Description Logics: an Introductory Course on a Nice Family of Logics

Day 2: Tableau Algorithms

Uli Sattler

Which of the following subsumptions hold?

r some (A and B) is subsumed by r some A $\exists r.(A \sqcap B) \qquad \Box \qquad \exists r.A$ (r some A) and (r only B) is subsumed by r some B $\exists r.A \sqcap \forall r.B \sqsubseteq \exists r.B$ r only (A and not A) is subsumed by r only B $\forall r.(A \sqcap \neg A)$ $\Box \qquad \forall r.B$ r some (r only A) is subsumed by r some (r some (A or not A)) $\Box \qquad \exists r.(\exists r.(A \sqcup \neg A)$ $\exists r.(\forall r.A)$ r only (A and B) is subsumed by (r only A) and (r only B) $\Box \qquad \forall r.A \sqcap \forall r.B$ $\forall r.(A \sqcap B)$ r some B is subsumed by r only B $\exists r.B$ $\forall r.A$

- relationship between standard DL reasoning problems
- a tableau algorithm to decide consistency of *ALC* ontologies and all other standard DL reasoning problems
- a proof of its correctness
- with some model properties
- some optimisations
- some extensions
 - inverse roles
 - (sketch) number restrictions
- some discussions
- ...loads of stuff: ask if you have a question!

Standard DL Reasoning Problems

Given an ontology $\mathcal{O} = (\mathcal{T}, \mathcal{A})$, • is \mathcal{O} consistent? $\mathcal{O} \models \top \Box \perp$? • is \mathcal{O} coherent? is there concept name A with $\mathcal{O} \models A \sqsubseteq \bot$? for all concept names $A, B: \mathcal{O} \models A \sqsubset B$? • compute class hierarchy! • classify individuals! for all concept names A, individual names b: $\mathcal{O} \models b \colon B$? **Theorem 2** Let \mathcal{O} be an ontology and a an individual name **not** in \mathcal{O} . Then 1. C is satisfiable w.r.t. \mathcal{O} iff $\mathcal{O} \cup \{a : C\}$ is consistent 2. \mathcal{O} is coherent iff, for each concept name A, $\mathcal{O} \cup \{a \colon A\}$ is consistent 3. $\mathcal{O} \models A \sqsubseteq B$ iff $\mathcal{O} \cup \{a \colon (A \sqcap \neg B)\}$ is not consistent 4. $\mathcal{O} \models b \colon B$ iff $\mathcal{O} \cup \{b \colon \neg B\}$ is not consistent

→ a decision procedure to solve consistency decides all standard DL reasoning problems

- A problem is a set $P \subseteq M$
 - e.g., M is the set of all \mathcal{ALC} ontologies,
 - $-P\subseteq M$ is the set of all consistent \mathcal{ALC} ontologies
 - ...and the problem P is to decide whether, for a given $m \in M$, we have $m \in P$
- An algorithm is a decision procedure for a problem $P \subseteq M$ if it is
 - sound for P: if it answers " $m \in P$ ", then $m \in P$
 - complete for P: if $m \in P$, then it answers " $m \in P$ "
 - -terminating: it stops after finitely many steps on any input $m \in M$

Why does "sound and complete" not suffice for being a decision procedure?

For now: • \mathcal{ALC} : $\Box, \sqcup, \neg, \exists r.C, \forall r.C$

• an algorithm to decide consistency of an ontology

The algorithm decides "Is \mathcal{O} consistent" by trying to construct a model \mathcal{I} for \mathcal{O} :

• if successful, \mathcal{O} is consistent: "look, here is a (description of a) model"

• otherwise, no model exists – provably (we were not simply too lazy to find it)

Algorithm works on a set of ABoxes:

- \bullet intialised with a singleton set $\mathcal{S}=\{\mathcal{A}\}$ when started with $\mathcal{O}=(\mathcal{T},\mathcal{A})$
- \bullet ABoxes are extended by rules to make constraints on models of ${\cal O}$ explicit
- \mathcal{O} is consistent if, for (at least) one of the ABoxes \mathcal{A}' in \mathcal{S} , $(\mathcal{T}, \mathcal{A}')$ is consistent

Technical: we say C and D are equivalent, written $C \equiv D$, if they mutually subsume each other.

Technical:all concepts are assumed to be in Negation Normal Formtransform all concepts in \mathcal{O} into $\mathsf{NNF}(C)$ bypushing negation inwards, using

 $\neg(C \sqcap D) \equiv \neg C \sqcup \neg D \qquad \neg(C \sqcup D) \equiv \neg C \sqcap \neg D \\ \neg(\exists R.C) \equiv (\forall R.\neg C) \qquad \neg(\forall R.C) \equiv (\exists R.\neg C)$

Lemma: Let *C* be an \mathcal{ALC} concept. Then $C \equiv \mathsf{NNF}(C)$.

