
A case for modularity Modularisation approaches Course overview

Modularity in Ontologies:
Introduction (Part B)

Thomas Schneider 1 Dirk Walther2

1Department of Computer Science, University of Bremen, Germany

2Faculty of Informatics, Technical University of Madrid, Spain

ESSLLI, 1 August 2011

Thomas Schneider, Dirk Walther Modularity: Introduction B 1



A case for modularity Modularisation approaches Course overview

Plan for the rest of today

1 A case for modularity of ontologies

2 Overview and comparison of modularisation approaches

3 Overview of the remainder of this course

Thomas Schneider, Dirk Walther Modularity: Introduction B 2



A case for modularity Modularisation approaches Course overview

And now . . .

1 A case for modularity of ontologies

2 Overview and comparison of modularisation approaches

3 Overview of the remainder of this course

Thomas Schneider, Dirk Walther Modularity: Introduction B 3



A case for modularity Modularisation approaches Course overview

What can I do with my ontology?

Ontology users and engineers want to use ontologies to

represent and archive knowledge

compute inferences from archived knowledge
e.g., classification, query answering

explain inferences
justifications = pinpointing, abduction

reuse knowledge to build other ontologies
import

impose the logical structure of the represented knowledge
comprehension

(M) = modularity helps

Thomas Schneider, Dirk Walther Modularity: Introduction B 4



A case for modularity Modularisation approaches Course overview

What can I do with my ontology?

Ontology users and engineers want to use ontologies to

represent and archive knowledge

compute inferences from archived knowledge (M)
e.g., classification, query answering

explain inferences (M)
justifications = pinpointing, abduction

reuse knowledge to build other ontologies (M)
import

impose the logical structure of the represented knowledge (M)
comprehension

(M) = modularity helps

Thomas Schneider, Dirk Walther Modularity: Introduction B 4



A case for modularity Modularisation approaches Course overview

What can I do with my ontology?

Building and using an ontology often requires

fast reasoning
expressivity↔ complexity, optimisations, incremental reasoning

collaborative development

version control

efficient reuse

an understanding of the ontology’s content and structure
comprehension

(M) = modularity helps

Thomas Schneider, Dirk Walther Modularity: Introduction B 5



A case for modularity Modularisation approaches Course overview

What can I do with my ontology?

Building and using an ontology often requires

fast reasoning (M)
expressivity↔ complexity, optimisations, incremental reasoning

collaborative development (M)

version control (M)

efficient reuse (M)

an understanding of the ontology’s content and structure (M)
comprehension

(M) = modularity helps

Thomas Schneider, Dirk Walther Modularity: Introduction B 5



A case for modularity Modularisation approaches Course overview

An import/reuse scenario

“Borrow” knowledge from external ontologies

Provides access to well-established knowledge
Doesn’t require expertise in external disciplines

This scenario is well-understood and implemented.
ó Wednesday’s lecture

Thomas Schneider, Dirk Walther Modularity: Introduction B 6



A case for modularity Modularisation approaches Course overview

A collaboration scenario

Collective ontology development

Developers work (edit, classify) locally
Extra care at re-combination
Prescriptive/analytic behaviour

This approach is mostly understood, but not implemented yet.

Thomas Schneider, Dirk Walther Modularity: Introduction B 7



A case for modularity Modularisation approaches Course overview

Understanding and/or structuring an ontology

Compute the modular structure of an ontology

1,000,000 axioms

This is work in progress. ó Friday’s lecture

Thomas Schneider, Dirk Walther Modularity: Introduction B 8



A case for modularity Modularisation approaches Course overview

Understanding and/or structuring an ontology

Compute the modular structure of an ontology

This is work in progress. ó Friday’s lecture

Thomas Schneider, Dirk Walther Modularity: Introduction B 8



A case for modularity Modularisation approaches Course overview

Understanding and/or structuring an ontology

Compute the modular structure of an ontology

This is work in progress. ó Friday’s lecture

Thomas Schneider, Dirk Walther Modularity: Introduction B 8



A case for modularity Modularisation approaches Course overview

And now . . .

1 A case for modularity of ontologies

2 Overview and comparison of modularisation approaches

3 Overview of the remainder of this course

Thomas Schneider, Dirk Walther Modularity: Introduction B 9



A case for modularity Modularisation approaches Course overview

A priori vs. a posteriori

A priori
At first, a modular structure is decided on.

Then, the ontology is developed and used according to that
structure.

