

Querying the Unary Negation Fragment with Regular Path Expressions

Jean Christoph Jung Carsten Lutz Mauricio Martel *Thomas Schneider*

AG Theorie der künstlichen Intelligenz, Universität Bremen Funded by ERC Consolidator Grant 647289 CODA and DFG grant SCHN 1234/3

ICDT 2018 27 March

Ontology-mediated query answering

Ontology-mediated query (OMQ):

triple $Q = (\mathcal{O}, \Sigma, q)$ with Σ the data signature

OMQ evaluation:

Given Q and D over Σ , does $D \cup \mathcal{O} \models q$ hold?

OMQ containment $Q_1 \subseteq Q_2$:

Given $Q_1 = (\mathcal{O}_1, \Sigma, q_1)$ and $Q_2 = (\mathcal{O}_2, \Sigma, q_2)$,

does $D \cup \mathcal{O}_1 \models q_1$ imply $D \cup \mathcal{O}_2 \models q_2$ for all D over Σ ?

Ontology-mediated query answering

Typical ontology languages:

- Description logics (DLs)
- \bullet Languages based on existential rules (aka Datalog+/-)

Typical query languages: CQs, UCQs

OMQ evaluation in 2ExpTime (data complexity: coNP)

We study: an expressive language that subsumes

- popular ontology languages (including transitive roles and/or regular expressions on roles)
- popular query languages
 (U)CQs, (U)C2RPQs

We study: an expressive language that subsumes

- popular ontology languages (including transitive roles and/or regular expressions on roles)
- popular query languages
 (U)CQs, (U)C2RPQs

 $\mathsf{UNFO}^{\mathsf{reg}} = \mathsf{UNFO} + \mathsf{regular}$ path expressions on binary relations

$$\varphi ::= P(\bar{\mathbf{x}}) \mid \qquad x = y \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \exists x \varphi \mid \neg \varphi(x)$$

We study: an expressive language that subsumes

- popular ontology languages (including transitive roles and/or regular expressions on roles)
- popular query languages
 (U)CQs, (U)C2RPQs

UNFO^{reg} = UNFO + regular path expressions on binary relations $\varphi ::= P(\bar{\mathbf{x}}) | \mathbf{E}(\mathbf{x},\mathbf{y}) | x = y | \varphi \land \varphi | \varphi \lor \varphi | \exists x \varphi | \neg \varphi(x)$ $E ::= R | R^{-} | E \cup E | E \cdot E | E^{*} | \varphi(x)?$

We study: an expressive language that subsumes

- popular ontology languages (including transitive roles and/or regular expressions on roles)
- popular query languages
 (U)CQs, (U)C2RPQs

UNFO^{reg} = UNFO + regular path expressions on binary relations $\varphi ::= P(\bar{\mathbf{x}}) | \mathbf{E}(\mathbf{x},\mathbf{y}) | x = y | \varphi \land \varphi | \varphi \lor \varphi | \exists x\varphi | \neg \varphi(x)$ $E ::= R | R^{-} | E \cup E | E \cdot E | E^{*} | \varphi(x)?$

UC2RPQ = UCQ with atoms E(x, y) as above (UC2RPQs as tests) "union of conjunctive 2-way regular path queries"

UNFO^{reg} can express ...

• many popular MLs and DLs

(including transitive roles and/or regular expressions on roles)

• C2RPQs ~> queries are for free

OMQ evaluation and containment reduce to (un)satisfiability:

UNFO^{reg} can express ...

• many popular MLs and DLs

(including transitive roles and/or regular expressions on roles)

• C2RPQs \rightsquigarrow queries are for free

OMQ evaluation and containment reduce to (un)satisfiability:

• $D \cup \mathcal{O} \models q$ iff $\mathcal{O} \land D \land \neg q$ is unsatisfiable

UNFO^{reg} can express ...

• many popular MLs and DLs

(including transitive roles and/or regular expressions on roles)

• C2RPQs \rightsquigarrow queries are for free

OMQ evaluation and containment reduce to (un)satisfiability:

- $D \cup \mathcal{O} \models q$ iff $\mathcal{O} \land D \land \neg q$ is unsatisfiable
- $(\mathcal{O}, \Sigma_{\mathsf{full}}, q_1) \subseteq (\mathcal{O}, \Sigma_{\mathsf{full}}, q_2)$ iff $\mathcal{O} \land q_1 \land \neg q_2$ is unsatisfiable

Our results

Theorem 1

- (1) Satisfiability in UNFO^{reg} is 2ExpTime-complete.
- (2) Model checking is $P^{NP[O(\log^2 n)]}$ -complete.

Same complexity as for UNFO [ten Cate & Segoufin, LMCS'13].

Our results

Theorem 1

(1) Satisfiability in UNFO^{reg} is 2ExpTime-complete.

```
(2) Model checking is P^{NP[O(\log^2 n)]}-complete.
```

Same complexity as for UNFO [ten Cate & Segoufin, LMCS'13].