From now on, all concepts in GCIs and concept assertions are assumed to be in NNF, and we use $\neg C$ to denote the NNF($\neg C$).

A tableau algorithm for \mathcal{ALC} ontologies

The algorithm • works on sets of ABoxes \mathcal{S}

- \bullet starts with a singleton set $\mathcal{S}=\{\mathcal{A}\}$ when started with $\mathcal{O}=(\mathcal{T},\mathcal{A})$
- \bullet applies rules that infer constraints on models of ${\cal O}$
- a rule is applied to some $\mathcal{A} \in \mathcal{S}$; its application replaces \mathcal{A} with one or two ABoxes
- \bullet answers " ${\cal O}$ is consistent" if rule application leads to an ABox ${\cal A}$ that is
 - complete, i.e., to which no more rules apply and
 - clash-free, i.e., $\{a\colon A,\ a\colon
 eg A\}
 ot \subseteq \mathcal{A}$, for any a,A
- for optimisation, we can avoid applying rules to ABoxes containing a clash

Following Theorem 2, we can use the algorithm to test

- satisfiability of a concept C by starting it with $\{a \colon C\}$
- satisfiability of a concept C wr.t. \mathcal{O} by starting it with $\mathcal{O} \cup \{a : C\}$ (a not in \mathcal{O})
- subsumption $C \sqsubseteq D$ by starting it with $\{a \colon (C \sqcap \neg D)\}$
- subsumption $C \sqsubseteq D$ wr.t. \mathcal{O} by starting it with $\mathcal{O} \cup \{a \colon (C \sqcap \neg D)\}$ (a not in \mathcal{O})
- whether b is an instance of C w.r.t. \mathcal{O} by starting it with $\mathcal{O} \cup \{b \colon \neg C\}$
- ...and interpreting the results according to Theorem 2.

- $\sqcap\text{-rule:} \quad \text{if} \quad a: C_1 \sqcap C_2 \in \mathcal{A} \text{ and } \{a: C_1, a: C_2\} \not\subseteq \mathcal{A}$ then replace \mathcal{A} with $\mathcal{A} \cup \{a: C_1, a: C_2\}$
- $\label{eq:constraint} \begin{array}{ll} \sqcup \text{-rule:} & \text{if} & a \colon C_1 \sqcup C_2 \in \mathcal{A} \text{ and } \{a \colon C_1, a \colon C_2\} \cap \mathcal{A} = \emptyset \\ & \text{then replace } \mathcal{A} \text{ with } \mathcal{A} \cup \{a \colon C_1\} \text{ and } \mathcal{A} \cup \{a \colon C_2\} \end{array} \end{array}$
- $\exists \text{-rule:} \quad \text{if} \quad a \colon \exists s. C \in \mathcal{A} \text{ and there is no } b \text{ with } \{(a, b) \colon s, \ b \colon C\} \subseteq \mathcal{A}$ then create a new individual name c and replace \mathcal{A} with $\mathcal{A} \cup \{(a, c) \colon s, \ c \colon C\}$
- $\begin{array}{ll} \forall \text{-rule:} & \text{if} \quad \{a \colon \forall s.C, \ (a,b) \colon s\} \subseteq \mathcal{A} \text{ and } b \colon C \not\in \mathcal{A} \\ & \text{then replace } \mathcal{A} \text{ with } \mathcal{A} \cup \{b \colon C\} \end{array}$
- $\begin{array}{ll} \mathsf{GCI-rule:} \ \mathrm{if} & C \sqsubseteq D \in \mathcal{T} \ \mathrm{and} \ a \colon (\neg C \sqcup D) \not\in \mathcal{A} \ \mathrm{for} \ a \ \mathrm{in} \ \mathcal{A}, \\ & \text{then replace} \ \mathcal{A} \ \mathrm{with} \ \mathcal{A} \cup \{a \colon (\neg C \sqcup D)\} \end{array}$

- We only apply rules if their application does "something new"
- The \sqcup -rule is the only one to replace an ABox with more than one other
- To understand the GCI-rule, convince yourself that

 \mathcal{I} satisfies a GCI $C \sqsubseteq D$ iff, for each $e \in \Delta^{\mathcal{I}}$, we have $e \not\in C^{\mathcal{I}}$ or $e \in D^{\mathcal{I}}$ - and $e \not\in C^{\mathcal{I}}$ is the case iff $e \in (\neg C)^{\mathcal{I}}$

- The GCI-rule adds a disjunction per individual and GCI \Rightarrow this is
 - bad, and
 - **stupid** for GCIs with a concept name on its left hand side (why?)
 - \Rightarrow we add an abbreviated GCI rule:

 $\begin{array}{ll} \mathsf{GCI-2-rule:} \ \text{if} & B \ \text{is a concept name, } a \colon F \not\in \mathcal{A} \ \text{for} \ a \colon B \in \mathcal{A} \ \text{and} \ B \sqsubseteq F \in \mathcal{T}, \\ \\ & \text{then replace} \ \mathcal{A} \ \text{with} \ \mathcal{A} \cup \{a \colon F\} \end{array}$

 \bullet If $\mathcal A$ is replaced with $\mathcal A',$ then $\mathcal A\subseteq \mathcal A'$

Example: apply the tableau algorithm to $\mathcal{O} = (\mathcal{T}, \mathcal{A})$ with

$$egin{aligned} \mathcal{T} &= \{ A \sqsubseteq B \sqcap \exists r.G \sqcap orall r.C, & A = \{ egin{aligned} a:A, b:E, \ E &\subseteq A \sqcap H \sqcap orall r.F, & (a,c)\colon r, \ G &\subseteq E \sqcap P, & c\colon G \} \ H &\subseteq E \sqcup orall r.
onumber C \} \end{aligned}$$

As is, the tableau algorithm does not terminate:

Example: apply the tableau algorithm to $\mathcal{O} = (\mathcal{T}, \mathcal{A})$ with $\mathcal{T} = \{A \sqsubseteq \exists r.A\}$ and $A = \{a: A\}$.

To ensure termination, use **blocking**: each rule is only applicable to an individual a in an ABox A if there is no other individual b with

$$\{C \mid a \colon C \in \mathcal{A}\} \subseteq \{C \mid b \colon C \in \mathcal{A}\}.$$

In case we have

- a freshly introduced individual (i.e., not present in input ontology) a,
- an individual b with
 - $-\{C \mid a \colon C \in \mathcal{A}\} \subseteq \{C \mid b \colon C \in \mathcal{A}\},\$
 - -b is older than a (i.e., was created earlier than a)

we say b blocks a and we say a is blocked.

Tableau Expansion Rules for \mathcal{ALC}

- $\sqcap\text{-rule:} \quad \text{if} \quad a: C_1 \sqcap C_2 \in \mathcal{A}, \ a \text{ is not blocked}, \text{ and } \{a: C_1, a: C_2\} \not\subseteq \mathcal{A}$ then replace \mathcal{A} with $\mathcal{A} \cup \{a: C_1, a: C_2\}$
- $\label{eq:constraint} \begin{array}{ll} \sqcup \text{-rule:} & \text{if} & a:C_1 \sqcup C_2 \in \mathcal{A} \text{, } a \text{ is not blocked, and } \{a:C_1,a:C_2\} \cap \mathcal{A} = \emptyset \\ & \text{then replace } \mathcal{A} \text{ with } \mathcal{A} \cup \{a:C_1\} \text{ and } \mathcal{A} \cup \{a:C_2\} \end{array} \end{array}$
- $\exists \text{-rule:} \quad \text{if} \quad a \colon \exists s.C \in \mathcal{A}, \ a \text{ is not blocked}, \text{ and there is no } b \text{ with} \\ \{(a,b) \colon s, \ b \colon C\} \subseteq \mathcal{A}$

then create a new individual c and replace \mathcal{A} with $\mathcal{A} \cup \{(a, c) : s, c : C\}$

 $\forall \text{-rule:} \quad \text{if} \quad \{a \colon \forall s.C, \ (a,b) \colon s\} \subseteq \mathcal{A}, \ a \text{ is not blocked}, \text{ and } b \colon C \not\in \mathcal{A}$ then replace \mathcal{A} with $\mathcal{A} \cup \{b \colon C\}$

GCI-rule: if $C \sqsubseteq D \in \mathcal{T}$, *a* is not blocked, and

if C is a concept name, $a : C \in \mathcal{A}$ but $a : D \not\in \mathcal{A}$, then replace \mathcal{A} with $\mathcal{A} \cup \{a : D\}$

else if $a: (\neg C \sqcup D) \not\in \mathcal{A}$ for a in \mathcal{A} , then replace \mathcal{A} with $\mathcal{A} \cup \{a: (\neg C \sqcup D)\}$ Convince yourself that, for the given example, the tableau algorithm terminates:

Example: apply the tableau algorithm to $\mathcal{O} = (\mathcal{T}, \mathcal{A})$ with $\mathcal{T} = \{A \sqsubseteq \exists r.A\}$ and $A = \{a \colon A\}$.

...now for the general case!

Lemma 3: Let \mathcal{O} an \mathcal{ALC} ontology in NNF. Then

1. the algorithm terminates when applied to ${\cal O}$

2. if the rules generate a complete & clash-free ABox, then \mathcal{O} is consistent

3. if \mathcal{O} is consistent, then the rules generate a clash-free & complete ABox

Corollary 1: 1. Our tableau algorithm **decides consistency** of *ALC* ontologies.

