Description Logics: a Nice Family of Logics — Automata-Based Decision Procedures —

Uli Sattler¹ Thomas Schneider²

¹School of Computer Science, University of Manchester, UK

²Department of Computer Science, University of Bremen, Germany

ESSLLI, 8 August 2012

Extensions

Final remarks

Plan for today

Yesterday, we looked at tableau-based decision procedures:

- based on the simple idea of model construction
- yield the finite model property and the tree model property
- often require hard termination proofs
- often don't yield tight upper complexity bounds

Today, we want to explore automata-based decision procedures:

- elegant and simple
- don't require termination proofs
- yield tight EXPTIME upper bounds
- are difficult to implement

Thanks to Carsten Lutz for most of the material on these slides.

DL: Automata

Extension

Plan for today

Automata basics

(2) An EXPTIME upper bound for \mathcal{ALC}

Automata basics	${\cal ALC}$ upper bound	Extensions	Final remarks
And now			

Automata basics

2 An EXPTIME upper bound for \mathcal{ALC}

3 Extensions

Automata

Types of automata:

- Finite automata (DFA/NFA): work on finite words
- ω -automata: work on infinite words
- Automata on finite trees
- Automata on infinite trees

 \mathcal{ALC} upper bound

Extension

Trees

Infinite *k*-ary tree:

- Nodes $\in \{1, \dots, k\}^*$: $\varepsilon, 0, \dots, k, 00, \dots, kk, \dots$
- ε denotes the root
- node n has successors n1,..., nk (ordered!)
- e.g., node 12 is the 2nd-left succ. of the 1st-left succ. of the root

k-ary M-tree T:

- nodes labelled with elements from M
- e.g.: T(12) = a

Q:
$$T(22) = ?$$

Extensions

Final remarks

Automata and DLs

Idea for deciding satisfiability w.r.t. TBoxes:

- Choose a DL that has the tree model property (infinite trees are ok)
- Solution For concept C_0 and TBox \mathcal{T} , define automaton $\mathcal{A}(C_0, \mathcal{T})$ that accepts precisely the tree models of C_0 and \mathcal{T}
- ${\small \textcircled{\sc 0}}$ Check whether the language recognised by $\mathcal{A}({\it C}_0,\mathcal{T})$ is empty

(If you don't have tree model property: try some tricks)

Establish EXPTIME upper bound:

- Size of $\mathcal{A}(C_0,\mathcal{T})$ is usually exponential in the size of C_0 and \mathcal{T}
- Emptiness can be decided in deterministic polynomial time

Extensions

Final remarks

Looping tree automata

LTAs are tuples $\mathcal{A} = (S, M, I, \Delta)$ where:

- S is a finite set of states
- *M* is an **alphabet**
- $I \subseteq Q$ is a set of initial states

i.e., every run (= computation) of \mathcal{A} starts in a state from I

- $\Delta \subseteq S \times M \times S^k$ is a transition relation
 - i.e., Δ consists of tuples (s₀, a, s₁,..., s_k), meaning:
 "if A is in state s₀ and reads a in the current node's label, A next visits the k successor nodes in states s₁,..., s_k, resp."
 - non-deterministic choices:
 several tuples starting with the same (s₀, a) are allowed

Language recognised by \mathcal{A} : a set of k-ary M-trees

Automata basics

ALC upper bound

Extension

Final remarks

Example automaton and its runs

Example: LTA \mathcal{A} on alphabet $\{a, b\}$

$S = \{s_a, t\}$	$\Delta = \{ (s_a, a, s_a, t), $
$M=\{a,b\}$	$(s_a, a, t, s_a),$
$I = \{s_a\}$	(t, a, t, t),
	(t, b, t, t)

Recognised language: all trees with infinite a-path starting at root

Extension

Definition of a run

Example: LTA on alphabet $\{a, b\}$

$S = \{s_a, t\}$	$\Delta = \{ (s_a, a, s_a, t), $
$M = \{a, b\}$	$(s_a, a, t, s_a),$
$I = \{s_a\}$	(t, a, t, t),
	(t, b, t, t) }

Definition: a **run** r of A on T

assigns to each node in ${\mathcal T}$ a state from ${\mathcal S}$ such that

• T's root is labelled with a state from I

•
$$((r(n), T(n), r(n1), \ldots, r(nk)) \in \Delta$$

for all nodes $n \in \{1, \ldots, k\}^*$

Recognised language: $L(A) = \{T \mid \text{there is a run of } A \text{ on } T\}$

Automata basics	${\cal ALC}$ upper bound	Extensions	Final remarks
And now			

Automata basics

(2) An EXPTIME upper bound for \mathcal{ALC}

Automata basics	${\cal ALC}$ upper bound	Extensions	Final remarks
Roadmap			

Goal: prove that $\mathcal{ALC}\text{-satisfiability w.r.t.}$ TBoxes is in ExpTIME

