Description Logics: an Introductory Course on a Nice Family of Logics

Day 4: Computational Complexity

Uli Sattler

We distinguish between

- cognitive complexity:
- e.g., how hard is it, for a human, to determine/understand $\mathcal{O} \models{ }^{?} C \sqsubseteq D$
- interesting, little understood topic
- relevant to provide tool support for ontology engineers
- more tomorrow
- computational complexity:
- e.g., how much time/space do we need to determine $\mathcal{O} \models{ }^{?} C \sqsubseteq D$
- well understood topic
- loads of results thanks to relationships DL - FOL - Modal Logic
- relevant to understand
* trade-off between expressivity (of a DL) and complexity of reasoning
* whether a given algorithm is optimal/can be improved

Decision problem: • is a subset $P \subseteq M$

- e.g., $P=$ the set of consistent $\mathcal{A L C}$ ontologies and $M=$ the set of all $\mathcal{A L C}$ ontologies
- think of it as black box with
- input $m \in M$
- output "yes" if $m \in P$
"no" if $m \notin P$
(Polynomial) reduction from $P \subseteq M$ to $P^{\prime} \subseteq M^{\prime}$ is a (polynomial) function π :
$\bullet \pi: M \longrightarrow M^{\prime}$
- $m \in P$ iff $\pi(m) \in P^{\prime}$
- e.g., our translation $t()$ from $\mathcal{A L C}$ to FOL
- e.g., our reduction from subsumption to ontology consistency

Decision problem: • is a subset $P \subseteq M$

- think of it as black box with
- input $m \in M$
- output: "yes" if $\boldsymbol{m} \in \boldsymbol{P}$, "no" otherwise
(Polynomial) reduction from $P \subseteq M$ to $P^{\prime} \subseteq M^{\prime}$ is a (polynomial) function π :
$\bullet \pi: M \longrightarrow M^{\prime}$ with $m \in P$ iff $\pi(m) \in P^{\prime}$

Decision problem: • is a subset $P \subseteq M$

- think of it as black box with
- input $m \in M$
- output: "yes" if $m \in P$, "no" otherwise
(Polynomial) reduction from $P \subseteq M$ to $P^{\prime} \subseteq M^{\prime}$ is a (polynomial) function π :
$\bullet \pi: M \longrightarrow M^{\prime}$ with $m \in P$ iff $\pi(m) \in P^{\prime}$

Fact: if $P \subseteq M$ is reducible to $P^{\prime} \subseteq M^{\prime}$, then P is at most as hard/complex ${ }^{a}$ as P^{\prime} because P can be solved by solving P^{\prime} via π

[^0]Some standard complexity classes:

Name	Meaning
L logarithmic space	graph accessibility
P	polynomial time
NP	nondeterministic pol. time
PSpace polynomial space	model checking
ExpTime	exponential time logic SAT
NExpTime nondeterministic exponential time	
ExpSpace exponential space	Q-SAT
\ldots	\ldots
undecidable	FOL-SAT

To determine that a problem $P \subseteq M$ is

- in a complexity class \mathcal{C}, it suffices to
- design/find an algorithm
- show that it is sound, complete, and terminating, and
- show that this algorithm runs, for every $m \in M$, in at most \mathcal{C} resources
- ...this algorithm can be a reduction to a problem known to be in \mathcal{C}
- hard for a complexity class \mathcal{C}, we need to
- find a suitable problem $P^{\prime} \subseteq M^{\prime}$ that is known to be hard for \mathcal{C} and
- a reduction from P^{\prime} to P
- complete for a complexity class \mathcal{C}, we need to show that it is
- in \mathcal{C} and
- hard for \mathcal{C}

Worst-Case Complexity

Worst-case: algorithm runs, for every $m \in M$, in at most \mathcal{C} resources, e.g., like this, on all problems of size 7:

Worst-Case Complexity

Worst-case: algorithm runs, for every $m \in M$, in at most \mathcal{C} resources, e.g., or like this, on all problems of size 7 :

