Origins

Basics

DLs and other logics

OWL

Description Logics: a Nice Family of Logics — Introduction, Part 1 —

Uli Sattler¹ Thomas Schneider²

$^1 \mbox{School}$ of Computer Science, University of Manchester, UK

²Department of Computer Science, University of Bremen, Germany

ESSLLI, 6 August 2012

Origins	Basics	DLs and other logics	Ontologies	OWL
What's in	this course?			

- Introduction
 - \bullet Origins, the basic DL $\mathcal{ALC},$ reasoning problems
 - Relation with other logics, ontologies, examples and exercises
- 2 Tableau algorithms
- O Automata-based decision procedures
- Omplexity of selected DLs
 - upper bounds, lower bounds, undecidability
 - \bullet a polynomial DL: ${\cal E\!L}$
- Other reasoning problems
 - Justifications
 - Modularity

Origins	Basics	DLs and other logics	Ontologies	OWL
Welcome!				

Let us know if you

- ... have questions. **Do ask** them at any time.
- \ldots have difficulties understanding us/reading our writing/ \ldots
- ... find this course too slow/boring.
- ... find this course too fast/difficult.

In this course, we'll

- ... ask you to **think** a lot
- ... ask you to work through numerous examples
- ... talk about complex stuff with many fascinating facets!

Origins	Basics	DLs and other logics	Ontologies	OWL
Plan for too	day			

Origins of DLs

2 DL basics

3 Relationship with other logics

④ Ontologies

Origins	Basics	DLs and other logics	Ontologies	OWL
And now				

Origins of DLs

2 DL basics

3 Relationship with other logics \rightarrow Uli!

Ontologies

5 OWL and DLs

 Origins
 Basics
 DLs and other logics
 Ontologies
 OWL

 DLs:
 where they come from
 DLs as knowledge representation (KR) formalisms

- Common perception: logic is difficult for human conception
 - e.g., how long does it take you to read

 $\forall x \exists y \forall z ((r(x, y) \land s(y, z)) \Rightarrow (\neg s(a, y) \lor r(x, z)))$

• or check that it is equivalent to

 $\forall x \exists y \forall z (r(x, z) \lor \neg r(x, y) \lor \neg s(y, z) \lor \neg s(a, y))$

- → It's like a new language to learn!
 Only for the "mathematically gifted"
 - Are there better suited alternatives?
 - Can we help users learn/speak/interact with logic?

They might not even have to see it.

Origins	Basics	DLs and other logics	Ontologies	OWL
Early KR	formalisms			

- ... were mostly graphical because graphics are
 - easier to grasp:
 - "A picture says more than a thousand words."
 - close to how knowledge is represented in human beings (?)

Most graphical KR formalisms represent knowledge as graphs with

• vertices (possibly labelled)

mostly representing concepts, classes, individuals etc.

• edges (possibly labelled)

mostly representing properties, relationships etc.

Origins	Basics	DLs and other logics	Ontologies	OWL
A Semantic	Network			

What does it represent/say? Is Betty a Student?

Origins	Basics	DLs and other logics	Ontologies	OWL
Terminolo	gical Kno	wledge		

DLs: designed to represent terminological or conceptual knowledge

Goal

- Formalise basic terminology of an application domain; store it in a **TBox**
- Enable reasoning about concepts e.g.:
 - Can there be Mammals?
 - Is every Mammal an Animal?
 - Are Frogs Reptiles?
- Store facts about individuals in an ABox
- Enable reasoning about individuals and concepts e.g.:
 - Are my facts consistent with my terminology?
 - Is Kermit a Frog?