2 steps:

- Represent tree interpretations as Hintikka trees
 - Tree models have labelled edges (roles), automata trees don't
 - Convenient to label nodes with *complex* concepts
- Define automaton that accepts exactly those Hintikka trees that represent models for the input concept + TBox

This reduces sat. w.r.t. TBoxes to emptiness of the automaton

Extensions

Hintikka sets

... are used as **node labels** in Hintikka trees (\rightsquigarrow constitute set M)

Intuitively, a HS contains relevant concepts satisfied by some domain element

Definition: Let C_0 , \mathcal{T} be in NNF; $sub(C_0, \mathcal{T}) = sub(\mathcal{T} \cup \{a : C_0\})$ (i.e., $sub(C_0, \mathcal{T})$ consists of all subconcepts of C, in \mathcal{T} , and of $\neg C \sqcup D$ for each $C \sqsubseteq D \in \mathcal{T}$)

A Hintikka set for C_0 and \mathcal{T} is a subset $\mathcal{H} \subseteq \text{sub}(C_0, \mathcal{T})$ such that:

- (H1) If $C \sqcap D \in \mathcal{H}$, then $C \in \mathcal{H}$ and $D \in \mathcal{H}$.
- (H2) If $C \sqcup D \in \mathcal{H}$, then $C \in \mathcal{H}$ or $D \in \mathcal{H}$.
- (H3) For all $C \in sub(C_0, T)$, \mathcal{H} does not contain C and $\neg C$ at the same time.

(H4) If
$$C \sqsubseteq D \in \mathcal{T}$$
, then $\neg C \sqcup D \in \mathcal{H}$.

 $\mathfrak{H}(\mathit{C}_{0},\mathcal{T})\text{:}$ set of all Hintikka sets for C_{0} and \mathcal{T}

Excursion: Hintikka sets vs. 1-types

A Hintikka set

- contains relevant concepts satisfied by some domain element
- does not need to have "full knowledge" about that element
- in particular, can be empty
- A 1-type (aka type) has stronger requirements:
 - contains all concepts satisfied by some domain element
 - thus has "full knowledge" about that domain element
 - is a subset $t \subseteq sub(C_0, \mathcal{T})$ such that:

(T1)
$$C \sqcap D \in t$$
 iff $C \in t$ and $D \in t$.

(T2)
$$C \sqcup D \in t$$
 iff $C \in t$ or $D \in t$.

- (T3) For all $C \in sub(C_0, T)$, $C \in t$ iff $\neg C \notin t$.
- (T4) If $C \sqsubseteq D \in \mathcal{T}$, then $\neg C \sqcup D \in t$.

Automata basics	${\cal ALC}$ upper bound	Extensions	Final remarks
Hintikka trees			

• Let k be the number of successors a domain element can be forced to have:

 $k = #\{D \in sub(C_0, \mathcal{T}) \mid D \text{ is of the form } \exists R.C\}$

• Hintikka sets will be k-ary $\mathfrak{H}(C_0, \mathcal{T})$ -trees

How can we deal with the non-labelled edges?

- Intuitively, there is one **potential** successor for each $\exists R.C$
- → The connecting role for each successor is already fixed!
 - Enumerate all concepts $\exists R.C$ using E_1, \ldots, E_k
 - If $E_i = \exists R.C$ is ...
 - in node n's label, then the role between n and ni is R
 - not in n's label, then the connection btn. n, ni is a "dummy"

Automata basics	${\cal ALC}$ upper bound	I	Extensions	Final remarks
Example				
Let $k = 2$ d = dummy	$E_1 = \exists R.C$	$E_2 = \exists R.D$	$E_3 = \exists S.D$	
	R.C S.D	d d	d	

R

÷

d \ **S**

:

÷

d \ d

d \ d

÷

d

÷

d

i

Ü

Extension

Final remarks

Hintikka Trees II

Next step: describe relationship between

- the Hintikka set of each node n and
- the Hintikka sets of *n*'s successors

Definition:

A (k+1)-tuple of Hintikka sets $\mathcal{H}, \mathcal{H}_1, \ldots, \mathcal{H}_k$ is matching if, for every $i = 1, \ldots, k$ with $E_i = \exists R. C \in \mathcal{H}$:

(M1) $C \in \mathcal{H}_i$ (for satisfying E_i , it suffices to consider *i*-th successor) (M2) if $\forall R.D \in \mathcal{H}$, then $D \in \mathcal{H}_i$

Automata basics	\mathcal{ALC} upper bound	Extensions	Final remarks
Hintikka Trees III			

Definition

A Hintikka tree for C_0 and \mathcal{T} is a k-ary $\mathfrak{H}(C_0, \mathcal{T})$ -tree such that:

(T1)
$$C_0 \in T(\varepsilon)$$
 – i.e., C_0 is in the root's label

(T2) For every node
$$n$$
,
the tuple $(T(n), T(n1), \ldots, T(nk))$ is matching.

