Modularity in Ontologies: Approaches for Light-weight Description Logics

Thomas Schneider¹ Dirk Walther²

¹Department of Computer Science, University of Bremen, Germany

²Faculty of Informatics, Technical University of Madrid, Spain

ESSLLI, 4 August 2011

For light-weight DL-ontologies

- modularity and module extraction
- computing the logical difference of large-scale ontologies
- forgetting and uniform interpolation

Modularity for Light-weight DLs

Logic-based modularity in light-weight DLs

- DL-Lite family
 - [Kontchakov, Wolter, Zakharyaschev, 2010]
- EL family
 - [Lutz, Wolter, 2010]

 \rightsquigarrow Here we focus on EL.

EL is a fragment of ALC.

EL-syntax:

$C, D = \top \mid A \mid C \sqcap D \mid \exists r.C$

TBox T is a finite set of concept inclusions $C \sqsubseteq D$.

Reasoning tasks:

- Satisfiability of EL-concept C wrt. EL-TBox T
 - trivial (tractable): always satisfiable in a one-point model
- Subsumption of EL-concepts C, D wrt. EL-TBox T
 - tractable (decidable in polynomial time)

Modularity reasoning for EL

- Deciding whether two EL-TBoxes are Σ -inseparable wrt. EL is ExpTime-complete.
- For EL-TBoxes, Σ -inseparability wrt. SO is undecidable.
- For EL-TBoxes, even $T \equiv_{\Sigma}^{SO} \emptyset$, (equivalently, whether

$$\{M_{|\Sigma} \mid M \models T\} = \text{ class of all }\Sigma\text{-models}$$

is undecidable.

 EL has interpolation but (EL,EL) is not robust under replacement

Today, we consider EL-TBoxes of a particular form.

EL-terminologies

Definition

An EL-TBox T is a EL-terminology if

- every axiom is of the form $A \equiv C$, where A is a concept name;
- no concept name A occurs more than once on the left hand side of an axiom.

A EL-terminology T is acyclic if no concept name refers to itself along definitions:

let A ≺_T X if there exists an axiom A ≡ C in T such that X occurs in C.

Then T is acyclic iff \prec_T is acyclic (equivalently \prec_T^+ is irreflexive).

In a TBox T, we rewrite $A \sqsubseteq C$ into $A \equiv X \sqcap C$, where X is fresh.

Plan for EL-terminologies

- deciding 'T ≡^{SO}_Σ Ø' in polynomial time, then T is safe ⇒ Wednesday's lecture
- extract modules
- logical difference: comparing versions of ontologies
- forgetting and uniform interpolation

Deciding '
$$T \equiv_{\Sigma}^{SO} \emptyset$$
'

Theorem

The following problem can be solved in polynomial time: given an acyclic EL-terminology T, decide whether

$$T \equiv^{SO}_{\Sigma} \emptyset.$$

For the proof, we distinguish two types of syntactic dependencies between Σ -symbols in T:

- (a) direct: 'definition' of a Σ -symbol uses another Σ -symbol
- (b) indirect: two $\Sigma\text{-symbols}$ are 'defined' using common non- $\Sigma\text{-symbol}$

Direct Σ -dependencies

- Let T be an acyclic EL-terminology.
- (a) T contains a direct Σ -dependency if there exist $A, X \in \Sigma$ such that $A \prec_T^+ X$.

Theorem

If an acyclic EL-terminology T contains a direct Σ -dependency, then $T \not\equiv_{\Sigma}^{SO} \emptyset$.

Proof. Suppose \mathcal{T} contains a syntactic Σ -dependency $A \prec_{\Sigma}^{+} X$. Take a interpretation \mathcal{I} with $A^{\mathcal{I}} = \Delta^{\mathcal{I}}$ and $X^{\mathcal{I}} = \emptyset$. Then \mathcal{I} can't be expanded to a model of \mathcal{T} .

