Modularity in Ontologies: Formal foundations of modules

Thomas Schneider¹ Dirk Walther²

¹Department of Computer Science, University of Bremen, Germany

²Faculty of Informatics, Technical University of Madrid, Spain

ESSLLI, 2 August 2011

Plan for today

- definition of a module in logical theories
- interface
- robustness properties

credits: based on slides by Frank Wolter

Modules

• general definition, e.g., from systems theory

Definition

A module is a part of a system which functions independently from the system. The connection between the module and the system is provided by an interface.

- an interface enables interoperability between systems
- a system functions through the boundaries of an interface
- what matters is the functionality (we can treat the system itself as black box)

- An interface is a tuple (\mathcal{QL}, Σ) of a query language \mathcal{QL} and a signature Σ .
- interface:
 - provides a view on theory (set of observables) \rightsquigarrow set of observables is a subset of \mathcal{QL} formulated in Σ
 - depends on the application or system

Examples of interfaces

Let T be a logical theory of arithmetic over the signature $\Sigma = \{+, \times, s, <, 0\}$. (We write 1, 2, ... instead of s(0), s(s(0)), ..., etc., and n, m, k range over these number.)

Interfaces (\mathcal{QL}, Σ) :

• Primary school:

$$\mathcal{QL} = \{n + m = k, n \times m = k\}, \ \Sigma = \{0, s, +, \times\}$$

• Undergraduate:

 $\mathcal{QL}=$ linear equations, $\Sigma=\{0,s,+, imes\}$

Mathematician:

 $\mathcal{QL} = \text{ Diophantine equations, } \Sigma = \{0, s, +, \times\}$

• Logician:

$$\mathcal{QL} = SO, \ \Sigma = \{0, s, f_1, f_2, \dots, +, \times\}$$

Interfaces of medical ontologies

Let T be a TBox defining terms of some medical domain.

Interfaces (\mathcal{QL}, Σ) :

• Hospital clerk:

 $\mathcal{QL} =$ all inclusions $A \sqsubseteq B$, where A, B are concept names,

 $\boldsymbol{\Sigma}$ = predicates relevant to hospital administration

• Researcher (oncologist):

 $\mathcal{QL} =$ all inclusions $A \sqsubseteq B$, where A, B are concept names,

 $\boldsymbol{\Sigma}$ = predicates relevant to cancer research

• Terminologist (expert in anatomy):

 $\mathcal{QL} = all ALC$ -concept inclusions,

- $\boldsymbol{\Sigma} = \text{predicates}$ relevant to anatomy
- Someone who can ask all relevant questions:
 - $\mathcal{QL} = Second-order \ Logic \ (SO)$
 - $\Sigma = \text{all predicates in } \mathsf{T}$

Interface for querying instance data

Let T be a TBox defining geopolitical notions. T provides a background theory when querying instance data.

Query language \mathcal{QL} : $\mathcal{A} \to q$, where \mathcal{A} represents instance data and q is a query.

Example: Instance data \mathcal{A}

{ Country(France), Country(Columbia), ..., LocatedinEurope(France), ...

Query: q = EuropeanCountry(France)Then

$$T \models \mathcal{A} \rightarrow q$$

if $T \models Country \sqcap LocatedinEurope \sqsubseteq EuropeanCountry$

Module in logical theories

- An ontology M is a module of an ontology O if $M \subseteq O$.
- The functionality of an ontology O wrt. an interface (QL, Σ) is the set of QL-formulas φ formulated in Σ that follow from O. Formally,

$$\mathsf{Th}_{\Sigma}^{\mathcal{QL}}(\mathsf{O}) = \{ \varphi \in \mathcal{QL} \mid \mathsf{O} \models \varphi, \mathsf{sig}(\varphi) \subseteq \Sigma \}$$

• O is a black box, what matters is its functionality $Th_{\Sigma}^{\mathcal{QL}}(O)$

- Q: When can module M_1 be equivalently replaced by module M_2 ?
- A: Whenever M_1 and M_2 have the same functionality.
- (!) Functionality depends on an interface (\mathcal{QL},Σ)
- A': Whenever $\mathsf{Th}_{\Sigma}^{\mathcal{QL}}(\mathsf{M}_1)=\mathsf{Th}_{\Sigma}^{\mathcal{QL}}(\mathsf{M}_2)$

