3 1.3 0.3
OPRA3 99.4 93.1 71.4 40.2 16.7 5.6
OPRA4 99.6 94.6 76.7 48.0
QTCB11 88.9 90.0 93.2 95.8 97.5 98.6 99.1 99.5 99.7
QTCB12 94.1 91.2 90.5 91.3 92.8 94.2 95.6
QTCB21 88.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
QTCB22 96.3 51.9 37.0 25.5 17.3 11.6 7.8 5.2 3.5 2.3 1.5 1.0 0.7 0.5 0.3
QTCC21 98.8 92.5 76.6 68.6 69.5 73.0 76.5 79.4 81.8 83.7 85.2 86.4 87.4
QTCC22 99.5 95.1 78.0 69.3 51.2
RDR 97.2 82.6 63.2 45.7 32.0 22.0 15.0 10.1 6.8 4.6 3.1 2.0 1.4 0.9 0.6
CDR 99.5 78.8 60.9 48.9 39.6 32.1 26.1 21.2 17.2 14.0 11.4 9.3 7.6 6.2 5.1

Table 4. Information content IkC for calculi in %

are already known. By contrast, the INDU calculus has a very high information
content (¥ 0.87) and a much smaller overlap. Therefore, it is not so informative
to observe rAC as a lot of information is preserved after a composition. It is clear
that the Ok

C grows for increasing k as composition results become coarser step
by step. Nevertheless, information loss for PC is much higher than compared to
Allen and INDU calculus: I5

INDU and I5
Allen are close to I2

PC (Ok
C respectively).

Our results show that there is no evidence for a relation between the infor-
mation content of a calculus and its classification as per Figure 1. The only
exceptions are some of the QTC calculi as IkC starts to increase after some k with
increasing k.

Although the calculi start with quite di�erent values for I0, most calculi have
an information content less than 0.1 after six steps. The most notable exception is
the Block Algebra where I6

BA ¥ 0.43 and even after ten compositions it remains
above 16%. Only Allen, INDU and CDR are somehow comparable. Concerning
the classes we derived in Section 4 no uniform behavior can be observed. Thus,
from a perspective of expressive power of calculi, there is no argument against
working with calculi that are not relation algebras. We have to note that the
comparison of the values for calculi where it is known that a-closure decides
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