
Description Logics:

an Introductory Course on a Nice Family of Logics

Day 4: Computational Complexity

Uli Sattler

University of
Manchester

1

Complexity

We distinguish between

• cognitive complexity:

– e.g., how hard is it, for a human, to determine/understand O |=? C ⊑ D

– interesting, little understood topic

– relevant to provide tool support for ontology engineers

– more tomorrow

• computational complexity:

– e.g., how much time/space do we need to determine O |=? C ⊑ D

– well understood topic

– loads of results thanks to relationships DL - FOL - Modal Logic

– relevant to understand

∗ trade-off between expressivity (of a DL) and complexity of reasoning

∗ whether a given algorithm is optimal/can be improved

University of
Manchester

2

Computational Complexity: Decision Problems

Decision problem: • is a subset P ⊆ M

• e.g., P = the set of consistent ALC ontologies and

M = the set of all ALC ontologies

• think of it as black box with

– input m ∈ M

– output “yes” if m ∈ P

“no” if m 6∈ P

(Polynomial) reduction from P ⊆ M to P ′ ⊆ M ′ is a (polynomial) function π:

• π : M −→ M ′

• m ∈ P iff π(m) ∈ P ′

• e.g., our translation t() from ALC to FOL

• e.g., our reduction from subsumption to ontology consistency

University of
Manchester

3

Computational Complexity: Decision Problems

Decision problem: • is a subset P ⊆ M

• think of it as black box with

– input m ∈ M

– output: “yes” if m ∈ P , “no” otherwise

(Polynomial) reduction from P ⊆ M to P ′ ⊆ M ′ is a (polynomial) function π:

• π : M −→ M ′ with m ∈ P iff π(m) ∈ P ′

University of
Manchester

4

Computational Complexity: Decision Problems

Decision problem: • is a subset P ⊆ M

• think of it as black box with

– input m ∈ M

– output: “yes” if m ∈ P , “no” otherwise

(Polynomial) reduction from P ⊆ M to P ′ ⊆ M ′ is a (polynomial) function π:

• π : M −→ M ′ with m ∈ P iff π(m) ∈ P ′

Fact: if P ⊆ M is reducible to P ′ ⊆ M ′, then

P is at most as hard/complexa as P ′

because P can be solved by solving P ′ via π
aOf course only for suitably complex problems.

University of
Manchester

5

Computational Complexity

Some standard complexity classes:

Name Meaning Examples

L logarithmic space graph accessibility

P polynomial time model checking

NP nondeterministic pol. time prop. logic SAT

PSpace polynomial space Q-SAT

ExpTime exponential time

NExpTime nondeterministic exponential time

ExpSpace exponential space

.

undecidable FOL-SAT

University of
Manchester

6

Computational Complexity: Decision Problems

To determine that a problem P ⊆ M is

• in a complexity class C, it suffices to

– design/find an algorithm

– show that it is sound, complete, and terminating, and

– show that this algorithm runs, for every m ∈ M , in at most C resources

– ...this algorithm can be a reduction to a problem known to be in C

• hard for a complexity class C, we need to

– find a suitable problem P ′ ⊆ M ′ that is known to be hard for C and

– a reduction from P ′ to P

• complete for a complexity class C, we need to show that it is

– in C and

– hard for C

University of
Manchester

7

Worst-Case Complexity

Worst-case: algorithm runs, for every m ∈ M , in at most C resources,

e.g., like this, on all problems of size 7:

University of
Manchester

8

Worst-Case Complexity

Worst-case: algorithm runs, for every m ∈ M , in at most C resources,

e.g., or like this, on all problems of size 7:

University of
Manchester

9

Worst-Case Complexity

Worst-case: algorithm runs, for every m ∈ M , in at most C resources,

e.g., or like this, on all problems of size 7:

University of
Manchester

10

Worst-Case Complexity

Worst-case: algorithm runs, for every m ∈ M , in at most C resources,

e.g., or like this, on all problems of size 7:

University of
Manchester

11

Known Complexity Results from Days 1-3

• Yesterday, we have seen that ALCI satisfiability w.r.t. TBoxes is in ExpTime:

– automata-based approach runs in (best & worst case) exponential time

– can be extended to ABoxes & ontology consistency

✔ we can’t do better: already ALC satisfiability w.r.t. TBoxes is ExpTime-hard:

– but proof is cumbersome

– via a reduction of the halting problem of a polynomial-space-bounded alternating TM

• on Tuesday, we “saw” that ALCI satisfiability (no TBoxes) is in PSpace:

– non-deterministic tableau algorithm runs in polynomial space

– can be extended to ABoxes & ontology consistency

✔ we can’t do better: already ALC satisfiability is PSpace-hard:

– but proof is a bit cumbersome

– via a reduction of satisfiability of quanitified Boolean formulae

University of
Manchester

12

Are all DLs in ExpTime?

Next, we will see that consistency of ALCQIO ontologies,

the extension of ALCI with

• number restrictions, in fact functionality restrictions (≤ 1r ⊤) and

• nominals, i.e., individual names used as concept names

⇒ is harder, namely NExpTime-hard

• this is typical phenomenon where

– combination of otherwise harmless constructors

– leads to increased complexity

University of
Manchester

13

ALCQIO is NExpTime-hard

We follow hardness proof recipe:

• to show that consistency of ALCQIO ontologies is NExpTime-hard, we

– find a suitable problem P ′ ⊆ M ′ that is known to be NExpTime-hard and

– a reduction from P ′ to P

The NExpTime version of the domino problem

University of
Manchester

14

Domino Problems

Definition: A domino system D = (D, H, V)

• set of domino types D = {D1, . . . , Dd}, and

• horizontal and vertical matching conditions

H ⊆ D × D and V ⊆ D × D

A tiling for D is a function:

t : N × N → D such that

〈t(m, n), t(m + 1, n)〉 ∈ H and

〈t(m, n), t(m, n + 1)〉 ∈ V

Domino problems: classical given D, has D a tiling?

⇒ well-known that this problem is undecidable [Berger66]

NexpTime given D, has D a tiling for 2n × 2n square?

⇒ well-known that this problem is NExpTime-hard

University of
Manchester

15

Reduction of NExpTime Domino Problem to ALCQIO Consistency

To reduce the NExpTime domino problem to ALCQIO consistency, we need to

• define a mapping π from domino problems to ALCQIO ontologies such that

• D has an 2n × 2n mapping iff π(D) is consistent and

• size of π(D) is polynomial in n

University of
Manchester

16

Mapping a Domino System into an ALCQIO Ontology

We can express various obligations of the domino problem in ALC TBox axioms:

① each element carries exactly one domino type Di

Ã use unary predicate symbol Di for each domino type and

⊤ ⊑ D1 ⊔ . . . ⊔ Dd % each element carries a domino type

D1 ⊑ ¬D2 ⊓ . . . ⊓ ¬Dd % but not more than one

D2 ⊑ ¬D3 ⊓ . . . ⊓ ¬Dd % ...
... ...

Dd−1 ⊑ ¬Dd

University of
Manchester

17

Mapping a Domino System into an ALCQIO Ontology

② every element has a horizontal (X-) successor and a vertical (Y -) successor

⊤ ⊑ ∃X.⊤ ⊓ ∃Y.⊤

③ every element satisfies D’s horizontal/vertical matching conditions:

D1 ⊑ ⊔
(D1,D)∈H

∀X.D ⊓ ⊔
(D1,D)∈V

∀Y.D

D2 ⊑ ⊔
(D2,D)∈H

∀X.D ⊓ ⊔
(D2,D)∈V

∀Y.D

... ...

Dd ⊑ ⊔
(Dd,D)∈H

∀X.D ⊓ ⊔
(Dd,D)∈V

∀Y.D

Does this suffice?

I.e., does D have a 2n × 2n tiling iff one Di is satisfiable w.r.t. ① to ③?

• if yes, we have shown that satisfiability of ALC is NExpTime-hard

• so no...what is missing?

