Modularity in Ontologies: Locality-based modules

*Thomas Schneider*¹ Dirk Walther²

¹Department of Computer Science, University of Bremen, Germany

²Faculty of Informatics, Technical University of Madrid, Spain

ESSLLI, 3 August 2011

Motivation	Guarantees	Safety, modules	Summary
Plan for today			

Yesterday, we discussed inseparability relations and their properties:

- inseparability = same functionality w.r.t. interface
 - = same answers to queries
- decidability/complexity
- robustness under vocabulary extensions, joins, replacement

Today, we'll look a bit closer on how to use these insights to help ontology engineers re-use ontologies

- in a controlled way
- without (unwanted) side-effects

Thanks: partly based on slides by Uli Sattler.

Plan for today

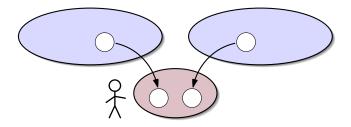
- 2 Logical guarantees in detail
- 3 Efficient safety test and module extraction

Motivation	Guarantees	Safety, modules	Summary
And now			

- 2 Logical guarantees in detail
- 3 Efficient safety test and module extraction

Remember: an import/reuse scenario

"Borrow" knowledge from external ontologies



- Provides access to well-established knowledge
- Doesn't require expertise in external disciplines

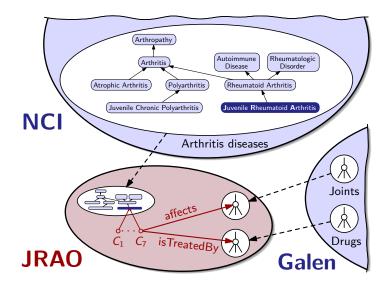
This scenario is well-understood and implemented.

Motivation	Guarantees	Safety, modules	Summary
A <i>real</i> example			

- Build an ontology JRAO that describes JRA JRA = Juvenile Rheumatoid Arthritis
- Describe JRA subkinds by
 - Joints affected
 - Occurrence of concomitant symptoms, e.g., fever
 - Treatment with certain drugs
- Re-use information provided by biomedical ontologies
 - NCI: diseases, drugs, proteins etc.
 - Galen: human anatomy

Safety, modules

A real example



Motivation	Guarantees	Safety, modules	Summary
Why reuse an	ontology?		

- Saves time and effort
- Provides access to well-established knowledge and terminology
- Doesn't require expertise in drugs, proteins, anatomy etc.
- → A tool supporting reuse should guarantee:
 - reusing imported terms doesn't change their meaning Safety
 - all relevant parts of external ont.s are imported **Coverage** in addition, import *only* relevant parts (Economy)
 - the order of imports doesn't matter

Does this sound like inseparability?

Independence

Motivation

Guarantees

Safety, modules

Summary

Guarantees by example

Safety

Concerns the usage of (imported) terms in the importing ontology:

```
Let JRA, GeneticDisorder \in sig(NCI).
```

```
JRAO \cup NCI \models JRA \sqsubseteq GeneticDisorder
iff
NCI \models JRA \sqsubseteq GeneticDisorder
```


Motivation

Guarantees

Safety, modules

Summary

Guarantees by example

Coverage

Concerns what we would consider a module:

$JRAO \cup NCI \models JRA \sqsubseteq GeneticDisorder$ iff $JRAO \cup NCI-module \models JRA \sqsubseteq GeneticDisorder$

Motivation

Guarantees

Safety, modules

Summary

Guarantees by example

Independence

If JRAO is safe for Galen and for NCI, then $JRAO \cup NCI$ -module is still safe for Galen and $JRAO \cup Galen$ -module is still safe for NCI.

Motivation	Guarantees	Safety, modules	Summary
And now			

- 2 Logical guarantees in detail
- 3 Efficient safety test and module extraction

4 Summary

Motivation	Guarantees	Safety, modules	Summary
Safety guarantee	e in detail		

 $\mathcal{O}_1 \text{ imports } \mathcal{O}_2 \text{ in an } \mathcal{L}\text{-safe way} \quad (\text{or } \mathcal{O}_1 \text{ is safe for } \mathcal{O}_2 \text{ w.r.t. } \mathcal{L})$ if $\mathcal{O}_1 \cup \mathcal{O}_2 \equiv_{\mathsf{sig}(\mathcal{O}_2)}^{\mathcal{L}} \mathcal{O}_2.$

Intuition: $\mathcal{O}_1 \cup \mathcal{O}_2$ doesn't change the meaning of \mathcal{O}_2 -terms.

Safety for an ontology

Motivation	Guarantees	Safety, modules	Summary
Safety guarantee	in detail		

Safety for an ontology \mathcal{O}_1 imports \mathcal{O}_2 in an \mathcal{L} -safe way (or \mathcal{O}_1 is safe for \mathcal{O}_2 w.r.t. \mathcal{L}) if $\mathcal{O}_1 \cup \mathcal{O}_2 \equiv_{sig(\mathcal{O}_2)}^{\mathcal{L}} \mathcal{O}_2$.

Intuition: $\mathcal{O}_1 \cup \mathcal{O}_2$ doesn't change the meaning of \mathcal{O}_2 -terms.

