

Conservative Extensions in Expressive Ontology Languages

Thomas Schneider

AG Theorie der künstlichen Intelligenz (TdKI), Universität Bremen

Joint work with

Jean Christoph Jung, Carsten Lutz, Mauricio Martel, Frank Wolter

What is a conservative extension?

Fundamental notion in mathematical logic to relate theories

Useful in computer science:

- for formalising modularity in software specification
- for composing subgoals in higher-order theorem proving
- for formalising various notions in ontology engineering

Remarkably positive results for description logics and modal logics:

- \checkmark turn out to be decidable in many relevant cases
- ✓ often have natural and insightful model-theoretic characterisations

Natural question: How far do these extend? To FO^2 ? Guarded fragment? Existential rules (aka Datalog[±])?

FO fragments

Horn-DLs

Outlook

Conservative extensions for ontology design

W3C Web Ontology Language OWL

- \bullet \ldots is based on an expressive description logic ($\mathcal{SROIQ})$
- ... admits the design of ontologies, e.g., SNOMED CT, NCI Thesaurus, FMA (100,000s of logical axioms)
- Standard reasoning problems (e.g., SAT) well-understood reasoners: Racer, FaCT++, Pellet, HermiT, Konclude, ...

Challenges for designing/using large ontologies:

- Navigation, comprehension
- Efficient (incremental) reasoning
- Efficient reuseEfficient reuse
- Versioning and more . . .

FO fragments

Horn-DLs

A reuse scenario

Assume that ...

- you want to buy a subset of a medical ontology ${\cal O}$ from me that covers the subdomain of, say, diseases
- \bullet I offer two subsets \mathcal{M}_1 and \mathcal{M}_2
- Q: which one do you choose?
- A: the one that "knows more" about diseases!
- Q: which is the best subset I can offer?
- A: a subset $\mathcal{M} \subseteq \mathcal{O}$ that is
 - ullet ... indistinguishable from ${\mathcal O}$ w.r.t. all terms relevant for diseases
 - ... as small as possible

signature Σ

Inseparability, Σ -entailment, conservativity

Let φ_1, φ_2 be sentences and Σ a signature (set of symbols).

•
$$\varphi_1 \Sigma$$
-entails φ_2 , written $\varphi_1 \models_{\Sigma} \varphi_2$,
if $\varphi_2 \models \psi$ and $sig(\psi) \subseteq \Sigma$ implies $\varphi_1 \models \psi$.

• φ_1 and φ_2 are Σ -inseparable, written $\varphi_1 \equiv_{\Sigma} \varphi_2$, if $\varphi_1 \models_{\Sigma} \varphi_2$ and $\varphi_2 \models_{\Sigma} \varphi_1$.

• $\varphi_1 \wedge \varphi_2$ is a conservative extension of φ_1 if $\varphi_1 \equiv_{\Sigma} \varphi_1 \wedge \varphi_2$ for $\Sigma = sig(\varphi_1)$.

In the reuse scenario, you should want to

▶ buy some $\mathcal{M} \subseteq \mathcal{O}$ with $\mathcal{M} \equiv_{\Sigma} \mathcal{O}$ $(\mathcal{M} \models_{\Sigma} \mathcal{O} \text{ suffices})$

MO

Horn-DLs

Outlook

A closer look at Σ -entailment

 $\Sigma\text{-entailment}$ is the most general notion of the previous 3.

Two variants:

- Deductive: $\varphi_1 \Sigma$ -entails φ_2 if $\varphi_2 \models \psi$ and $sig(\psi) \subseteq \Sigma$ implies $\varphi_1 \models \psi$.
- Model-theoretic: $\varphi_1 \Sigma$ -entails φ_2 if every model of φ_1 can be extended to a model of φ_2 without changing the interpretation of the Σ -symbols.

Model-theoretic Σ -entailment is **highly undecidable** already for a **very** small FO fragment, that is, the description logic \mathcal{EL} :

$$\forall x \varphi(x)$$
 with $\varphi(x)$ built from true, \land , $\exists y(Rxy \land \varphi(y))$

and when $\Sigma = {
m sig}(arphi_1)$.