- Does not work for acyclic ALC-terminologies!
- From now on, we assume T does not contain direct Σ -dependencies.

Indirect Σ -dependencies

Decomposing an acyclic EL-terminology

- Let T be an acyclic EL-terminology and Σ a signature.
- Take partition

$$T=T_{\Sigma}\cup T',$$

where

$$T_{\Sigma} = \{ A \equiv C \mid A \in \Sigma \text{ or } \exists B \in \Sigma, \ B \prec^{+}_{T} A \}$$

 T_Σ does not contain Σ-role names (there are no direct Σ-dependencies in T)

Theorem

If
$$\mathcal{I} \models T_{\Sigma}$$
, then there exists $\mathcal{J} \models T$ such that $\mathcal{J}_{|\Sigma} = \mathcal{I}_{|\Sigma}$.

Proof. Expand \mathcal{I} inductively by setting $A^{\mathcal{J}} := C^{\mathcal{J}}$ for $A \equiv C \in T'$.

Checking indirect Σ -dependencies

Theorem

Let T be an acyclic EL-terminology without direct

 Σ -dependencies. Then the following conditions are equivalent:

$$T \equiv^{SO}_{\Sigma} \emptyset;$$

2 Every one-point Σ -interpr. can be expanded to a model of T_{Σ} .

Point 2 implies Point 1. Let \mathcal{I} be an interpretation. As T_{Σ} contains no Σ -roles, we may assume that Σ contains no roles. For each d in \mathcal{I} , let $\mathcal{J}_{\{d\}} \models T_{\Sigma}$ be an expansion of $\mathcal{I}_{\{d\}}$. Then

$$\mathcal{J} = \bigcup_{d \in \mathcal{I}} \mathcal{J}_{\{d\}} \models T_{\Sigma}$$

and ${\mathcal J}$ is an expansion of ${\mathcal I}.$

Polytime algorithm for $T \equiv_{\Sigma}^{SO} \emptyset$

To decide whether $T \equiv_{\Sigma}^{SO} \emptyset$, check

• T contains no direct Σ -dependencies;

Q every one point Σ -model can be expanded to a model of T_{Σ} .

Point 2 holds iff

For all $A \in \Sigma$,

$$\{X \mid A \prec_T^+ X\} \not\subseteq \{X \mid \exists B \in \Sigma \setminus \{A\}, \ B \prec_T^+ X\}.$$

Observation: For acyclic ALC-terminologies without Σ -dependencies, one can decide $T \equiv_{\Sigma}^{SO} \emptyset$ by considering one point-models (then Π_2^p -complete).

Module extraction

From deciding inseparability to module extraction.

• Given acyclic EL-terminology T and signature Σ , the decision procedure extracts from T the smallest $M \subseteq T$ such that

$$T \setminus M \equiv^{SO}_{\Sigma \cup \operatorname{sig}(M)} \emptyset.$$

⇒ then $T \setminus M$ is safe for $\Sigma \cup sig(M)$ wrt. EL (Wednesday's lecture)

• Equivalently, by robustness under replacement of (EL,SO),

$$M \equiv^{SO}_{\Sigma \cup \operatorname{sig}(M)} T.$$

$$\implies$$
 then *M* is a Σ-module in *T* wrt. EL

Module extraction algorithm

Input: acyclic EL-terminology T and signature Σ . Output: smallest $M \subseteq T$ such that $T \setminus M \equiv_{\Sigma \cup sig(M)}^{SO} \emptyset$. Initialise: $M = \emptyset$, $\Sigma' = \Sigma$. Apply rules 1 and 2 exhaustively, preferring Rule 1.