Problems

- Which \mathcal{L} to choose?
 - for ontology design: subsumptions betw. (complex?) concepts
 - for ontology usage: my favourite query language
- \bullet We might not have control over \mathcal{O}_2 and $\mathsf{sig}(\mathcal{O}_2)$

 $\mathcal{O}_2=\textit{NCI}$ might change over time, we want latest version

Motivation	Guarantees	Safety, modules	Summary
Safety guarantee	in detail		

Safety for an ontology

 $\begin{aligned} \mathcal{O}_1 \text{ imports } \mathcal{O}_2 \text{ in an } \mathcal{L}\text{-safe way} \quad (\text{or } \mathcal{O}_1 \text{ is safe for } \mathcal{O}_2 \text{ w.r.t. } \mathcal{L}) \\ \text{if } \mathcal{O}_1 \cup \mathcal{O}_2 \equiv^{\mathcal{L}}_{\text{sig}(\mathcal{O}_2)} \mathcal{O}_2. \end{aligned}$

Intuition: $\mathcal{O}_1 \cup \mathcal{O}_2$ doesn't change the meaning of \mathcal{O}_2 -terms.

Problems

- Which \mathcal{L} to choose?
 - for ontology design: subsumptions betw. (complex?) concepts
 - for ontology usage: my favourite query language
- \bullet We might not have control over \mathcal{O}_2 and $\mathsf{sig}(\mathcal{O}_2)$

 $\mathcal{O}_2=\textit{NCI}$ might change over time, we want latest version

Solution: Safety for a signature!

Motivation	Guarantees	Safety, modules	Summary
Safety for	a signature		
Definition	า		

\mathcal{O}_1 is safe for Σ w.r.t. \mathcal{L} if,

```
for every \mathcal{L}-ontology \mathcal{O}_2 with sig(\mathcal{O}_1) \cap sig(\mathcal{O}_2) \subseteq \Sigma,
\mathcal{O}_1 \cup \mathcal{O}_2 \equiv_{\Sigma}^{\mathcal{L}} \mathcal{O}_2.
```


Motivatio	Guarantees	Safety, modules	Summary
Safe	ty for a signature		
D	efinition		
С	\mathcal{P}_1 is safe for Σ w.r.t. \mathcal{L} if,		

for every \mathcal{L} -ontology \mathcal{O}_2 with $sig(\mathcal{O}_1) \cap sig(\mathcal{O}_2) \subseteq \Sigma$, $\mathcal{O}_1 \cup \mathcal{O}_2 \equiv_{\Sigma}^{\mathcal{L}} \mathcal{O}_2$.

Theorem

- If \mathcal{O}_1 is a model Σ -conservative extension of \emptyset $(\mathcal{O}_1 \equiv_{\Sigma}^{SO} \emptyset)$, then \mathcal{O}_1 is safe for Σ w.r.t. any $\mathcal{L} \leq SO$.
- Let \mathcal{L} be robust under replacements. Then \mathcal{O}_1 is safe for Σ w.r.t. \mathcal{L} iff $\mathcal{O}_1 \equiv_{\Sigma}^{\mathcal{L}} \emptyset$.

Motivatio	n Guarantees	Safety, modules	Summary
Safe	ty for a signature		
	Definition		
C	\mathcal{D}_1 is safe for Σ w.r.t. \mathcal{L} if,		

for every \mathcal{L} -ontology \mathcal{O}_2 with $sig(\mathcal{O}_1) \cap sig(\mathcal{O}_2) \subseteq \Sigma$, $\mathcal{O}_1 \cup \mathcal{O}_2 \equiv_{\Sigma}^{\mathcal{L}} \mathcal{O}_2$.

Theorem

- If \mathcal{O}_1 is a model Σ -conservative extension of \emptyset $(\mathcal{O}_1 \equiv_{\Sigma}^{SO} \emptyset)$, then \mathcal{O}_1 is safe for Σ w.r.t. any $\mathcal{L} \leq SO$.
- Let \mathcal{L} be robust under replacements. Then \mathcal{O}_1 is safe for Σ w.r.t. \mathcal{L} iff $\mathcal{O}_1 \equiv_{\Sigma}^{\mathcal{L}} \emptyset$.

Bad news: robustness under replacements fails easily ...

When robustness under replacements fails

Take ontology language \mathcal{ALC} and $\mathcal{L} = "\mathcal{ALC}$ -concept inclusions".

Consider $\mathcal{O}_1 = \{A \sqsubseteq \exists r.B\}$ and $\Sigma = \{A, B\}$.

When robustness under replacements fails

Take ontology language \mathcal{ALC} and $\mathcal{L} = "\mathcal{ALC}$ -concept inclusions".

Consider $\mathcal{O}_1 = \{A \sqsubseteq \exists r.B\}$ and $\Sigma = \{A, B\}$.

•
$$\mathcal{O}_1 \equiv^{\mathcal{ALC}}_{\Sigma} \emptyset$$
,

• but if we take $\mathcal{O}_2 = \{A \equiv \top, B \equiv \bot\}$, then $\mathcal{O}_1 \cup \mathcal{O}_2 \models \top \sqsubseteq \bot$, while $\mathcal{O}_2 \not\models \top \sqsubseteq \bot$.

