Description Logics: an Introductory Course on a Nice Family of Logics

Day 4: Computational Complexity

Uli Sattler

We distinguish between

• cognitive complexity:

- -e.g., how hard is it, for a human, to determine/understand $\mathcal{O} \models^? C \sqsubseteq D$
- $\, \text{interesting, little understood topic}$
- relevant to provide tool support for ontology engineers
- more tomorrow
- computational complexity:
 - e.g., how much time/space do we need to determine $\mathcal{O} \models^? C \sqsubseteq D$
 - well understood topic
 - loads of results thanks to relationships DL FOL Modal Logic
 - relevant to understand
 - * trade-off between expressivity (of a DL) and complexity of reasoning
 - * whether a given algorithm is optimal/can be improved

Computational Complexity: Decision Problems

Decision problem: • is a subset $P \subseteq M$			
• e.g., P = the set of consistent \mathcal{ALC} ontologies and			
$M =$ the set of all \mathcal{ALC} ontologies			
 think of it as black box with 			
$-\operatorname{input} m\in M$			
- output "yes" if $m \in P$			
"no" if $m \not\in P$			
(Polynomial) reduction from $P\subseteq M$ to $P'\subseteq M'$ is a (polynomial) function π :			
$ullet \pi: M \longrightarrow M'$			
$ullet m \in P$ iff $\pi(m) \in P'$			
$ullet$ e.g., our translation $t()$ from \mathcal{ALC} to FOL			
• e.g., our reduction from subsumption to ontology consistency			

Computational Complexity: Decision Problems

Decision problem:	$ullet$ is a subset $P\subseteq M$
	• think of it as black box with
	$-\operatorname{input} m\in M$
	-output: "yes" if $m \in P$, "no" otherwise
(Polynomial) reduc	tion from $P\subseteq M$ to $P'\subseteq M'$ is a (polynomial) function π :
	$ullet \pi: M \longrightarrow M'$ with $m \in P$ iff $\pi(m) \in P'$

Computational Complexity: Decision Problems

Decision problem:	$ullet$ is a subset $P\subseteq M$			
• think of it as black box with				
$-\operatorname{input} m\in M$				
	– output: "yes" if $m \in P$, "no" otherwise			
(Polynomial) reduc	tion from $P\subseteq M$ to $P'\subseteq M'$ is a (polynomial) function π :			
	$ullet \pi: M \longrightarrow M'$ with $m \in P$ iff $\pi(m) \in P'$			

Fact: if $P \subseteq M$ is reducible to $P' \subseteq M'$, then P is at most as hard/complex^{*a*} as P'because P can be solved by solving P' via π

^aOf course only for suitably complex problems.

Some standard complexity classes:

Name	Meaning	Examples
L	logarithmic space	graph accessibility
Р	polynomial time	model checking
NP	nondeterministic pol. time	prop. logic SAT
PSpace	polynomial space	Q-SAT
ExpTime	exponential time	
NExpTime	nondeterministic exponential time	
ExpSpace	exponential space	
•••	• • •	
	undecidable	FOL-SAT

To determine that a problem $P\subseteq M$ is

- \bullet in a complexity class ${\cal C},$ it suffices to
 - design/find an algorithm
 - show that it is sound, complete, and terminating, and
 - show that this algorithm runs, for every $m \in M$, in at most ${\mathcal C}$ resources
 - $\, ... this algorithm can be a reduction to a problem known to be in <math display="inline">{\boldsymbol {\cal C}}$
- \bullet hard for a complexity class ${\mathcal C},$ we need to
 - find a suitable problem $P' \subseteq M'$ that is known to be hard for $\mathcal C$ and
 - a reduction from P' to P
- \bullet complete for a complexity class $\mathcal C,$ we need to show that it is
 - $\, \text{in} \, \, \mathcal{C} \, \, \text{and} \,$
 - $\, \text{hard} \, \, \text{for} \, \, \mathcal{C}$

Worst-case: algorithm runs, for every $m \in M$, in at most C resources, e.g., like this, on all problems of size 7:

Worst-case: algorithm runs, for every $m \in M$, in at most C resources, e.g., or like this, on all problems of size 7:

