Modularity in Ontologies: Recent Advances

Thomas Schneider¹ Dirk Walther²

¹Department of Computer Science, University of Bremen, Germany

²Faculty of Informatics, Technical University of Madrid, Spain

ESSLLI, 5 August 2011

1 Tipps, tricks and pitfalls using locality

- 2 Extending coverage
- 3 Atomic decomposition
- 4 Collaborative ontology development

5 Wrap-up

Locality supplement	Extending coverage	Atomic decomposition	Collaboration	Wrap-up
And now				

1 Tipps, tricks and pitfalls using locality

- 2 Extending coverage
- 3 Atomic decomposition
- 4 Collaborative ontology development

5 Wrap-up

Locality supplement	Extending coverage	Atomic decomposition	Collaboration	Wrap-up
Remember				

- Safety and economy/coverage are important guarantees (not only) for reuse.
- They can be defined using inseparability.
- They can be approximated using locality.
- Modules based on syntactic locality can be extracted efficiently in logics up to OWL.
- There is tool support for extracting modules. http://owl.cs.manchester.ac.uk/modularity http://owlapi.sourceforge.net/

Are locality-based modules economic?

Locality-based modules are not minimal in general: they include

- many EquivalentClass axioms
- tautologies
- axioms about individuals

Research goal: smaller (but still efficiently computable) modules

(Is small really beautiful?)

Locality supplement	Extending coverage	Atomic decomposition	Collaboration	Wrap-up
Yes, they are!				

• Experiments with SNOMED

(health care; restricted language; 350,000 axioms)

- Compared modules for 24,000 terms from intensive care unit
- Locality-based modules (LBM) \Leftrightarrow minimal modules (MEX)

Locality supplement	Extending coverage	Atomic decomposition	Collaboration	Wrap-up
Yes, they are!				

Experiments with SNOMED

(health care; restricted language; 350,000 axioms)

- Compared modules for 24,000 terms from intensive care unit
- Locality-based modules (LBM) \Leftrightarrow minimal modules (MEX)

Locality supplement	Extending coverage	Atomic decomposition	Collaboration	Wrap-up
Yes, they are!				

• Experiments with SNOMED

(health care; restricted language; 350,000 axioms)

- Compared modules for 24,000 terms from intensive care unit
- Locality-based modules (LBM) \Leftrightarrow minimal modules (MEX)

"I want a bit more."—Then extend your topic!

Q: Help, my tool found a non-local axiom! What shall I do?

A: There are several possibilities:

Q: Help, my tool found a non-local axiom! What shall I do?

- A: There are several possibilities:
- (1) Your axiom might violate locality, but not safety. (Remember: locality *approximates* safety.)

Q: Help, my tool found a non-local axiom! What shall I do?

- A: There are several possibilities:
- (1) Your axiom might violate locality, but not safety. (Remember: locality *approximates* safety.)
 - \rightsquigarrow Call 0800-inseparability,

ask your favourite logician to decide whether the axiom is safe.

Q: Help, my tool found a non-local axiom! What shall I do?

- A: There are several possibilities:
- (2) Your axiom violates safety?Do you have a good reason to write it?If yes, keep it, but be aware that you've amended the topic!

Q: Help, my tool found a non-local axiom! What shall I do?

- A: There are several possibilities:
- (3) Want to repair a non-local axiom?
 - Delete it.
 - Modify it:

Bird ⊑ Flies	\sim	Bird □ ¬Penguin ⊑ Flies
Bird ⊑ Flies	\rightsquigarrow	Bird 드 Flies 🗆 Penguin

• Explanations ...

Q: Help, my tool found a non-local axiom! What shall I do?

- A: There are several possibilities:
- (4) Prescriptive/analytic safety checking

Locality supplement	Extending coverage	Atomic decomposition	Collaboration	Wrap-up
Independence				

 Required property: If O₁ is safe for Σ₂ and Σ₃, then O₁ ∪ O₂ should be safe for Σ₃.

- Difficult to achieve prescriptively: only holds under restrictive preconditions
- Advice: treat independence analytically.

Which terms do I want to import?

- Ask 0800-domainexpert for a list of terms.
- Browse through the class hierarchy and find suitable terms.
- Shopping for symbols:
 - Select terms.
 - Get a preview of the module.
 - If you're satisfied, check out the module.