• Hence,
$$\mathcal{O}_1 \cup \mathcal{O}_2 \not\equiv_{\Sigma}^{\mathcal{ALC}} \mathcal{O}_2$$
.

• Hence, \mathcal{O}_1 is not safe for Σ .

When robustness under replacements fails

Take ontology language \mathcal{ALC} and $\mathcal{L} = "\mathcal{ALC}$ -concept inclusions".

Consider $\mathcal{O}_1 = \{A \sqsubseteq \exists r.B\}$ and $\Sigma = \{A, B\}$.

•
$$\mathcal{O}_1 \equiv^{\mathcal{ALC}}_{\Sigma} \emptyset$$
,

• but if we take $\mathcal{O}_2 = \{A \equiv \top, B \equiv \bot\}$, then $\mathcal{O}_1 \cup \mathcal{O}_2 \models \top \sqsubseteq \bot$, while $\mathcal{O}_2 \not\models \top \sqsubseteq \bot$.

• Hence,
$$\mathcal{O}_1 \cup \mathcal{O}_2 \not\equiv_{\Sigma}^{\mathcal{ALC}} \mathcal{O}_2$$
.

• Hence, \mathcal{O}_1 is not safe for Σ .

(This problem can be resolved by extending \mathcal{L} to "Boolean conjunctions of \mathcal{ALC} -concept inclusions".)

otiv	

Guarantees

Safety, modules

Summary

Coverage guarantee in detail

Module for an ontology

 $\mathcal{M} \subseteq \mathcal{O}_2$ is a module for \mathcal{O}_1 in \mathcal{O}_2 w.r.t. \mathcal{L} if

 $\mathcal{O}_1 \cup \mathcal{O}_2 \equiv_{\mathsf{sig}(\mathcal{O}_1)}^{\mathcal{L}} \mathcal{O}_1 \cup \mathcal{M}.$

5.4					
M	τ		١T		٦.

Coverage guarantee in detail

Module for an ontology

 $\mathcal{M} \subseteq \mathcal{O}_2$ is a module for \mathcal{O}_1 in \mathcal{O}_2 w.r.t. \mathcal{L} if

 $\mathcal{O}_1 \cup \mathcal{O}_2 \equiv_{\mathsf{sig}(\mathcal{O}_1)}^{\mathcal{L}} \mathcal{O}_1 \cup \mathcal{M}.$

Problems

- \bullet Which ${\cal L}$ to choose?
 - for ontology design: subsumptions betw. (complex?) concepts
 - for ontology usage: my favourite query language
- The module shouldn't depend on the importing ontology, but only on the signature we want to use.

Μ	<u>_</u> +		-	~	-
111	ΟL	IV	d	 U	

Coverage guarantee in detail

Module for an ontology

 $\mathcal{M} \subseteq \mathcal{O}_2$ is a module for \mathcal{O}_1 in \mathcal{O}_2 w.r.t. \mathcal{L} if

 $\mathcal{O}_1 \cup \mathcal{O}_2 \equiv_{\mathsf{sig}(\mathcal{O}_1)}^{\mathcal{L}} \mathcal{O}_1 \cup \mathcal{M}.$

Problems

- \bullet Which ${\cal L}$ to choose?
 - for ontology design: subsumptions betw. (complex?) concepts
 - for ontology usage: my favourite query language
- The module shouldn't depend on the importing ontology, but only on the signature we want to use.

Motivation	Guarantees	Safety, modules	Summary
Module for	a signature		
Definition	1		

 $\mathcal{M} \subseteq \mathcal{O}_2$ is a module for Σ in \mathcal{O}_2 w.r.t. \mathcal{L} if,

for every \mathcal{L} -ontology \mathcal{O}_1 with $sig(\mathcal{O}_1) \cap sig(\mathcal{O}_2) \subseteq \Sigma$, $\mathcal{O}_1 \cup \mathcal{O}_2 \equiv_{sig(\mathcal{O}_1)}^{\mathcal{L}} \mathcal{O}_1 \cup \mathcal{M}$.

Moti	ation Guarantees	s Safety, modules Sur	mmary
Μ	odule for a signature		
	Definition		h -
	$\mathcal{M} \subseteq \mathcal{O}_2$ is a module f	for Σ in \mathcal{O}_2 w.r.t. \mathcal{L} if,	I

for every \mathcal{L} -ontology \mathcal{O}_1 with $\operatorname{sig}(\mathcal{O}_1) \cap \operatorname{sig}(\mathcal{O}_2) \subseteq \Sigma$, $\mathcal{O}_1 \cup \mathcal{O}_2 \equiv_{\operatorname{sig}(\mathcal{O}_1)}^{\mathcal{L}} \mathcal{O}_1 \cup \mathcal{M}$.

