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SAT Querying Conclusion

Ontology-mediated query answering

ontology O

database D KB

? query q

Ontology-mediated query (OMQ):
triple Q = (O,Σ, q) with Σ the data signature

OMQ evaluation:
Given Q and D over Σ, does D ∪ O |= q hold?

OMQ containment Q1 ⊆ Q2 :
Given Q1 = (O1,Σ, q1) and Q2 = (O2,Σ, q2),
does D ∪ O1 |= q1 imply D ∪ O2 |= q2 for all D over Σ ?
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SAT Querying Conclusion

Ontology-mediated query answering

ontology O

database D KB

? query q

Typical ontology languages:

Description logics (DLs)
Languages based on existential rules (aka Datalog+/–)

Typical query languages: CQs, UCQs

OMQ evaluation in 2ExpTime (data complexity: coNP)
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SAT Querying Conclusion

Unary Negation and regular expressions

We study: an expressive language that subsumes

popular ontology languages
(including transitive roles and/or regular expressions on roles)

popular query languages
(U)CQs, (U)C2RPQs

UNFOreg = UNFO + regular path expressions on binary relations

ϕ ::= P(x) |

E(x,y) |

x = y | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xϕ | ¬ϕ(x)

E ::= R | R− | E ∪ E | E · E | E ∗ | ϕ(x)?

UC2RPQ = UCQ with atoms E (x , y) as above (UC2RPQs as tests)
“union of conjunctive 2-way regular path queries”
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SAT Querying Conclusion

UNFOreg: a powerful language

UNFOreg can express . . .

many popular MLs and DLs
(including transitive roles and/or regular expressions on roles)

C2RPQs ; queries are for free
OMQ evaluation and containment reduce to (un)satisfiability:

D ∪ O |= q iff O ∧ D ∧ ¬q is unsatisfiable

(O,Σfull, q1) ⊆ (O,Σfull, q2) iff O ∧ q1 ∧ ¬q2 is unsatisfiable
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SAT Querying Conclusion

Our results

Theorem 1
(1) Satisfiability in UNFOreg is 2ExpTime-complete.
(2) Model checking is PNP[O(log2 n)]-complete.

Same complexity as for UNFO [ten Cate & Segoufin, LMCS’13].

Theorem 2
For OMQs with with O in UNFOreg and q UC2RPQ,

(3) evaluation is 2ExpTime-compl. (combined), coNP-compl. (data);
(4) containment w.r.t. Σfull is 2ExpTime-complete.

2ExpTime upper bounds follow from Theorem 1 (1).
All lower bounds inherited from (ALCI,CQ).

[Lutz IJCAR’08; Calvanese et al. KR’06]
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Overview

1 Results for Satisfiability

2 Results for OMQ Evaluation & Containment

3 Conclusion and Outlook
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Next . . .

1 Results for Satisfiability

2 Results for OMQ Evaluation & Containment

3 Conclusion and Outlook
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Schedule
We want to show:
Lemma 3
Satisfiability in UNFOreg is in 2ExpTime.

Previous approach for UNFO
Reduction to µ-calculus [ten Cate & Segoufin, LMCS’13]

8 Does not transfer to UNFOreg

Our approach
show tree-like model property: treewidth ≤ width(ϕ)
represent tree-like models via labelled trees
characterise satisfaction of C2RPQs in labelled trees via
tree-shaped witnesses
build automata that accept the tree-like models of the input fma.
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Normal form

UNFOreg formulas in normal form:

connected C2RPQs with = 1 free variable and
normal UNFOreg formulas ψ(x)? as tests

¬ϕ(x) ϕ(x) ∨ ψ(x) ∃x ϕ(x)

Lemma 4
Every UNFOreg sentence can be transformed into an equivalent
normal UNFOreg sentence ϕ′ in exponential time.

|ϕ′| is exponential in |ϕ|
Width of ϕ′ (max. number of variables in a sub-C2RPQ): linear!
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Tree-like structures

Tree-like structure of width m: pair T = (T , bag) where

T is a tree
bag(w), w ∈ T : finite structure of domain size ≤ m such that
for every element a, the set of nodes containing a is connected

Example
T of width m = 3:

b

a c

b

a

d b

c

e

R

R

R

S

S

corresponding struc. AT :

b

a c

d e
R

R

S

S

AT |= ∃x RS∗R(x , x)
because

AT |= RS∗R(a, a)
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Type-decorated tree-like structures

Fix UNFOreg formula ϕ0.
Replace regular atoms E (x , y) with atoms A(x, y), A an NFA.

Type-decorated tree-like structure (TDTLS) for ϕ0: pair (T, τ) s.t.

T is a tree-like structure
τ assigns a 1-type t(x) ⊆ cl(ϕ0) to each element in AT

Satisfaction for regular atoms (T, τ ) |= A(a, b) is defined via
“looking up” tests ϕ(a)? directly in τ(a)
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Proper TDTLSs

Labelling τ must be “globally” consistent with all ∃- and
C2RPQ-subformulas of ϕ0:

A TDTLS is proper if

(1) ∃x ϕ(x) ∈ τ(a) are witnessed by ϕ(x) ∈ τ(b) for some b
(2) C2RPQs in τ(a) are witnessed by homomorphisms into (T, τ)

Lemma 5 (Tree-like model property of UNFOreg)
Let ϕ0 be a normal UNFOreg sentence.

ϕ0 is satisfiable iff there is a proper TDTLS (T, τ) for ϕ0
s.t. ϕ0 ∈ τ(a) for some a.
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Lemma 5 (Tree-like model property of UNFOreg)
Let ϕ0 be a normal UNFOreg sentence of size n.