2. Satisfiability (and subsumption) of *ALC* concepts is decidable in **PSpace**.

3. Consistency of \mathcal{ALC} ontologies is decidable in ExpSpace.

- 4. *ALC* ontologies have the finite model property i.e., every consistent ontology has a finite model.
- 5. *ALC* ontologies have the tree model property i.e., every consistent ontology has a tree model.

Let $sub(\mathcal{O})$ be the set of all subconcepts of concepts occurring in \mathcal{A} together with all subconcepts of $\neg C \sqcup D$ for each $C \sqsubseteq D \in \mathcal{T}$.

(1) **Termination** is a consequence of these observations:

- 1. a rule replaces one ABox with at most two ABoxes
- 2. the ABoxes are constructed in a monotonic way, i.e., each rule adds assertions, nothing is removed
- 3. concept assertions added are restricted to $sub(\mathcal{O})$ and

 $\# \operatorname{\mathsf{sub}}(\mathcal{O}) \leq \Sigma_{C \sqsubseteq D \in O}(2 + |C| + |D|) + \Sigma_{a \colon C \in O}|C|$

because, at each position in a concept, at most one sub-concept starts

4. due to blocking, there can be at most $2^{\# \operatorname{sub}(\mathcal{O})}$ individuals in each ABox: if $\{C \mid a \colon C \in \mathcal{A}\} \subseteq \{C \mid b \colon C \in \mathcal{A}\}$, *a* is blocked and no rules are applied to *a*.

Eventually, all ABoxes will be complete (and possibly have a clash), and the algorithm terminates.

Regarding Corollary 1.2

```
If we start the algorithm with \{a : C\}
to test satisfiability of C, and
construct ABox in non-deterministic depth-first manner
rather than constructing set of ABoxes
so that we only consider a single ABox and
re-use space for branches already visited,
mark b : \exists R.C \in \mathcal{A} with "todo" or "done"
```

we can run tableau algorithm (even without blocking) in polynomial space:

- \bullet ABox is of depth bounded by |C| , and
- we keep only a single branch in memory at any time.

If we start the algorithm with \mathcal{O} to test its consistency, and construct ABox in non-deterministic depth-first manner rather than constructing set of ABoxes so that we only consider a single ABox

we can run tableau algorithm in exponential space:

• number of individuals in ABox is bounded by $2^{\#\operatorname{\mathsf{sub}}(\mathcal{O})}$

This is not optimal: we will see tomorrow that consistency of ALC ontologies is decidable in exponential time, in fact ExpTime-complete.

(2) Let \mathcal{A}_f be a complete & clash-free ABox generated for $\mathcal{O} = (\mathcal{T}, \mathcal{A})$, and let \mathcal{B}_f be \mathcal{A}_f without assertions involving blocked individuals. Define an interpretation \mathcal{I} as follows:

$$egin{aligned} \Delta^{\mathcal{I}} &:= \{x \mid x ext{ is an individual in } \mathcal{B}_f\} \ A^{\mathcal{I}} &:= \{x \in \Delta^{\mathcal{I}} \mid x \colon A \in \mathcal{B}_f\} \quad ext{ for concept names } A \ r^{\mathcal{I}} &:= \{(x,y) \in \Delta^{\mathcal{I}} imes \in \Delta^{\mathcal{I}} \mid \ (x,y) \colon r \in \mathcal{B}_f ext{ or } \ (x,y') \colon r \in \mathcal{A}_f ext{ and } y ext{ blocks } y' ext{ in } \mathcal{A}_f \} \end{aligned}$$

and show, by induction on structure of concepts:

 $\begin{array}{l} (\mathsf{C1}) \ x \colon D \in \mathcal{B}_f \ \text{implies} \ x \in D^{\mathcal{I}} \\ (\mathsf{C2}) \ C \ \sqsubseteq \ D \in \mathcal{T} \ \text{implies} \ C^{\mathcal{I}} \subseteq D^{\mathcal{I}} \end{array}$

I is a model of (*T*, *B_f*) (*I* satisfies all role assertions by definition) *I* is a model of (*T*, *A*) because *A* ⊆ *B_f O* = (*T*, *A*) is consistent

 $egin{aligned} \Delta^{\mathcal{I}} &:= \{x \mid x ext{ is an individual in } \mathcal{B}_f\} \ A^{\mathcal{I}} &:= \{x \in \Delta^{\mathcal{I}} \mid x \colon A \in \mathcal{B}_f\} & ext{ for concept names } A \ r^{\mathcal{I}} &:= \{(x,y) \in \Delta^{\mathcal{I}} imes \in \Delta^{\mathcal{I}} \mid \ (x,y) \colon r \in \mathcal{B}_f ext{ or } \ (x,y') \colon r \in \mathcal{B}_f ext{ and } y ext{ blocks } y'\} \end{aligned}$