Theorem 2

For OMQs with with \mathcal{O} in UNFO^{reg} and q UC2RPQ,

- (3) evaluation is 2ExpTime-compl. (combined), coNP-compl. (data);
- (4) containment w.r.t. Σ_{full} is 2ExpTime-complete.

2ExpTime upper bounds follow from Theorem 1 (1). All lower bounds inherited from (ALCI, CQ).

[Lutz IJCAR'08; Calvanese et al. KR'06]

Overview

Results for Satisfiability

2 Results for OMQ Evaluation & Containment

Results for Satisfiability

Schedule

We want to show:

Lemma 3

Satisfiability in UNFO^{reg} is in 2ExpTime.

Previous approach for UNFO

Reduction to μ -calculus [ten Cate & Segoufin, LMCS'13]

X Does not transfer to UNFO^{reg}

Our approach

- ullet show tree-like model property: treewidth \leq width(arphi)
- represent tree-like models via labelled trees
- characterise satisfaction of C2RPQs in labelled trees via tree-shaped witnesses
- build automata that accept the tree-like models of the input fma.

١U)

Normal form

UNFO^{reg} formulas in normal form:

- connected C2RPQs with = 1 free variable and normal UNFO^{reg} formulas $\psi(x)$? as tests
- $\neg \varphi(x) \quad \varphi(x) \lor \psi(x) \quad \exists x \varphi(x)$

Lemma 4

Every UNFO^{reg} sentence can be transformed into an equivalent normal UNFO^{reg} sentence φ' in exponential time.

Querying

- $\bullet \ |\varphi'|$ is exponential in $|\varphi|$
- Width of φ' (max. number of variables in a sub-C2RPQ): linear!

Tree-like structures

Tree-like structure of width *m*: pair $\mathfrak{T} = (T, bag)$ where

- T is a tree
- bag(w), w ∈ T: finite structure of domain size ≤ m such that for every element a, the set of nodes containing a is connected

Example

corresponding struc. $\mathfrak{A}_{\mathfrak{T}}$:

Tree-like structures

Tree-like structure of width *m*: pair $\mathfrak{T} = (T, bag)$ where

- T is a tree
- bag(w), w ∈ T: finite structure of domain size ≤ m such that for every element a, the set of nodes containing a is connected

Example

corresponding struc. $\mathfrak{A}_\mathfrak{T}$:

 $\mathfrak{A}_{\mathfrak{T}} \models \exists x RS^*R(x,x)$

Tree-like structures

Tree-like structure of width *m*: pair $\mathfrak{T} = (T, bag)$ where

- T is a tree
- bag(w), w ∈ T: finite structure of domain size ≤ m such that for every element a, the set of nodes containing a is connected

Example

Type-decorated tree-like structures

Fix UNFO^{reg} formula φ_0 .

Replace regular atoms E(x, y) with atoms $\mathcal{A}(x, y)$, \mathcal{A} an NFA.

Type-decorated tree-like structure (TDTLS) for φ_0 : pair (\mathfrak{T}, τ) s.t.

- \mathfrak{T} is a tree-like structure
- au assigns a 1-type $t(x) \subseteq cl(\varphi_0)$ to each element in $\mathfrak{A}_{\mathfrak{T}}$

Satisfaction for regular atoms $(\mathfrak{T}, \tau) \models \mathcal{A}(a, b)$ is defined via "looking up" tests $\varphi(a)$? directly in $\tau(a)$

Labelling τ must be "globally" consistent with all $\exists\text{-}$ and C2RPQ-subformulas of $\varphi_0\text{:}$

A TDTLS is proper if

- (1) $\exists x \, \varphi(x) \in \tau(a)$ are witnessed by $\varphi(x) \in \tau(b)$ for some b
- (2) C2RPQs in $\tau(a)$ are witnessed by homomorphisms into (\mathfrak{T}, τ)

Labelling τ must be "globally" consistent with all $\exists\text{-}$ and C2RPQ-subformulas of φ_0 :

A TDTLS is proper if

- (1) $\exists x \varphi(x) \in \tau(a)$ are witnessed by $\varphi(x) \in \tau(b)$ for some b
- (2) C2RPQs in $\tau(a)$ are witnessed by homomorphisms into (\mathfrak{T}, τ)

Lemma 5 (Tree-like model property of UNFO^{reg})

Let φ_0 be a normal UNFO^{reg} sentence.

```
\varphi_0 is satisfiable iff there is a proper TDTLS (\mathfrak{T}, \tau) for \varphi_0 s.t. \varphi_0 \in \tau(a) for some a.
```


Labelling τ must be "globally" consistent with all $\exists\text{-}$ and C2RPQ-subformulas of $\varphi_0\text{:}$

A TDTLS is proper if

- (1) $\exists x \varphi(x) \in \tau(a)$ are witnessed by $\varphi(x) \in \tau(b)$ for some b
- (2) C2RPQs in $\tau(a)$ are witnessed by homomorphisms into (\mathfrak{T}, τ)

Lemma 5 (Tree-like model property of UNFO^{reg}) Let φ_0 be a normal UNFO^{reg} sentence of size n. φ_0 is satisfiable iff there is a proper TDTLS (\mathfrak{T}, τ) for φ_0 of outdegree $O(n^2)$ s.t. $\varphi_0 \in \tau(a)$ for some a.