Worst-case: algorithm runs, for every $m \in M$, in at most \mathcal{C} resources, e.g., or like this, on all problems of size 7 :

Worst-case: algorithm runs, for every $m \in M$, in at most \mathcal{C} resources, e.g., or like this, on all problems of size 7 :

- Yesterday, we have seen that $\mathcal{A L C I}$ satisfiability w.r.t. TBoxes is in ExpTime:
- automata-based approach runs in (best \& worst case) exponential time
- can be extended to ABoxes \& ontology consistency
\checkmark we can't do better: already $\mathcal{A L C}$ satisfiability w.r.t. TBoxes is ExpTime-hard:
- but proof is cumbersome
- via a reduction of the halting problem of a polynomial-space-bounded alternating TM
- on Tuesday, we "saw" that $\mathcal{A L C I}$ satisfiability (no TBoxes) is in PSpace:
- non-deterministic tableau algorithm runs in polynomial space
- can be extended to ABoxes \& ontology consistency
$\boldsymbol{\checkmark}$ we can't do better: already $\mathcal{A L C}$ satisfiability is PSpace-hard:
- but proof is a bit cumbersome
- via a reduction of satisfiability of quanitified Boolean formulae

Next, we will see that consistency of $\mathcal{A L C Q I O}$ ontologies, the extension of $\mathcal{A L C I}$ with

- number restrictions, in fact functionality restrictions $(\leq 1 r \top)$ and
- nominals, i.e., individual names used as concept names
\Rightarrow is harder, namely NExpTime-hard
- this is typical phenomenon where
- combination of otherwise harmless constructors
- leads to increased complexity

We follow hardness proof recipe:

- to show that consistency of $\mathcal{A L C Q I O}$ ontologies is NExpTime-hard, we - find a suitable problem $P^{\prime} \subseteq M^{\prime}$ that is known to be NExpTime-hard and
- a reduction from P^{\prime} to P

The NExpTime version of the domino problem

Definition: A domino system $\mathcal{D}=(\boldsymbol{D}, \boldsymbol{H}, \boldsymbol{V})$

- set of domino types $D=\left\{D_{1}, \ldots, D_{d}\right\}$, and
- horizontal and vertical matching conditions

$$
H \subseteq D \times D \text { and } V \subseteq D \times D
$$

A tiling for \mathcal{D} is a function:

$$
\begin{aligned}
t: \mathbb{N} \times \mathbb{N} \rightarrow & D \text { such that } \\
& \langle t(m, n), t(m+1, n)\rangle \in H \text { and } \\
& \langle t(m, n), t(m, n+1)\rangle \in V
\end{aligned}
$$

Domino problems: classical given \mathcal{D}, has \mathcal{D} a tiling?
\Rightarrow well-known that this problem is undecidable [Berger66]
NexpTime given \mathcal{D}, has \mathcal{D} a tiling for $2^{n} \times 2^{n}$ square?
\Rightarrow well-known that this problem is NExpTime-hard

- define a mapping π from domino problems to $\mathcal{A L C Q I O}$ ontologies such that
- D has an $2^{n} \times 2^{n}$ mapping iff $\pi(D)$ is consistent and
- size of $\pi(D)$ is polynomial in n

We can express various obligations of the domino problem in $\mathcal{A L C}$ TBox axioms:
(1) each element carries exactly one domino type D_{i}
\rightsquigarrow use unary predicate symbol D_{i} for each domino type and

$$
\begin{aligned}
& \top \sqsubseteq D_{1} \sqcup \ldots \sqcup D_{d} \\
& \text { \% each element carries a domino type } \\
& D_{1} \sqsubseteq \neg D_{2} \sqcap \ldots \sqcap \neg D_{d} \text { \% but not more than one } \\
& D_{2} \sqsubseteq \neg D_{3} \sqcap \ldots \sqcap \neg D_{d} \text { \% ... } \\
& \vdots: \\
& D_{d-1} \sqsubseteq \neg D_{d}
\end{aligned}
$$

