
Modularity in Ontologies:
Approaches for Light-weight Description Logics

Thomas Schneider1 Dirk Walther 2

1Department of Computer Science, University of Bremen, Germany

2Faculty of Informatics, Technical University of Madrid, Spain

ESSLLI, 4 August 2011

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 1

Plan for today

For light-weight DL-ontologies
modularity and module extraction
computing the logical difference of large-scale ontologies
forgetting and uniform interpolation

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 2

Modularity for Light-weight DLs

Logic-based modularity in light-weight DLs
DL-Lite family

[Kontchakov, Wolter, Zakharyaschev, 2010]
EL family

[Lutz, Wolter, 2010]

; Here we focus on EL.

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 3

Description Logic EL

EL is a fragment of ALC.

EL-syntax:
C , D = > | A | C u D | ∃r .C

TBox T is a finite set of concept inclusions C v D.

Reasoning tasks:
Satisfiability of EL-concept C wrt. EL-TBox T

trivial (tractable): always satisfiable in a one-point model
Subsumption of EL-concepts C , D wrt. EL-TBox T

tractable (decidable in polynomial time)

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 4

Modularity reasoning for EL

Deciding whether two EL-TBoxes are Σ-inseparable wrt. EL is
ExpTime-complete.
For EL-TBoxes, Σ-inseparability wrt. SO is undecidable.
For EL-TBoxes, even T ≡SO

Σ ∅, (equivalently, whether

{M|Σ | M |= T} = class of all Σ-models)

is undecidable.
EL has interpolation but (EL,EL) is not robust under
replacement

Today, we consider EL-TBoxes of a particular form.

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 5

EL-terminologies

Definition
An EL-TBox T is a EL-terminology if

every axiom is of the form A ≡ C , where A is a concept name;
no concept name A occurs more than once on the left hand
side of an axiom.

A EL-terminology T is acyclic if no concept name refers to itself
along definitions:

let A ≺T X if there exists an axiom A ≡ C in T such that X
occurs in C .

Then T is acyclic iff ≺T is acyclic (equivalently ≺+
T is irreflexive).

In a TBox T , we rewrite A v C into A ≡ X uC , where X is fresh.

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 6

Plan for EL-terminologies

deciding ‘T ≡SO
Σ ∅’ in polynomial time,

then T is safe ó Wednesday’s lecture
extract modules
logical difference: comparing versions of ontologies
forgetting and uniform interpolation

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 7

Deciding ‘T ≡SO
Σ ∅’

Theorem
The following problem can be solved in polynomial time:
given an acyclic EL-terminology T , decide whether

T ≡SO
Σ ∅.

For the proof, we distinguish two types of syntactic dependencies
between Σ-symbols in T :
(a) direct: ‘definition’ of a Σ-symbol uses another Σ-symbol
(b) indirect: two Σ-symbols are ‘defined’ using common

non-Σ-symbol

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 8

Direct Σ-dependencies

Let T be an acyclic EL-terminology.
(a) T contains a direct Σ-dependency if there exist A, X ∈ Σ

such that A ≺+
T X .

Theorem
If an acyclic EL-terminology T contains a direct Σ-dependency,
then T 6≡SO

Σ ∅.

Proof. Suppose T contains a syntactic Σ-dependency A ≺+
Σ X .

Take a interpretation I with AI = ∆I and XI = ∅. Then I can’t
be expanded to a model of T .

Does not work for acyclic ALC-terminologies!
From now on, we assume T does not contain direct
Σ-dependencies.

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 9

Indirect Σ-dependencies

Decomposing an acyclic EL-terminology
Let T be an acyclic EL-terminology and Σ a signature.
Take partition

T = TΣ ∪ T ′,
where

TΣ = {A ≡ C | A ∈ Σ or ∃B ∈ Σ, B ≺+
T A}

TΣ does not contain Σ-role names
(there are no direct Σ-dependencies inT)

Theorem
If I |= TΣ, then there exists J |= T such that J|Σ = I|Σ.

Proof. Expand I inductively by setting AJ := CJ for
A ≡ C ∈ T ′.

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 10

Checking indirect Σ-dependencies

Theorem
Let T be an acyclic EL-terminology without direct
Σ-dependencies. Then the following conditions are equivalent:

1 T ≡SO
Σ ∅;

2 Every one-point Σ-interpr. can be expanded to a model of TΣ.

Point 2 implies Point 1. Let I be an interpretation. As TΣ

contains no Σ-roles, we may assume that Σ contains no roles. For
each d in I, let J{d} |= TΣ be an expansion of I{d}. Then

J =
⋃

d∈I
J{d} |= TΣ

and J is an expansion of I.