Labelling τ must be "globally" consistent with all $\exists\text{-}$ and C2RPQ-subformulas of $\varphi_0\text{:}$

A TDTLS is proper if

- (1) $\exists x \, \varphi(x) \in \tau(a)$ are witnessed by $\varphi(x) \in \tau(b)$ for some b
- (2) C2RPQs in $\tau(a)$ are witnessed by homomorphisms into (\mathfrak{T}, τ)

Lemma 5 (Tree-like model property of UNFO^{reg}) Let φ_0 be a normal UNFO^{reg} sentence of size *n* and width *m*. φ_0 is satisfiable iff there is a proper TDTLS (\mathfrak{T}, τ) for φ_0 of outdegree $O(n^2)$ and width $\leq m$ s.t. $\varphi_0 \in \tau(a)$ for some *a*.

Automata-based decision procedure

Use 2-way alternating tree automata (2ATAs) \mathcal{A} accepts input (\mathfrak{T}, τ) iff \mathfrak{T} proper and $\varphi_0 \in \tau(a)$ for some a

Then: φ_0 satisfiable iff $L(\mathcal{A}) \neq \emptyset$

Problem: How can \mathcal{A} check Condition (2) of properness? (2) C2RPQs in $\tau(a)$ are witnessed by homomorphisms into (\mathfrak{T}, τ) need not be local!

Non-locality of regular atoms

11

Automata-friendly properness condition

Good news:

Lemma 6

Subdivisions and splittings introduce at most exponentially many new sub-C2RPQs.

Condition (2) of properness is equivalent to:

(2') C2RPQs in $\tau(a)$ are witnessed by witness trees in (\mathfrak{T}, τ)

 \rightsquigarrow construct 2ATA with exponentially many states

2 Results for OMQ Evaluation & Containment

Overview

We want to show:

Lemma 7

OMQ evaluation is in coNP (data complexity).

Observation:
$$D \cup \mathcal{O} \models q$$
 iff D is unsatisfiable with $\mathcal{O} \land \neg q$

Lemma 8

Satisfiability of databases with UNFO^{reg} sentences is in NP.

Fix UNFO^{reg} sentence φ_0 and database D

Fix UNFO^{reg} sentence φ_0 and database D

Idea: guess & check consistent decoration of dom(D) with 1-types

 \rightsquigarrow 3-subdivisions of regular atoms $\mathcal{A}(x, y)$ suffice

Database satisfiability in NP

Type decoration τ is proper if

- each $\tau(a)$ is satisfiable
- similar conditions as (1) and (2) for proper TDTLSs

Lemma 9

D is satisfiable with φ_0 iff *D* has a proper type decoration τ with $\varphi_0 \in \tau(a)$ for some $a \in \text{dom}(D)$.

\rightsquigarrow NP decision procedure:

- Guess candidate decoration
- Precompute satisfaction of all regular atoms
- Verify properness

Next . . .

2 Results for OMQ Evaluation & Containment

Conclusion

UNFO^{reg} is computationally well-behaved:

- SAT and model checking are not harder than in UNFO.
- OMQ evaluation and OMQ containment for $(UNFO^{reg}, C2RPQ)$ are not harder than for (ALCI, CQ).

- Finite-model variants of SAT and OMQ evaluation
- Extensions:

SAT

Outlook

- Base case in regular path expressions with any UNFO^{reg} formula $\varphi(x, y)$ instead of $R(x, y) \longrightarrow$ contains ICPDL
- Replace C2RPQs with linear Datalog
- Add constants, fixed points, role inclusions ... ("DL world")
- OMQ containment, general case: $(\mathcal{O}_1, \boldsymbol{\Sigma}, q_1) \stackrel{?}{\subseteq} (\mathcal{O}_2, \boldsymbol{\Sigma}, q_2)$

- Finite-model variants of SAT and OMQ evaluation
- Extensions:
 - Base case in regular path expressions with any UNFO^{reg} formula $\varphi(x, y)$ instead of $R(x, y) \longrightarrow$ contains ICPDL
 - Replace C2RPQs with linear Datalog
 - Add constants, fixed points, role inclusions ... ("DL world")
- OMQ containment, general case: $(\mathcal{O}_1, \boldsymbol{\Sigma}, q_1) \stackrel{?}{\subseteq} (\mathcal{O}_2, \boldsymbol{\Sigma}, q_2)$

Thank you.

Outlook