Show, by induction on structure of concepts: (C1) $x \colon D \in \mathcal{B}_f$ implies $x \in D^{\mathcal{I}}$

- for concept names D: by definition of \mathcal{I}
- for negated concept names *D*: due to clash-freeness and induction
- for conjunctions/disjunctions/existential restrictions/universal restrictions *D*: due to completeness and by induction

 $egin{aligned} \Delta^{\mathcal{I}} &:= \{x \mid x ext{ is an individual in } \mathcal{B}_f\} \ A^{\mathcal{I}} &:= \{x \in \Delta^{\mathcal{I}} \mid x \colon A \in \mathcal{B}_f\} & ext{ for concept names } A \ r^{\mathcal{I}} &:= \{(x,y) \in \Delta^{\mathcal{I}} imes \in \Delta^{\mathcal{I}} \mid \ (x,y) \colon r \in \mathcal{B}_f ext{ or } \ (x,y') \colon r \in \mathcal{B}_f ext{ and } y ext{ blocks } y'\} \end{aligned}$

(C2): $C \sqsubseteq D \in \mathcal{T}$ implies $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$

This is an immediate consequence of

- $\Delta^{\mathcal{I}}$ being a set of individual names in \mathcal{A}_f ,
- \mathcal{A}_f being complete \Rightarrow the GCI-rule is not applicable \Rightarrow if $C \sqsubseteq D \in \mathcal{T}$:
 - if C is a concept name $x \in C^{\mathcal{I}}$, then $x \colon C \in \mathcal{B}_f$, and thus $x \colon D \in \mathcal{B}_f$ - else, $x \colon (\neg C \sqcup D) \in \mathcal{B}_f$
- (C1)

(3) Let \mathcal{O} be consistent, and let \mathcal{I} be a model of \mathcal{O} .

Use ${\mathcal I}$ to identify a clash-free & complete ABox:

Inductively define a total mapping π : start with $\pi(a) = a^{\mathcal{I}}$, and show that each rule can be applied such that (*) is preserved

 $(*) ext{ if } x \colon C \in \mathcal{A}, ext{ then } \pi(x) \in C^{\mathcal{I}} \ ext{ if } (x,y) \colon r \in \mathcal{A}, ext{ then } \langle \pi(x), \pi(y)
angle \in r^{\mathcal{I}}$

- easy for \sqcap -, \forall -, and the GCI-rule,
- \bullet for $\exists\text{-rule},$ we need to extend π to the newly created r-successor
- for \sqcup -rule, if $C_1 \sqcup C_2 \colon x \in \mathcal{A}$, (*) implies that $\pi(x) \in (C_1 \sqcup C_2)^{\mathcal{I}}$ \rightsquigarrow we can choose $\mathcal{A}_i = \mathcal{A} \cup \{x \colon C_i\}$ with $\pi(x) \in C_i^{\mathcal{I}}$ and thus preserve (*)

 \rightsquigarrow easy to see: (*) implies that ABox is clash-free

Consider the model $\mathcal I$ constructed for a clash-free, complete ABox in soundness proof:

- ${\cal I}$ is finite because ABox has finitely many individuals
 - a tree if blocking has not occurred
 - not a tree if blocking has occurred: but it can be unravelled into an (infinite) tree model

Hence we get Corollary 1.4 and 1.5 for (almost) free from our proof:

- **Corollary 1:** 4. *ALC* ontologies have the finite model property i.e., every consistent ontology has a finite model.
 - 5. *ALC* ontologies have the tree model property i.e., every consistent ontology has a tree model.

The tableau algorithm presented here

- \blacklozenge decides consistency of \mathcal{ALC} ontologies, and thus also
- → all other standard reasoning problems
- → uses **blocking** to ensure termination, and
- → can be implemented as such or using a non-deterministic alternative for the □-rule and backtracking.
- → in the worst case, it builds ABoxes that are exponential in the size of the input. Hence it runs in (worst case) ExpSpace,
- → can be implemented in various ways,
 - order/priorities of rules
 - data structure
 - etc.
- → is amenable to optimisations...

