The Complexity of Temporal Description Logics with Rigid Roles and Restricted TBoxes

In Quest of Saving a Troublesome Marriage

Víctor Gutiérrez-Basulto Jean Christoph Jung Thomas Schneider

Dept of Mathematics and Computer Science, University of Bremen, Germany

DL 10 Ιουνίου 2015

And now ...

Our results

Description logics are inherently atemporal

DLs are . . .

... good at expressing static domain knowledge:

 $Diabetes \equiv MetabolicDisorder \sqcap \exists hasFinding.Pancreas$

... bad at expressing temporal knowledge:

Temporal extensions of DLs

Applications: knowledge representation and reasoning

- ... over temporal conceptual data models (EER, UML + temporal constraints)
- ... in the medical domain (e.g., SNOMED CT with temporal knowledge)

Approach

Extend DLs with point-based temporal operators [Schild 1993]

 \sim Temporal description logics (TDLs)

TDLs: existing work

Several TDLs have been studied, under various design choices

 $\begin{array}{l} \mathcal{ALC} & + \mbox{ LTL operators} \\ \mbox{DL-Lite } + \mbox{LTL} \\ \mathcal{ALC} & + \mbox{CTL}^{(*)} \\ \mathcal{EL} & + \mbox{CTL} \\ \mbox{DL-Lite } + \mbox{CTL} \end{array}$

Complexity results from PTIME to undecidable

[Artale et al. 2007/14, Baader et al. 2008, Gutiérrez-Basulto et al. 2012/14]

TDLs: syntax

TDLs are ... modal description logics

Components: DL of your choice + temporal operators, e.g.:

- $\mathsf{E} \diamondsuit \varphi$ 'in some future, eventually φ '
- A $\Box \varphi$ 'in all futures, always φ '
- AO φ 'in all futures, next time φ '
- **Example**: $\exists hasDisease.Diabetes \sqsubseteq E \diamondsuit \exists hasDisease.Glaucoma$

'A patient who has diabetes now may develop certain disorders in the future'


```
Example: \exists hasDisease.Diabetes \sqsubseteq E \diamond \exists hasDisease.Glaucoma
```

Design choice #1: Temporal operators from

```
✓ CTL
LTL
(or ATL, µ-calculus, ...)
```


Example: \exists hasDisease.Diabetes \sqsubseteq $E \diamond \exists$ hasDisease.Glaucoma

Design choice #1: Temporal operators from ... ✓ CTL

Design choice #2: Scope of temporal operators

✓ Temporal concepts Temporal roles Temporal axioms

combination tends to be hard

Example: \exists hasDisease.Diabetes \sqsubseteq $E \diamond \exists$ hasDisease.Glaucoma

Design choice #1: Temporal operators from ... ✓ CTL

Design choice #2: Scope of temporal operators

✓ Temporal concepts

Design choice #3: Strength of axioms General TBoxes (GCIs)
✓ Acyclic terminologies (NEW)
✓ No axioms

Example: \exists hasDisease.Diabetes $\sqsubseteq E \diamond \exists$ hasDisease.Glaucoma

Design choice #1: Temporal operators from ... ✓ CTL

Design choice #2: Scope of temporal operators

✓ Temporal concepts

Design choice #3: Strength of axioms

- ✓ Acyclic terminologies (NEW)
- No axioms

Branching-time TDLs: semantics

Temporal dimension: worlds + tree-shaped 'future' relation

Branching-time TDLs: semantics

Temporal dimension: worlds + tree-shaped 'future' relation **DL dimension**: one full DL interpretation per world

Branching-time TDLs: semantics

Temporal dimension: worlds + tree-shaped 'future' relation DL dimension: one full DL interpretation per world

Results

Semantic design choices

Design choice #4: Relation between DL domains

Varying domains

Results

Semantic design choices

Design choice #4: Relation between DL domains

Constant domains \checkmark

Alternative choices: expanding or decreasing domains

Gutiérrez, Jung, Schneider

Temporal DLs with Rigid Roles and Restricted TBoxes

TDLs with rigid roles are usually harder

Branching-time TDLs: a marriage proposal

We study CTL (fragments) $\times ALC, EL$ with

- Temporal operators on concepts only
- Acyclic TBoxes
- Constant domains
- Rigid roles

Decidability and complexity of satisfiability and subsumption

Main motivation

- \mathcal{EL} -based TDLs with rigid roles are hard \rightsquigarrow acyclic TBoxes?
- TDLs based on certain CTL fragments are convex

 $(\hat{\boldsymbol{x}})$

A troublesome marriage?