Lemma

 C_0 is satisfiable w.r.t. \mathcal{T} iff there is a Hintikka tree for C_0 and \mathcal{T} .

Automata basics	${\cal ALC}$ upper bound	Extensions	Final remarks
Constructing aut	omata l		

Basic idea:

 $\bullet\,$ Use Hintikka sets as states and define Δ such that

$$s_0 = \ell$$
 in all tuples $(s_0, \ell, s_1, \dots, s_k) \in \Delta$
Recall: $\Delta \subseteq S \times M \times S^k$

 \rightsquigarrow If there is an accepting run, it will be identical to the tree

- Use initial states to ensure that $C_0 \in T(\varepsilon)$
- Check matching via transition relation, e.g., whenever (s₀, ℓ, s₁, ..., s_k) ∈ Δ and E_i = ∃R.C ∈ s₀, then:
 (M1) C ∈ s_i
 (M2) if ∀R.D ∈ s₀, then D ∈ s_i

Automata basics	${\cal ALC}$ upper bound	Extensions	Final remarks
Constructing auto	omata II		

Automaton for C_0 and \mathcal{T} : $\mathcal{A}(C_0, \mathcal{T}) = (S, M, I, \Delta)$, where $S = \mathfrak{H}(C_0, \mathcal{T})$

$$M = \mathfrak{H}(C_0, \mathcal{T})$$
$$I = \{s \in S \mid C_0 \in s\}$$

and
$$(s_0, \ell, s_1, \ldots, s_k) \in \Delta$$
 iff

•
$$s_0 = \ell$$
 and

• the tuple (s_0, s_1, \ldots, s_k) is matching

Lemma

 $T \in L(\mathcal{A}(C_0, \mathcal{T}))$ iff T is a Hintikka tree for C_0 and \mathcal{T} .

Extension

Results

Size of $A(C_0, T)$: Let $|C_0, T| = |C_0| + |T|$.

Number of Hintikka sets exponential in $|C_0, \mathcal{T}|$

$$\Rightarrow$$
 $|Q|$, $|I|$, $|M|$ exponential in $|C_0, \mathcal{T}|$

 $\Rightarrow \ |\Delta| \ \text{exponential in} \ |C_0, \mathcal{T}| \qquad \text{since} \ |\Delta| = |M| \cdot |S|^{k+1}$

 $\Rightarrow \text{ Size of } \mathcal{A}(\mathit{C}_0, \mathcal{T}) \text{ exponential in } |\mathit{C}_0, \mathcal{T}|$

Decision procedure for \mathcal{ALC} -concept satisfiability w.r.t. TBoxes:

- Given C_0, \mathcal{T} , construct $\mathcal{A}(C_0, \mathcal{T})$ in time exp. in $|C_0, \mathcal{T}|$
- 2 Test emptiness of $\mathcal{A}(C_0, \mathcal{T})$ in time polynomial in $|\mathcal{A}(C_0, \mathcal{T})|$

Theorem

 $\mathcal{ALC}\text{-}\mathsf{concept}$ satisfiability w.r.t. TBoxes is in ExpTIME.

Complexity bound is optimal: \mathcal{ALC} with TBoxes is ExpTIME-hard.

Ũ

Emptiness problem of looping automata

Determine in |S| rounds the set of **blocking** states $B \subseteq S$:

• Initialisation:

Set
$$B_0 \leftarrow \{s \in S \mid \text{there is no } (s, a, s_1, \dots, s_k) \in \Delta\}$$

• Round *i*:

Set
$$B_i \leftarrow B_{i-1} \cup \{s \in S \mid \text{for all } (s, a, s_1, \dots, s_k) \in \Delta$$

there is $1 \leq i \leq k$ with $s_i \in B_{i-1}\}$

• Set
$$B = B_{|S|}$$

Lemma

$$L(\mathcal{A}) = \emptyset$$
 iff $I \subseteq B$.

Computation of B is clearly in polynomial time.