[Konev et al., AIJ 2013]

Overview	FO fragments	Horn-DLs	Outlook
Examples			

- $\varphi_1 \Sigma$ -entails φ_2 if $\varphi_2 \models \psi$ and $sig(\psi) \subseteq \Sigma$ implies $\varphi_1 \models \psi$.
- Examples in the guarded fragment GF of FO (with equality): $\varphi ::= x = y \mid \overline{R\overline{x} \mid \neg \varphi \mid \varphi \land \varphi \mid \exists \overline{y} (R\overline{xy} \land \varphi(\overline{xy}))$
 - $\varphi_1 = \forall x \exists y Rxy \not\models_{\{R\}} \varphi_2 = \forall x ((\exists y Rxy \land Ay) \land (\exists y Rxy \land \neg Ay)))$ witnessed by $\psi = \exists x \exists y (Rxy \land x \neq y)$
 - $\varphi'_1 = \forall x \exists y (Rxy \land x \neq y) \models_{\{R\}} \varphi_2$

Choice of separating logic essential: $\varphi'_1 \not\models_{\{R\}} \varphi_2$ in FO

Overview	FO fragments	Horn-DLs	Outlook
Overview			
1 An overview of	Σ-entailment		

© Arnold Paul, Wikimedia, CC BY-SA 3.0

- 2 Σ -entailment in FO fragments
- 3 Query entailment in expressive Horn description logics

Overview	FO fragments	Horn-DLs	Outlook
Next			

2 Σ-entailment in FO fragments

3 Query entailment in expressive Horn description logics

4 Outlook

Σ -entailment in modal and description logics

Basic description logic \mathcal{ALC} (\approx multi-modal logic K):

 $\forall x \varphi(x)$ with $\varphi(x)$ built from true, \neg , \land , $\exists y(Rxy \land \varphi(y))$

Theorem (Lutz & Wolter 2011, "sloppy version")

 $\varphi_1 \models_{\Sigma} \varphi_2$ iff every model of φ_1 can be extended to a model of φ_2 , up to Σ -bisimulation.

(\doteq model-theoretic Σ -entailment up to "what the logic can express")

Enables decision procedure using (amorphous) alternating tree automata

Problem is **2ExpTime-complete** (SAT in ALC: ExpTime); smallest witnesses are triple exponential in the worst case!

Similar characterisations for many other description and modal logics

Overview	FO fragments	Horn-DLs	Outlook
Σ-entailmen	t bevond ALC		

- \checkmark Decidable and 2ExpTime-complete, too: extensions of \mathcal{ALC} with
 - inverse roles (aka past modalities) $\exists y (\textit{Ryx} \land \varphi(y))$
 - counting (aka graded modalities)
- **X** Undecidable:

combination of the above two with nominals x = c

[Lutz et al., IJCAI 2007]

Description logic \mathcal{EL} ("half \mathcal{ALC} "):

 $\forall x \varphi(x)$ with $\varphi(x)$ built from true, \land , $\exists y(Rxy \land \varphi(y))$

- analogous model-theoretic characterisation via simulations ("half-bisimulations")
- ExpTime-complete (SAT: in PTime)
- Restriction to acyclic terminologies: in **PTime** (deductive **and** model-theoretic variant)

[Lutz et al., KR 2012; Konev et al., JAIR 2012 & AIJ 2013]

Further variants of Σ -entailment

Σ-query entailment / **Σ**-query inseparability: separating formulas ψ are queries

Relevant for ontology-based data access (OBDA) aka ontology-mediated querying (OMQ)

Various notions of Σ -query entailment obtained by ...

- varying the query language: CQs, UCQs, PEQs, C2RPQs, ...
- allowing whether φ₁, φ₂ contain data or not (if not, then relative to all possible instances)

Actively studied for basic and lightweight DLs (we'll get back later)

Relationship with modularity of ontologies

Back to the reuse scenario: Given ontology \mathcal{O} and signature Σ , you want to buy a subset $\mathcal{M} \subseteq \mathcal{O}$ such that

(a) $\mathcal{M} \equiv_{\Sigma} \mathcal{O}$ and

(b) ${\mathcal M}$ small (possibly minimal with (a)): a module of ${\mathcal O}$ for Σ

Previous results: it is hard to decide whether a given $\mathcal{M}\subseteq \mathcal{O}$ is a module

There are tractable approximations guaranteeing (a) but not (b), e.g., locality-based modules [Cuenca Grau et al., JAIR 2008]

Outlook

Relationship with uniform Σ -interpolants

Let φ be a formula and $\Sigma \subseteq sig(\varphi)$.