With general TBoxes, even very 'small' combinations don't work

 $\mathsf{CTL}(\mathsf{E}\bigcirc)\times\mathcal{EL}$ allows concepts of the form

$$C ::= A \mid C \sqcap C \mid \exists r.C \mid \mathsf{E} \bigcirc C$$

Positive, existential, convex - but:

Big, sad theorem

With general TBoxes,

- CTL(EO) $\times \mathcal{EL}$ is undecidable
- $CTL(E\diamondsuit) \times \mathcal{EL}$ is nonelementary [Gutiérrez-Basulto et al. 2014]

Do acyclic TBoxes permit decidable/elementary/tractable TDLs?

Gutiérrez, Jung, Schneider

Temporal DLs with Rigid Roles and Restricted TBoxes

And now ...

Warming up: subsumption without TBoxes

To decide $\models C \sqsubseteq D$, we can

• Construct a canonical model for C

e.g.,
$$E \bigcirc (\exists r.A \sqcap \exists s.B)$$

- Stop the construction after depth |C| + |D|
- Check whether D is satisfied at the root

Theorem

Subsumption with empty TBoxes is in polynomial time for

• CTL(EO)
$$\times \mathcal{EL}$$

•
$$CTL(E\diamondsuit) \times \mathcal{EL}$$

(:)

Combining E \bigcirc and E \diamondsuit

 $\mathsf{CTL}(\mathsf{EO},\mathsf{E}\diamondsuit)\times\mathcal{E}\mathcal{L} \text{ is non-convex:} \models \mathsf{E}\diamondsuit A \sqsubseteq \mathsf{A} \sqcup \mathsf{EO}\mathsf{E}\diamondsuit A$

Still, reuse the previous technique to decide $\models C \sqsubseteq D$:

• Replace every $E \diamondsuit$ in *C* with some $E \bigcirc$ -sequence:

$$C = \dots E \diamondsuit \dots$$
 \rightsquigarrow $C' = \dots \underbrace{E \bigcirc \dots E \circlearrowright}_{k} \dots$

• Suffices to guess $k \leqslant |D|$ (technique by Haase & Lutz)

Theorem

Subsumption with empty TBoxes is coNP-complete for $CTL(EO, E\diamond) \times \mathcal{EL}$.

(:)

(::`

Extend the good news to \mathcal{ALC} ?

Replacing the lightweight component with \mathcal{ALC} yields:

Theorem

Subsumption with empty TBoxes is decidable but nonelementary for $CTL(S) \times ALC$ whenever S contains E \bigcirc or E \diamondsuit .

Lower bound

 $\mathsf{CTL}(\mathsf{E}\bigcirc)\times\mathcal{ALC}\text{ and }\mathsf{CTL}(\mathsf{E}\diamondsuit)\times\mathcal{ALC}\text{ are nonelementary:}$

Transfer from product modal logics K \times K, S4 \times K [Göller et al. 2015]

Upper bound

 $CTL(full) \times ALC$ is decidable:

Quasimodel technique [Wolter & Zakharyaschev 1998]

+ reduction to monadic 2nd-order logic over trees [Gabbay et al. 2003]

Summary for the empty TBox

	empty TBox
$EO \times \mathcal{EL}$	in РТіме
$E \diamond \qquad \times \mathcal{EL}$	in PTIME
$EO, E\diamond \times \mathcal{EL}$	coNP-complete

 $\begin{array}{ll} \mathsf{E}\bigcirc,\ldots\,\times\,\mathcal{ALC} & \text{decidable but} \\ \mathsf{E}\diamondsuit,\ldots\,\times\,\mathcal{ALC} & \text{nonelementary} \end{array}$

The 'bigger picture' for acyclic TBoxes

Via unfolding, we easily get:

		empty TBox	acyclic TBoxes
EO	$ imes \mathcal{EL}$	in PTIME	in ExpTime
E令	$ imes \mathcal{EL}$	in PTIME	in ExpTime
E⊖,E�	$\times \mathcal{EL}$	coNP-complete	in coNExpTime
	100		
E⊖,	X ALC	decidable but	decidable but
⊑∨,	X ALL	nonelementary	noneiementary