Locality supplement	Extending coverage	Atomic decomposition	Collaboration	Wrap-up
And now				

1 Tipps, tricks and pitfalls using locality

2 Extending coverage

3 Atomic decomposition

4 Collaborative ontology development

5 Wrap-up

Remember: module for a signature

Definition

 $\mathcal{M} \subseteq \mathcal{O}_2$ is a module for Σ in \mathcal{O}_2 w.r.t. \mathcal{L} if,

for every \mathcal{L} -ontology \mathcal{O}_1 with $sig(\mathcal{O}_1) \cap sig(\mathcal{O}_2) \subseteq \Sigma$, $\mathcal{O}_1 \cup \mathcal{O}_2 \equiv_{sig(\mathcal{O}_1)}^{\mathcal{L}} \mathcal{O}_1 \cup \mathcal{M}$.

Observation

If $\mathcal{M} \subseteq \mathcal{O}_2$ and \mathcal{O}_2 is a model Σ -c.e. of \mathcal{M} $(\mathcal{O}_2 \equiv_{\Sigma}^{SO} \mathcal{M})$, then \mathcal{M} is a module for Σ in \mathcal{O}_2 w.r.t. any $\mathcal{L} \leq SO$

 \rightsquigarrow Does it suffice to require $\mathcal{O}_2 \equiv_{\Sigma}^{SO} \mathcal{M}$?

Locality supplement	Extending coverage	Atomic decomposition	Collaboration	Wrap-up
Self-contained	d modules			

- \bullet Remember: a module usually contains terms not from Σ
- What can happen if $\mathcal{O}_2 \not\equiv^{\mathcal{L}}_{sig(\mathcal{M} \setminus \Sigma)} \mathcal{M}$?

Definition

 $\mathcal{M} \subseteq \mathcal{O}_2 \text{ is a self-contained } \Sigma\text{-module in } \mathcal{O}_2 \text{ w.r.t. } \mathcal{L} \text{ if}$ $\mathcal{O}_2 \equiv_{\Sigma \cup \text{sig}(\mathcal{M})}^{\mathcal{L}} \mathcal{M}.$

Locality supplement	Extending coverage	Atomic decomposition	Collaboration	Wrap-up
Self-contained	d modules			

- \bullet Remember: a module usually contains terms not from Σ
- What can happen if $\mathcal{O}_2 \not\equiv_{\operatorname{sig}(\mathcal{M} \setminus \Sigma)}^{\mathcal{L}} \mathcal{M}$?

Definition $\mathcal{M} \subseteq \mathcal{O}_2$ is a self-contained Σ -module in \mathcal{O}_2 w.r.t. \mathcal{L} if $\mathcal{O}_2 \equiv_{\Sigma \cup sig(\mathcal{M})}^{\mathcal{L}} \mathcal{M}.$

- Locality-based modules are self-contained w.r.t. SO.
- Every self-contained Σ -module in \mathcal{O}_2 is a Σ -module in \mathcal{O}_2 (robustness under vocabulary restriction)

Depleting modules

- Modules preserve entailments: O₂ ≡_Σ^{SO} M means for all α ∈ SO with sig(α) ⊆ Σ, O₂ ⊨ α iff M ⊨ α.
- What if we want to guarantee that *all* reasons for the preserved entailments are in *M*?
 Modules for explanation services / maintaining *O*₂

Definition

 $\mathcal{M} \subseteq \mathcal{O}_2$ is a depleting Σ -module in \mathcal{O}_2 w.r.t. \mathcal{L} if

$$\mathcal{O}_2 \setminus \mathcal{M} \equiv^{\mathcal{L}}_{\Sigma \cup \operatorname{sig}(\mathcal{M})} \emptyset.$$

Depleting modules

- Modules preserve entailments: O₂ ≡_Σ^{SO} M means for all α ∈ SO with sig(α) ⊆ Σ, O₂ ⊨ α iff M ⊨ α.
- What if we want to guarantee that *all* reasons for the preserved entailments are in *M*?
 Modules for explanation services / maintaining *O*₂

Definition

$$\begin{split} \mathcal{M} &\subseteq \mathcal{O}_2 \text{ is a depleting } \Sigma\text{-module in } \mathcal{O}_2 \text{ w.r.t. } \mathcal{L} \text{ if} \\ \mathcal{O}_2 \setminus \mathcal{M} \equiv^{\mathcal{L}}_{\Sigma \cup \text{sig}(\mathcal{M})} \emptyset. \end{split}$$

- Locality-based modules are depleting w.r.t. SO.
- $\bullet~$ If $(\mathcal{L},\mathcal{L})$ is robust under replacements, then
 - every depleting $\Sigma\text{-module}$ is a self-contained $\Sigma\text{-module};$
 - every depleting Σ -module a Σ -module.