• collect direct dependencies
if
$$A \in \Sigma'$$
, $A \equiv C \in T \setminus M$, and exists $X \in \Sigma'$ with
 $A \prec^+_{T \setminus M} X$,
 $M := M \cup \{A \equiv C\}, \quad \Sigma' := \Sigma' \cup \operatorname{sig}(C).$

Solution collect indirect dependencies if A ∈ Σ', A ≡ C ∈ T \ M, and {X | A ≺⁺_{T\M} X} ⊆ {X | ∃B ∈ Σ' \ {A} B ≺⁺_{T\M} X},

then set

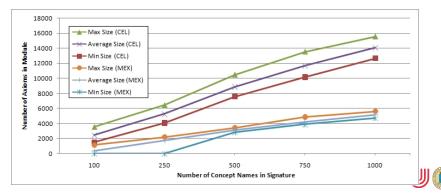
$$M := M \cup \{A \equiv C\}, \quad \Sigma' := \Sigma' \cup \operatorname{sig}(C).$$

SNOMED CT:

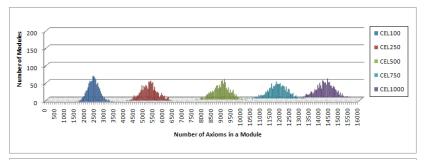
- Systematised Nomenclature of Medicine (Clinical Terms).
- \sim 400,000 terms
- used in health care etc. in the US, UK, Australia etc.
- an acyclic EL-terminology (+ role box):

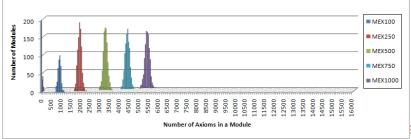
Experiment: Extraction of modules from SNOMED CT

- MEX: prototype implementation of the algorithm above
- http://www.csc.liv.ac.uk/~konev/software/
- Σ randomly selected from SNOMED CT.
- 1000 samples for each signature size



\perp -Locality based vs. MEX Modules: Frequency





Thomas Schneider, Dirk Walther

Logical Difference: motivation

Task

• given two versions T_1 and T_2 of an ontology and a signature Σ , compute "the difference" between T_1 and T_2 observable in Σ in a query language QL.

Syntactical difference

- Many tools compute the syntactical difference between versions of texts and program code.
- But many syntactic differences do not affect the semantics of ontologies!
- Example:

•
$$T_1 = \{A \sqsubseteq B_1 \sqcap B_2\}, \quad T_2 = \{A \sqsubseteq B_1, A \sqsubseteq B_2\}$$

 $\Sigma = \{A, B_1, B_2\}$

• Then $T_1 \neq T_2$, but $T_1 \equiv_{\Sigma}^{SO} T_2$.

Logical Difference: motivation

Structural difference

- extends syntactic diff by taking into account structural meta-information of distinct versions of ontologies
- regards ontologies as structured objects (e.g., taxonomy, set of RDF triplets, set of axioms)
- changes are structural operations (e.g., adding/deleting/extending/renaming classes)
- but:
 - syntax dependent and no formal semantics
 - tailored to applications of ontologies based on taxonomy
 - ontology based data access not captured

 T_1 and T_2 ontologies, \mathcal{QL} a query language, Σ a signature. The logical difference between T_1 and T_2 wrt. (\mathcal{QL},Σ) is defined as

$$\operatorname{Diff}_{\Sigma}^{\mathcal{QL}}(T_1, T_2) \cup \operatorname{Diff}_{\Sigma}^{\mathcal{QL}}(T_2, T_1),$$

where

•
$$\operatorname{Diff}_{\Sigma}^{\mathcal{QL}}(T_1, T_2) = \{ \varphi \in \mathcal{QL} \mid T_1 \models \varphi, T_2 \not\models \varphi, \operatorname{sig}(\varphi) \in \Sigma \}.$$

• $\operatorname{Diff}_{\Sigma}^{\mathcal{QL}}(T_2, T_1) = \{ \varphi \in \mathcal{QL} \mid T_2 \models \varphi, T_1 \not\models \varphi, \operatorname{sig}(\varphi) \in \Sigma \}.$

Observation: $\operatorname{Diff}_{\Sigma}^{\mathcal{QL}}(T_1, T_2) \cup \operatorname{Diff}_{\Sigma}^{\mathcal{QL}}(T_2, T_1) = \emptyset$ iff $T_1 \equiv_{\Sigma}^{\mathcal{QL}} T_2$. Problem: How to present $\operatorname{Diff}_{\Sigma}^{\mathcal{QL}}(T_1, T_2)$ if it is non-empty?

