Description Logics: an Introductory Course on a Nice Family of Logics

Day 1, Part 2

Uli Sattler

- So far: syntax, semantics, and basics of the DL \mathcal{ALC} :
 - $\ensuremath{\,\text{where they come from}}$
 - -syntax: ALC concepts, axioms, assertions, TBox, ABox, ontology
 - semantics: interpretations, models
 - reasoning problems: entailment, satisfiability, consistency,
 ...and relationships between reasoning problems
- Next: relationships between
 - Description Logics
 - Modal Logic
 - First Order Logic
 - OWL so that we can use Protégé 4 for exercises

The following is not hard to see:

if we view concept names A as unary predicates and roles r as binary predicates, then

FOL: • each interpretation \mathcal{I} can be seen as a FOL structure

• each \mathcal{ALC} concept C can be translated into a FOL formula $t_x(C)(x)$ (in which x is a free variable) such that

 $e \in C^{\mathcal{I}}$ iff $\mathcal{I} \models t_x(C)[x/e]$

Here is the translation $t_x()$ from \mathcal{ALC} concepts into FOL formulae in one free variable

$$egin{aligned} t_x(A) &= A(x), & t_y(A) &= A(y), \ t_x(
eglines C) &=
eglines t_x(C), & t_y(
eglines C) &= \dots, \ t_x(C &\sqcap D) &= t_x(C) \wedge t_x(D), & t_y(C &\sqcap D) &= \dots, \ t_x(C &\sqcup D) &= \dots, & t_y(C &\sqcup D) &= \dots, \ t_x(
eglines t_x(C)) &=
eglines t_y(C), & t_y(
eglines t_y(C)) &= \dots, \ t_x(
eglines t_x(
eglines t_y(
eglin$$

• Fill in the blanks

• Why are $t_x(C)$, $t_y(C)$ formulas in one free variable?

Translate an ontology
$$\mathcal{O} = (\mathcal{T}, \mathcal{A})$$
 using $t()$ as follows:
 $t(\mathcal{O}) = t(\mathcal{T}) \cup t(\mathcal{A})$
 $t(\mathcal{T}) = \{ \forall x.t_x(C) \Rightarrow t_x(D) \mid C \sqsubseteq D \in \mathcal{T} \}$
 $t(\mathcal{A}) = \{ t_x(C)[x/a] \mid a \colon C \in \mathcal{A} \} \cup$
 $\{ r(a, b) \mid (a, b) \colon r \in \mathcal{A} \}$

As a consequence, we have that

Theorem 1 1. *e* is an instance of *C* in \mathcal{I} iff $\mathcal{I} \models t_x(C)[x/e]$ 2. *C* is satisfiable iff $t_x(C)$ is satisfiable 3. *C* is satisfiable w.r.t. \mathcal{O} iff $\{t_x(C)[x/e]\} \cup t(O)$ is satisfiable 4. *C* is subsumed by *D* iff $\forall x.t_x(C) \Rightarrow t_x(D)$ is valid 5. $\mathcal{O} \models C \sqsubseteq D$ iff $t(\mathcal{O}) \models \forall x.t_x(C) \Rightarrow t_x(D)$

- **Observations:** $t_x(C)$ only uses two variables
 - $\Rightarrow ALC$ is a fragment of the 2-variable fragment of FOL known to be decidable

• $t_x(C)$ only uses guarded quantification

 $\Rightarrow ALC$ is a fragment of the guarded fragment of FOL known to be decidable

Easy if only 1 role used, e.g.:

 $(DL) \ A \sqcap \exists r.(A \sqcap B) \qquad (ML) \ A \land \Diamond (A \land B)$ $(DL) \ A \sqcap orall r.(A \sqcap B) \qquad (ML) \ A \land \Box (A \land B)$ $(DL) \ A \sqcap \exists r.A \sqcap \forall r.B \qquad (ML) \ A \land \Diamond A \land \Box B$ $(DL) \ A \sqcap \exists r.A \sqcap \forall r. \neg A \qquad (ML) \ A \land \Diamond A \land \Box \neg A$

Need to switch to Multi Modal Logic for the general case, e.g.,:

 $(DL) \ A \sqcap \exists r.A \sqcap \forall s.(\neg A \sqcap \exists t.B) \qquad (ML) \ A \land \langle r \rangle A \land [s](\neg A \land \langle t \rangle B)$

I.e., extend syntax to parametrised boxes & diamonds, and semantics to several accessibility relations R_s , e.g., $\mathcal{M}, w \models [s] \phi$ if, for every $v \in W$, $(w, v) \in R_s$ implies $\mathcal{M}, s \models \phi$ In Modal Logic, we are mainly concerned with a single formula.