Naive implementation of \mathcal{ALC} tableau algorithm is doomed to failure:

It constructs a

- set of ABoxes,
- each ABox being of possibly exponential size, with possibly exponentially many individuals (see binary counting example)
- in the presence of a GCI such as $\top \sqsubseteq (C_1 \sqcup D_1) \sqcap \ldots \sqcap (C_n \sqcap D_n)$ and exponentially many individuals, algorithm might generate double exponentially many ABoxes
- \leadsto requires double exponential space or
 - use non-deterministic variant and backtracking to consider one ABox at a time
- \leadsto requires exponential space

Optimisations are crucial

concern every aspect of the algorithm help in "many" cases (which?) are implemented in various DL reasoners e.g., FaCT++, Pellet, RacerPro

In the following: a selection of some vital optimisations

- Idea 2: maintain graph with a node for each concept name
 - edges representing subsumption, disjointness ($\mathcal{T} \models A \sqsubseteq \neg B$), and non-subsumption
 - \bullet initialise graph with all "obvious" information in ${\boldsymbol{\mathcal{T}}}$
 - to avoid testing subsumption, exploit
 - all info in ABox during tableau algorithm to update graph
 - transitivity of subsumption and its interaction with disjointness

Remember: for $\mathcal{T} = \{C_i \sqsubseteq D_i \mid 1 \le i \le n\}$, where no C_i is a concept name, each individual x will have n disjunctions $x : (\neg C_i \sqcup D_i)$ due to

Problem: high degree of choice and huge search space blows up set of ABoxes

Observation:many GCIs are of the form $A \sqcap \ldots \sqsubseteq C$ for concept name Ae.g., Human $\sqcap \ldots \sqsubseteq C$ or Device $\sqcap \ldots \sqsubseteq C$

Optimising the ALC Tableau Algorithm: Absorption

Idea: localise GCIs to concept names by transforming $A \sqcap X \sqsubseteq C$ into equivalent $A \sqsubseteq \neg X \sqcup C$ e.g., Human $\sqcap \exists owns.Pet \sqsubseteq C$ becomes Human $\sqsubseteq \neg \exists owns.Pet \sqcup C$

For "absorbed" $\mathcal{T} = \{A_i \sqsubseteq D_i \mid 1 \le i \le n_1\} \cup \{C_i \sqsubseteq D_i \mid 1 \le i \le n_2\}$ the second, non-deterministic choice in GCI-rule is taken only n_2 times.

GCI-rule: if $C \sqsubseteq D \in \mathcal{T}$, *a* is not blocked, and if *C* is a concept name, $a : C \in \mathcal{A}$ but $a : D \not\in \mathcal{A}$, then replace \mathcal{A} with $\mathcal{A} \cup \{a : D\}$ else if $a : (\neg C \sqcup D) \not\in \mathcal{A}$ for *a* in \mathcal{A} , then replace \mathcal{A} with $\mathcal{A} \cup \{a : (\neg C \sqcup D)\}$

Observations:If no GCI is absorbable, nothing changesEach absorption saves 1 disjunction per individual outside A_i ,in the best case, this avoids almost all disjunctions from TBox axioms!

i.e., returns to last non-deterministic choice and tries other possibility

i.e., returns to last non-deterministic choice and tries other possibility

i.e., returns to last non-deterministic choice and tries other possibility

i.e., returns to last non-deterministic choice and tries other possibility

Optimising the \mathcal{ALC} Tableau Algorithm: SAT Optimisations

 Finally:
 ALC extends propositional logic

 ~→ heuristics developed for SAT are relevant

Summing up:optimisations are possible at each aspect of tableau algorithm
can dramatically enhance performance
~> do they interact?
~> how?
~> how?
~> which combination works best for which "cases"?
~> is the optimised algorithm still correct?

- \bullet standard reasoning problems for \mathcal{ALC} ontologies
- and their relationship & reducibility
- \bullet tableau algorithm for \mathcal{ALC} ontologies that
 - requires blocking for termination
 - is a decision procedure for all standard \mathcal{ALC} reasoning problems
 - works on a set of ABoxes or in a non-deterministic way with backtracking
 - is implemented in state-of-the-art reasoners
- proof of soundness, completeness, and termination of tableau algorithm
- some optimisations

Next: extension to more expressive DLs

Example: Does \forall parent. \forall child.Blond \sqsubseteq Blond w.r.t. $\mathcal{T} = \{\top \sqsubseteq \exists parent. \top\}$?

Motivation:with inverse roles, one can use bothhas-child and is-child-ofhas-part and is-part-of

. . .

and capture their interaction

ALCI is the extension of ALC with inverse roles R^- in the place of role names:

$$(r^-)^\mathcal{I}:=\{\langle y,x
angle\mid \langle x,y
angle\in r^\mathcal{I}\}.$$

Example: Does \forall parent. \forall parent⁻.Blond \sqsubseteq Blond w.r.t. $\mathcal{T} = \{\top \sqsubseteq \exists \text{parent.} \top\}$?

Is $\exists r. \exists s. A$ satisfiable w.r.t. $\mathcal{T} = \{\top \sqsubseteq \forall s^-. \forall r^-. \neg A\}$?