Formula ψ is a uniform $\pmb{\Sigma}\text{-interpolant}$ of φ if

1 sig
$$(\psi) \subseteq \Sigma$$
,
2 $\psi \equiv_{\Sigma} \varphi$

Relevant for forgetting:

eliminate non- Σ predicates while preserving Σ -consequences

Applications:

- Ontology reuse
- Predicate hiding
- Ontology summary

Overview	FO fragments	Horn-DLs	Outlook
Next			

2 Σ -entailment in FO fragments

3 Query entailment in expressive Horn description logics

4 Outlook

Guarded Fragment and FO²

GF^k , FO^k : *k*-variable fragment of GF or FO

Theorem

 $\Sigma\text{-entailment},\ \Sigma\text{-inseparability},\ \text{and}\ \text{conservative}\ \text{extensions}\ \text{are}$

 undecidable in every logic that contains GF³ or FO² (such as the guarded negation fragment GNF);

2ExpTime-complete in GF².

(2) is based on a model-theoretic characterisation, but it is **much more complex** than, e.g., for \mathcal{ALC} .

Overview	FO fragments	Horn-DLs	Outlook
Undecidability			

GF³

• Reduction from the halting problem of 2-register machines

• Crucial:

 φ_2 uses ternary guard that is not in $\pmb{\Sigma},$ thus breaks guardedness

• Little expressive power needed for separation: \mathcal{ALC} suffices

FO²

- Reduction from tiling problem
- Little expressive power needed in φ_1 and φ_2 : \mathcal{ALC} suffices
- Crucial:

ability to use full FO^2 expressive power in witnessing formula

Overview	FO fragments	Horn-DLs	Outlook
Characterisation			

Recall that in \mathcal{ALC} :

Theorem (Lutz & Wolter 2011, "sloppy version")

 $\varphi_1 \models_{\Sigma} \varphi_2$ iff every model of φ_1 can be extended to a model of φ_2 , up to Σ -bisimulation.

Q: Can't we simply replace bisimulations with GF^2 -bisimulations?

A: No!
$$\varphi_1 = \exists x A x \land \forall x (A x \to \exists y (R x y \land A y)) \quad \Sigma = \{R\}$$

"There exists a path $\bullet R \to \bullet R$ "
 $\varphi_2 = \varphi_1 \land \exists x (A x \land B x) \land \forall x (B x \to \exists y (R y x \land B y)))$
"There exists a path $\bullet R \to \bullet R$ "

Then $\varphi_1 \models_{\Sigma} \varphi_2$, but Σ -GF²-bisimulations fail.

Overv	ew FO fragments	Horn-DLs	Outlook
Bo	unded bisimulations		
	<i>k</i> -bounded bisimulations: $a \sim_{\Sigma}^{k} b$ iff <i>a</i> and <i>b</i> are Σ -GF ² -bisimilar	up to depth <i>k</i>	
	Theorem		
	$\varphi_1 \models_{\Sigma} \varphi_2$ iff for every model \mathfrak{A} of φ_1 c and every $k \ge 0$, there is a model \mathfrak{B} of φ	of finite outdegree p_2 such that:	
	• for every $a \in A$, there is $b \in B$ with	$a\sim_{\Sigma} b$ and	
	a for every $b \in B$, there is $a \in A$ with	$a\sim^{\pmb{k}}_{\Sigma} b.$	
		-	

But it is **not so easy** to deal with **bounded bisimulations** when using tree automata or related techniques!

0						
()	V	ρ	n	P1	M	
\sim	Y	~	. v	~		

Horn-DLs

Outlook

"Marker-delimited" bisimulations

Substitute for k-bounded bisimulation between \mathfrak{A} and \mathfrak{B} :

- Decorate \mathfrak{A} with unary predicate X such that
 - on every infinite path there are infinitely many X
 - the distance between two X is $\geq k$
- Break off bisimulations at second X seen (both back and forth)

Does not travel exactly k steps, but we need it for every k anyway

Problem: even in forest models, decoration does not exist when k > 2Solution: we need bounded bisimulations only when travelling upwards, but not when travelling downwards.