Depleting module notions lead to *unique* minimal modules:

Suppose $\mathcal{M}_1, \mathcal{M}_2$ are depleting Σ -modules of \mathcal{O} :

$$\mathcal{O} \setminus \mathcal{M}_i \equiv^{\mathcal{L}}_{\Sigma \cup \operatorname{sig}(\mathcal{M}_i)} \emptyset$$

Via robustness under vocabulary restrictions:

$$\mathcal{O} \setminus \mathcal{M}_i \equiv^{\mathcal{L}}_{\Sigma \cup \operatorname{sig}(\mathcal{M}_1 \cap \mathcal{M}_2)} \emptyset$$
$$\mathcal{O} \setminus \mathcal{M}_1 =^{\mathcal{L}}_{\Sigma \cup \operatorname{sig}(\mathcal{M}_1 \cap \mathcal{M}_2)} \mathcal{O} \setminus \mathcal{M}_2 =^{\mathcal{L}}_{\Sigma \cup \mathcal{M}_2} =^{\mathcal{L}}_{\Sigma \cup \mathcal{M}_2} \mathcal{O} \setminus \mathcal{M}_2 =^{\mathcal{L}}_{\Sigma \cup \mathcal{M}_2} \mathcal{O} \setminus \mathcal{M}_2 =^{\mathcal{L}}_{\Sigma \cup \mathcal{M}_2} \mathcal{O} \setminus \mathcal{M}_2 =^{\mathcal{L}}_{\Sigma \cup \mathcal{M}_2} =^{\mathcal{L}_{\Sigma \cup \mathcal{M}_2} =^{\mathcal{L}}_{\Sigma \cup \mathcal{M}_2} =^{\mathcal{L}}_{\Sigma \cup \mathcal{M}_2} =^{\mathcal{L}}_{\Sigma \cup \mathcal{M}_2} =^{\mathcal{L}_{\Sigma \cup \mathcal{M}_2} =^{\mathcal{L}}_{\Sigma \cup \mathcal{M}_2} =^{\mathcal{L}}_{\mathcal{M}_2} =^{\mathcal{L}}_{\mathcal{M}_2} =^{\mathcal{L}}_{\mathcal{M}_2} =^{\mathcal{L}_{\mathcal{M}_2} =^{\mathcal{L}}_{\mathcal{M}_2} =^{\mathcal{L}_{\mathcal{M}_2} =^{\mathcal{L}}_{\mathcal{M}_2} =^{\mathcal{L}_{\mathcal{M}_2} =^{\mathcal{L}}_{\mathcal{M}_2} =^{\mathcal{L}}_{\mathcal{M}_2} =^{\mathcal{L$$

Hence:

$$\mathcal{O} \setminus \mathcal{M}_1 \equiv^{\mathcal{L}}_{\Sigma \cup \mathsf{sig}(\mathcal{M}_1 \cap \mathcal{M}_2)} \mathcal{O} \setminus \mathcal{M}_2 \equiv^{\mathcal{L}}_{\Sigma \cup \mathsf{sig}(\mathcal{M}_1 \cap \mathcal{M}_2)} \emptyset$$

Robustness under joins(!):

$$(\mathcal{O} \setminus \mathcal{M}_1) \cup (\mathcal{O} \setminus \mathcal{M}_2) \equiv^{\mathcal{L}}_{\Sigma \cup \mathsf{sig}(\mathcal{M}_1 \cap \mathcal{M}_2)} \emptyset$$

i.e.: $\mathcal{O} \setminus (\mathcal{M}_1 \cap \mathcal{M}_2) \equiv^{\mathcal{L}}_{\Sigma \cup \mathsf{sig}(\mathcal{M}_1 \cap \mathcal{M}_2)} \emptyset$

Therefore, $\mathcal{M}_1 \cap \mathcal{M}_2$ is a smaller depleting Σ -module of \mathcal{O} .

I.e., depleting modules are closed under intersection \Rightarrow there exists a unique minimal depleting Σ -module.

Thomas Schneider, Dirk Walther

Locality supplement	Extending coverage	Atomic decomposition	Collaboration	Wrap-up
And now				

3 Atomic decomposition

What is my ontology about?

We can't inspect all its axioms.

What is my ontology about?