Modifications necessary to handle inverse roles: consider role assertions in both directions

① introduce
$$\mathsf{Inv}(r) = \left\{ egin{array}{cc} r^- & \text{if } r \text{ is a role name} \\ s & \text{if } r = s^- \end{array}
ight.$$

(2) call y an r-neighbour of x if either $(x,y) \colon r \in \mathcal{A}$ or $(y,x) \colon \mathsf{Inv}(r) \in \mathcal{A}$

③ substitute "(x,y): $r \in \mathcal{A}$ " in the \forall - and \exists -rule with "has an r-neighbour y"...

Tableau Expansion Rules for ALCI

- $\sqcap\text{-rule:}\quad \text{if} \quad a\colon C_1\sqcap C_2\in \mathcal{A} \text{, } a \text{ is not blocked, and } \{a\colon C_1,a\colon C_2\} \not\subseteq \mathcal{A}$ then replace \mathcal{A} with $\mathcal{A}\cup \{a\colon C_1,a\colon C_2\}$
- $\label{eq:constraint} \begin{array}{ll} \sqcup \text{-rule:} & \text{if} & a:C_1 \sqcup C_2 \in \mathcal{A} \text{, } a \text{ is not blocked, and } \{a:C_1,a:C_2\} \cap \mathcal{A} = \emptyset \\ & \text{then replace } \mathcal{A} \text{ with } \mathcal{A} \cup \{a:C_1\} \text{ and } \mathcal{A} \cup \{a:C_2\} \end{array} \end{array}$

then create a new individual c and replace \mathcal{A} with $\mathcal{A} \cup \{(a,c) \colon s, \ c \colon C\}$

 \forall -rule: if $a: \forall s. C \in \mathcal{A}$, and a has an s-neighbour b in \mathcal{A} that is not blocked with $b: C \not\in \mathcal{A}$ then replace \mathcal{A} with $\mathcal{A} \cup \{b: C\}$

GCI-rule: if $C \sqsubseteq D \in \mathcal{T}$, a is not blocked, and if C is a concept name, $a : C \in \mathcal{A}$ but $a : D \not\in \mathcal{A}$, then replace \mathcal{A} with $\mathcal{A} \cup \{a : D\}$ else if $a : (\neg C \sqcup D) \notin \mathcal{A}$ for a in \mathcal{A} , then replace \mathcal{A} with $\mathcal{A} \cup \{a : (\neg C \sqcup D)\}$ A tableau algorithm for \mathcal{ALCI} ontologies

Example:Is A satisfiable w.r.t. $\{A \sqsubseteq \exists R^-.A \sqcap (\forall R.(\neg A \sqcup \exists S.B))\}$?Is B satisfiable w.r.t. $\{B \sqsubseteq \exists R.B \sqcap \forall R^-.\forall R^-.(A \sqcap \neg A)\}$?

Example:Is A satisfiable w.r.t. $\{A \sqsubseteq \exists R^-.A \sqcap (\forall R.(\neg A \sqcup \exists S.B))\}$?Is B satisfiable w.r.t. $\{B \sqsubseteq \exists R.B \sqcap \forall R^-.\forall R^-.(A \sqcap \neg A)\}$?

The algorithm is no longer sound!

"subset-blocking" ($\{C \mid a \colon C \in A\} \subseteq \{C \mid b \colon C \in A\}$) no longer suffices:

In case we have

- a freshly introduced individual (i.e., not present in input ontology) a,
- an individual b with
 - $-\mathcal{L}(a) := \{C \mid a \colon C \in \mathcal{A}\} = \{C \mid b \colon C \in \mathcal{A}\} =: \mathcal{L}(b),$
 - -b is older than a (i.e., b was introduced earlier than a)

we say b blocks a and we say a is blocked.

Lemma 4: Let \mathcal{O} be an \mathcal{ALCI} ontology in NNF. Then

1. the algorithm terminates when applied to $\boldsymbol{\mathcal{O}}$

2. if the rules generate a complete & clash-free ABox, then \mathcal{O} is consistent

3. if \mathcal{O} is consistent, then the rules generate a clash-free & complete ABox

Proof: 1. (Termination): identical to the ALC case.