The 'bigger picture' for acyclic TBoxes

But we can do better:

	empty TBox	acyclic TBoxes
$EO \times \mathcal{EL}$	in PTIME	in ExpTime \rightsquigarrow in PTime
$E\diamondsuit \times \mathcal{EL}$	in PTIME	in ExpTime → in PTime
$EO, E\diamond \times \mathcal{EL}$	coNP-complete	in coNExpTime
$E\diamond, A\Box \times \mathcal{EL}$	in PSpace	PSPACE-complete
$\begin{array}{l} EO, \dots \times \mathcal{ALC} \\ E\diamondsuit, \dots \times \mathcal{ALC} \end{array}$	decidable but nonelementary	decidable but nonelementary

(:)

$E\diamondsuit$ with acyclic TBoxes

 $CTL(E\diamondsuit) \times \mathcal{EL}$ with acyclic TBoxes is in PTIME.

$\mathcal{EL}\text{-style}$ completion algorithm

 \bullet Build abstract representation of 'minimal' model for ${\cal T}$

 $In \ \mathcal{EL}: \qquad B \in Q(A) \ \Leftrightarrow \ \mathcal{T} \models A \sqsubseteq B$

• Consider $Q(\cdot)$ relative to worlds w = AB

ensure $B' \in Q(A, AB) \Leftrightarrow \mathcal{T} \models A \sqcap E \diamond B \sqsubseteq E \diamond (B \sqcap B')$ $B \in Q(A, AA) \Leftrightarrow \mathcal{T} \models A \sqsubseteq B$

• Complete all $Q(\cdot, \cdot)$ in 3 phases (acyclicity allows separation)

• Apply axioms $A \sqsubseteq C$ 'forwards'

- Incorporate rigid roles & constant domains
- **(a)** Apply axioms $A \sqsubseteq C$ 'backwards'

$E\diamondsuit$ and $A\Box$ with acyclic TBoxes

 $CTL(E\diamond, A\Box) \times \mathcal{EL}$ with acyclic TBoxes is PSPACE-complete.

Lower bound: enforce full binary tree and encode QBF

Upper bound: Resort to a dynamic data structure

• Keep a single trace in memory at any time

- Complete traces in a tableau-like fashion (cf. K, K4)
- Collect subsumers of A: depth-first search through all traces
- Length of traces is limited by a polynomial (acyclicity)

(:)

Replacing E \diamondsuit with E \bigcirc

... requires just a few modifications

Theorem

Subsumption with acyclic TBoxes is

- \bullet in PTIME for CTL(EO) \times \mathcal{EL}
- PSpace-complete for $CTL(E\bigcirc,A\Box) \times \mathcal{EL}$ and $CTL(E\bigcirc,A\bigcirc) \times \mathcal{EL}$

And now ...

Our results

Conclusion

Main goal achieved!

Fragments of CTL \times $\mathcal{E\!L}$ with elementary (polynomial) complexity

		empty TBox	acyclic TBoxes	general TBoxes
EO	$\times \mathcal{EL}$	in PTIME	in PTIME	undecid.
E⇔	$ imes \mathcal{EL}$	in PTIME	in PTIME	nonelem.
E⊖,E♦	$ imes \mathcal{EL}$	CONP-complete	in CONEXPTIME	undecid.
E�,A□	$\times \mathcal{EL}$	in PSPACE	PSPACE-complete	undecid.
	$\times ALC$	decidable but nonelementary		undecid.

 \rightsquigarrow Acyclic TBoxes can help design well-behaved $\mathcal{EL}\textsc{-based}$ TDLs

Byproduct

Complexity of positive fragments of product MLs: K \times K, S4 \times K

Future work

- More expressive fragments e.g., $CTL(E\bigcirc, E\diamondsuit) \times \mathcal{EL}$ (non-convex) over acyclic TBoxes
- Cyclic TBoxes
- Change the temporal component: LTL, μ -calculus?

Future work

- More expressive fragments e.g., $CTL(E\bigcirc, E\diamondsuit) \times \mathcal{EL}$ (non-convex) over acyclic TBoxes
- Cyclic TBoxes
- Change the temporal component: LTL, μ -calculus?

Ευχαριστώ πολύ!