Take query language \mathcal{QL}_{EL} consisting of $C \sqsubseteq D$, where C, D are EL-concepts. We also denote \mathcal{QL}_{EL} simply as EL. Set

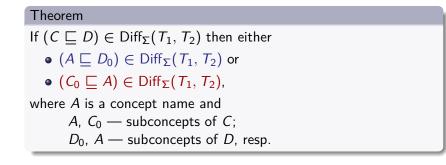
$$\mathsf{Diff}_{\Sigma}(T_1, T_2) = \mathsf{Diff}_{\Sigma}^{\mathsf{EL}}(T_1, T_2).$$

Example of 'large' smallest elements in $\text{Diff}_{\Sigma}(T_1, T_2)$:

•
$$T_2 = \emptyset$$
;
• $T_1 = \{A' \sqsubseteq B_0, A \equiv B_n\} \cup \{B_{i+1} \equiv \exists r.B_i \sqcap \exists s.B_i \mid i < n\};$
• $\Sigma = \{A', A, r, s\}.$

For the minimal $C \sqsubseteq A \in \text{Diff}_{\Sigma}(T_1, T_2)$ we have $|C| = 2^n$.

$\Sigma\text{-difference}$ for EL-terminologies



In propositional EL: if $C \sqsubseteq A_1 \sqcap A_2 \in \text{Diff}_{\Sigma}(T_1, T_2)$, then

•
$$C \sqsubseteq A_1 \in \text{Diff}_{\Sigma}(T_1, T_2)$$
 or

• $C \sqsubseteq A_2 \in \text{Diff}_{\Sigma}(T_1, T_2).$

Compact representation of $\text{Diff}_{\Sigma}(T_1, T_2)$

Let

• diffL_{$$\Sigma$$}(T_1 , T_2) =

$$\begin{cases}
A \in \Sigma \\
T_1 \models A \sqsubseteq C \text{ and } T_2 \not\models A \sqsubseteq C
\end{cases}$$

• diffR_{$$\Sigma$$}(T_1 , T_2) =

$$\begin{cases}
A \in \Sigma \\
T_1 \models C \sqsubseteq A \text{ and } T_2 \not\models C \sqsubseteq A
\end{cases}$$

diffL_{Σ}(T_1 , T_2) and diffR_{Σ}(T_1 , T_2) provide a list of concept names in Σ about which T_1 "says more" than T_2 .

Theorem

Let T_1 and T_2 be EL-terminologies and Σ a signature. Then

- diffL $_{\Sigma}(T_1, T_2)$ and
- diffR_{Σ}(T_1 , T_2)

can be computed in polynomial time. In particular, $\Sigma\-$ inseparability wrt. EL is tractable.

Tools

CEX

- implementation of tractable algorithm computing $\text{DiffL}_{\Sigma}(T_1, T_2)$ and $\text{DiffR}_{\Sigma}(T_1, T_2)$ for acyclic EL-terminologies [Konev, Walther, Wolter, 2008]
- http://www.csc.liv.ac.uk/~konev/software/

OWLDiff

- CEX-diff for EL-terminologies [Kremen, Smid, Kouba, 2011, to appear]
- plugins for Protégé and NeON toolkit
- http://krizik.felk.cvut.cz/km/owldiff

Tools

CEX2

- extends CEX to ELH^r (i.e. EL with role inclusion axioms and domain and range restrictions) without loosing tractability [Konev, Ludwig, Walther, Wolter, to appear]
- http://www.csc.liv.ac.uk/~michel/software/cex2/