Origins	Basics	DLs and other logics	Ontologies	OWL
Application	S			

Medical

SNOMED CT

(Systematized Nomenclature of Medicine – Clinical Terms)

- clinical terminology, used internationally
- 450,000 terms
- NCI Thesaurus (NCI = National Cancer Institute of the USA)
 - vocabulary for clinical care, translational and basic research, public information, administrative activities
 - 75,000 terms
- ICD 11 (International Classification of Diseases) used worldwide for health statistics

Origins	Basics	DLs and other logics	Ontologies	OWL
Application	S			

Biology

• **GO** (Gene Ontology)

controlled vocabulary of terms for gene product characteristics and gene product annotation data $% \left({{{\left({{{\left({{{\left({{{c}} \right)}} \right)}} \right.}} \right)} \right)$

Bioportal

website that provides access to 255 bio-health ontologies

Semantic Web

- Use terms defined in a TBox to annotate (linked open) data
- Use TBox when querying data

Origins	Basics	DLs and other logics	Ontologies	OWL
And now \ldots				

Origins of DLs

2 DL basics

3 Relationship with other logics \rightarrow Uli!

Ontologies

5 OWL and DLs

Origins	Basics	DLs and other logics	Ontologies	OWL
DLs: the c	ore			

Core part of a DL: its concept language, e.g.:

```
Animal □ ∃hasPart.Feather
```

describes all animals that are related via "hasPart" to a feather.

Syntactic ingredients of a concept language:

- Concept names stand for sets of elements, e.g., Animal
- Role names stand for binary relations between elements, e.g., hasPart
- Constructors to build concept expressions, e.g., \sqcap , \exists

OriginsBasicsDLs and other logicsOntologiesOWLSyntax and semantics of \mathcal{ALC} Semantics given by means of an interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where

- $\Delta^{\mathcal{I}}$ is a nonempty set (the domain), and
 - $\cdot^{\mathcal{I}}$ is a mapping (the interpretation function) as follows:

Constructor S	Syntax	Example	Semantics	
concept name	Α	Human	$A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$	
role name	r	likes	$r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$	

For C, D concepts and R a role name:

conjunction	$C\sqcap D$	Human ∏ Male	$C^{\mathcal{I}} \cap D^{\mathcal{I}}$
disjunction	C⊔D	Nice⊔Rich	$C^{\mathcal{I}} \cup D^{\mathcal{I}}$
negation	$\neg C$	¬Meat	$\Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$
restrictions:			
existential	$\exists r.C$	∃hasChild.Human	$\{x \mid \exists y.(x,y) \in r^{\mathcal{I}} \land y \in C^{\mathcal{I}}\}$
value	∀r.C	$\forall \texttt{hasChild.Blond}$	$\{x \mid \forall y.(x,y) \in r^{\mathcal{I}} \Rightarrow y \in C^{\mathcal{I}}\} \bigcup$

Origin	gins Basics DLs and other logics Ontolo	ogies OW	/L
Un	nderstanding syntax and semantics of \mathcal{ALC}		
	We can "draw" interpretations (similarly to Kripke models if you happen to know mod	lal logic)	
	Exercise 1: Formulate \mathcal{ALC} concepts that describe happy pet owners		
	unhappy pet owners who own an old cat		
	 pet owners who own a cat, a dog, and only cats a net owners who own a cat, a dog, and no other a 	and dogs	
	 everything (abbreviated by ⊤ with ⊤^I = Δ^I) nothing (abbreviated by ⊥ with ⊥^I = Ø^I) 		
	For each of your concepts $(1)-(4)$, "draw" an interpretation with an instance of that conc	cept.	J

 Origins
 Basics
 DLs and other logics
 Ontologies
 OWL

 Basic reasoning problems in ALC

Definition: let C, D be ALC concepts. We say that

- $e \in C^{\mathcal{I}}$ is an instance of C in \mathcal{I} .
- *C* is satisfiable if there is an interpretation \mathcal{I} with $C^{\mathcal{I}} \neq \emptyset$.
- *C* is subsumed by *D* (written $\emptyset \models C^{\mathcal{I}} \sqsubseteq D^{\mathcal{I}}$) if: for every interpretation \mathcal{I} , we have that $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$.

Exercise 2: Which of the following concepts is satisfiable? Which is subsumed by which?