Observation

• If $\mathcal{M} \subseteq \mathcal{O}_2$ and \mathcal{O}_2 is a model Σ -c.e. of \mathcal{M} $(\mathcal{O}_2 \equiv_{\Sigma}^{SO} \mathcal{M})$, then \mathcal{M} is a module for Σ in \mathcal{O}_2 w.r.t. any $\mathcal{L} \leq SO$

2 Let
$$\mathcal{L}$$
 be robust under replacements.
Then $\mathcal{M} \subseteq \mathcal{O}_2$ is a module for Σ in \mathcal{O}_2 w.r.t.
iff $\mathcal{O}_2 \setminus \mathcal{M} \equiv_{\Sigma}^{\mathcal{L}} \emptyset$.

ſ.

Modules and Safety are closely related

The following is immediate from the previous definitions. *Homework: Prove.*

- Let $\mathcal{O}_1, \ \mathcal{M} \subseteq \mathcal{O}_2$ be ontologies in \mathcal{L} and Σ a signature. Then

Modules and Safety are closely related

The following is immediate from the previous definitions. *Homework: Prove.*

Let $\mathcal{O}_1, \ \mathcal{M} \subseteq \mathcal{O}_2$ be ontologies in \mathcal{L} and Σ a signature. Then

- \mathcal{O}_1 is safe for Σ w.r.t. \mathcal{L} iff \emptyset is a Σ -module in \mathcal{O}_1 w.r.t. \mathcal{L} \mathcal{O}_1 constrains interpretation of terms in Σ as much as \emptyset
- If O₂ \ M is safe for Σ ∪ sig(M) w.r.t. L, then M is a Σ-module in O₂ w.r.t. L
 O₂ \ M doesn't constrain interpretation of terms from Σ ∪ sig(M)

Independence Guarantee in Detail

Basic requirement for importing ontologies independently.

Independence

Safety is preserved under imports:

If \mathcal{O}_1 is safe for Σ_i (\mathcal{O}_i), then $\mathcal{O}_1 \cup \mathcal{O}_j$ is still safe for Σ_i (\mathcal{O}_i).

Independence Guarantee in Detail

Basic requirement for importing ontologies independently.

Independence

Safety is preserved under imports:

If \mathcal{O}_1 is safe for Σ_i (\mathcal{O}_i), then $\mathcal{O}_1 \cup \mathcal{O}_j$ is still safe for Σ_i (\mathcal{O}_i).

Independence is difficult to guarantee

• when the Σ_i share terms:

e.g.,
$$\mathcal{O}_1 = \{A \sqsubseteq \top\}$$
 is safe for $\Sigma = \{A, B\}$,
but $\mathcal{O}_1 \cup \{A \sqsubseteq B\}$ is *not safe* for Σ

• when the Σ_i don't share terms:

e.g., $\mathcal{O}_1 = \{A \sqsubseteq B\}$ is safe for $\Sigma_2 = \{A\}$ and $\Sigma_3 = \{B\}$, but $\mathcal{O}_1 \cup \{B \equiv \bot\}$ is not safe for Σ_2 and $\mathcal{O}_1 \cup \{A \equiv \top\}$ is not safe for Σ_3

Problems to solve for supporting Ontology Engineering

Given "our" ontology \mathcal{O}_1 and ontologies \mathcal{O}_i from which we want to reuse terms Σ_i ,

- make sure that \mathcal{O}_1 is safe for Σ_i
- **2** determine modules for Σ_i from $\mathcal{O}_i \rightsquigarrow$ but which?
 - (a) Did engineer "forget something" when specifying Σ_i ?
 - (b) Should modules be as small as possible?
 - (c) Even minimal modules are not unique (see next slide) \rightsquigarrow which one to use?
- $\textcircled{3} \text{ add modules } \mathcal{M}_i \text{ to } \mathcal{O}_1$
 - (a) static/call-by-value: determine and add $\mathcal{M}_{\it i}$
 - (b) dynamic/call-by-name: always use "freshest" $M_i \rightarrow how$? (We need to provide mechanisms/syntax for this.)

Motiv	ation Guarantees	Safety, modules	Summary
Ex	ample		
	Let $\Sigma = \{Knee, HingeJoint\}.$	Suppose <i>Galen</i> contains:	
	Kn	ee ≡ Joint ⊓ ∃hasPart.Patella ⊓ ∃hasFunct.Hinge	(1)
	Pate	lla ⊑ Bone ⊓ Sesamoid	(2)
	Ginglym	us \equiv Joint \sqcap \exists hasFunct.Hinge	(3)
	Joint □ ∃hasPart.(Bone□Sesamoi	d) 드 Ginglymus	(4)
	Ginglym	$us \equiv HingeJoint$	(5)
	Menisc	$sus \equiv FibroCartilage \sqcap \exists locatedIn.Knee$	(6)
	\subseteq -Minimal module for Σ ?		