A posteriori
After the ontology has been built,
a module is extracted or the ont. is decomposed into modules.

The ontology is regarded as a monolithic entity.

Thomas Schneider, Dirk Walther Modularity: Introduction B 10



A case for modularity Modularisation approaches Course overview

A-priori modularisation approaches

Provide a framework to develop an ontology modularly
from the start

Provide means to “bridge” between the modules
dependency of modules/signature, flow of knowledge

Often consist of extensions of (description) logics

Sometimes allow for distributed reasoning

Generally, don’t guarantee that modules are logically closed
in some cases, this is deliberately so

Thomas Schneider, Dirk Walther Modularity: Introduction B 11



A case for modularity Modularisation approaches Course overview

A-priori: different files with imports

Used to develop large ontologies about different domains

Each domain expert (team) maintains “their” file Fi

The overall ontology O imports all files:
O = F1 ∪ · · · ∪ Fn

Example: F1,F2,F3 about diseases, anatomy and drugs
Problems?

The Fi are not necessarily logically closed
Experts’ knowledge interferes with each other,
e.g.: diseases are located in body parts and treated by drugs

; Maintenance of O as difficult as in the monolithic case
Reasoning or reuse might still require the whole ontology

Still used to develop and maintain, e.g., some bio-medical
ontologies!

Thomas Schneider, Dirk Walther Modularity: Introduction B 12



A case for modularity Modularisation approaches Course overview

A-priori: different files with imports

Used to develop large ontologies about different domains

Each domain expert (team) maintains “their” file Fi

The overall ontology O imports all files:
O = F1 ∪ · · · ∪ Fn

Example: F1,F2,F3 about diseases, anatomy and drugs
Problems?

The Fi are not necessarily logically closed
Experts’ knowledge interferes with each other,
e.g.: diseases are located in body parts and treated by drugs

; Maintenance of O as difficult as in the monolithic case
Reasoning or reuse might still require the whole ontology

Still used to develop and maintain, e.g., some bio-medical
ontologies!

Thomas Schneider, Dirk Walther Modularity: Introduction B 12



A case for modularity Modularisation approaches Course overview

Package-based description logics (PB-DLs)

[Bao et al. 2006, 2009]

Extension of standard DLs

Domain-specific files are called packages

Semantic import links between packages (explicit dependency)

Terms annotated with “home package”

Semantics local w.r.t. each package

Reasoning controlled by the links

Translation to “plain” DLs yields implicit decision procedures
Problems?

Reasoning or reuse might still require the whole ontology

Thomas Schneider, Dirk Walther Modularity: Introduction B 13



A case for modularity Modularisation approaches Course overview

Distributed description logics

[Borgida and Serafini, 2003] [Serafini and Tamilin, 2009]

Similar to PB-DLs

Replace import links by “bridge rules”:
subconcept relations between (complex) concepts from
different packages

Distributed decision procedures exist

Related notion: E-connections
[Kutz et al. 2001]

Thomas Schneider, Dirk Walther Modularity: Introduction B 14



A case for modularity Modularisation approaches Course overview

A priori vs. a posteriori

A priori
At first, a modular structure is decided on.

Then, the ontology is developed and used according to that
structure.

A posteriori
After the ontology has been built,
a module is extracted or the ont. is decomposed into modules.

The ontology is regarded as a monolithic entity.

Thomas Schneider, Dirk Walther Modularity: Introduction B 15



A case for modularity Modularisation approaches Course overview

A-posteriori modularisation approaches

Regard an ontology O as a monolithic entity
remember: O is a set of axioms

Module: subset M ⊆ O

Extract one module (e.g., for reuse) or
decompose O into several modules (e.g., for comprehension)

Often, a signature (set of terms) Σ ⊆ sig(O) is specified
and the module extracted using Σ as a parameter

Ideally, modules encapsulate knowledge in some form
e.g., all consequences of O in Σ

Not all module notions guarantee encapsulation

Thomas Schneider, Dirk Walther Modularity: Introduction B 16



A case for modularity Modularisation approaches Course overview

Graph-based a-posteriori modularisation approaches

Are based on a graph representation of the ontology
usually concept/role hierarchy, sometimes enriched with disjointness

Start with a signature Σ

Traverse the graph and “harvest” entities and axioms
follow subconcept relation and/or restrictions (∃, domain, range)

Resulting module = set of harvested axioms
Examples

Ontology segmentation [Seidenberg and Rector 2006, 2009]
Traversals [Noy and Musen 2003, 2009]
More general framework [d’Aquin et al. 2007]