Then the distance between markers only matters on upwards paths

Horn-DLs

Outlook

Automata-friendly characterisation

Theorem

 $\varphi_1 \models_{\Sigma} \varphi_2$ iff for every forest model \mathfrak{A} of φ_1 of finite outdegree and every marking $X \subseteq A$, there is a model \mathfrak{B} of φ_2 such that:

- $\ \, {\rm I\hspace{-.4ex}0} \ \, {\rm for \ \, every} \ \, a \in A, \ \, {\rm there \ \, is} \ \, b \in B \ \, {\rm with} \ \, a \sim_{\Sigma} b \quad {\rm and} \ \,$
- **2** for every $b \in B$, there is $a \in A$ with $a \sim_{\Sigma}^{X} b$.

downwards: unbounded upwards: stop after seeing second X

Outlook

Decision procedure based on automata

2ATAs: 2-way alternating tree automata \mathcal{A}

- Input: non-empty node-labelled tree (unlimited depth, unbounded finite outdegree)
- Transitions:
 - $\wedge, \lor\mbox{-formulas}$ with atoms "send copy of $\mathcal A$ in state q to \dots "
 - current node
 - the predecessor node (if exists)
 - some or all successor node(s)

Theorem

Emptiness for 2ATAs can be solved in time exponential in |Q|.

Proof via reduction to 2ATAs on (exactly) *k*-ary trees; their emptiness problem: ExpTime-complete [Vardi, ICALP 1998]

Decision procedure based on automata

Construct 2ATA \mathcal{A} such that $L(\mathcal{A}) = \emptyset$ iff $\varphi_1 \models_{\Sigma} \varphi_2$

with $|{\it Q}|$ polynomial in $|\varphi_1|$ and exponential in $|\varphi_2|$

Input: labelled tree representing a forest structure; labels contain information on unary/binary predicates and markers X

 ${\cal A}$ consists of three 2ATAs that check whether \ldots

- \bullet the input tree represents a model ${\mathfrak A}$ of φ_1
- the marking is correct
- there is $\mathfrak{B} \models \varphi_2$ satisfying the conditions from the theorem:

2 for every
$$b \in B$$
, there is $a \in A$ with $a \sim_{\Sigma}^{X} b$.

(\mathfrak{B} is constructed "locally", memorising only guarded 1-/2-types)

Overview

Harvest

FO fragments

Horn-DLs

Outlook

Theorem

In GF², $\varphi_1 \models_{\Sigma} \varphi_2$ can be decided in time single exponential in $|\varphi_1|$ and double exponential in $|\varphi_2|$. The problem is 2ExpTime-complete.

(2ExpTime lower bound via ATM reduction)

Corollary:

The same holds for Σ -inseparability, conservative extensions, and recognising uniform Σ -interpolants.

Overview	FO fragments	Horn-DLs	Outlook
Next			

(2) Σ -entailment in FO fragments

3 Query entailment in expressive Horn description logics

4 Outlook

Horn-DLs

Outlook

Ontology-mediated querying

Idea:

- \bullet Database stores data ABox ${\cal A}_{\mbox{\scriptsize A}}$, set of ground facts
- Ontology stores domain knowledge TBox \mathcal{T} , think $\forall x \varphi(x)$
- Queries $q(\overline{x})$ are answered over knowledge base (KB) (\mathcal{T}, \mathcal{A})

Standard reasoning task query answering:

given $(\mathcal{T}, \mathcal{A}), q(\overline{x}), \overline{a}, \text{ does } (\mathcal{T}, \mathcal{A}) \models q(\overline{a}) \text{ hold}?$

Query answering is well-understood

- for lightweight and "full Boolean" description logics
- and query languages CQs, UCQs, and sometimes PEQs, C2RPQs

Σ -query entailment between TBoxes

As before, relevant for module extraction, versioning, etc.:

Let $\mathcal{T}_1, \mathcal{T}_2$ be TBoxes, Γ, Σ signatures, and \mathcal{Q} a query language. \mathcal{T}_1 (Γ, Σ)-query entails \mathcal{T}_2 , written $\mathcal{T}_1 \models_{\Gamma, \Sigma}^{\mathcal{Q}} \mathcal{T}_2$, if for all Γ -ABoxes \mathcal{A} , Σ -queries $q(\overline{x}) \in \mathcal{Q}$ and tuples \overline{a} : $(\mathcal{T}_2, \mathcal{A}) \models q(\overline{a})$ implies $(\mathcal{T}_1, \mathcal{A}) \models q(\overline{a})$

Inseparability and conservative extensions are again special cases.