(2) every element has a horizontal (X_{-}) successor and a vertical (Y_{-}) successor

$$
\top \sqsubseteq \exists \boldsymbol{X} . \top \sqcap \exists \boldsymbol{Y} . \top
$$

(3) every element satisfies \boldsymbol{D} 's horizontal/vertical matching conditions:

$$
\begin{aligned}
& D_{1} \sqsubseteq \underset{\left(D_{1}, D\right) \in H}{\sqcup} \forall X . D \sqcap \underset{\left(D_{1}, D\right) \in V}{\sqcup} \forall Y . D \\
& D_{2} \sqsubseteq \underset{\left(D_{2}, D\right) \in H}{\sqcup} \forall X . D \sqcap \underset{\left(D_{2}, D\right) \in V}{\sqcup} \forall Y . D \\
& \stackrel{:}{D_{d}} \sqsubseteq \stackrel{:}{\left(D_{d}, D\right) \in H} \underset{\left(D_{d}, D\right) \in V}{\sqcup} \forall \boldsymbol{X} . \boldsymbol{D} \sqcap \underset{(D)}{\sqcup} \forall
\end{aligned}
$$

Does this suffice?
I.e., does D have a $2^{n} \times 2^{n}$ tiling iff one D_{i} is satisfiable w.r.t. (1) to (3)?

- if yes, we have shown that satisfiability of $\mathcal{A L C}$ is NExpTime-hard
- so no...what is missing?

Two things are missing:

1. the model must be large enough, namely $2^{n} \times 2^{n}$ and
2. for each element, its horizontal-vertical-successors coincide with their vertical-horizontal-successors and vice versa

This will be addressed using a "counting and binding together" trick ...
(4) counting and binding together
(a) use $A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{2}$ as "bits" for binary representation of grid position e.g., $(010,011)$ is represented by an instance of $\neg A_{3}, A_{2}, \neg A_{1}, \neg B_{3}, B_{2}, B_{1}$ write GCI to ensure that X - and Y-successors are incremented correctly e.g., X-successor of $(010,011)$ is $(011,011)$
(b) use nominals to ensure that there is only one $(111 \ldots 1,111 . . .1)$ this implies, with $\top \sqsubseteq\left(\leq 1 X^{-} \cdot \top\right) \sqcap\left(\leq 1 Y^{-} \cdot \top\right)$ uniqueness of grid positions
(4) counting and binding together
(a) \tilde{A}_{i} for "bit A_{i} is incremented correctly":

$$
\begin{aligned}
\top & \sqsubseteq \tilde{A}_{1} \sqcap \ldots \sqcap \tilde{A}_{n} \\
\tilde{A}_{1} & \sqsubseteq\left(\boldsymbol{A}_{1} \sqcap \forall \boldsymbol{X} . \neg \boldsymbol{A}_{1}\right) \sqcup\left(\neg \boldsymbol{A}_{1} \sqcap \forall \boldsymbol{X} . \boldsymbol{A}_{1}\right) \\
\tilde{\boldsymbol{A}}_{i} & \sqsubseteq \\
& \left(\prod_{\ell<i} \boldsymbol{A}_{\ell} \sqcap\left(\left(\boldsymbol{A}_{i} \sqcap \forall \boldsymbol{X} . \neg \boldsymbol{A}_{i}\right) \sqcup\left(\neg \boldsymbol{A}_{i} \sqcap \forall \boldsymbol{X} . \boldsymbol{A}_{i}\right)\right) \sqcup\right. \\
& \left(\neg \prod_{\ell<i} \boldsymbol{A}_{\ell} \sqcap\left(\left(\boldsymbol{A}_{i} \sqcap \forall \boldsymbol{X} . \boldsymbol{A}_{i}\right) \sqcup\left(\neg \boldsymbol{A}_{i} \sqcap \forall \boldsymbol{X} . \neg \boldsymbol{A}_{i}\right)\right)\right.
\end{aligned}
$$