Motiva	ation Gu	arantees	Safety, modules	Summary
Exa	ample			
	Let $\Sigma = \{Knee, Hir$	ngeJoint}.	Suppose <i>Galen</i> contains:	
		Knee	≡ Joint □ ∃hasPart.Patella □ ∃hasFunct.Hinge	(1)
		Patella	\sqsubseteq Bone \sqcap Sesamoid	(2)
	Joint □ ∃hasPart.(Bo	ne⊓Sesamoid)	⊑ Ginglymus	(4)
		Ginglymus	\equiv HingeJoint	(5)
	⊆-Minimal module	for Σ? {(1)	, (2), (4), (5)}	
				Ü 🔘

Motiv	vation	Guarantees	Safety, modules	Summary
Ex	ample			
	Let $\Sigma = \{Knee,$	HingeJoint}.	Suppose <i>Galen</i> contains:	
		Kne	e ≡ Joint ⊓ ∃hasPart.Patella ⊓ ∃hasFunct.Hinge	(1)
		Ginglymu	$s \equiv Joint \sqcap \exists hasFunct.Hinge$	(3)
		Ginglymu	$s \equiv HingeJoint$	(5)
	⊆-Minimal mod	ule for Σ ? {(1), (3), (5)}	

Ü ()

Motiv	ation Guarantees	Safety, modules	Summary
Exa	ample		
	Let $\Sigma = \{Knee, HingeJoint\}$	Suppose <i>Galen</i> contains:	
	٢	Since ≡ Joint □ ∃hasPart.Patella □ ∃hasFunct.Hinge	(1)
	Pa	tella 드 Bone 🗆 Sesamoid	(2)
	Gingly	mus \equiv Joint \sqcap \exists hasFunct.Hinge	(3)
	Joint □ ∃hasPart.(Bone□Sesam	ioid) 🖵 Ginglymus	(4)
	Gingly	mus \equiv HingeJoint	(5)
	Meni	$scus \equiv FibroCartilage \sqcap \exists locatedIn.Knee$	(6)
	⊆-Minimal module for Σ ? {	$\{(1), (2), (4), (5)\}$ and $\{(1), (3), (5)\}$	}

Motivation	Guarantees	Safety, modules	Summary
Example			
Let $\Sigma = \{$	Knee, HingeJoint}.	Suppose <i>Galen</i> contains:	
	Knee	e ≡ Joint ⊓ ∃hasPart.Patella ⊓ ∃hasFunct.Hinge	(1)
	Patella	a ⊑ Bone ⊓ Sesamoid	(2)
	Ginglymu	$s \equiv Joint \sqcap \exists hasFunct.Hinge$	(3)
Joint ⊓ ∃h	asPart.(Bone⊓Sesamoid) 🖵 Ginglymus	(4)
	Ginglymu	$s \equiv HingeJoint$	(5)
	Meniscu	$s \equiv FibroCartilage \sqcap \exists locatedIn.Knee$	(6)
		(2), (4), (5) and $(1), (3), (5)$ not necessarily contain	}

- $\bullet\,$ all axioms that use terms from Σ
- $\bullet\,$ only axioms that only use terms from $\Sigma\,$

Bad news for expressive ontology languages?

Big, sad theorem → Tuesday's lecture

Let $\mathcal{O}_1, \ \mathcal{M} \subseteq \mathcal{O}_2$ be ontologies in \mathcal{L} and Σ a signature.

• Determining whether \mathcal{O}_1 is safe for \mathcal{O}_2 w.r.t. \mathcal{L} or whether \mathcal{M} is a module for \mathcal{O}_1 in \mathcal{O}_2 w.r.t. \mathcal{L} is

ExpTime-complete	for	$\mathcal{L} = \mathcal{E}\mathcal{L}$, \implies Tuesday's lecture
2ExpTime-compl.	for	$\mathcal{ALC} \leqslant \mathcal{L} \leqslant \mathcal{ALCQI}$, and
undecidable	for	$\mathcal{L} \ge \mathcal{ALCQIO}$, including OWL

undecidable w.r.t. $\mathcal{L} = \mathcal{ALCO}$ (even if \mathcal{O}_1 is in \mathcal{ALC}).

Consequences for safety/modules of expressive DLs

Deciding safety/modules is highly complex or even undecidable for expressive DLs.

What to do?

- Give up? No: modules/safety clearly too important
- Approximate for expressive logics? Yes but from the *right*

direction!

Next: 2 approximations, i.e., sufficient conditions for safety

- based on semantic locality
- Ø based on syntactic locality

	/atio	

Guarantees

Safety, modules

Summary

And now ...

Motivation: Modular reuse of ontologies

2 Logical guarantees in detail

3 Efficient safety test and module extraction

4 Summary

Motivation	Guarantees	Safety, modules	Summary
Locality			

oti		

Guarantees

Locality

$$\begin{split} \mathcal{O} \text{ is } \Sigma \text{-safe w.r.t. any } \mathcal{L} \\ \text{if} \\ \mathcal{O} \text{ is a model } \Sigma \text{-conserv. extension of } \emptyset \\ \text{iff} \\ \text{for each } \mathcal{I}, \text{ there is } \mathcal{J} \models \mathcal{O} \text{ with } \mathcal{I}|_{\Sigma} = \mathcal{J}|_{\Sigma} \\ \text{if} \\ \forall \mathcal{I} \; \exists \mathcal{J} \models \mathcal{O} \text{ with } \mathcal{I}|_{\Sigma} = \mathcal{J}|_{\Sigma} \text{ and } X^{\mathcal{I}} = \emptyset, \forall X \notin \Sigma \end{split}$$