Worst-case: algorithm runs, for every $m \in M$, in at most C resources, e.g., or like this, on all problems of size 7:

Worst-case: algorithm runs, for every $m \in M$, in at most C resources, e.g., or like this, on all problems of size 7:

- Yesterday, we have seen that ALCI satisfiability w.r.t. TBoxes is in ExpTime:
 - automata-based approach runs in (best & worst case) exponential time
 - can be extended to ABoxes & ontology consistency
- ✓ we can't do better: already *ALC* satisfiability w.r.t. TBoxes is **ExpTime-hard**:
 - but proof is cumbersome
 - $-\,via$ a reduction of the halting problem of a polynomial-space-bounded alternating TM
- on Tuesday, we "saw" that ALCI satisfiability (no TBoxes) is in PSpace:
 - non-deterministic tableau algorithm runs in polynomial space
 - can be extended to ABoxes & ontology consistency
- ✓ we can't do better: already *ALC* satisfiability is **PSpace-hard**:
 - but proof is a bit cumbersome
 - via a reduction of satisfiability of quanitified Boolean formulae

- Next, we will see that consistency of \mathcal{ALCQIO} ontologies, the extension of \mathcal{ALCI} with
 - number restrictions, in fact functionality restrictions $(\leq 1r \top)$ and
 - nominals, i.e., individual names used as concept names
 - \Rightarrow is harder, namely NExpTime-hard
 - this is typical phenomenon where
 - combination of otherwise harmless constructors
 - leads to increased complexity

We follow hardness proof recipe:

- to show that consistency of \mathcal{ALCQIO} ontologies is NExpTime-hard, we
 - find a suitable problem $P' \subseteq M'$ that is known to be NExpTime-hard and
 - a reduction from P' to P

The NExpTime version of the domino problem

- ullet set of domino types $D=\{D_1,\ldots,D_d\}$, and
- horizontal and vertical matching conditions $H \subset D \times D$ and $V \subset D \times D$

A tiling for \mathcal{D} is a function:

 $egin{aligned} t: \mathbb{N} imes \mathbb{N} o D ext{ such that} \ & \langle t(m,n), t(m+1,n)
angle \in H ext{ and} \ & \langle t(m,n), t(m,n+1)
angle \in V \end{aligned}$

Domino problems: classical given \mathcal{D} , has \mathcal{D} a tiling?

 \Rightarrow well-known that this problem is undecidable [Berger66]

NexpTime given \mathcal{D} , has \mathcal{D} a tiling for $2^n \times 2^n$ square?

 \Rightarrow well-known that this problem is NExpTime-hard

To reduce the NExpTime domino problem to \mathcal{ALCQIO} consistency, we need to

- define a mapping π from domino problems to \mathcal{ALCQIO} ontologies such that
- ullet D has an $2^n imes 2^n$ mapping iff $\pi(D)$ is consistent and
- ullet size of $\pi(D)$ is polynomial in n

We can express various obligations of the domino problem in ALC TBox axioms:

(1) each element carries exactly one domino type D_i

 \rightsquigarrow use unary predicate symbol D_i for each domino type and

 $\top \sqsubseteq D_1 \sqcup \ldots \sqcup D_d \qquad \% \text{ each element carries a domino type}$ $\begin{array}{c} D_1 \sqsubseteq \neg D_2 \sqcap \ldots \sqcap \neg D_d & \% \text{ but not more than one} \\ D_2 \sqsubseteq \neg D_3 \sqcap \ldots \sqcap \neg D_d & \% & \ldots \\ \vdots & \vdots \\ D_{d-1} \sqsubseteq \neg D_d \end{array}$

② every element has a horizontal (X-) successor and a vertical (Y-) successor $\top \Box \exists X. \top \sqcap \exists Y. \top$

③ every element satisfies *D*'s horizontal/vertical matching conditions:

Does this suffice? I.e., does D have a $2^n \times 2^n$ tiling iff one D_i is satisfiable w.r.t. ① to ③?

- \bullet if yes, we have shown that satisfiability of \mathcal{ALC} is NExpTime-hard
- so no...what is missing?

