Lightweight Temporal Description Logics with Rigid Roles and Restricted TBoxes

Víctor Gutiérrez-Basulto Jean Christoph Jung Thomas Schneider

Dept of Mathematics and Computer Science, University of Bremen, Germany

IJCAI 30 July 2015

Vision: Express temporal knowledge in a DL ontology

Applications: KR & reasoning ...

... over temporal conceptual data models ... in the medical domain

Example: 'A patient who has diabetes now may develop certain disorders in the future'

Approach: Extend DLs with point-based temporal operators → Temporal description logics (TDLs) [Schild '93]

The TDL landscape

Previous work $\mathcal{RLC}/\mathcal{EL}/DL$ -Lite + LTL/CTL \rightarrow PTIME ... undecidable [Artale et al. 2007/14, Baader et al. 2008, Gutiérrez-Basulto et al. 2012/14]

Challenges

- Allow rigid roles to capture time-invariant relations
 - e.g.: hasBloodGroup, hasGeneticDisease, ...
- With rigid roles, even $\mathcal{EL} + \diamond$ and $\mathcal{EL} + \mathbb{E} \bigcirc$ are **undecidable**!

Goal

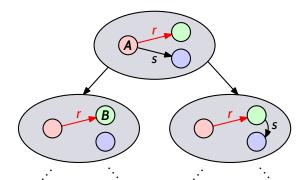
Indentify decidable (and tractable) fragments of \mathcal{EL} +CTL

TDLs in a nutshell: syntax

TDLs are modal description logics - here \mathcal{EL} + CTL:

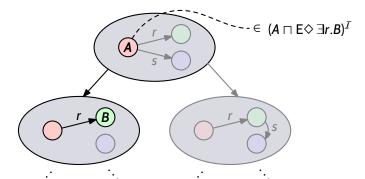
 \mathcal{ALC} + CTL additionally allows \neg (and thus \sqcup, \forall)

Example: \exists hasDisease.Diabetes \sqsubseteq $E \diamond \exists$ hasDisease.Glaucoma


Design choices

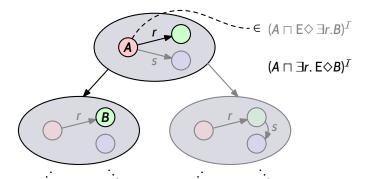
- Temporal operators from CTL
- Temporal concepts
- Acyclic TBoxes (NEW)

Temporal dimension: worlds + tree-shaped 'future' relation

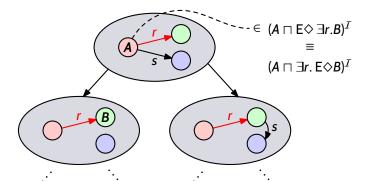

DL dimension: one full DL interpretation per world

- Constant domain assumption
- Rigid roles allowed

Temporal dimension: worlds + tree-shaped 'future' relation DL dimension: one full DL interpretation per world


- Constant domain assumption
- Rigid roles allowed

Temporal dimension: worlds + tree-shaped 'future' relation DL dimension: one full DL interpretation per world


- Constant domain assumption
- Rigid roles allowed

Temporal dimension: worlds + tree-shaped 'future' relation DL dimension: one full DL interpretation per world

- Constant domain assumption
- Rigid roles allowed

Contribution

We study decidability and complexity of subsumption

	Our results		[GJS KR'14]
<i>EL</i> +	empty TBox	acyclic TBoxes	general TBoxes
E O	in PTIME	IN PTIME	undecidable
E◊	in PTIME	IN PTIME	nonelementary
E○, E�	co NP-complete	In CONEXPTIME	undecidable
E◊, A□	IN PSPACE	PS PACE-complete	undecidable
ALC + CTL	decidable but nonelementary		undecidable

 First fragments of &L-based TDLs with rigid roles with elementary (even polynomial) complexity

Gutiérrez, Jung, Schneider

Lightweight Temporal DLs with Rigid Roles and Restricted TBoxes

The 2 main results (out of 4)

Theorem

- $\mathcal{E}\mathcal{L}+\mathsf{E}\diamond$ and $\mathcal{E}\mathcal{L}+\mathsf{E}\bigcirc$ over acyclic TBoxes are in PTIME.
- **2** \mathcal{EL} +{E \diamond , A \square } over acyclic TBoxes is PSpace-complete.

Proof sketch

- Build abstract representation of canonical model of input TBox, using 3-phase algorithm (thanks to acyclicity)
- Opper bound:
 - $\bullet~$ abstract representation blows up \leadsto consider single traces
 - complete the traces one at a time (think tableaux)
 - polynomial size bound thanks to acyclicity

Lower bound: reduction from QBF

Conclusion

- ✓ Acyclic TBoxes can help design well-behaved \mathcal{EL} -based TDLs
- ✓ \mathcal{EL} + CTL fragments of elementary (polynomial) complexity
- ✓ Byproduct: complexity results for positive fragments of product modal logics K×K, S4×K
- ⑦ More expressive fragments e.g., &L+{E○, E◊} (non-convex) over acyclic TBoxes
- ? Cyclic TBoxes
- ? Change the temporal component: LTL, μ -calculus?

Conclusion

- ✓ Acyclic TBoxes can help design well-behaved \mathcal{EL} -based TDLs
- ✓ \mathcal{EL} + CTL fragments of elementary (polynomial) complexity
- ✓ Byproduct: complexity results for positive fragments of product modal logics K×K, S4×K
- ⑦ More expressive fragments e.g., &L+{E○, E◊} (non-convex) over acyclic TBoxes
- ? Cyclic TBoxes
- ? Change the temporal component: LTL, μ -calculus?

Thank you.