Motivation	Guarantees	Safety, modules	Summary
Locality			

$$\begin{array}{l} \mathcal{O} \text{ is } \Sigma \text{-safe w.r.t. any } \mathcal{L} \\ \text{if} \\ \mathcal{O} \text{ is a model } \Sigma \text{-conserv. extension of } \emptyset \\ \text{iff} \\ \text{for each } \mathcal{I} \text{, there is } \mathcal{J} \models \mathcal{O} \text{ with } \mathcal{I}|_{\Sigma} = \mathcal{J}|_{\Sigma} \\ \text{if} \\ \forall \mathcal{I} \exists \mathcal{J} \models \mathcal{O} \text{ with } \mathcal{I}|_{\Sigma} = \mathcal{J}|_{\Sigma} \text{ and } X^{\mathcal{I}} = \emptyset, \forall X \notin \Sigma \\ \text{iff} \\ \forall \mathcal{I} \exists \mathcal{J} \forall \alpha \in \mathcal{O} : \mathcal{J} \models \alpha \text{ and } \mathcal{I}|_{\Sigma} = \mathcal{J}|_{\Sigma} \text{ and } X^{\mathcal{I}} = \emptyset, \forall X \notin \Sigma \end{array}$$

Motivation	Guarantees	Safety, modules	Summary
Locality			

$$\begin{array}{c} \mathcal{O} \text{ is } \Sigma \text{-safe w.r.t. any } \mathcal{L} \\ \text{if} \\ \mathcal{O} \text{ is a model } \Sigma \text{-conserv. extension of } \emptyset \\ \text{iff} \\ \text{for each } \mathcal{I} \text{, there is } \mathcal{J} \models \mathcal{O} \text{ with } \mathcal{I}|_{\Sigma} = \mathcal{J}|_{\Sigma} \\ \text{if} \\ \forall \mathcal{I} \exists \mathcal{J} \models \mathcal{O} \text{ with } \mathcal{I}|_{\Sigma} = \mathcal{J}|_{\Sigma} \text{ and } X^{\mathcal{I}} = \emptyset, \forall X \notin \Sigma \\ \text{iff} \\ \forall \mathcal{I} \exists \mathcal{J} \forall \alpha \in \mathcal{O} : \mathcal{J} \models \alpha \text{ and } \mathcal{I}|_{\Sigma} = \mathcal{J}|_{\Sigma} \text{ and } X^{\mathcal{I}} = \emptyset, \forall X \notin \Sigma \\ \text{iff} \\ \forall \mathcal{I} \forall \alpha \in \mathcal{O} \exists \mathcal{J} : \mathcal{J} \models \alpha \text{ and } \mathcal{I}|_{\Sigma} = \mathcal{J}|_{\Sigma} \text{ and } X^{\mathcal{I}} = \emptyset, \forall X \notin \Sigma \end{array}$$

Motivation	Guarantees	Safety, modules	Summary
Locality			

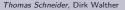
$$\begin{array}{c} \mathcal{O} \text{ is } \Sigma \text{-safe w.r.t. any } \mathcal{L} \\ \text{if} \\ \mathcal{O} \text{ is a model } \Sigma \text{-conserv. extension of } \emptyset \\ \text{iff} \\ \text{for each } \mathcal{I} \text{, there is } \mathcal{J} \models \mathcal{O} \text{ with } \mathcal{I}|_{\Sigma} = \mathcal{J}|_{\Sigma} \\ \text{if} \\ \forall \mathcal{I} \exists \mathcal{J} \models \mathcal{O} \text{ with } \mathcal{I}|_{\Sigma} = \mathcal{J}|_{\Sigma} \text{ and } X^{\mathcal{I}} = \emptyset, \forall X \notin \Sigma \\ \text{iff} \\ \forall \mathcal{I} \exists \mathcal{J} \forall \alpha \in \mathcal{O} : \mathcal{J} \models \alpha \text{ and } \mathcal{I}|_{\Sigma} = \mathcal{J}|_{\Sigma} \text{ and } X^{\mathcal{I}} = \emptyset, \forall X \notin \Sigma \\ \text{iff} \\ \forall \mathcal{I} \forall \alpha \in \mathcal{O} \exists \mathcal{J} : \mathcal{J} \models \alpha \text{ and } \mathcal{I}|_{\Sigma} = \mathcal{J}|_{\Sigma} \text{ and } X^{\mathcal{I}} = \emptyset, \forall X \notin \Sigma \\ \text{iff} \\ \forall \alpha \in \mathcal{O} \exists \mathcal{J} : \mathcal{J} \models \alpha \text{ and } \mathcal{I}|_{\Sigma} = \mathcal{J}|_{\Sigma} \text{ and } X^{\mathcal{I}} = \emptyset, \forall X \notin \Sigma \\ \text{iff} \\ \forall \alpha \in \mathcal{O} : ``\alpha \text{ with all } X \notin \Sigma \text{ replaced by } \bot `` \text{ is a tautology} \end{array}$$

Testing locality

Ergo: \mathcal{O} is Σ -safe w.r.t. any \mathcal{L} if: for each $\alpha \in \mathcal{O}$ and each \mathcal{I} where all $r, A \notin \Sigma$ are interpreted as \emptyset , we have $\mathcal{I} \models \alpha$.