Variant Σ -query entailment between KBs: $(\mathcal{T}_1, \mathcal{A}_1) \models_{\Gamma, \Sigma}^{\mathcal{Q}} (\mathcal{T}_2, \mathcal{A}_2)$

An overview of Σ -query entailment

Analogous model-theoretic characterisations exist for the KB variant

- \bullet in $\mathcal{ALC}:$ via homomorphisms between tree-shaped models
- \bullet in \mathcal{EL} and Horn- \mathcal{ALC} : homomorphisms btn. canonical models

Useful for the TBox variant only if witness ABoxes can be restricted

Theorem (Botoeva et al., IJCAI'16)

 Σ -CQ entailment is **undecidable** for \mathcal{ALC} TBoxes and **2ExpTime-complete** for \mathcal{ALC} KBs.

An overview of Σ -query entailment

In \mathcal{EL} and Horn- $\mathcal{ALC},$ the characterisations can be used to show

Theorem (Lutz & Wolter, JSC 2010; Botoeva et al., AIJ 2016)

- $\Sigma\text{-}CQ$ entailment is \ldots
 - \bullet ExpTime-complete for $\mathcal{EL}\text{-}\mathsf{TBoxes}$ and in PTime for $\mathcal{EL}\text{-}\mathsf{KBs}$
 - 2ExpTime-complete for Horn-*ALC* TBoxes and ExpTime-complete for Horn-*ALC* KBs

Further results for ...

- DL-Lite dialects
- rooted (U)CQs
- data complexity of the KB variant
- $\mathcal{T}_1, \mathcal{T}_2$ of different expressivity (e.g., \mathcal{ALC} and $\mathcal{EL})$
- \rightsquigarrow Recent survey [Botoeva et al., RW 2016]

30

Beyond \mathcal{EL} and Horn- \mathcal{ALC}

Goal: study $\Sigma\text{-}query$ entailment for Horn-DLs with

(\mathcal{I}) inverse roles: $\exists y (Ryx \land Ay)$

and more features:

 (\mathcal{F}) functionality: $\forall x_1x_2y (Rx_1y \land Rx_2y \rightarrow x_1 = x_2)$

(\mathcal{H}) role hierarchies: $\forall xy (Rxy \rightarrow Sxy)$

and establish

- model-theoretic characterisations
- decidability/complexity

Horn-DLs

Outlook

Model-theoretic characterisation

In \mathcal{EL} :

Theorem (Lutz & Wolter 2010, "sloppy version")

 $\mathcal{T}_1 \models_{\Gamma,\Sigma}^{\mathsf{CQ}} \mathcal{T}_2$ iff for all Γ -ABoxes \mathcal{A} there is a Σ -homomorphism from the the canonical model of $(\mathcal{T}_2, \mathcal{A})$ to that of $(\mathcal{T}_1, \mathcal{A})$.

Fails in the presence of inverse roles for very similar reasons: infinite backward path not embeddable into infinite forward path!

Overview	FO fragments	Horn-DLs	Outlook
Bounded homom	orphisms		

k-bounded homomorphisms:

 $\mathcal{I}_1 \rightarrow^k_{\Sigma} \mathcal{I}_2$ iff \mathcal{I}_1 embeds homomorphically into \mathcal{I}_2 up to depth k

Shorthand for the canonical model of $(\mathcal{T}, \mathcal{A})$: $\mathcal{I}_{\mathcal{T}, \mathcal{A}}$

Characterisation for Horn-DLs with inverse roles:

Theorem

$$\mathcal{T}_1 \models_{\Gamma \Sigma}^{\mathsf{CQ}} \mathcal{T}_2$$
 iff for all Γ -ABoxes \mathcal{A} and all $k \geq 0$:

$$\mathcal{I}_{\mathcal{T}_2,\mathcal{A}} \rightarrow^{k}_{\Sigma} \mathcal{I}_{\mathcal{T}_1,\mathcal{A}}$$

Again, bounded homomorphisms are difficult for tree automata!

Horn-DLs

Outlook

Automata-friendly characterisation

Lemma (sloppy): it suffices to consider tree-shaped ABoxes and CQs.