Replacement of a module

Let SO denote the set of sentences of Second-Order Logic. → expressive enough to describe FO-interpretations (up to isomorphism)

Definition

Let T_1, T_2 be finite sets of SO-sentences, $\mathcal{QL} \subseteq$ SO a query language, and Σ a signature. Then: T_1 and T_2 are Σ -inseparable wrt. \mathcal{QL} , in symbols

$$T_1 \equiv_{\Sigma}^{\mathcal{QL}} T_2,$$

if for all $\varphi \in \mathcal{QL}$ with sig $(\varphi) \subseteq \Sigma$:

$$T_1 \models \varphi \Leftrightarrow T_2 \models \varphi.$$

 $T_1 \equiv_{\Sigma}^{\mathcal{QL}} T_2 \Rightarrow T_1 \text{ and } T_2 \text{ have same functionality wrt. } (\mathcal{QL}, \mathbb{W})$

Inseparability wrt. SO

Theorem

Let T_1 and T_2 be finite sets of SO-sentences and Σ a signature. Then the following are equivalent:

$$T_1 \equiv_{\Sigma}^{SO} T_2 M_{|\Sigma} \mid M \models T_1 \} = \{ M_{|\Sigma} \mid M \models T_2 \}$$

Proof: Point 2 implies Point 1.

Trivial: When T_1 and T_2 have the same Σ -models, then they have the same Σ -consequences in SO.

Inseparability wrt. SO

Theorem

Let T_1 and T_2 be finite sets of SO-sentences and Σ a signature. Then the following are equivalent:

$$T_1 \equiv_{\Sigma}^{SO} T_2 M_{|\Sigma} | M \models T_1 \} = \{ M_{|\Sigma} | M \models T_2 \}$$

Proof: Point 1 implies Point 2.

Suppose $M \models T_1$, but there does not exist $M' \models T_2$ with $M'_{|\Sigma} = M_{|\Sigma}$. Then

$$M \not\models \exists P_1 \cdots \exists P_n. \bigwedge T_2,$$

where $\{P_1, \ldots, P_n\} = \operatorname{sig}(T_2) \setminus \Sigma$. Hence

• $T_2 \models \exists P_1 \cdots \exists P_n \land T_2;$

•
$$T_1 \not\models \exists P_1 \cdots \exists P_n \land T_2$$
.

Conservativity and inseparability: FO

Definition

Let $T_1 \subseteq T_2$ be finite sets FO-sentences. Then

- T₂ is a deductive Σ-conservative extension of T₁ in FO iff T₁ and T₂ are Σ-inseparable wrt. FO
- T_2 is a model Σ -conservative extension of T_1 iff $\{M_{|\Sigma} \mid M \models T_1\} = \{M_{|\Sigma} \mid M \models T_2\}$

Corollary

By previous theorem:

(2)' T_2 is a model Σ -conservative extension of T_1 iff T_1 and T_2 are Σ -inseparable wrt. SO

Conservativity and inseparability: DLs

- Let L be a description logic.
- Denote with \mathcal{QL}_{L} the set of concept inclusions $C \sqsubseteq D$, where C, D are L-concepts.

Definition Let $T_1 \subseteq T_2$ be TBoxes. Then: • T_2 is a deductive Σ -conservative extension of T_1 in L iff T_1 and T_2 are Σ -inseparable wrt. QL_L • T_2 is a model Σ -conservative extension of T_1

iff T_1 and T_2 are Σ -inseparable wrt. SO

Reasoning task: deciding inseparability

Can we automatically decide whether two theories have the same functionality (i.e. whether they are inseparable)?

Theorem

Deciding Σ -inseparability of EL-TBoxes wrt. QL_{EL} is ExpTime-complete [Lutz, Wolter, 2010]

Theorem

Deciding Σ -inseparability of ALC-TBoxes wrt. QL_{ALC} is 2ExpTime-complete [Konev, Lutz, Walther, Wolter, 2008]

Theorem

Deciding Σ -inseparability of EL-TBoxes wrt. SO is undecidable [Lutz, Wolter, 2010]

Programme:

- \bullet properties of inseparability relation $\equiv_{\Sigma}^{\mathcal{QL}}$
- connection to the interpolation property

Simple properties of $\equiv_{\Sigma}^{\mathcal{QL}}$

Let $\mathcal{QL} \subseteq$ SO, Σ a signature and T_1 , T_2 be finite sets of SO sentences.