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 11

Polytime algorithm for T ≡SO
Σ ∅

To decide whether T ≡SO
Σ ∅, check

1 T contains no direct Σ-dependencies;
2 every one point Σ-model can be expanded to a model of TΣ.

Point 2 holds iff

For all A ∈ Σ,

{X | A ≺+
T X} 6⊆ {X | ∃B ∈ Σ \ {A}, B ≺+

T X}.

Observation: For acyclic ALC-terminologies without
Σ-dependencies, one can decide T ≡SO

Σ ∅ by considering one
point-models (then Πp

2-complete).

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 12

Module extraction

From deciding inseparability to module extraction.

Given acyclic EL-terminology T and signature Σ, the decision
procedure extracts from T the smallest M ⊆ T such that

T \M ≡SO
Σ∪sig(M) ∅.

ó then T \M is safe for Σ∪ sig(M) wrt. EL (Wednesday’s lecture)

Equivalently, by robustness under replacement of (EL,SO),

M ≡SO
Σ∪sig(M) T .

ó then M is a Σ-module in T wrt. EL

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 13

Module extraction algorithm
Input: acyclic EL-terminology T and signature Σ.
Output: smallest M ⊆ T such that T \M ≡SO

Σ∪sig(M) ∅.

Initialise: M = ∅, Σ′ = Σ. Apply rules 1 and 2 exhaustively,
preferring Rule 1.

1 collect direct dependencies
if A ∈ Σ′, A ≡ C ∈ T \M, and exists X ∈ Σ′ with
A ≺+

T\M X ,

M := M ∪ {A ≡ C}, Σ′ := Σ′ ∪ sig(C).

2 collect indirect dependencies
if A ∈ Σ′, A ≡ C ∈ T \M, and
{X | A ≺+

T\M X} ⊆ {X | ∃B ∈ Σ′ \ {A} B ≺+
T\M X},

then set
M := M ∪ {A ≡ C}, Σ′ := Σ′ ∪ sig(C).

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 14

Experiment with SNOMED CT

SNOMED CT:
Systematised Nomenclature of Medicine (Clinical Terms).
∼ 400, 000 terms
used in health care etc. in the US, UK, Australia etc.
an acyclic EL-terminology (+ role box):

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 15

Experiment: Extraction of modules from SNOMED CT

MEX: prototype implementation of the algorithm above
http://www.csc.liv.ac.uk/~konev/software/

Σ — randomly selected from SNOMED CT.
1000 samples for each signature size

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 16

http://www.csc.liv.ac.uk/~konev/software/

⊥-Locality based vs. MEX Modules: Frequency

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 17

Logical Difference: motivation

Task
given two versions T1 and T2 of an ontology and a signature
Σ, compute “the difference” between T1 and T2 observable in
Σ in a query language QL.

Syntactical difference
Many tools compute the syntactical difference between
versions of texts and program code.
But many syntactic differences do not affect the semantics of
ontologies!
Example:

T1 = {A v B1 u B2}, T2 = {A v B1, A v B2}
Σ = {A, B1, B2}
Then T1 6= T2, but T1 ≡SO

Σ T2.

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 18

Logical Difference: motivation

Structural difference
extends syntactic diff by taking into account structural
meta-information of distinct versions of ontologies
regards ontologies as structured objects (e.g., taxonomy, set
of RDF triplets, set of axioms)
changes are structural operations (e.g.,
adding/deleting/extending/renaming classes)
but:

syntax dependent and no formal semantics
tailored to applications of ontologies based on taxonomy
ontology based data access not captured

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 19

Logical Difference

T1 and T2 ontologies, QL a query language, Σ a signature.
The logical difference between T1 and T2 wrt. (QL,Σ) is defined as

DiffQL
Σ (T1, T2) ∪ DiffQL

Σ (T2, T1),

where
DiffQL

Σ (T1, T2) = {ϕ ∈ QL | T1 |= ϕ, T2 6|= ϕ, sig(ϕ) ∈ Σ}.
DiffQL

Σ (T2, T1) = {ϕ ∈ QL | T2 |= ϕ, T1 6|= ϕ, sig(ϕ) ∈ Σ}.

Observation: DiffQL
Σ (T1, T2)∪DiffQL

Σ (T2, T1) = ∅ iff T1 ≡QL
Σ T2.

Problem: How to present DiffQL
Σ (T1, T2) if it is non-empty?

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 20

Σ-difference for EL-terminologies

Take query language QLEL consisting of C v D, where C , D are
EL-concepts. We also denote QLEL simply as EL.
Set

DiffΣ(T1, T2) = DiffELΣ (T1, T2).