We can inspect its modular structure, obtained a posteriori.

We bet Robert Stevens

- Ontology about periodic table of the chemical elements
- Logical structure \approx intended modelling?
 - What is its logical structure?
 - What are its main parts?

We bet Robert Stevens

- Ontology about periodic table of the chemical elements
- Logical structure \approx intended modelling?
 - What is its logical structure?
 - What are its main parts?
- Challenge: automatic partition into meaningful modules

Modular structure with existing tools

Partition of Koala via E-connections in Swoop

- importing part
 imported but non-importing part
 isolated part
- "imports vocabulary from"

Collaboration

Wrap-up

Partition for ontology SWEET

- importing part
 imported but non-importing part
 isolated part
 -) isolated part
- "imports vocabulary from"

Locality supplement

Partition for ontology Periodic

- importing part
 imported but non-importing part
 isolated part
- "imports vocabulary from"

Modular structure via LBMs – goals

- Draw conclusions on characteristics of an ontology:
 - $\bullet\,$ To which extent does ${\cal O}$ cover its topics?
 - How strongly are certain terms connected in $\mathcal{O}?$
 - What is the axiomatic richness of \mathcal{O} ?
 - Does ${\mathcal O}$ have superfluous parts?
 - Agreement between logical and intended intuitive modelling?
- Guide users in choosing the right topic(s)

Ontologies & Modules

- An **ontology** is a finite set of axioms in a (description) logic
- A **module** $M(\Sigma, 0) \subseteq 0$ encapsulates knowledge w.r.t a signature Σ :

for all α with sig $(\alpha) \subseteq \Sigma$: $O \models \alpha$ iff $M(\Sigma, O) \models \alpha$

M({part}, Mereology.owl) = {Trans: part, part InverseOf: PartOf, Trans: partOf}

Modular Structure

- Modules are great...if you know your (seed) signature...
 - and for "module local" tasks such as reuse
- Single module extraction does not help if you
 - do not know the right seed signature
 - want to understand other modules
 - want to understand axiom dependency structure
- To analyse the *modular* structure of the ontology:
 - significant modules
 - significant relations between modules
 - ...which reveals logical dependence between axioms

Are all modules significant?

- To understand M, one must
 - understand the dependancy structure of M₁
 - understand the dependancy structure of M₂
 - nothing else: M₁ and M₂ have no further dependancies
- M is **not** significant: it is a **fake** module
 - Thus, M₁ and M₂ may be "significant"
 - knowing that M is "only" a union is important

Are all modules significant?

- To understand *M*, one must
 - understand the dependancy structure of M₁
 - understand the dependancy structure of M₂
 - nothing else: M₁ and M₂ have no further dependancies
- M is **not** significant: it is a **fake** module
 - Thus, M₁ and M₂ may be "significant"
 - knowing that M is "only" a union is important

Are all modules significant?

- Consider a module M that is **not fake**
- To understand M, one has to understand M
 as a whole
 - all axioms in M logically interact
 - in different ways but interact
- Not fake implies significant: genuine

Ratio of Fake to Genuine

- Given a set of genuine modules
 - unions lead to fake modules,
 - the space of fake modules is large (exponential)
 - but not every union of genuine modules is a module
- The cardinality of the set of all modules can and does grow exponentially in the size of O
 - See Parsia & Schneider, KR 2010 & WoMO 2010
- Is module growth primarily due to trivial combinations?
 - are most modules fake?

Yes!

Theorem 1: Each genuine module is the smallest module for some axiom $\alpha \in O$.

- The family of genuine modules is linear in |0|
 - * Most modules are fake!
- Proof exploits properties of modules
 - uniqueness, monotonicity, self-containedness, …
 - which are satisfied by all locality-based modules

Relations between Modules

- Genuine modules may overlap
- This exposes significant logical dependence between axioms:
 - axioms in $M_1 \setminus M_2$ depend on axioms in $M_1 \cap M_2$

Relations between Modules

- Genuine modules may overlap
- This exposes significant logical dependence between axioms:
 - axioms in $M_1 \setminus M_2$ depend on axioms in $M_1 \cap M_2$

 $M_1 \setminus M_2$

 $M_2 \setminus M_1$

Atoms

- $\hat{A} \subseteq O$ is an **atom** if it is a maximal set s.t., for each module *M*, either $\hat{A} \subseteq M$ or $\hat{A} \cap M = \emptyset$.
 - The smallest module for an axiom α contains the whole atom to which α belongs!
 - Axioms in an atom are logically interdependent
 - Any two atoms are disjoint
 - The family of atoms is a partition of the ontology
 - Only linearly many atoms
 - Each GM is a disjoint union of atoms

Proposition: There is a I-I correspondence between genuine modules and atoms.