Then:

- $\bullet ~\equiv^{\mathcal{QL}}_{\Sigma}$ is an equivalence relation
- robustness under vocabulary reduction: for all $\Sigma' \subseteq \Sigma$,

$$T_1 \equiv_{\Sigma}^{\mathcal{QL}} T_2 \quad \Rightarrow \quad T_1 \equiv_{\Sigma'}^{\mathcal{QL}} T_2$$

 robustness under query language reduction: for all QL' ⊆ QL,

$$T_1 \equiv_{\Sigma}^{\mathcal{QL}} T_2 \quad \Rightarrow \quad T_1 \equiv_{\Sigma}^{\mathcal{QL'}} T_2$$

Robustness properties: vocabulary extension

Q: When can we extend the vocabulary of the interface without losing inseparability?

Definition

Let $L \subseteq SO$ and $\mathcal{QL} \subseteq SO$. Then (L, \mathcal{QL}) is *robust* under vocabulary extensions if, for all finite sets T_1 and T_2 of L-sentences and signatures Σ, Σ' with $\Sigma' \cap \operatorname{sig}(T_1 \cup T_2) \subseteq \Sigma$, the following holds:

$$T_1 \equiv_{\Sigma}^{\mathcal{QL}} T_2 \quad \Rightarrow \quad T_1 \equiv_{\Sigma'}^{\mathcal{QL}} T_2.$$

A: If (L, QL) is robust under vocabulary extensions, then we can add vocabulary not in T_1 and T_2

Intuition: if we have two Σ -indistinguishable ontologies, then they are still Σ' -indistinguishable

Robustness properties: joins

Definition

Let $L \subseteq SO$ and $\mathcal{QL} \subseteq SO$.

Then (L, QL) is robust under joins if, for all finite sets T_1 and T_2 of L-sentences and signatures Σ with sig $(T_1) \cap$ sig $(T_2) \subseteq \Sigma$, the following holds for i = 1, 2:

$$T_1 \equiv_{\Sigma}^{\mathcal{QL}} T_2 \quad \Rightarrow \quad T_i \equiv_{\Sigma}^{\mathcal{QL}} T_1 \cup T_2.$$

Application: if we have two indistinguishable ontologies, it suffices to import just one of them

Robustness properties: replacement

Definition

Let $L \subseteq SO$ and $\mathcal{QL} \subseteq SO$. Then (L, \mathcal{QL}) is *robust* under replacement if, for all all finite sets T, T_1 and T_2 of L-sentences and signatures Σ with $sig(T) \cap sig(T_1 \cup T_2) \subseteq \Sigma$, the following holds:

$$T_1 \equiv_{\Sigma}^{\mathcal{QL}} T_2 \quad \Rightarrow \quad T_1 \cup T \equiv_{\Sigma}^{\mathcal{QL}} T_2 \cup T.$$

Intuition: indistinguishability is insensitive towards adding certain contexts

Application: important property for re-use

➤ Wednesday's lecture

Concept hierarchy

Let QL_C denote the set of implications $A \sqsubseteq B$ such that A, B are concept names.

Theorem

 $(ALC, \mathcal{QL}_{\mathcal{C}})$ is robust under vocabulary extensions, but not under joins nor replacement.

Counterexample:

$$T_1 = \{A \sqsubseteq \exists r.B\}, \quad T_2 = \{\exists r.B \sqsubseteq E\}, \quad \Sigma = \{r, A, B, E\}.$$

Then:

•
$$T_1 \equiv_{\Sigma}^{\mathcal{QL}_C} T_2$$

• $T_1 \cup T_2 \not\equiv_{\Sigma}^{\mathcal{QL}_C} T_2$
• $T_1 \cup \{B \equiv \bot\} \not\equiv_{\Sigma}^{\mathcal{QL}_C} T_2 \cup \{B \equiv \bot\}$

Basic observations

Theorem

Let $L \subseteq QL$. If (QL, QL) is robust under vocabulary extensions (joins, replacement), then (L, QL) is robust under vocabulary extensions (joins, replacement).