There is no equivalent to TBoxes or ABoxes, but (for \tilde{C} the ML version of C):

TBox: if we have a universal modality u, we can translate

 $C \sqsubseteq D$ into $[u](\neg \tilde{C} \lor \tilde{D})$

ABox: if we have nominals, we can translate

 $a\colon C$ into $@_a(ilde C)$ $(a,b)\colon r$ into $@_a\langle r
angle b$

```
A little exercise: take the following ALC concept C:
```

```
A \sqcap \exists r.(A \sqcap \exists s.B \sqcap \exists s.C) \sqcap
\exists r.B \sqcap
\forall r.(\exists s.A \sqcap \forall s.C)
```

ullet translate C into a modal logic formula ϕ

ullet translate C into a first order logic formula ϕ'

We can use the

- Modal Logic algorithms (MLAs) to decide satisfiability of and subsumption between *ALC* concepts.
- \bullet soundness & completeness proof of the MLA to show that \mathcal{ALC} has FMP:

C is satisfiable iff C is satisfiable in a finite interpretation.¹

soundness & completeness proof of the MLA to show that \mathcal{ALC} has TMP:

C is satisfiable iff C is satisfiable in a tree interpretation.²

soundness & completeness proof of the MLA to show that ALC has FTMP:

C is satisfiable iff C is satisfiable in a finite tree interpretation.³

¹A finite interpretation is one with a finite domain.

²A tree interpretation is one whose domain has a tree structure.

³A finite tree interpretation is one that is finite and tree-shaped.

OWL and **DLs**

- **OWL:** is the Web Ontology Language, now OWL 2 but we use 'OWL'
 - starting point: www.w3.org/TR/owl2-overview/
 - has various syntaxes, e.g., RDF/XML, OWL/XML, and Manchester Syntax
 - comes with import mechanisms, annotations, etc.
 - logical underpinning through DLs:
 - an OWL ontology corresponds to a $\mathcal{SROIQ}(\mathcal{D})$ ontology
 - where $\mathcal{SROIQ}(\mathcal{D})$ is an extension of \mathcal{ALC} with
 - inverse roles, cardinality restrictions, transitive roles, ...
 - some OWL ontologies corresponds to an \mathcal{ALC} ontology
 - we can express an \mathcal{ALC} ontology in OWL
 - ontology IDEs such as Protégé 4 help us to edit these and interact with reasoner
 - download Protégé 4: www.co-ode.org/downloads/protege-x/
 - write your (first) OWL ontology

OWL and DLs – a snapshot

• concept in DL – class in OWL

• role in DL - property in OWL

Abstract Syntax	DL Syntax	Semantics
Descriptions (C)		
A (URI reference)	A	$A^T \subseteq \Delta^T$
owl:Thing	т	$owl:Thing^T = \Delta^T$
owl:Nothing		$owl:Nothing^T = \{\}$
intersectionOf($C_1 \ C_2 \ \ldots$)	$C_1 \sqcap C_2$	$(C_1 \sqcap D_1)^T = C_1^T \cap D_2^T$
unionOf(C_1 C_2)	$C_1 \sqcup C_2$	$(C_1 \sqcup C_2)^{\mathcal{I}} = C_1^{\mathcal{I}} \sqcup C_2^{\mathcal{I}}$
complementOf(C)	$\neg C$	$(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$
$oneOf(o_1 \dots)$	{ <i>o</i> 1,}	$\{o_1, \ldots\}^T = \{o_1^T, \ldots\}$
restriction(R someValuesFrom(C))	$\exists R.C$	$(\exists R.C)^T = \{x \mid \exists y. \langle x, y \rangle \in R^T \text{ and } y \in C^T\}$
restriction(R allValuesFrom(C))	$\forall R.C$	$(\forall R.C)^{\mathcal{I}} = \{ x \mid \forall y. \langle x, y \rangle \in R^{\mathcal{I}} \to y \in C^{\mathcal{I}} \}$
restriction(R hasValue(o))	R:o	$(\forall R.o)^{\mathcal{I}} = \{x \mid \langle x, o^{\mathcal{I}} \rangle \in R^{\mathcal{I}}\}$

Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ and RDF to OWL: The Making of a Web Ontology Language. J. of Web Semantics, 1(1):7-26, 2003.

To write an \mathcal{ALC} or OWL ontology, you can use

- pen and paper
- a text editor and a typesetting system such as LaTex
- a "logic" IDE: e.g., Protégé 4
 - In Reasoner Menu, on choosing Classify Ontology for \mathcal{O} , the chosen reasoner
 - tests the ontology for consistency
 - tests each concept/classe name A for satisfiability w.r.t. ${\cal O}$
 - for each pair of A, B of concept/classe names, determines whether

 $\mathcal{O} \models A \sqsubseteq B \text{ or } \mathcal{O} \models B \sqsubseteq A$

...and displays the results \Rightarrow let's see how this works.

So, for tomorrow, you are cordially invited to

- pick a domain of your choice and expertise (football, fashion, food, fish, ...)
- \bullet design your first ontology, in $\mathcal{ALC},$ with
 - TBox, to introduce/define relevant concepts and roles
 - $-\operatorname{ABox}$, to populate your TBox
 - say 20 concepts/role names, 8 individuals
- ideally in OWL, via Protégé 4, so that you can make use of a reasoner (they come with Protégé 4)

Links:

- for Protégé 4, go to http://www.co-ode.org/downloads/protege-x/
- for OWL from a logics perspective, have a look at http://owl.cs.manchester.ac. uk/about/orientation/a-logics-perspective/