> (1) $\exists r.(A \sqcap B)$ (2) $\exists r.(A \sqcup B)$ (3) $\forall r.(A \sqcap B)$ (4) $\exists r.(A \sqcap \neg A)$

Origins	Basics	DLs and other logics	Ontologies	OWL
The TBox				

Definition

- A general concept inclusion (GCI) has the form C ⊑ D, for C, D (possibly complex) concepts
- A general TBox is a finite set of GCIs: $T = \{C_i \sqsubseteq D_i \mid 1 \le i \le n\}$
- \mathcal{I} satisfies $C \sqsubseteq D$ if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ (written $\mathcal{I} \models C \sqsubseteq D$)
- \mathcal{I} is a model of TBox \mathcal{T} if \mathcal{I} satisfies every $C_i \sqsubseteq D_i$
- We use $C \equiv D$ to abbreviate $C \sqsubseteq D$, $D \sqsubseteq C$

Example: { Father \equiv Man $\sqcap \exists$ hasChild.Human,

Human \equiv Mammal $\sqcap \forall$ hasParent.Human,

 $\exists favourite.Brewery \sqsubseteq \exists drinks.Beer \}$

Exercise 3: Draw a model of the above TBox. Draw an interpretation that is **not** a model of it.

Uli Sattler, Thomas Schneider

DL: Introduction 1

Origins Basics DLs and other logics Ontologies

DWL

Reasoning problems with respect to a TBox

Definition: let C, D be concepts, \mathcal{T} a TBox. We say that

- C is satisfiable w.r.t. T
 if there is a model I of T with C^I ≠ Ø
- *C* is subsumed by *D* w.r.t. \mathcal{T} (written $\mathcal{T} \models C \sqsubseteq D$) if, for every model \mathcal{I} of \mathcal{T} , we have $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$

Example:
$$\mathcal{T} = \{ \begin{array}{c} A \sqsubseteq B \sqcap \exists r.C, \\ \exists r.\top \sqsubseteq \neg A \end{array} \}$$

Exercise 4: Does \mathcal{T} have a model? Are all concept names in \mathcal{T} satisfiable? Any subsumptions that you can point out? How many models does a TBox have?

Origins	Basics	DLs and other logics	Ontologies	OWL
The ABo	x			
TBox	captures kcontains co	nowledge on a general, oncept def.s + general a	conceptual level axioms about concep	ots

- ABox captures knowledge on an individual level
 - is a finite set of
 - concept assertions a: C e.g., John: Man, and
 - role assertions (a, b): r e.g., (John, Mary): hasChild

Semantics: an interpretation $\ensuremath{\mathcal{I}}$

- maps each individual name e to some $e^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
- satisfies a concept assertion a: C if $a^{\mathcal{I}} \in C^{\mathcal{I}}$
- satisfies a role assertion (a, b): r if $(a^{\mathcal{I}}, b^{\mathcal{I}}) \in r^{\mathcal{I}}$
- \bullet is a model of an ABox ${\cal A}$ if ${\cal I}$ satisfies each assertion in ${\cal A}$
- a: C is entailed by \mathcal{A} if every model of \mathcal{A} satisfies a: C

Origins	Basics	DLs and other logic	os Ontologies	OWL
The ABox				
Semantics	: an interpretati	on ${\cal I}$	repeated from previous slide	J
• maps	s each <mark>individual</mark>	name e to so	ome $e^{\mathcal{I}} \in \Delta^{\mathcal{I}}$	
• satis	fies a concept as	ssertion a: C	$\text{ if } a^{\mathcal{I}} \in C^{\mathcal{I}}$	
• satis	fies a role assert	ion (<i>a</i> , <i>b</i>): <i>r</i>	$\text{if }(a^{\mathcal{I}},b^{\mathcal{I}})\in r^{\mathcal{I}}$	
• is a r	<mark>nodel</mark> of an ABc	ox ${\mathcal A}$ if ${\mathcal I}$ sati	sfies each assertion in ${\cal A}$	

a: C is entailed by \mathcal{A} if every model of \mathcal{A} satisfies a: C

Example:
$$\mathcal{A} = \{ a : B \sqcap \exists r.C, \\ b : A \sqcap \neg P \sqcap \forall s.\forall r.F, \\ (b, a) : s \}$$

(Later) Can you translate this into FOL? ML?

iiill

Origins	Basics	DLs and other logics	Ontologies	OWL
Ontologies:	TBox and A	ABox		
Definition:	an ontology cor	isists of		

- a TBox that captures knowledge on a general, conceptual level
- an ABox that captures knowledge on an individual level and uses terms described in the TBox

Notation: $(\mathcal{T}, \mathcal{A})$ or $\mathcal{T} \cup \mathcal{A}$ – no difference!