Robustness under joins: Suppose

$$T_1 \equiv_{\Sigma}^{\mathcal{QL}} T_2 \quad \Rightarrow \quad T_i \equiv_{\Sigma}^{\mathcal{QL}} T_1 \cup T_2,$$

for all finite sets T_1 and T_2 of \mathcal{QL} -sentences. Then, because $L \subseteq \mathcal{QL}$, $T = \mathcal{QL$

$$T_1 \equiv_{\Sigma}^{\mathcal{QL}} T_2 \quad \Rightarrow \quad T_i \equiv_{\Sigma}^{\mathcal{QL}} T_1 \cup T_2,$$

for all finite sets T_1 and T_2 of L-sentences.

Basic observations

Theorem

(SO,SO) is robust under vocabulary extensions, joins and replacement.

Robustness under joins: suppose

$$\{M_{|\Sigma} \mid M \models T_1\} = \{M_{|\Sigma} \mid M \models T_2\}$$

and $\operatorname{sig}(T_1) \cap \operatorname{sig}(T_2) \subseteq \Sigma$. Then every $M_{|\Sigma}$ with $M \models T_1$ can be expanded to a model M' of T_2 . Moreover, we may assume that the interpretation of $\operatorname{sig}(T_1)$ in M and M' is the same. But then $M' \models T_1 \cup T_2$ and $M'_{|\Sigma} = M_{\Sigma}$. Hence

$$\{M_{|\Sigma} \mid M \models T_1\} = \{M_{|\Sigma} \mid M \models T_1 \cup T_2\}.$$

Interpolation

Definition

A logic L has weak interpolation iff for every finite set T of L-sentences and L-sentence φ such that $T \models \varphi$, there exists a set $I(T, \varphi)$ of L-sentence such that

- $\operatorname{sig}(I(T,\varphi)) \subseteq \operatorname{sig}(T) \cap \operatorname{sig}(\varphi);$
- $T \models I(T, \varphi);$
- $I(T, \varphi) \models \varphi$.

L has interpolation if there always exists a finite set $I(T, \varphi)$ with these properties.

There are many results on variants of interpolation in logic and software specification!

Details for logicians:

- For any compact logic L, weak interpolation implies interpolation.
- L is compact if T ⊨ φ implies that there exists a finite subset T' of T such that T' ⊨ φ.

Robustness under Vocabulary Extensions and Interpolation

Weak interpolation implies robustness under vocabulary extensions.

Theorem

If QL has weak interpolation, then (QL, QL) is robust under vocabulary extensions.

Proof. Suppose $T_1 \equiv_{\Sigma}^{\mathcal{QL}} T_2$. Let $\varphi \in \mathcal{QL}$ with $\operatorname{sig}(\varphi) \cap \operatorname{sig}(T_1 \cup T_2) \subseteq \Sigma$ such that $T_1 \models \varphi$. We show $T_2 \models \varphi$. By weak interpolation,

$$T_1 \models I(T_1, \varphi) \models \varphi.$$

From sig($I(T_1, \varphi)$) $\subseteq \Sigma$

$$T_2 \models I(T_1, \varphi).$$

Robustness under Vocabulary Extensions and Interpolation

Robustness under vocabulary extensions implies weak interpolation.

Theorem

Suppose $(\mathcal{QL}, \mathcal{QL})$ is robust under vocabulary extensions for possibly infinite sets of sentences. Then \mathcal{QL} has weak interpolation.

Proof. Assume $T \models \varphi$. Set $\Sigma = \operatorname{sig}(T) \cap \operatorname{sig}(\varphi)$ and

$$T_{\Sigma} = \{ \psi \in \mathcal{QL} \mid T \models \psi, \operatorname{sig}(\psi) \subseteq \Sigma \}.$$

Then

• T and T_{Σ} are Σ -inseparable wrt. \mathcal{QL} .

By robustness under vocabulary extensions,

• T and T_{Σ} are Σ' -inseparable wrt. \mathcal{QL} , for $\Sigma' = \operatorname{sig}(\varphi)$. From $T \models \varphi$ we obtain $T_{\Sigma} \models \varphi$. Hence $I(T, \varphi) = T_{\Sigma}$ is a weak interpolant.

Thomas Schneider, Dirk Walther

The following logics L have interpolation (and thus (L,L) is robust under vocabulary extensions):

- propositional logic
- FO [standard textbooks on logic]
- EL [Sofronie-Stokkermans, 2006]
- ALC, ALCQ, ALCI, ALCQI, etc. [Konev, Lutz, Walther, Wolter, 2008]
- SO [Goranko, Otto, 2007]

Counterexamples: nominals

ALCO extends ALC by nominals, which are interpreted as singleton sets.