University of
Manchester

18

Mapping a Domino System into an ALCQIO Ontology

Two things are missing:

1. the model must be large enough, namely 2n × 2n and

2. for each element, its horizontal-vertical-successors coincide with their

vertical-horizontal-successors and vice versa

This will be addressed using a “counting and binding together” trick ...

University of
Manchester

19

Mapping a Domino System into an ALCQIO Ontology

④ counting and binding together

(a) use A1, . . . , An, B1, . . . , B2 as “bits” for binary representation of grid position

e.g., (010, 011) is represented by an instance of ¬A3, A2, ¬A1, ¬B3, B2, B1

write GCI to ensure that X- and Y -successors are incremented correctly

e.g., X-successor of (010, 011) is (011, 011)

(b) use nominals to ensure that there is only one (111. . . 1, 111. . . 1)

this implies, with ⊤ ⊑ (≤ 1 X−.⊤)⊓(≤ 1 Y −.⊤) uniqueness of grid positions

University of
Manchester

20

Mapping a Domino System into an ALCQIO Ontology

④ counting and binding together

(a) Ãi for “bit Ai is incremented correctly”:

⊤ ⊑ Ã1 ⊓ . . . ⊓ Ãn

Ã1 ⊑ (A1 ⊓ ∀X.¬A1) ⊔ (¬A1 ⊓ ∀X.A1)

Ãi ⊑ (⊓
ℓ<i

Aℓ ⊓ ((Ai ⊓ ∀X.¬Ai) ⊔ (¬Ai ⊓ ∀X.Ai)) ⊔

(¬ ⊓
ℓ<i

Aℓ ⊓ ((Ai ⊓ ∀X.Ai) ⊔ (¬Ai ⊓ ∀X.¬Ai))

(add the same for the Bis)

(b) ensure uniqueness of grid positions:

A1 ⊓ . . . ⊓ An ⊓ B1 ⊓ . . . ⊓ Bn ⊑ {o} % top right (2n, 2n) is unique

⊤ ⊑ (≤ 1 X−.⊤) ⊓ (≤ 1 Y −.⊤) % everything else is also unique

University of
Manchester

21

Reduction of NExpTime Domino Problem to ALCQIO Consistency

Since the NExpTime-domino problem is NExpTime-hard, this implies

consistency of ALCQIO is also NExpTime-hard:

Lemma: let OD be ontology consisting of all axioms mentioned in reduction of D:

• D has an 2n × 2n tiling iff OD is consistent

• size of OD is polynomial (quadratic) in

– the size of D and

– n

University of
Manchester

22

Let’s do this again!

University of
Manchester

23

Are all DLs decidable?

So far, we have extended ALC with

• inverse role and

• number restrictions

• ...which resulted in logics whose reasoning problems are decidable

• ...we even discussed decision procedures for these extensions

Next, we will discuss some undecidable extension

• ALC with role chain inclusions

• ALC with number restrictions on complex roles

University of
Manchester

24

An undecidable DL: ALC with role chain inclusions

OWL 2 supports axioms of the form

• r ⊑ s: a model of O with r ⊑ s ∈ O must satisfy rI ⊆ sI

• trans(r): a model of O with trans(r) ∈ O must satisfy rI ◦rI ⊆ rI ,

where p ◦ q = {(x, z) | there is y : (x, y) ∈ p and (y, z) ∈ q},

i.e., a model I of O must interpret r as a transitive relation

• r ◦s ⊑ t: a model of O with r ◦s ⊑ t ∈ O must satisfy rI ◦sI ⊆ tI

subject to some complex restrictions

...why do we need restrictions?

...because axioms of this form lead to loss of tree model property and

undecidability

University of
Manchester

25

How to prove undecidability of a DL

Often, we prove undecidability of a DL as follows:

1. fix reasoning problem, e.g., satisfiability of a concept w.r.t. a TBox

• remember Theorem 2?

• if concept satisfiability w.r.t. TBox is undecidable,

• then so is consistency of ontology

• then so is subsumption w.r.t. an ontology

• ...