Automata basics	${\cal ALC}$ upper bound	Extensions	Final remarks
And now			

Automata basics

2 An EXPTIME upper bound for \mathcal{ALC}

Transfer to the other standard reasoning problems

The procedure shown can be applied to decide

TBox Consistency. These are equivalent:

- ${\mathcal T}$ is consistent
- some fresh^1 C_0 is satisfiable w.r.t. $\mathcal T$

Consistency of ontologies. Transform $(\mathcal{T}, \mathcal{A})$ into $(\mathcal{T}', \mathcal{A}')$, where

- \mathcal{A}' consists of a single concept assertion $a: C_0$
- \bullet but $\mathcal{T'}$ is in $\mathcal{ALCIF}_{\mathsf{reg}}$

Then test satisfiability of (C_0, \mathcal{T}') with the decision procedure extended to \mathcal{ALCIF}_{reg}

Other reasoning problems: as shown on Tuesday

¹i.e., C_0 or r doesn't occur in \mathcal{T}

Extensions

Extension to \mathcal{ALCI}

Recall: $\mathcal{ALCI} = \mathcal{ALC} + \text{ inverse roles:} \exists R^-.C \text{ and } \forall R^-.C$

Question: what do we need to change in the

- definition of a Hintikka set?
- definition of a Hintikka tree?
- construction of the automaton?
- elsewhere?

Answer: only

- the matching condition for Hintikka trees
- and its "encoding" in the automaton's transition function

From now on, R denotes a role or its inverse.

Extensions

Final remarks

Adapting Hintikka Trees to \mathcal{ALCI}

Remember: they describe relationship between

- the Hintikka set of each node n and
- the Hintikka sets of n's successors

Definition:

- A (k+1)-tuple of Hintikka sets $\mathcal{H}, \mathcal{H}_1, \ldots, \mathcal{H}_k$ is matching if, for every $i = 1, \ldots, k$ with $E_i = \exists R. C \in \mathcal{H}$:
- (M1) $C \in \mathcal{H}_i$ (for satisfying E_i , it suffices to consider *i*-th successor)
- (M2) if $\forall R.D \in \mathcal{H}$, then $D \in \mathcal{H}_i$

(M3) if $\forall \operatorname{Inv}(R) . D \in \mathcal{H}_i$, then $D \in \mathcal{H}$ $\operatorname{Inv}(P) = P^-$, $\operatorname{Inv}(P^-) = P$

Adapting the automata construction to \mathcal{ALCI}

Remember - basic idea:

 $\bullet\,$ Use Hintikka sets as states and define Δ such that

$$s_0 = \ell$$
 in all tuples $(s_0, \ell, s_1, \dots, s_k) \in \Delta$
Recall: $\Delta \subseteq S \times M \times S^k$

 \rightsquigarrow If there is an accepting run, it will be identical to the tree

- Use initial states to ensure that $C_0 \in T(\varepsilon)$
- Check matching via transition relation, e.g., whenever $(s_0, \ell, s_1, \dots, s_k) \in \Delta$ and $E_i = \exists R.C \in s_0$, then:

(M1) $C \in s_i$

(M2) if
$$\forall R.D \in s_0$$
, then $D \in s_i$

(M3) if
$$\forall \operatorname{Inv}(R).D \in s_i$$
, then $D \in s_0$

Automata basics	${\cal ALC}$ upper bound	Extensions	Final remarks
And now			

Automata basics

2 An EXPTIME upper bound for \mathcal{ALC}

What we haven't covered

- $\bullet\,$ More expressive DLs \leadsto more complex automata models
 - Büchi tree automata for eventualities (trans. closure of roles)
 - and variants thereof
- Alternative approach to EXPTIME-decision procedures: alternating automata
 - States are formulas, not sets of formulas
 - Size of automaton is polynomial in $|C_0, \mathcal{T}|$
 - Emptiness check is in EXPTIME

 \rightsquigarrow avoid the problem of constructing an exp. large automaton

Automata versus tableaux: complexity

Tableau algorithms

• usually don't yield tight upper bounds (e.g., ExpSpace for \mathcal{ALC})

 \rightsquigarrow are usually not worst-case optimal

● but can be optimised in many ways
 → are efficient in many cases

Automata-based algorithms

- often yield tight upper bounds (e.g., EXPTIME for \mathcal{ALC}) \rightarrow are often worst-case optimal
- rely on the construction of an exponential-size automaton
 - \rightsquigarrow are exponential in the best and average case too
 - \rightsquigarrow leave less room for optimisations

Automata versus tableaux: summary

Tableau algorithms

- \oplus based on a simple idea (model construction)
- $\oplus\,$ amenable to optimisation techniques
- $\oplus\,$ basis for state-of-the-art DL reasoners
- \ominus bad for proving deterministic upper time bounds
- $\ominus\,$ termination proofs can become very hard

Automata-based algorithms

- $\oplus \ {\rm elegant} \ {\rm and} \ {\rm simple}$
- \oplus well-suited for proving <code>ExpTIME</code> upper bounds
- \oplus no termination proofs
- \ominus no optimised implementations exist (?)

That's all for today. Thanks!