Theorem

ALCO does not have weak interpolation. (ALC, ALCO) is not robust under vocabulary extensions.

Let

$$T_1 = \{\top \sqsubseteq \exists r. \top\}, \quad T_2 = T_1 \cup \{A \sqsubseteq \forall r. \neg A, \neg A \sqsubseteq \forall r. A\}.$$

 $T_1 \equiv_{\Sigma}^{ALCO} T_2 \text{ for } \Sigma = \{r\}.$ Observe $\{a\} \sqsubseteq \forall r. \neg \{a\}$ separates the two TBoxes wrt. \mathcal{QL}_{ALCO} , for any nominal $\{a\}.$ Thus, $T_1 \not\equiv_{\Sigma'}^{ALCO} T_2$ for $\Sigma' = \Sigma \cup \{a\}.$

Counterexample: role hierarchies

ALCH extends ALC by axioms of the form $r \sqsubseteq s$, for roles r, s.

Theorem

(ALCH, ALCH) is not robust under vocabulary extensions.

Let

$$T_1 = \{ \top \sqsubseteq \forall r_i \forall r_j \bot \mid i, j = 1, 2 \} \cup \{ \exists r_1 . \top \equiv \exists r_2 . \top \},$$
$$T_2 = T_1 \cup \{ s \sqsubseteq r_1, s \sqsubseteq r_2, \exists r_1 . \top \sqsubseteq \exists s . \top \}.$$

Then $T_1 \equiv_{\Sigma}^{\text{ALCH}} T_2$ for $\Sigma = \{r_1, r_2\}$. $\exists r_1. \top \sqcap \forall r_1. A \sqsubseteq \exists r_2. A$ separates the two ontologies, where A is a fresh concept name.

Theorem

 $(\mathcal{QL},\mathcal{QL})$ is robust under joins for any \mathcal{QL} from ALC, ALCQ, ALCI and ALCQI.

Proof in [Konev, Lutz, Walther, Wolter, 2008].

Theorem

(ALCH, ALCH) and (ALCO, ALCO) are not robust under joins.

Robustness under Replacement

 \mathcal{QL} is closed under Boolean operators if $\varphi, \psi \in \mathcal{QL}$ implies $\neg \varphi, \varphi \land \psi \in \mathcal{QL}$.

Theorem

If \mathcal{QL} is closed under Boolean operators and $(\mathcal{QL}, \mathcal{QL})$ is robust under vocabulary extensions, then $(\mathcal{QL}, \mathcal{QL})$ is robust under replacement.

Let
$$T, \varphi \subseteq \mathcal{QL}$$
 with $sig(T, \varphi) \cap sig(T_1 \cup T_2) \subseteq \Sigma$ and

$$T_1 \equiv_{\Sigma}^{\mathcal{QL}} T_2$$

Then

$$T_1 \models \bigwedge T \to \varphi \Leftrightarrow T_2 \models \bigwedge T \to \varphi.$$

Hence

 $T_1 \cup T \models \varphi \Leftrightarrow T_2 \cup T \models \varphi.$

Theorem

(ALC,ALC) is not robust under replacement.

Let

$$T_1 = \emptyset, \quad T_2 = \{A \sqsubseteq \exists r.B\}, \quad \Sigma = \{A, B\}.$$

The class of Σ -reducts of models of T_2 is axiomatised by

$$\exists x A(x) \to \exists x B(x).$$

Hence
$$T_1 \equiv_{\Sigma}^{ALC} T_2$$
. Let $T = \{A \equiv \top, B \equiv \bot\}$. Then
 $T_1 \cup T \not\models \top \sqsubseteq \bot \quad T_2 \cup T \not\models \top \sqsubseteq \bot$.

We have shown:

- conditions under which ontologies can be replaced with one another (inseparability)
- preservation of inseparability under change of certain parameters (robustness properties)
- investigation of which logics imply robustness
- characterisation of robustness via interpolation
- relevance to application scenarios, e.g., import/re-use
 ⇒ Wednesday's lecture

Course overview

O Locality

- Locality classes and locality-based modules
- Module extraction algorithms and experiments
- Oversioning and Forgetting
 - Logical difference
 - Forgetting/uniform interpolants
- Secent Advances/Current Work
 - Atomic decomposition
 - Signature decomposition, relevance of terms