Algorithm for testing locality
Input: $\Sigma, \mathcal{O} \ \mathcal{ALC} \ TBox$
safe \leftarrow true
For each $C_1 \sqsubseteq C_2 \in \mathcal{O}$ with C_i in NNF, construct C'_i from C_i by
replacing all $A \notin \Sigma$ with ot
replacing all $\exists r.C$ with $r \notin \Sigma$ with \perp
replacing all $\forall r.C$ with $r \notin \Sigma$ with \top
safe \leftarrow false if $C'_1 \sqcap \neg C'_2$ is satisfiable % can find countermodel
Return safe

Answers "true" if ${\cal O}$ is $\Sigma\text{-safe}$ w.r.t. ${\cal ALC};$ extensible to more expressive DLs

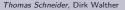


Dual notion of locality

Analogously: \mathcal{O} is Σ -safe w.r.t. any \mathcal{L} if: for each $\alpha \in \mathcal{O}$ and each \mathcal{I} where all $r, A \notin \Sigma$ are interpreted as Δ , we have $\mathcal{I} \models \alpha$.

Algorithm for testing locality
Input: $\Sigma, \mathcal{O} \ \mathcal{ALC} \ TBox$
safe \leftarrow true
For each $C_1 \sqsubseteq C_2 \in \mathcal{O}$ with C_i in NNF, construct C'_i from C_i by
replacing all $A \notin \Sigma$ with \top
replacing all $\exists r. \top$ with $r \notin \Sigma$ with \top
replacing all $\forall r. \perp$ with $r \notin \Sigma$ with \perp
safe \leftarrow false if $C'_1 \sqcap \neg C'_2$ is satisfiable % can find countermodel
Return safe

Answers "true" if ${\cal O}$ is $\Sigma\text{-safe}$ w.r.t. ${\cal ALC};$ extensible to more expressive DLs



Testing locality

Both variants of our algorithm decide Σ -safety.

But:

- Both locality notions only *approximate* Σ -safety.
- We still need to perform reasoning: for each axiom α, test satisfiability of C'₁ □ ¬C'₂
 - There are highly optimised reasoners available to do so, but ...
 - \bullet Testing satisfiability in \mathcal{ALC} is ExpTime-complete!
 - Testing satisfiability in \mathcal{SROIQ} is N2ExpTime-complete!
- **Q:** Isn't there a **cheaper** approximation?
- A: We can use syntactic approximation of locality!

Syntactic approximation of locality

Axiom α is syntactically Σ -local: α of form $C \sqsubseteq C^{\Delta}$ or $C^{\emptyset} \sqsubseteq C$, for C^{\emptyset} and C^{Δ} given by the following grammars.

Start with A^{Σ} , r^{Σ} terms *not* in Σ , and *r*, *C* any term

$$C^{\emptyset} ::= A^{\Sigma} \mid \neg C^{\Delta} \mid C \sqcap C^{\emptyset} \mid C^{\emptyset} \sqcap C \mid \exists r^{\Sigma}.C \mid \exists r.C^{\emptyset}$$
$$C^{\Delta} ::= \top \mid \neg C^{\emptyset} \mid C^{\Delta} \sqcap C^{\Delta}$$

An ontology is syntactically Σ -local if it contains only syntactically Σ -local axioms.

Syntactic approximation of locality

Axiom α is syntactically Σ -local: α of form $C \sqsubseteq C^{\Delta}$ or $C^{\emptyset} \sqsubseteq C$, for C^{\emptyset} and C^{Δ} given by the following grammars.

Start with A^{Σ} , r^{Σ} terms *not* in Σ , and *r*, *C* any term

An ontology is syntactically Σ -local if it contains only syntactically Σ -local axioms.

Theorem

Syntactic $\Sigma\text{-locality}$ implies semantic $\Sigma\text{-locality}$ implies $\Sigma\text{-safety}$

Examples of syntactically (non)-local axioms

$\overline{B} \sqsubseteq A$	form $C \sqsubseteq C^{\emptyset} \rightsquigarrow$ not $\{\overline{B}, \dots\}$ -local
$A \sqsubseteq \overline{B} \sqcap \exists r. \overline{C}$	form $C^{\emptyset} \sqsubseteq C \rightsquigarrow \{\overline{B}, \overline{C}\}$ -local
$X\sqcap A\sqsubseteq Y$	is Σ -local if, e.g., $A otin \Sigma$
$\overline{B} \sqcap \exists r. \overline{C} \sqsubseteq A$	is $\{\overline{B}, \overline{C}\}$ -local
$\overline{A} \sqsubseteq \overline{A} \sqcup \overline{B}$	is not $\{\overline{A},\overline{B}\}$ -local, yet a tautology!

Motivation	Guarantees	Safety, modules	Summary
Back	to our real example		
	Arthritis diseases	In <i>JRAO</i> , we can reuse {Arthritis, Joint, Knee} and "syntactically safely" write	2:
	$JRA \equiv \overline{Arthritis} \sqcap \exists affects \\ KJRA \equiv JRA \sqcap \exists affects.\overline{Kn}$	s.(Joint □ ∃locatedIn.Juvenile) ee	

 \rightsquigarrow safely reference and refine existing terms from NCI and Galen.