LogDiffViz

- Protégé plugin that calls CEX2 and visualises ontology versions and the differences as a hierarchical structure
- http://www.csc.liv.ac.uk/~cs8wg/LogDiffViz/

CEX applied to SNOMED CT

Task: Compute the logical difference of two versions of SNOMED CT

- two versions:
 - SNOMED CT 2005 (SM-05):
 - 379 691 axioms
 - 09 February 2005
 - SNOMED CT 2006 (SM-06):
 - 389 472 axioms
 - 30 December 2006
- $\Sigma \subseteq sig(SM-05) \cap sig(SM-06)$ randomly selected
- compute average (of time/memory/diff-size) over 20 samples for every signature size
- hardware: Intel Core 2 CPU at 2.13 GHz and 3 GB of RAM

SM-05 vs SM-06

	CEX: diff(SM-05,SM-06)					
Size of	Time	Memory	$ diffL_{\Sigma} $	$ diffR_{\Sigma} $		
Σ	(Sec.)	(MByte)				
100	513.1	1 393.7	0.10	0.10		
1 000	512.4	1 394.6	2.35	2.15		
10 000	517.7	1 424.3	155.35	125.35		
100 000	559.8	1 473.2	11 795.90	4 108.6		

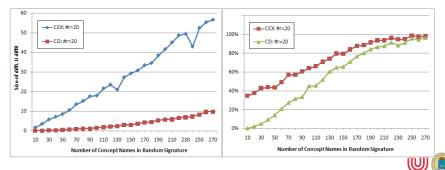
• Note: role box ignored

Comparison on the Joint Signature

- diff(SM-05,SM-06) on
 - $\Sigma = sig(SM-05) \cap sig(SM-06)$
 - 689 seconds
 - $|diffL_{\Sigma}| + |diffR_{\Sigma}| = 162010$
 - Class hierarchy comparison misses 32475 of them

Comparing with classification

- Combined diffL_{Σ}(\emptyset , M) and diffR_{Σ}(\emptyset , M)
 - M is a subset of SM-05 containing \sim 140,000 axioms
 - Σ randomly selected from *M* (incl. 20 role names)
 - avg. over 500 samples for each signature size
- Difference in class hierarchy



CEX on MEX

Instead of computing diffL_{Σ}(T_1 , T_2) \cup diffR_{Σ}(T_1 , T_2) directly,

- first extract minimal Σ -modules T'_1 and T'_2 from T_1 and T_2 , respectively,
- then compute diffL_{Σ}(T'_1 , T'_2) \cup diffR_{Σ}(T'_1 , T'_2).

	CEX: diff(SM-05,SM-06)				CEX: diff(Mod'05,Mod'06)	
Size of	Time	Memory	$ diffL_{\Sigma} $	$ diffR_{\Sigma} $	Time	Memory
Σ	(Sec.)	(MByte)			(Sec.)	(MByte)
100	513.1	1 393.7	0.0	0.0	3.66	116.5
1 000	512.4	1 394.6	2.5	2.5	4.46	122.5
10 000	517.7	1 424.3	183.2	122.0	22.29	126.5
100 000	559.8	1 473.2	11 322.1	4 108.5	189.98	615.8
379741	790.0	1999.3	191714	684.1	1850.7	237044

Forgetting Vocabulary

Forgetting vocabulary is eliminating that vocabulary from the ontology (involving a reformulation of the ontology).

Use-cases

- re-use: instead of whole ontology, use a potentially much smaller ontology resulting from forgetting
- predicate hiding: concealing confidential information in ontologies
- ontology summary: succinct presentation of what ontology states about non-forgotten vocabulary

The dual notion of forgetting is uniform interpolation.

Let T be a EL-TBox and Σ a signature. A TBox T' is called a uniform interpolant of T wrt. Σ if the following holds:

- $sig(T') \subseteq \Sigma;$
- $T \equiv_{\Sigma}^{\mathsf{EL}} T'$.