Atomic Decomposition

- Dependence between atoms:
 - $\hat{A} \ge \hat{C}$ if, for each M: $\hat{A} \subseteq M$ implies $\hat{C} \subseteq M$
 - Axioms in \hat{A} logically depend on axioms in \hat{C}

Theorem 2: The relation \geq is reflexive, antisymmetric, and transitive.

 a Hasse diagram exposes 2 logical dependencies amongst axioms in atoms & between atoms

42 axioms 1952 modules

42 axioms 1952 modules

42 axioms 1952 modules

- Can we compute all genuine modules?
 - and all atoms
 - with their dependencies?
 - ...without computing all modules?!

• Remember:

Theorem 1: Each genuine module is the smallest module for some axiom $\alpha \in O$.

- extract $M(sig(\alpha), O)$
 - ≤ linearly many module extractions
- AD induced by the comparison of GMs
 - quadratic procedure

In Reality?

- We have decomposed 181 OWL ontologies in Bioportal
- Decomposability: average
 - nr. axioms/atom: 1.73
 - max nr. axioms/atom: 86
 - nr. axioms/GM: 66
 - max nr. axioms/GM: 143

Future Work

- More on dependency of axioms
 - between atoms and sets of atoms
- Labels for atoms
 - different labels for different tasks
- Applications
 - All Module Count: see WoMO 2011
 - Fast Module Extraction
 - Topicality for Ontology Comprehension: see ICCS 2011

•

Locality supplement	Extending coverage	Atomic decomposition	Collaboration	Wrap-up
And now				

Tipps, tricks and pitfalls using locality

- 2 Extending coverage
- 3 Atomic decomposition
- 4 Collaborative ontology development

5 Wrap-up

Locality supplement	Extending coverage	Atomic decomposition	Collaboration	Wrap-up
Aim				

- Raise and discuss open questions regarding collaborative ontology development
- Can current notions of safety and coverage capture all requirements?
- Analyse (collaborative) ontology development and relate to modularity

Roles

- roles for interacting with ontology
 - curator (domain expert)
 - check functionality of ontologies
 - propose changes
 - developer
 - implement changes in ontologies
 - user
 - ask queries in some interface (\mathcal{QL}, Σ)
- participants can assume roles
 - distribution of roles (access rights) among people
 - one curator/developer and many users
 - several curators/developers and many users
 - everyone is curator/developer/user
 - example: SNOMED CT
 - small group of curators/developers
 - large group of users

Locality supplement	Extending coverage	Atomic decomposition	Collaboration	Wrap-up
Interface				

Interface (\mathcal{QL}, Σ) consists of a query logic \mathcal{QL} and a signature Σ . Who uses which interface?

- curator/developer
 - $\bullet~\mathcal{QL}:$ largest possible that a user could use
 - $\bullet~\Sigma$: vocabulary from the domain of expertise
- user:
 - $\bullet~\mathcal{QL}$ and Σ depend on application

Locality supplement	Extending coverage	Atomic decomposition	Collaboration	Wrap-up
Scenario				

• single curator (later multi-agent case)

Working on the entire ontology directly or via modules?

- aspects: feasibility, economy, control/access
 - user: comprehension, manageability, navigation
 - tool: efficient processing (loading, reasoning,...)
- use of modules becomes more pressing the larger O

 \rightsquigarrow Suppose the ontology to be edited is large and we resort to using modules.

Locality supplement	Extending coverage	Atomic decomposition	Collaboration	Wrap-up
Workflow				

Workflow for editing an ontology O via modules:

- extract a module M from O
- 2 externally modify M; obtain M'
- **③** replace M with M' in O

Locality supplement

(1) extract M from O

How to determine a module in the ontology?