Example of ‘large’ smallest elements in DiffΣ(T1, T2):
T2 = ∅;
T1 = {A′ v B0, A ≡ Bn}∪{Bi+1 ≡ ∃r .Bi u∃s.Bi | i < n};
Σ = {A′, A, r , s}.

For the minimal C v A ∈ DiffΣ(T1, T2) we have |C | = 2n.

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 21

Σ-difference for EL-terminologies

Theorem
If (C v D) ∈ DiffΣ(T1, T2) then either

(A v D0) ∈ DiffΣ(T1, T2) or
(C0 v A) ∈ DiffΣ(T1, T2),

where A is a concept name and
A, C0 — subconcepts of C ;
D0, A — subconcepts of D, resp.

In propositional EL: if C v A1 u A2 ∈ DiffΣ(T1, T2), then
C v A1 ∈ DiffΣ(T1, T2) or
C v A2 ∈ DiffΣ(T1, T2).

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 22

Compact representation of DiffΣ(T1, T2)

Let
diffLΣ(T1, T2) ={

A ∈ Σ

∣∣∣∣∣ there is a Σ-concept C in EL s.t.
T1 |= A v C and T2 6|= A v C

}

diffRΣ(T1, T2) ={
A ∈ Σ

∣∣∣∣∣ there is a Σ-concept C in EL s.t.
T1 |= C v A and T2 6|= C v A

}

diffLΣ(T1, T2) and diffRΣ(T1, T2) provide a list of concept names
in Σ about which T1 “says more” than T2.

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 23

Σ-difference between EL-terminologies

Theorem
Let T1 and T2 be EL-terminologies and Σ a signature. Then

diffLΣ(T1, T2) and
diffRΣ(T1, T2)

can be computed in polynomial time. In particular, Σ-inseparability
wrt. EL is tractable.

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 24

Tools

CEX
implementation of tractable algorithm computing
DiffLΣ(T1, T2) and DiffRΣ(T1, T2) for acyclic
EL-terminologies [Konev, Walther, Wolter, 2008]
http://www.csc.liv.ac.uk/~konev/software/

OWLDiff
CEX-diff for EL-terminologies
[Kremen, Smid, Kouba, 2011, to appear]
plugins for Protégé and NeON toolkit
http://krizik.felk.cvut.cz/km/owldiff

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 25

http://www.csc.liv.ac.uk/~konev/software/
http://krizik.felk.cvut.cz/km/owldiff

Tools

CEX2
extends CEX to ELHr (i.e. EL with role inclusion axioms and
domain and range restrictions) without loosing tractability
[Konev, Ludwig, Walther, Wolter, to appear]
http://www.csc.liv.ac.uk/~michel/software/cex2/

LogDiffViz
Protégé plugin that calls CEX2 and visualises ontology
versions and the differences as a hierarchical structure
http://www.csc.liv.ac.uk/~cs8wg/LogDiffViz/

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 26

http://www.csc.liv.ac.uk/~michel/software/cex2/
http://www.csc.liv.ac.uk/~cs8wg/LogDiffViz/

CEX applied to SNOMED CT

Task: Compute the logical difference of two versions of
SNOMED CT

two versions:
SNOMED CT 2005 (SM-05):

379 691 axioms
09 February 2005

SNOMED CT 2006 (SM-06):
389 472 axioms
30 December 2006

Σ ⊆ sig(SM-05) ∩ sig(SM-06) randomly selected
compute average (of time/memory/diff-size) over 20 samples
for every signature size
hardware: Intel Core 2 CPU at 2.13 GHz and 3 GB of RAM

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 27

SM-05 vs SM-06

CEX: diff(SM-05,SM-06)
Size of Time Memory |diffLΣ| |diffRΣ|

Σ (Sec.) (MByte)
100 513.1 1 393.7 0.10 0.10
1 000 512.4 1 394.6 2.35 2.15
10 000 517.7 1 424.3 155.35 125.35
100 000 559.8 1 473.2 11 795.90 4 108.6

Note: role box ignored

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 28

Comparison on the Joint Signature

diff(SM-05,SM-06) on
Σ = sig(SM-05) ∩ sig(SM-06)

689 seconds
|diffLΣ| + |diffRΣ| = 162010
Class hierarchy comparison misses 32475 of them

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 29

Comparing with classification

Combined diffLΣ(∅, M) and diffRΣ(∅, M)

M is a subset of SM-05 containing ∼ 140, 000 axioms
Σ — randomly selected from M (incl. 20 role names)
avg. over 500 samples for each signature size

Difference in class hierarchy

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 30

CEX on MEX

Instead of computing diffLΣ(T1, T2) ∪ diffRΣ(T1, T2) directly,
first extract minimal Σ-modules T ′

1 and T ′
2 from T1 and T2,

respectively,
then compute diffLΣ(T ′

1, T ′
2) ∪ diffRΣ(T ′

1, T ′
2).