Two things are missing:

- 1. the model must be large enough, namely $2^n imes 2^n$ and
- 2. for each element, its horizontal-vertical-successors coincide with their vertical-horizontal-successors and vice versa

This will be addressed using a "counting and binding together" trick ...

④ counting and binding together

(a) use A_1, \ldots, A_n , B_1, \ldots, B_2 as "bits" for binary representation of grid position e.g., (010, 011) is represented by an instance of $\neg A_3, A_2, \neg A_1, \neg B_3, B_2, B_1$

write GCI to ensure that X- and Y-successors are incremented correctly e.g., X-successor of (010, 011) is (011, 011)

(b) use nominals to ensure that there is only one (111...1, 111...1) this implies, with $\top \sqsubseteq (\leq 1 \ X^-.\top) \sqcap (\leq 1 \ Y^-.\top)$ uniqueness of grid positions

④ counting and binding together

(a) \tilde{A}_i for "bit A_i is incremented correctly":

$$\top \sqsubseteq \tilde{A}_{1} \sqcap \ldots \sqcap \tilde{A}_{n}$$

$$\tilde{A}_{1} \sqsubseteq (A_{1} \sqcap \forall X. \neg A_{1}) \sqcup (\neg A_{1} \sqcap \forall X. A_{1})$$

$$\tilde{A}_{i} \sqsubseteq (\bigcap_{\ell < i} A_{\ell} \sqcap ((A_{i} \sqcap \forall X. \neg A_{i}) \sqcup (\neg A_{i} \sqcap \forall X. A_{i})) \sqcup (\neg A_{i} \sqcap \forall X. A_{i})) \sqcup (\neg A_{\ell} \sqcap \forall X. A_{i}))$$

$$(\neg \bigcap_{\ell < i} A_{\ell} \sqcap ((A_{i} \sqcap \forall X. A_{i}) \sqcup (\neg A_{i} \sqcap \forall X. \neg A_{i}))$$

$$(\text{add the same for the } B_{i}\text{s})$$

(b) ensure uniqueness of grid positions:

 $A_1 \sqcap \ldots \sqcap A_n \sqcap B_1 \sqcap \ldots \sqcap B_n \sqsubseteq \{o\}$ % top right $(2^n, 2^n)$ is unique $\top \sqsubseteq (\leq 1 X^-.\top) \sqcap (\leq 1 Y^-.\top)$ % everything else is also unique

Reduction of NExpTime Domino Problem to \mathcal{ALCQIO} Consistency

Since the NExpTime-domino problem is NExpTime-hard, this implies consistency of ALCQIO is also NExpTime-hard:

Lemma: let \mathcal{O}_D be ontology consisting of all axioms mentioned in reduction of D:

- D has an $2^n imes 2^n$ tiling iff \mathcal{O}_D is consistent
- size of \mathcal{O}_D is polynomial (quadratic) in
 - the size of \boldsymbol{D} and

-n

Let's do this again!

So far, we have extended \mathcal{ALC} with

- inverse role and
- number restrictions
- ...which resulted in logics whose reasoning problems are decidable
- ...we even discussed decision procedures for these extensions

Next, we will discuss some undecidable extension

- \bullet \mathcal{ALC} with role chain inclusions
- \bullet \mathcal{ALC} with number restrictions on complex roles

OWL 2 supports axioms of the form

- $r \sqsubseteq s$: a model of $\mathcal O$ with $r \sqsubseteq s \in \mathcal O$ must satisfy $r^\mathcal I \subseteq s^\mathcal I$
- trans(r): a model of \mathcal{O} with trans $(r) \in \mathcal{O}$ must satisfy $r^{\mathcal{I}} \circ r^{\mathcal{I}} \subseteq r^{\mathcal{I}}$, where $p \circ q = \{(x, z) \mid \text{ there is } y : (x, y) \in p \text{ and } (y, z) \in q\}$, i.e., a model \mathcal{I} of \mathcal{O} must interpret r as a transitive relation
- $r \circ s \sqsubseteq t$: a model of \mathcal{O} with $r \circ s \sqsubseteq t \in \mathcal{O}$ must satisfy $r^{\mathcal{I}} \circ s^{\mathcal{I}} \subseteq t^{\mathcal{I}}$ subject to some complex restrictions
- ...why do we need restrictions?
- ...because axioms of this form lead to loss of tree model property and undecidability

Often, we prove undecidability of a DL as follows:

- 1. fix reasoning problem, e.g., satisfiability of a concept w.r.t. a TBox
 - remember Theorem 2?
 - if concept satisfiability w.r.t. TBox is undecidable,
 - then so is consistency of ontology
 - then so is subsumption w.r.t. an ontology
 - ...