(add the same for the $\boldsymbol{B}_{i} \mathrm{~s}$)
(b) ensure uniqueness of grid positions:

$$
\begin{gathered}
A_{1} \sqcap \ldots \sqcap A_{n} \sqcap B_{1} \sqcap \ldots \sqcap B_{n} \sqsubseteq\{o\} \quad \% \text { top right }\left(2^{n}, 2^{n}\right) \text { is unique } \\
\quad\left\lceil\sqsubseteq (\leq 1 X ^ { - } . \top) \sqcap \left(\leq 1 Y^{-. \top)} \quad\right.\right. \text { \% everything else is also unique }
\end{gathered}
$$

Since the NExpTime-domino problem is NExpTime-hard, this implies consistency of $\mathcal{A L C Q I O}$ is also NExpTime-hard:

Lemma: let \mathcal{O}_{D} be ontology consisting of all axioms mentioned in reduction of D :

- D has an $2^{n} \times 2^{n}$ tiling iff \mathcal{O}_{D} is consistent
- size of \mathcal{O}_{D} is polynomial (quadratic) in
- the size of D and
$-n$

Let's do this again!

So far, we have extended $\mathcal{A L C}$ with

- inverse role and
- number restrictions
- ...which resulted in logics whose reasoning problems are decidable
- ...we even discussed decision procedures for these extensions

Next, we will discuss some undecidable extension

- $\mathcal{A L C}$ with role chain inclusions
- $\mathcal{A L C}$ with number restrictions on complex roles

OWL 2 supports axioms of the form

- $r \sqsubseteq s$: a model of \mathcal{O} with $r \sqsubseteq s \in \mathcal{O}$ must satisfy $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$
- $\operatorname{trans}(r)$: a model of \mathcal{O} with $\operatorname{trans}(r) \in \mathcal{O}$ must satisfy $r^{\mathcal{I}} \circ r^{\mathcal{I}} \subseteq r^{\mathcal{I}}$, where $p \circ q=\{(x, z) \mid$ there is $y:(x, y) \in p$ and $(y, z) \in q\}$,
i.e., a model \mathcal{I} of \mathcal{O} must interpret r as a transitive relation
- $r \circ s \sqsubseteq t$: a model of \mathcal{O} with $r \circ s \sqsubseteq t \in \mathcal{O}$ must satisfy $r^{\mathcal{I}} \circ s^{\mathcal{I}} \subseteq t^{\mathcal{I}}$ subject to some complex restrictions
...why do we need restrictions?
...because axioms of this form lead to loss of tree model property and undecidability

Often, we prove undecidability of a DL as follows:

1. fix reasoning problem, e.g., satisfiability of a concept w.r.t. a TBox

- remember Theorem 2?
- if concept satisfiability w.r.t. TBox is undecidable,
- then so is consistency of ontology
- then so is subsumption w.r.t. an ontology
- ...

2. pick a decision problem known to be undecidable, e.g., the domino problem
3. provide a (computable) mapping $\pi(\cdot)$ that

- takes an instance D of the domino problem and
- turns it into a concept A_{D} and a TBox \mathcal{T}_{D} such that
- D has a tiling if and only if A_{D} is satisfiable w.r.t. \mathcal{T}_{D}
i.e., a decision procedure of concept satisfiability w.r.t. TBoxes could be used as a decision procedure for the domino problem

Definition: A domino system $\mathcal{D}=(\boldsymbol{D}, \boldsymbol{H}, \boldsymbol{V})$

- set of domino types $D=\left\{D_{1}, \ldots, D_{d}\right\}$, and
- horizontal and vertical matching conditions $\boldsymbol{H} \subseteq D \times D$ and $V \subseteq D \times D$

A tiling for \mathcal{D} is a (total) function:

$$
\begin{aligned}
t: \mathbb{N} \times \mathbb{N} \rightarrow & D \text { such that } \\
& \langle t(m, n), t(m+1, n)\rangle \in H \text { and } \\
& \langle t(m, n), t(m, n+1)\rangle \in V
\end{aligned}
$$

Domino problem: given \mathcal{D}, has \mathcal{D} a tiling?
It is well-known that this problem is undecidable [Berger66]