CEX: diff(SM-05,SM-06) CEX: diff(Mod’05,Mod’06)
Size of Time Memory |diffLΣ| |diffRΣ| Time Memory

Σ (Sec.) (MByte) (Sec.) (MByte)

100 513.1 1 393.7 0.0 0.0 3.66 116.5
1 000 512.4 1 394.6 2.5 2.5 4.46 122.5
10 000 517.7 1 424.3 183.2 122.0 22.29 126.5
100 000 559.8 1 473.2 11 322.1 4 108.5 189.98 615.8
379741 790.0 1999.3 191714 684.1 1850.7 237044

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 31

Forgetting Vocabulary

Forgetting vocabulary is eliminating that vocabulary from the
ontology (involving a reformulation of the ontology).

Use-cases
re-use: instead of whole ontology, use a potentially much
smaller ontology resulting from forgetting
predicate hiding: concealing confidential information in
ontologies
ontology summary: succinct presentation of what ontology
states about non-forgotten vocabulary

The dual notion of forgetting is uniform interpolation.

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 32

Uniform Interpolation

Let T be a EL-TBox and Σ a signature. A TBox T ′ is called a
uniform interpolant of T wrt. Σ if the following holds:

sig(T ′) ⊆ Σ;
T ≡EL

Σ T ′.

Theorem
Let T ′

1, T ′
2 be uniform interpolants of T1 and T2 wrt. Σ.

The following conditions are equivalent:
T1 ≡EL

Σ T2;
T ′
1 and T ′

2 are logically equivalent.

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 33

EL-terminologies

Theorem
There exist an EL-terminology T and Σ such that there does not
exist an uniform interpolant of T wrt. Σ.

Proof. Let

T = {A v B, B v ∃r .B}, Σ = {A, r}.

An infinite axiomatisation of the uniform interpolant is given by

{A v ∃r . · · · ∃r︸ ︷︷ ︸
n

.> | n ≥ 1}.

A finite TΣ does not exist (even in first-order logic).

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 34

Acyclic EL-terminologies

Theorem
For acyclic EL-terminologies, uniform interpolants always exist. In
the worst case, exponentially many axioms are required.

Proof of second part. Let

T = {A ≡ B1 u · · · u Bn} ∪ {Aij v Bi | 1 ≤ i , j ≤ n}.

and
Σ = {A} ∪ {Aij | 1 ≤ i , j ≤ n}.

Then

TΣ = {A1j1 u · · · u An,jn v A | 1 ≤ j1, . . . , jn ≤ n}

is a minimal uniform interpolant. Note that |TΣ| = nn.

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 35

Computing uniform interpolants for SNOMED CT and NCI

NUI: prototype implementation computing uniform
interpolants for acyclic EL-terminologies.
Σ — randomly selected from sig(SNOMED CT) and
sig(NCI), respectively.
table shows success rate of NUI

|Σ| SNOMED CT |Σ| NCI
2 000 100.0% 5 000 97.0%

3 000 92.2% 10 000 81.1%

4 000 67.0% 15 000 72.0%

5 000 60.0% 20 000 59.2%

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 36

Comparing the size of MEX-modules and Σ-interpolants

Size distribution of MEX-modules and instance Σ-interpolants
of SNOMED CT wrt. signatures containing 3 000 concept
names and 20 role names

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 37

Comparing the size of >-local modules and Σ-interpolants

Size distribution of CEL-modules and instance Σ-interpolants
of NCI wrt. signatures containing 7 000 concept names and 20
role names

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 38

Uniform interpolants beyond EL

Theorem
For ALC-TBoxes, uniform interpolants expressed in FOL do not
always exist. [Ghilardi, Lutz, Wolter, 2006]

Theorem
For ALC-TBoxes, deciding the existence of uniform interpolants in
ALC is 2ExpTime-complete. If they exist, uniform interpolants are
most triple exponential in the size of the original TBox.
[Lutz, Wolter, 2011]

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 39

Conclusion

We have shown for acyclic EL-terminologies:
module extraction
computing the logical difference of large-scale ontologies
forgetting and uniform interpolation

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 40

Course overview

5 Recent Advances/Current Work
Atomic decomposition
Signature decomposition, relevance of terms

Thomas Schneider, Dirk Walther Modularity: Light-weight DLs 41