ϕ0 is satisfiable iff there is a proper TDTLS (T, τ) for ϕ0
of outdegree O(n2) s.t. ϕ0 ∈ τ(a) for some a.
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Proper TDTLSs

Labelling τ must be “globally” consistent with all ∃- and
C2RPQ-subformulas of ϕ0:

A TDTLS is proper if

(1) ∃x ϕ(x) ∈ τ(a) are witnessed by ϕ(x) ∈ τ(b) for some b
(2) C2RPQs in τ(a) are witnessed by homomorphisms into (T, τ)

Lemma 5 (Tree-like model property of UNFOreg)
Let ϕ0 be a normal UNFOreg sentence of size n and width m.

ϕ0 is satisfiable iff there is a proper TDTLS (T, τ) for ϕ0
of outdegree O(n2) and width ≤ m s.t. ϕ0 ∈ τ(a) for some a.
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Automata-based decision procedure

Use 2-way alternating tree automata (2ATAs)

A accepts input (T, τ) iff T proper and ϕ0 ∈ τ(a) for some a

Then: ϕ0 satisfiable iff L(A) 6= ∅

Problem: How can A check Condition (2) of properness?

(2) C2RPQs in τ(a) are witnessed by homomorphisms into (T, τ)︸ ︷︷ ︸
need not be local!
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Non-locality of regular atoms

Example: C2RPQ A(x , y) with A = q0 q1 q2
R

S
R

a b

c d

d

f

c

e

fe

R R

S S

S

ε

1

11

T:

AT |= A(a, b); h targets bags ε, 1, 11
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R

S
R
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c d

d

f

c

e

fe

R R

S S

S

ε

1

11

T:
AT |= A(a, b); h targets bags ε, 1, 11

(1) Subdivide atom A(a, b)

A[q0, q1](a, c) ∧ A[q1, q2](d , b) ∧

A[q1, q1](c, e) ∧ A[q1, q1](f , d) ∧

A[q1, q1](e, f )
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d
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c

e
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R R

S S

S

ε

1
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T:
AT |= A(a, b); h targets bags ε, 1, 11

(1) Subdivide atom A(a, b)

A[q0, q1](a, c) ∧ A[q1, q2](d , b) ∧

A[q1, q1](c, e) ∧ A[q1, q1](f , d) ∧

A[q1, q1](e, f )

Subdivision into O(|ϕ0|2) atoms suffices

Thomas Schneider (Univ. Bremen) Querying UN + Regular Path Epressions 15



SAT Querying Conclusion

Non-locality of regular atoms

Example: C2RPQ A(x , y) with A = q0 q1 q2
R

S
R

a b

c d

d

f

c

e

fe

R R

S S

S

ε

1

11

T:
AT |= A(a, b); h targets bags ε, 1, 11

(2) Split the resulting set of atoms

A[q0, q1](a, c) ∧ A[q1, q2](d , b)

∧

A[q1, q1](c, e) ∧ A[q1, q1](f , d)

∧

A[q1, q1](e, f )
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Non-locality of regular atoms

Example: C2RPQ A(x , y) with A = q0 q1 q2
R

S
R

a b

c d

d

f

c

e

fe

R R

S S

S

ε

1

11

T:
AT |= A(a, b); h targets bags ε, 1, 11

Resulting witness tree:(
ε, A[q0, q1](a, c) ∧ A[q1, q2](d , b)

)
(
1, A[q1, q1](c, e) ∧ A[q1, q1](f , d)

)
(
11, A[q1, q1](e, f )

)
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Automata-friendly properness condition

Good news:
Lemma 6
Subdivisions and splittings introduce at most exponentially many
new sub-C2RPQs.

Condition (2) of properness is equivalent to:

(2′) C2RPQs in τ(a) are witnessed by witness trees in (T, τ)

; construct 2ATA with exponentially many states

Thomas Schneider (Univ. Bremen) Querying UN + Regular Path Epressions 16
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Next . . .

1 Results for Satisfiability

2 Results for OMQ Evaluation & Containment

3 Conclusion and Outlook
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SAT Querying Conclusion

Overview

We want to show:
Lemma 7
OMQ evaluation is in coNP (data complexity).

Observation: D ∪ O |= q iff D is unsatisfiable with O ∧ ¬q︸ ︷︷ ︸
Lemma 8
Satisfiability of databases with UNFOreg sentences is in NP.
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Database satisfiability in NP

Fix UNFOreg sentence ϕ0 and database D

Idea: guess & check consistent decoration of dom(D) with 1-types

D

; 3-subdivisions of regular atoms A(x , y) suffice
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Database satisfiability in NP

Type decoration τ is proper if

each τ(a) is satisfiable
similar conditions as (1) and (2) for proper TDTLSs

Lemma 9
D is satisfiable with ϕ0 iff D has a proper type decoration τ with
ϕ0 ∈ τ(a) for some a ∈ dom(D).

; NP decision procedure:

Guess candidate decoration
Precompute satisfaction of all regular atoms
Verify properness

Thomas Schneider (Univ. Bremen) Querying UN + Regular Path Epressions 20
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Next . . .

1 Results for Satisfiability

2 Results for OMQ Evaluation & Containment

3 Conclusion and Outlook
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Conclusion

UNFOreg is computationally well-behaved:

SAT and model checking are not harder than in UNFO.

OMQ evaluation and OMQ containment for
(UNFOreg,C2RPQ) are not harder than for (ALCI,CQ).
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Outlook

Finite-model variants
of SAT and OMQ evaluation

Extensions:
Base case in regular path expressions with any UNFOreg formula
ϕ(x , y) instead of R(x , y) ; contains ICPDL
Replace C2RPQs with linear Datalog
Add constants, fixed points, role inclusions . . . (“DL world”)

OMQ containment, general case: (O1,Σ, q1)
?
⊆ (O2,Σ, q2)

Thank you.
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