We have already see how to express various obligations of the domino problem in $\mathcal{A L C}$ TBox axioms:
(1) each element carries exactly one domino type D_{i}
\rightsquigarrow use unary predicate symbol D_{i} for each domino type and

$$
\begin{array}{rll}
\top & \sqsubseteq D_{1} \sqcup \ldots \sqcup D_{d} & \text { \% each element carries a domino type } \\
D_{1} & \sqsubseteq \neg D_{2} \sqcap \ldots \sqcap \neg D_{d} & \text { \% but not more than one } \\
D_{2} & \sqsubseteq \neg D_{3} \sqcap \ldots \sqcap \neg D_{d} & \% \ldots \\
\vdots & \vdots \\
D_{d-1} & \sqsubseteq \neg D_{d}
\end{array}
$$

(2) every element has a horizontal (X_{-}) successor and a vertical (Y_{-}) successor

$$
\top \sqsubseteq \exists \boldsymbol{X} . \top \sqcap \exists \boldsymbol{Y} . \top
$$

(3) every element satisfies D 's horizontal/vertical matching conditions:

$$
\begin{aligned}
& D_{1} \sqsubseteq \underset{\left(D_{1}, D\right) \in H}{\sqcup} \forall X . D \sqcap \underset{\left(D_{1}, D\right) \in V}{\sqcup} \forall Y . D \\
& D_{2} \sqsubseteq \underset{\left(D_{2}, D\right) \in H}{\sqcup} \forall X . D \sqcap \underset{\left(D_{2}, D\right) \in V}{\sqcup} \forall Y . D \\
& D_{d} \sqsubseteq \stackrel{\vdots}{\sqsubseteq} \underset{\left(D_{d}, D\right) \in H}{\sqcup} \forall X . D \sqcap \underset{\left(D_{d}, D\right) \in V}{\sqcup} \forall Y . D
\end{aligned}
$$

Does this suffice?
No, we know that it doesn't!
(4) for each element, its horizontal-vertical-successors coincide with their vertical-horizontal-successors \& vice versa

$$
X \circ Y \sqsubseteq Y \circ X \text { and } Y \circ X \sqsubseteq X \circ Y
$$

Lemma: Let \mathcal{T}_{D} be the axioms from (1) to (4). Then \top is satisfiable w.r.t. \mathcal{I}_{D} iff \mathcal{D} has a tiling.

- since the domino problem is undecidable, this implies undecidability of concept satisfiability w.r.t. TBoxes of $\mathcal{A L C}$ with role chain inclusions
- due to Theorem 2, all other standard reasoning problems are undecidable, too
- Proof: 1. show that, from a tiling for D, you can construct a model of \mathcal{T}_{D}

2. show that, from a model \mathcal{I} of \mathcal{T}_{D}, you can construct a tiling for D (tricky because elements in \mathcal{I} can have several X - or \boldsymbol{Y}-successors but we can simply take the right ones...)

Let's do this again!

What other constructors can us help to express (4)?

- counting and complex roles (role chains and role intersection):

$$
\top \sqsubseteq(\leq 1 \boldsymbol{X} . \top) \sqcap(\leq 1 \boldsymbol{Y} . \top) \sqcap(\exists(\boldsymbol{X} \circ \boldsymbol{Y}) \sqcap(\boldsymbol{Y} \circ \boldsymbol{X}) . \top)
$$

- restricted role chain inclusions (only 1 role on RHS), and counting (an all roles):

$$
\begin{aligned}
\top & \sqsubseteq(\leq 1 \boldsymbol{X} . \top) \sqcap(\leq 1 \boldsymbol{Y} \cdot \top) \\
\boldsymbol{X} \circ \boldsymbol{Y} & \sqsubseteq r \\
\boldsymbol{Y} \circ \boldsymbol{X} & \sqsubseteq r \\
\top & \sqsubseteq(\leq 1 r . \top)
\end{aligned}
$$

- various others...

Over to Thomas for easy fast DLs!

[^0]: ${ }^{a}$ Of course only for suitably complex problems.