Thomas Schneider, Dirk Walther Modularity: Introduction B 17



A case for modularity Modularisation approaches Course overview

Pro and contra graph-based approaches

Pro
Modules can usually be extracted efficiently
time polynomial in the size of O ; robustly scalable

Easy to implement

Applicable to many logics

Contra
Heuristic, no characterisation of the expected module contents

In particular, no logical guarantees such as entailment
preservation

; Modules typically lose knowledge from O

Thomas Schneider, Dirk Walther Modularity: Introduction B 18



A case for modularity Modularisation approaches Course overview

A-posteriori approaches with coverage

Coverage
M ⊆ O covers O for Σ if
all Σ-consequences of O already follow from M.

i.e., M preserves all knowledge in O about α
ó Tuesday’s lecture

This guarantee is needed, e.g., for ontology reuse or reasoning
ó Wednesday’s lecture

Problems
Of course, O is always covering
Minimal covering modules are, in general, hard to extract
ó Tuesday’s lecture

Thomas Schneider, Dirk Walther Modularity: Introduction B 19



A case for modularity Modularisation approaches Course overview

Coverage-providing module notions

Restricted to logics where coverage can be decided efficiently
e.g., MEX for acyclic EL ó Thursday’s lecture
[Konev et al. 2008]

Or use a tractable condition sufficient for coverage,
leading to modules that always contain minimal modules
Examples:

Locality-based modules ó Wednesday’s lecture
[Cuenca Grau et al. 2007, 2009]
Modules obtained from partitions based on E-connections
[Cuenca Grau et al. 2006]

Thomas Schneider, Dirk Walther Modularity: Introduction B 20



A case for modularity Modularisation approaches Course overview

Comparison of a-posteriori module extraction approaches

Module notion Covrg. Min. Covered DLs Complexity

All axioms referencing Σ 8 any easy

Graph-based 8 any easy

The whole ontology 3 88 any easy

Min. cov.-providing mod.? 3 3 few hard
MEX? 3 3 acyclic EL easy

Locality-based mod.? 3 8 OWL easy

E-connections based mod. 3 8 OWL easy

Modules with rewriting 3? 33? few? hard?

?Will be covered here ó Tuesday’s and Wednesday’s lecture

Thomas Schneider, Dirk Walther Modularity: Introduction B 21



A case for modularity Modularisation approaches Course overview

Comparison of a-posteriori module extraction approaches

Module notion Covrg. Min. Covered DLs Complexity

All axioms referencing Σ 8 any easy

Graph-based 8 any easy

The whole ontology 3 88 any easy

Min. cov.-providing mod.? 3 3 few hard
MEX? 3 3 acyclic EL easy

Locality-based mod.? 3 8 OWL easy

E-connections based mod. 3 8 OWL easy

Modules with rewriting 3? 33? few? hard?

?Will be covered here ó Tuesday’s and Wednesday’s lecture

Thomas Schneider, Dirk Walther Modularity: Introduction B 21



A case for modularity Modularisation approaches Course overview

Comparison of a-posteriori module extraction approaches

Module notion Covrg. Min. Covered DLs Complexity

All axioms referencing Σ 8 any easy

Graph-based 8 any easy

The whole ontology 3 88 any easy

Min. cov.-providing mod.? 3 3 few hard
MEX? 3 3 acyclic EL easy

Locality-based mod.? 3 8 OWL easy

E-connections based mod. 3 8 OWL easy

Modules with rewriting 3? 33? few? hard?

?Will be covered here ó Tuesday’s and Wednesday’s lecture

Thomas Schneider, Dirk Walther Modularity: Introduction B 21



A case for modularity Modularisation approaches Course overview

And now . . .

1 A case for modularity of ontologies

2 Overview and comparison of modularisation approaches

3 Overview of the remainder of this course

Thomas Schneider, Dirk Walther Modularity: Introduction B 22



A case for modularity Modularisation approaches Course overview

Course overview

2 Formal foundations of modularity (Dirk)
Conservative extensions
Inseparability

3 Module extraction (Thomas)
Locality classes and locality-based modules
Module extraction algorithms and experiments

4 Ontology versioning and forgetting of vocabulary (Dirk)
Logical difference
Forgetting/uniform interpolants

5 Recent advances/current work (Thomas)
Atomic decomposition
Signature decomposition, relevance of terms

Thomas Schneider, Dirk Walther Modularity: Introduction B 23