Motivation	Guarantees	Safety, modules	Summary
Back to ou	r real example		
JRAO	Arthritis diseases Arthritis diseases Joints GrisTreatedBy Revealed Addition	In <i>JRAO</i> , we can reuse {Arthritis, Joint, Knee} and "syntactically safely" write s.(Joint □ ∃locatedIn.Juvenile) ee	

→ safely reference and refine existing terms from NCI and Galen.
 Generalise terms? – Use different syntactic locality: dual notion

Locality for modules

Remember: If $\mathcal{O}_2 \setminus \mathcal{M}$ is safe for $\Sigma \cup sig(\mathcal{M})$ w.r.t. \mathcal{L} , then \mathcal{M} is a Σ -module in \mathcal{O}_2 w.r.t. \mathcal{L} .

 \rightsquigarrow poly-time algorithm to compute a Σ -module in \mathcal{O}_2 :

Locality for modules

Remember: If $\mathcal{O}_2 \setminus \mathcal{M}$ is safe for $\Sigma \cup sig(\mathcal{M})$ w.r.t. \mathcal{L} , then \mathcal{M} is a Σ -module in \mathcal{O}_2 w.r.t. \mathcal{L} .

 \rightsquigarrow poly-time algorithm to compute a Σ -module in \mathcal{O}_2 :

$\begin{array}{l} \mbox{Algorithm} \\ \mbox{Input: Sig. } \Sigma, \ \mbox{TBox } \mathcal{O} \\ \mathcal{M} \leftarrow \emptyset, \ \ \Sigma_1 \leftarrow \Sigma, \ \ \Sigma_0 \leftarrow \Sigma \\ \mbox{Repeat } \Sigma_0 \leftarrow \Sigma_1 \\ & \mbox{For each } \alpha \in \mathcal{O}_2 \setminus \mathcal{M} \\ & \mbox{If } \alpha \ \mbox{not } \Sigma_1 \mbox{-safe, then add } \alpha \ \mbox{to } \mathcal{M} \ \mbox{and sig}(\alpha) \ \mbox{to } \Sigma_1 \\ \mbox{Until } \Sigma_0 = \Sigma_1 \\ \mbox{Return } \mathcal{M} \end{array}$

Locality for modules

Remember: If $\mathcal{O}_2 \setminus \mathcal{M}$ is safe for $\Sigma \cup sig(\mathcal{M})$ w.r.t. \mathcal{L} , then \mathcal{M} is a Σ -module in \mathcal{O}_2 w.r.t. \mathcal{L} .

 \rightsquigarrow poly-time algorithm to compute a Σ -module in \mathcal{O}_2 :

Algorithm Input: Sig. Σ , TBox \mathcal{O} $\mathcal{M} \leftarrow \emptyset$, $\Sigma_1 \leftarrow \Sigma$, $\Sigma_0 \leftarrow \Sigma$ Repeat $\Sigma_0 \leftarrow \Sigma_1$ For each $\alpha \in \mathcal{O}_2 \setminus \mathcal{M}$ If α not Σ_1 -safe, then add α to \mathcal{M} and sig(α) to Σ_1 Until $\Sigma_0 = \Sigma_1$ Return \mathcal{M}

Observation: \mathcal{M} is a Σ_1 -module in \mathcal{O} and therefore a Σ -module (since $\Sigma \subseteq \Sigma_1$ and – we need some anti-monotonicity here)

	atio	

Variations to the module extraction algorithm

- Different safety checks, based on locality, lead to different notions of a locality-based modules:
 - semantic locality \rightsquigarrow "Ø-modules"
 - dual notion \rightsquigarrow " Δ -modules"
 - syntactic locality (\perp -locality) $\rightsquigarrow \perp$ -modules
 - dual notion (\top -locality) \rightsquigarrow \top -modules
 - Remember: the first two require reasoning (often intractable), while a syntactic locality check is tractable!
- Smaller modules by nesting \top and \perp -module extraction: $\top \bot^*$ -modules
- More efficient extraction of (semantic) Ø- and Δ-modules: start with extracting a ⊥- or ⊤-module

Motivation	Guarantees	Safety, modules	Summary
And now			

1 Motivation: Modular reuse of ontologies

2 Logical guarantees in detail

3 Efficient safety test and module extraction

Motivation	Guarantees	Safety, modules	Summary
Summary			

- Safety and economy/coverage are important guarantees (not only) for reuse.
- They can be approximated using locality.
- Modules based on syntactic locality can be extracted efficiently in logics up to OWL.
- There is tool support for extracting modules. http://owl.cs.manchester.ac.uk/modularity http://owlapi.sourceforge.net/
- This line of research is rather new for DLs and ontology languages, and many questions are (half)open.

Course overview

- Oversioning and Forgetting
 - Logical difference
 - Forgetting/uniform interpolants
- S Recent Advances/Current Work
 - Atomic decomposition
 - Signature decomposition, relevance of terms