Theorem

Let T'_1 , T'_2 be uniform interpolants of T_1 and T_2 wrt. Σ . The following conditions are equivalent:

•
$$T_1 \equiv_{\Sigma}^{\mathsf{EL}} T_2;$$

• T'_1 and T'_2 are logically equivalent.

Theorem

There exist an EL-terminology T and Σ such that there does not exist an uniform interpolant of T wrt. Σ .

Proof. Let

$$T = \{A \sqsubseteq B, B \sqsubseteq \exists r.B\}, \quad \Sigma = \{A, r\}.$$

An infinite axiomatisation of the uniform interpolant is given by

$$\{A \sqsubseteq \underbrace{\exists r \dots \exists r}_n . \top \mid n \ge 1\}.$$

A finite T_{Σ} does not exist (even in first-order logic).

Acyclic EL-terminologies

Theorem

For acyclic EL-terminologies, uniform interpolants always exist. In the worst case, exponentially many axioms are required.

Proof of second part. Let

$$T = \{A \equiv B_1 \sqcap \cdots \sqcap B_n\} \cup \{A_{ij} \sqsubseteq B_i \mid 1 \le i, j \le n\}.$$

and

$$\Sigma = \{A\} \cup \{A_{ij} \mid 1 \leq i, j \leq n\}.$$

Then

$$T_{\Sigma} = \{A_{1j_1} \sqcap \cdots \sqcap A_{n,j_n} \sqsubseteq A \mid 1 \leq j_1, \ldots, j_n \leq n\}$$

is a minimal uniform interpolant. Note that $|T_{\Sigma}| = n^n$.

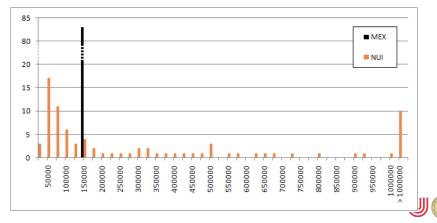
Computing uniform interpolants for SNOMED CT and NCI

- NUI: prototype implementation computing uniform interpolants for acyclic EL-terminologies.
- Σ randomly selected from sig(SNOMED CT) and sig(*NCI*), respectively.
- table shows success rate of NUI

Σ	SNOMED CT	Σ	NCI
2 0 0 0	100.0%	5 000	97.0%
3 000	92.2%	10 000	81.1%
4 000	67.0%	15 000	72.0%
5 000	60.0%	20 000	59.2%

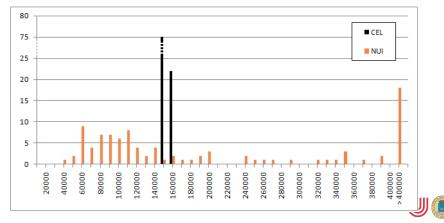
Comparing the size of MEX-modules and $\Sigma\text{-interpolants}$

• Size distribution of MEX-modules and instance Σ -interpolants of SNOMED CT wrt. signatures containing 3 000 concept names and 20 role names



Comparing the size of \top -local modules and Σ -interpolants

• Size distribution of CEL-modules and instance Σ -interpolants of NCI wrt. signatures containing 7 000 concept names and 20 role names



Uniform interpolants beyond EL

Theorem

For ALC-TBoxes, uniform interpolants expressed in FOL do not always exist. [Ghilardi, Lutz, Wolter, 2006]

Theorem

For ALC-TBoxes, deciding the existence of uniform interpolants in ALC is 2ExpTime-complete. If they exist, uniform interpolants are most triple exponential in the size of the original TBox. [Lutz, Wolter, 2011]

We have shown for acyclic EL-terminologies:

- module extraction
- computing the logical difference of large-scale ontologies
- forgetting and uniform interpolation

Course overview

Secent Advances/Current Work

- Atomic decomposition
- Signature decomposition, relevance of terms