Semantics:

- Int. \mathcal{I} is a model of $\mathcal{O} = (\mathcal{T}, \mathcal{A})$ (written $\mathcal{I} \models \mathcal{O}$) if \mathcal{I} satisfies each assertion and axiom in \mathcal{O} alternatively: $\mathcal{I} \models \mathcal{T}$ and $\mathcal{I} \models \mathcal{A}$
- \mathcal{O} is consistent if it has a model
- \mathcal{O} is coherent if each conc. name A in \mathcal{O} is satisfiable w.r.t. \mathcal{O}
- $C \sqsubseteq D$ is entailed by \mathcal{O} if every model of \mathcal{O} satisfies $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- a: C is entailed by \mathcal{O} if every model of \mathcal{O} satisfies $a^{\mathcal{I}} \in C^{\mathcal{I}}$

Origins	Basics	DLs and other logics	Ontologies	OWL
Ontologies:	TBox and A	ABox		
Semantics:		repeat	ted from previous	slide

- Int. \mathcal{I} is a model of $\mathcal{O} = (\mathcal{T}, \mathcal{A})$ if $\mathcal{I} \models \mathcal{T}$ and $\mathcal{I} \models \mathcal{A}$
- \mathcal{O} is consistent if it has a model
- \mathcal{O} is **coherent** if each conc. name A in \mathcal{O} is satisfiable w.r.t. \mathcal{O}
- $C \sqsubseteq D$ is entailed by \mathcal{O} if every model of \mathcal{O} satisfies $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- a: C is entailed by \mathcal{O} if every model of \mathcal{O} satisfies $a^{\mathcal{I}} \in C^{\mathcal{I}}$

Example: $\mathcal{O} = \{ \begin{array}{cc} A \sqsubseteq B \sqcap \exists r.C, \\ \exists r.\top \sqsubseteq \neg A, \end{array}$ $\begin{array}{c} a:B, \\ (a,b):r \end{array} \}$

Exercise 6: Does \mathcal{O} have a model? – Describe some of them. Can you see any entailments?

What about $\mathcal{O} \cup \{b: C\}$ or $\mathcal{O} \cup \{b: A\}$?

iiUJJ

Oligins	Dasics	DES and other logics	5	Ontologies	OVVL
Ontologies:	TBox and A	ABox			
Semantics:			repeated fr	om previous slide	1

Discourd athen leader

- Int. \mathcal{I} is a model of $\mathcal{O} = (\mathcal{T}, \mathcal{A})$ if $\mathcal{I} \models \mathcal{T}$ and $\mathcal{I} \models \mathcal{A}$
- O is consistent if it has a model

Design

- \mathcal{O} is **coherent** if each conc. name A in \mathcal{O} is satisfiable w.r.t. \mathcal{O}
- $C \sqsubseteq D$ is entailed by \mathcal{O} if every model of \mathcal{O} satisfies $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- a: C is entailed by \mathcal{O} if every model of \mathcal{O} satisfies $a^{\mathcal{I}} \in C^{\mathcal{I}}$

Lemma

 $C \sqsubseteq D$ is entailed by $\mathcal{O} = (\mathcal{T}, \mathcal{A})$ iff $C \sqsubseteq D$ is entailed by \mathcal{T} .

Proof: for " \Leftarrow ", note that every model of \mathcal{O} is one of \mathcal{T} . For " \Rightarrow ", use contraposition; distinguish between \mathcal{O} being inconsistent (trivial) and consistent (combine a model witnessing $\mathcal{T} \not\models C \sqsubseteq D$ and one of \mathcal{O} to one witnessing $\mathcal{O} \not\models C \sqsubseteq D$).

Origins	Basics	DLs and other logics	Ontologies	OWL
And now .				

1 Origins of DLs

2 DL basics

3 Relationship with other logics \rightarrow Uli!

4 Ontologies

5 OWL and DLs