2. pick a decision problem known to be undecidable, e.g., the domino problem

3. provide a (computable) mapping π(·) that

• takes an instance D of the domino problem and

• turns it into a concept AD and a TBox TD such that

• D has a tiling if and only if AD is satisfiable w.r.t. TD

i.e., a decision procedure of concept satisfiability w.r.t. TBoxes could be used as

a decision procedure for the domino problem
University of
Manchester

26

The Classical Domino Problem

using D?

types
dominoe
of
set
a fixed
D,

can we tile the

��
��
��
��

first quadrant

��
��
��
��

����

University of
Manchester

27

The Classical Domino Problem

Definition: A domino system D = (D, H, V)

• set of domino types D = {D1, . . . , Dd}, and

• horizontal and vertical matching conditions H ⊆ D × D and V ⊆ D × D

A tiling for D is a (total) function:

t : N × N → D such that

〈t(m, n), t(m + 1, n)〉 ∈ H and

〈t(m, n), t(m, n + 1)〉 ∈ V

Domino problem: given D, has D a tiling?

It is well-known that this problem is undecidable [Berger66]

University of
Manchester

28

Almost Encoding the Classical Domino Problem in ALC

We have already see how to express various obligations of the domino problem in

ALC TBox axioms:

① each element carries exactly one domino type Di ✔

Ã use unary predicate symbol Di for each domino type and

⊤ ⊑ D1 ⊔ . . . ⊔ Dd % each element carries a domino type

D1 ⊑ ¬D2 ⊓ . . . ⊓ ¬Dd % but not more than one

D2 ⊑ ¬D3 ⊓ . . . ⊓ ¬Dd % ...
... ...

Dd−1 ⊑ ¬Dd

University of
Manchester

29

Almost Encoding the Classical Domino Problem in ALC

② every element has a horizontal (X-) successor and a vertical (Y -) successor ✔

⊤ ⊑ ∃X.⊤ ⊓ ∃Y.⊤

③ every element satisfies D’s horizontal/vertical matching conditions: ✔

D1 ⊑ ⊔
(D1,D)∈H

∀X.D ⊓ ⊔
(D1,D)∈V

∀Y.D

D2 ⊑ ⊔
(D2,D)∈H

∀X.D ⊓ ⊔
(D2,D)∈V

∀Y.D

... ...

Dd ⊑ ⊔
(Dd,D)∈H

∀X.D ⊓ ⊔
(Dd,D)∈V

∀Y.D

Does this suffice?

No, we know that it doesn’t!

University of
Manchester

30

Encoding the Classical Domino Problem in ALC with role chain inclusions

④ for each element, its horizontal-vertical-successors coincide with their

vertical-horizontal-successors & vice versa

X ◦ Y ⊑ Y ◦ X and Y ◦ X ⊑ X ◦ Y

Lemma: Let TD be the axioms from ① to ④.

Then ⊤ is satisfiable w.r.t. TD iff D has a tiling.

• since the domino problem is undecidable, this implies undecidability of

concept satisfiability w.r.t. TBoxes of ALC with role chain inclusions

• due to Theorem 2, all other standard reasoning problems are undecidable, too

• Proof: 1. show that, from a tiling for D, you can construct a model of TD

2. show that, from a model I of TD, you can construct a tiling for D

(tricky because elements in I can have several X- or Y -successors

but we can simply take the right ones...)

University of
Manchester

31

Let’s do this again!

University of
Manchester

32

Let’s do this again!

What other constructors can us help to express ④?

• counting and complex roles (role chains and role intersection):

⊤ ⊑ (≤ 1X.⊤) ⊓ (≤ 1Y.⊤) ⊓ (∃(X ◦ Y) ⊓ (Y ◦ X).⊤)

• restricted role chain inclusions (only 1 role on RHS), and counting (an all roles):

⊤ ⊑ (≤ 1X.⊤) ⊓ (≤ 1Y.⊤)

X ◦ Y ⊑ r

Y ◦ X ⊑ r

⊤ ⊑ (≤ 1r.⊤)

• various others...

University of
Manchester

33

Over to Thomas for easy fast DLs!

University of
Manchester

34