2. (Soundness): again, construct a finite (non-tree) model from a complete, clash-free ABox \mathcal{A}_f for \mathcal{O}

$$egin{array}{lll} \Delta^{\mathcal{I}} &:= & ...\ A^{\mathcal{I}} &:= & ...\ r^{\mathcal{I}} &:= & \{\langle x,y
angle \in \Delta^{\mathcal{I}^2} \mid \; y ext{ is or blocks an } r ext{-neighbour of } x ext{ or } \} \end{array}$$

Again, prove that, for all $x \in \Delta^{\mathcal{I}}$:

(C1) $x \colon D \in \mathcal{B}_f$ implies $x \in D^{\mathcal{I}}$ (C2) $C \sqsubseteq D \in \mathcal{O}$ implies $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$

I is a model of (*T*, *B_f*) (*I* defines all role assertions by definition) *I* is a model of (*T*, *A*) because *A* ⊆ *B_f O* = (*T*, *A*) is consistent

3. Completeness: again, use model \mathcal{I} of \mathcal{O} and a mapping π to find a complete & clash-free ABox.

Corollary: • Consistency of \mathcal{ALCI} ontologies is decidable

 \bullet \mathcal{ALCI} has the finite model property

It can be shown that

- pure *ALCI*-concept satisfiability (without TBoxes) is **PSpace-complete**, just like *ALC*
- these algorithms can be extended to ABoxes and thus ontology consistency; rather straighforward

Most reasoners support more expressive DLs, in particular with number restrictions (aka cardinality restrictions or counting quantifiers).

They generalize

• existential restrictions $\exists r.C$

"there is at least one r-successor that is an instance of $oldsymbol{C}$ "

to at-least restrictions ($\geq n \ r.C$)

"there are $\geq n \ r$ -successors that are instances of C", for a non-neg. integer n,

e.g., Bike \sqsubseteq (\geq 2hasPart.Wheel)

• universal restrictions $\forall r.C$

"there are zero r-successor that are instances of $\neg C$ "

to at-most restrictions ($\leq n \ r.D$)

"there are at most $n \ r$ -successors that are instances of D" for a non-neg. integer n,

e.g., Bike \sqsubseteq (\leq 2hasPart.Wheel)

 $\begin{array}{l} \mathcal{ALCQI} \text{ is the extension of } \mathcal{ALCI} \text{ with cardinality restrictions, i.e.,} \\ \text{ concepts are built like } \mathcal{ALCI} \text{ concepts, plus } (\geq n \ r.C) \text{ and } (\geq n \ r.C), \\ \text{ where } C \text{ is an } \mathcal{ALCQI} \text{ concept.} \end{array}$

An interpretation $\mathcal I$ has to satisfy, in addition:

$$\begin{array}{l} (\geq n \; r.C)^{\mathcal{I}} = \; \{x \in \Delta^{\mathcal{I}} \mid |\{y \mid (x,y) \in r^{\mathcal{I}} \; \text{and} \; y \in C^{\mathcal{I}}\}| \geq n \} \\ (\leq n \; r.C)^{\mathcal{I}} = \; \{x \in \Delta^{\mathcal{I}} \mid |\{y \mid (x,y) \in r^{\mathcal{I}} \; \text{and} \; y \in C^{\mathcal{I}}\}| \leq n \} \end{array}$$

TBoxes, **ABoxes**, and **Ontologies** are defined analogously.

Observation: ALCQI ontologies do not enjoy the finite model property.

Example: for $\mathcal{T} = \{A \sqsubseteq \exists r.A \sqcap (\leq 1 \ r^-.\top)\}$, the concept $(\neg A \sqcap \exists r.A)$ is satisfiable w.r.t. \mathcal{T} , but only in infinite models.

Question: Is ALCQI still decidable?

 \mathcal{ALCQI} is decidable (in ExpTime), but tableau algorithm goes beyond scope of this course.

Main changes to \mathcal{ALCI} tableau required for handling cardinality restrictions:

- blocking:
 - $-\mathcal{ALC}$: subset blocking
 - $\mathcal{ALCI}:$ equality blocking
 - -ALCQI: double equality blocking (between 2 pairs of individuals)
- new rules:
 - -(obvious) \geq -rule that generates n r-neighbours in C for ($\geq n$ r.C)
 - -(obvious) \leq -rule that merges r-neighbours in C for ($\leq n \ r.C$) in case there are more than n
 - -?-rule to determine/guess, for $x: (\leq n \ r.C)$, which of x's r-successors are Cs (and which are $\neg C$ s)

 \mathcal{ALCQI} is decidable (in ExpTime), but tableau algorithm goes beyond scope of this course.

Main changes to ALCI tableau required for handling cardinality restrictions:

- tableau algorithm is no longer monotonic (because ≤-rule merges individuals)
 ⇒ yo-yo effect might lead to non-termination
 - \Rightarrow use explicit inequality relation on individuals, to avoid *yo-yo-ing*, e.g., when
 - -x: $(\geq 3 \ r. op)$ leads to generation of r-successors of x via \geq -rule in case there are less than 3 of them in r
 - -x: $(\leq 2 \ r. op)$ leads to merging of r-successors of x via \leq -rule if there are more than 2 of them

Thank you for your attention!