2. pick a decision problem known to be undecidable, e.g., the domino problem

- 3. provide a (computable) mapping $\pi(\cdot)$ that
 - \bullet takes an instance D of the domino problem and
 - ullet turns it into a concept A_D and a TBox \mathcal{T}_D such that
 - ullet D has a tiling if and only if A_D is satisfiable w.r.t. \mathcal{T}_D

i.e., a decision procedure of concept satisfiability w.r.t. TBoxes could be used as a decision procedure for the domino problem

The Classical Domino Problem

Definition: A domino system $\mathcal{D} = (D, H, V)$

- ullet set of domino types $D = \{D_1, \dots, D_d\}$, and
- horizontal and vertical matching conditions $H \subseteq D imes D$ and $V \subseteq D imes D$

A tiling for \mathcal{D} is a (total) function:

 $egin{aligned} t: \mathbb{N} imes \mathbb{N} o D ext{ such that} \ & \langle t(m,n), t(m+1,n)
angle \in H ext{ and} \ & \langle t(m,n), t(m,n+1)
angle \in V \end{aligned}$

Domino problem: given \mathcal{D} , has \mathcal{D} a tiling?

It is well-known that this problem is undecidable [Berger66]

We have already see how to express various obligations of the domino problem in \mathcal{ALC} TBox axioms:

(1) each element carries exactly one domino type $D_i \checkmark$

 \rightsquigarrow use unary predicate symbol D_i for each domino type and

 $\top \sqsubseteq D_1 \sqcup \ldots \sqcup D_d \qquad \% \text{ each element carries a domino type}$ $\begin{array}{c} D_1 \sqsubseteq \neg D_2 \sqcap \ldots \sqcap \neg D_d & \% \text{ but not more than one} \\ D_2 \sqsubseteq \neg D_3 \sqcap \ldots \sqcap \neg D_d & \% & \ldots \\ \vdots & \vdots \\ D_{d-1} \sqsubseteq \neg D_d \end{array}$

② every element has a horizontal (*X*-) successor and a vertical (*Y*-) successor \checkmark $\top \Box \exists X. \top \sqcap \exists Y. \top$

(3) every element satisfies D's horizontal/vertical matching conditions: \checkmark

Does this suffice?

No, we know that it doesn't!

Encoding the Classical Domino Problem in \mathcal{ALC} with role chain inclusions

(4) for each element, its horizontal-vertical-successors coincide with their vertical-horizontal-successors & vice versa

 $X \circ Y \sqsubseteq Y \circ X$ and $Y \circ X \sqsubseteq X \circ Y$

Lemma: Let \mathcal{T}_D be the axioms from ① to ④. Then \top is satisfiable w.r.t. \mathcal{T}_D iff \mathcal{D} has a tiling.

- since the domino problem is undecidable, this implies undecidability of concept satisfiability w.r.t. TBoxes of ALC with role chain inclusions
- due to Theorem 2, all other standard reasoning problems are undecidable, too
- Proof: 1. show that, from a tiling for D, you can construct a model of \mathcal{T}_D 2. show that, from a model \mathcal{I} of \mathcal{T}_D , you can construct a tiling for D
 - (tricky because elements in \mathcal{I} can have several X- or Y-successors but we can simply take the right ones...)

Let's do this again!

What other constructors can us help to express ④?

• counting and complex roles (role chains and role intersection):

 $\top \sqsubseteq (\leq 1X.\top) \sqcap (\leq 1Y.\top) \sqcap (\exists (X \circ Y) \sqcap (Y \circ X).\top)$

• restricted role chain inclusions (only 1 role on RHS), and counting (an all roles):

• various others...

Over to Thomas for easy fast DLs!