Theorem

- $\mathcal{T}_1 \models_{\Gamma,\Sigma}^{\mathsf{CQ}} \mathcal{T}_2$ iff for all tree-shaped Γ -ABoxes \mathcal{A} :
- $(1) \ \ \text{``the Σ-connected part of $\mathcal{I}_{\mathcal{T}_2,\mathcal{A}}"$} \to_{\Sigma} \ \ \mathcal{I}_{\mathcal{T}_1,\mathcal{A}} \ \ \text{and}$
- (2) For every $\Sigma\text{-subtree}\ \mathcal I$ in $\mathcal I_{\mathcal T_2,\mathcal A}$, one of the following holds:
 - (a) $\mathcal{I} \to_{\Sigma} \mathcal{I}_{\mathcal{T}_1, \mathcal{A}}$
 - (b) there is a $\Sigma\text{-subtree}$ of \mathcal{I}_2 rooted in the ABox part such that $\forall k\geq 0$, we have $\mathcal{I}\rightarrow^k_\Sigma\mathcal{I}'$
 - (1) and (2a) use unbounded homomorphisms
 → decide via 2ATAs with counting
 - (2b) uses bounded homomorphisms
 → decide via mosaic procedure; "hard-code" into automaton

Overview

Harvest

FO fragments

Horn-DLs

Outlook

Theorem

In \mathcal{ELI} ...Horn- \mathcal{ALCHIF} , $\mathcal{T}_1 \models_{\Gamma,\Sigma}^{CQ} \mathcal{T}_2$ can be decided in time single exponential in $|\mathcal{T}_1|$ and double exponential in $|\mathcal{T}_2|$. The problem is 2ExpTime-complete.

Corollary:

The same holds for Σ -inseparability and conservative extensions.

Overview	FO fragments	Horn-DLs	Outlook
Next			

2 Σ-entailment in FO fragments

3 Query entailment in expressive Horn description logics

Overview	FO fragments	Horn-DLs	Outlook
Outlook			

Deductive Σ -entailment in FO fragments:

What happens if we add

- guarded counting quantifiers,
- transitive relations or equivalence relations,
- fixed points?

Finite-model version of conservative extensions?

Σ -query entailment:

Extension to Datalog^{\pm} languages (aka existential rules), in particular to frontier-guarded TGDs?

Overview

FO fragments

Horn-DLs

Outlook

Thank you.

Thomas Schneider

Conservative Extensions in Expressive Ontology Languages

38 🔮

An example

 $\mathcal{T}_1 \text{ (in FO notation): } \forall x \left(\mathsf{PhdStud}(x) \to \exists y \left(\mathsf{adv}(y, x) \land \mathsf{Prof}(y) \right) \right)$ "every PhD student is advised by some prof"

$$egin{array}{rcl} \mathcal{T}_2 &=& \mathcal{T}_1 & \wedge & orall x_1 x_2 y \left(\mathsf{adv}(x_1,y) \wedge \mathsf{adv}(x_2,y) o x_1 = x_2
ight) \ ``everyone \ \mathsf{has} \, \leq 1 \ \mathsf{advisor''} \end{array}$$

$$\Gamma = \{\mathsf{PhdStud}, \mathsf{adv}\}, \quad \Sigma = \{\mathsf{Prof}\}$$

 $\mathcal{T}_1 \not\models_{\Gamma, \Sigma}^{\mathsf{CQ}} \mathcal{T}_2$:

- Γ -ABox $\mathcal{A} = \{PhdStud(john), adv(mary, john)\}$
- Σ -CQ q(a) = Prof(mary)
- $(\mathcal{T}_2, \mathcal{A}) \models \mathsf{Prof}(\mathsf{mary})$ but $(\mathcal{T}_1, \mathcal{A}) \not\models \mathsf{Prof}(\mathsf{mary})$

Uniform interpolation

Remember: ψ is a uniform Σ -interpolant of φ if

•
$$\operatorname{sig}(\psi) \subseteq \Sigma$$

 $\textcircled{2} \psi \equiv_{\Sigma} \varphi$

Uniform interpolant recognition problem (UIRP): Given φ, ψ, Σ , is ψ a uniform Σ -interpolant of φ ?

Easy reductions: to deciding Σ -entailment, "backwards" from deciding conservative extensions

Corollary

UIRP is **2ExpTime-complete in GF**² and **undecidable** in all extensions of FO² or GF³ with Craig interpolation, e.g., **GNF**.

There is no decidable extension of FO^2 and of GF^3 that has effective uniform interpolation.