- extracting a module
 - compute module
 - check out (co)
- curator extracts module M wrt. his interface (\mathcal{QL}, Σ)
- allowed to arbitrarily change functionality of M wrt. (\mathcal{QL}, Σ) (i.e. can change $Th_{\Sigma}^{\mathcal{QL}}(M)$)
- types of modules:
 - covering: $M \equiv_{\Sigma}^{\mathcal{QL}} O$
 - self-contained: $M \equiv_{\Sigma \cup \operatorname{sig}(M)}^{\mathcal{QL}} O$
 - implies all consequences over terms in M
 - depleting: $O \setminus M \equiv_{\Sigma \cup \operatorname{sig}(M)}^{\mathcal{QL}} \emptyset$
 - exhaustive: contains everything about $\Sigma\text{-terms}$ and additional terms in M
 - functionality reduction of $M \sim$ same for O

(2) externally modify M and obtain M'

What can we do with the module M once we have extracted it from O?

- syntactic changes in *M*:
 - adding/deleting/changing of axioms
 - signature change: within Σ / within $\Sigma \cup {\rm sig}(M)$ / addition of new symbols not in M
- syntactic changes imply functional changes
 - addition / deletion of (\mathcal{QL}, Σ)-consequences of M

Reintegration of the modified module into the original ontology.

- commit (ci) obtain O' from O by replacing M with M'
- possible requirements:
 - $\bullet\,$ do not change meaning of terms remaining in O
 - functionality of O over $(Q\mathcal{L}, sig(O) \setminus (\Sigma \cup sig(M)))$ \rightsquigarrow safety? reasonable?
 - $\bullet\,$ want to change meaning of terms remaining in ${\it O}$
 - functionality of O over $(QL, sig(O) \setminus (\Sigma \cup sig(M)))$
- one curator may not be qualified to judge all effects (e.g. change may affect different area of expertise)
 → several curators

Multi-agent Case

Scenario for 2 agents

- relationships of modules for agents
 - module: disjointness / intersecting
 - functionality: two interfaces (QL₁, Σ₁) vs. (QL₂, Σ₂)
 → Disjointness required? If so, what does it mean for interfaces?
- interleaving workflows of agents
 - (a) overlapping: co1, co2, ci1, ci2
 - (b) contained: co1, co2, ci2, ci1
- conflict
 - occurs after ci2 (agent 2 commits his modified module)
 - syntactical vs. functional conflict
 - syntactical conflict: ci1 changes M of second agent
 - functional conflict: changes of agent 1 affect functionality of entire ontology wrt. agent 2's interface

Modifying only the *functionality* of a module

Idea:

- Curator interacts with tool via interface
- Tool replaces developer and implements C's requested changes
- Axioms are internally represented and usually hidden from developer/user

To modify $\mathcal{O},$ Curator asks for functionality (queries in his/her interface), then requests to

- remove unwanted functionality (tool uses justification)
- add missing functionality (tool uses justification)

Questions:

- Fully automatic modifications, or with developer interaction?
- Which interface does developer use?
 (≥ user's QL? Separation between developers/users?)

Locality supplement	Extending coverage	Atomic decomposition	Collaboration	Wrap-up
And now				

Tipps, tricks and pitfalls using locality

- 2 Extending coverage
- 3 Atomic decomposition
- 4 Collaborative ontology development

5 Wrap-up

What we have covered

- Typical use cases for logic-based modularity
- Overview of module extraction approaches
- Theory and practice of logic-based a-posteriori modularisation approaches
 - Modules and interfaces
 - Inseparability notions and robustness properties
 - Requirements from ontology engineering
 - Locality-based modules
- Related notions
 - Logical difference
 - Forgetting/uniform interpolants
- Current work: atomic decomposition
- Open questions (see next slide)

Locality supplement

Current and Future Tool Support for Expressive DLs

Interesting questions:

- \bullet How can we support designer of \mathcal{O}_1 to pick $\mathcal{O}_2, \Sigma, \mathcal{L}$ and
 - import a Σ -module in \mathcal{O}_2 ?
 - make sure that \mathcal{O}_1 remains Σ -safe?
- How can we show \mathcal{M} (Σ -module in \mathcal{O}_2) to designer of \mathcal{O}_1 to ensure that they really want to import it?
- How can we ensure safety of \mathcal{O}_1 for various signatures if "imported" ontologies are unknown?
- How can we use (semantic and syntactic) locality to compute "good" modules?
- How can we visualise the modular structure of an ontology?
 ⇒ Friday's lecture
- How can we **explain** that X is not safe for Y?
- How can we use modules to speed up reasoning?

ocality supplement	Extending coverage	Atomic decomposition	Collaboration	Wrap-up
Fhat's it.				

Thank you for coming!

dirk.walther-AT-upm.es tschneider-AT-informatik.uni-bremen.de

There's the Workshop on Modular Ontologies (WoMO) next week.

